Using cell phone location to assess misclassification errors in air pollution exposure estimation
Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimat...
Saved in:
Published in | Environmental pollution (1987) Vol. 233; pp. 261 - 266 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies.
[Display omitted]
•Detailed cell phone location data were used to estimate air pollution exposure.•Results were compared with those estimated at home addresses.•Misclassification errors are likely when home address are used in the estimation.•Cell phone location based method could be used to improve exposure estimation.
Cell phone location-based exposure estimation has the potential for improving exposure estimates vs. home address-based approaches that are likely to have increased misclassification errors because it does not account for individual mobility. |
---|---|
AbstractList | Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies.Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies. Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies. [Display omitted] •Detailed cell phone location data were used to estimate air pollution exposure.•Results were compared with those estimated at home addresses.•Misclassification errors are likely when home address are used in the estimation.•Cell phone location based method could be used to improve exposure estimation. Cell phone location-based exposure estimation has the potential for improving exposure estimates vs. home address-based approaches that are likely to have increased misclassification errors because it does not account for individual mobility. Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies. |
Author | Russell, Armistead Huang, Zhijiong Mulholland, James Yu, Haofei |
Author_xml | – sequence: 1 givenname: Haofei orcidid: 0000-0002-7930-8934 surname: Yu fullname: Yu, Haofei email: haofei.yu@ucf.edu organization: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 2 givenname: Armistead surname: Russell fullname: Russell, Armistead organization: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 3 givenname: James surname: Mulholland fullname: Mulholland, James organization: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 4 givenname: Zhijiong surname: Huang fullname: Huang, Zhijiong organization: School of Environmental Science and Engineering, South China University of Technology, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29096298$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu2zAQJAIXje32D4qCx1zkLh8WxRwKBEabFAjQS3MmaGqV0pBFlZSC5O9DW84lh_rExXJmd2dmQWZd6JCQLwxWDFj5bbfC7qkP7YoDU7m1AqUuyJxVShSl5HJG5sBLXSip2SVZpLQDACmE-EguuQZdcl3NiX1IvnukDtuW9n_zBtoGZwcfOjoEalPClOjeJ9fm2jf-9Icxhpio76j1keYr2nHqP_chjREppsHvj9hP5ENj24SfT--SPPz88WdzV9z_vv21ubkvnNDroUCHilegxdo1udTa1hK3WJVa2VqzNXIFAprKgeK2tlIJDQhCYCMAGlBiSa6muX0M_8a83xzOzrpsh2FMhmf5aym1hLNQpquKl6XObi3J1xN03O6xNn3MsuKLeXMwA64ngIshpYiNcX44Ch-i9a1hYA5xmZ2Z4jKHuA7dHFcmy3fkt_lnaN8nGmY_nzxGk5zHzmHtI7rB1MH_f8ArAvOygQ |
CitedBy_id | crossref_primary_10_1080_24694452_2020_1756208 crossref_primary_10_1016_j_jclepro_2021_129409 crossref_primary_10_1021_acs_est_4c00074 crossref_primary_10_3390_ijerph16010089 crossref_primary_10_3390_ijerph20166620 crossref_primary_10_1111_tgis_12978 crossref_primary_10_1016_j_atmosenv_2019_116878 crossref_primary_10_1016_j_socscimed_2023_116040 crossref_primary_10_1016_j_scitotenv_2020_141034 crossref_primary_10_1016_j_scitotenv_2020_138102 crossref_primary_10_1016_j_envres_2020_110519 crossref_primary_10_20517_jeea_2024_56 crossref_primary_10_1016_j_compenvurbsys_2019_101346 crossref_primary_10_1080_13658816_2018_1503276 crossref_primary_10_1080_10962247_2021_1942318 crossref_primary_10_1007_s00168_019_00926_x crossref_primary_10_1016_j_envint_2020_105772 crossref_primary_10_1016_j_uclim_2023_101684 crossref_primary_10_1016_j_enpol_2018_12_037 crossref_primary_10_3390_jcm9113445 crossref_primary_10_1155_2021_1586010 crossref_primary_10_1016_j_landurbplan_2023_104970 crossref_primary_10_1007_s10707_019_00346_1 crossref_primary_10_3390_ijerph18042194 crossref_primary_10_1016_j_landurbplan_2021_104179 crossref_primary_10_1371_journal_pone_0263649 crossref_primary_10_1016_j_uclim_2024_102261 crossref_primary_10_1016_j_apgeog_2024_103400 crossref_primary_10_1016_j_envres_2019_108999 crossref_primary_10_1186_s12940_022_00939_8 crossref_primary_10_1186_s12940_024_01111_0 crossref_primary_10_1371_journal_pone_0231863 crossref_primary_10_3390_ijerph15091841 crossref_primary_10_3390_ijerph15040573 crossref_primary_10_4236_ojs_2022_123026 crossref_primary_10_3390_ijerph16224522 crossref_primary_10_1097_EE9_0000000000000180 crossref_primary_10_1080_23748834_2024_2376389 crossref_primary_10_1016_j_envres_2021_110736 crossref_primary_10_1016_j_envres_2021_111549 crossref_primary_10_3390_ijerph17082872 crossref_primary_10_1016_j_apgeog_2022_102821 crossref_primary_10_1016_j_scs_2022_104346 crossref_primary_10_1016_j_envpol_2019_05_081 crossref_primary_10_1002_psp_2643 crossref_primary_10_1080_10962247_2025_2455119 crossref_primary_10_1139_er_2022_0125 crossref_primary_10_1080_24694452_2022_2098086 crossref_primary_10_1007_s11783_022_1542_7 crossref_primary_10_1016_j_healthplace_2022_102803 crossref_primary_10_1007_s40615_024_02143_5 crossref_primary_10_1117_1_JRS_18_012003 crossref_primary_10_1016_j_envint_2021_106817 crossref_primary_10_1016_j_healthplace_2021_102584 crossref_primary_10_1080_24694452_2018_1453777 |
Cites_doi | 10.1016/j.atmosenv.2015.04.039 10.1016/S0140-6736(16)00378-0 10.1115/1.2128636 10.1021/acs.est.5b05134 10.1098/rsos.160900 10.1016/j.atmosenv.2015.06.036 10.1016/S0140-6736(12)61766-8 10.1126/science.aaa2709 10.1038/srep01376 10.1289/ehp.1104609 10.1007/s10916-016-0565-7 10.1016/j.bdr.2015.02.002 10.1021/acs.est.6b02385 10.1016/j.healthplace.2016.10.002 10.1016/j.atmosenv.2013.03.012 10.1016/j.atmosenv.2010.12.050 10.1080/10473289.2006.10464485 10.1016/j.scitotenv.2012.10.098 10.1016/j.pmcj.2014.11.008 10.1007/s10955-012-0645-0 10.1016/j.envpol.2014.07.022 10.1016/j.scitotenv.2016.12.105 10.1016/j.atmosenv.2017.03.022 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2017.10.077 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
EndPage | 266 |
ExternalDocumentID | 29096298 10_1016_j_envpol_2017_10_077 S0269749117320559 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-ece7280935cfce799ad4ebe8697ad915e27030f8c072ada47390e033ef300f073 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Fri Jul 11 16:44:18 EDT 2025 Fri Jul 11 15:35:46 EDT 2025 Mon Jul 21 06:08:23 EDT 2025 Tue Jul 01 00:54:30 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Fri Feb 23 02:49:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Call detail record Air pollution Exposure estimation Health assessment Exposure misclassification |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-ece7280935cfce799ad4ebe8697ad915e27030f8c072ada47390e033ef300f073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7930-8934 |
PMID | 29096298 |
PQID | 1988266943 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000544940 proquest_miscellaneous_1988266943 pubmed_primary_29096298 crossref_citationtrail_10_1016_j_envpol_2017_10_077 crossref_primary_10_1016_j_envpol_2017_10_077 elsevier_sciencedirect_doi_10_1016_j_envpol_2017_10_077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 2018-02-00 2018-Feb 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Zhao, Zhang, He (bib32) 2015 Koo, Kumar, Knipping, Nopmongcol, Sakulyanontvittaya, Odman, Russell, Yarwood (bib18) 2015; 116 Friberg, Zhai, Holmes, Chang, Strickland, Sarnat, Tolbert, Russell, Mulholland (bib8) 2016; 50 Huang, Lan, Fang, An, Min, Wang (bib14) 2015; 2 Nyhan, Grauwin, Britter, Misstear, McNabola, Laden (bib21) 2016; 50 Park, Kwan (bib22) 2017; 43 Zheng, Liu, Hsieh (bib33) 2013 Pope, Dockery (bib24) 2006; 56 Hasan, Schneider, Ukkusuri, González (bib12) 2013; 151 Zheng, Yi, Li, Li, Shan, Chang (bib34) 2015 Grauwin, Sobolevsky, Moritz, Gódor, Ratti (bib10) 2015 Lu, Wang, Huang, Yang, Shen (bib20) 2016 Pew Research Center (bib23) 2016 Khoury, Ioannidis (bib16) 2014; 346 Shenzhen Statistics Bureau (bib27) 2016 Byun, Schere (bib1) 2006; 59 Kondor, Grauwin, Kallus, Gódor, Sobolevsky, Ratti (bib17) 2017; 4 Kaufman, Adar, Barr, Budoff, Burke, Curl (bib15) 2016; 388 Fan, Wolfson, Adomavicius, Das, Khandelwal, Kang (bib7) 2015 Steinle, Reis, Sabel (bib28) 2013; 443 Lim, Vos, Flaxman, Danaei, Shibuya, Adair-Rohani (bib19) 2012; 380 Zhang, He, Liu, Stankovic (bib29) 2013 Zhang, Zhao, Zhang, He (bib31) 2015 de la Torre Díez, Cosgaya, Garcia-Zapirain, López-Coronado (bib5) 2016; 40 Porter, Rao, Hogrefe, Gego, Mathur (bib25) 2015; 112 Zhong, Louie, Zheng, Yuan, Yue, Ho (bib35) 2013; 76 Che, Zheng, Wang, Zhong, Lau (bib2) 2011; 45 Hasenfratz, Saukh, Walser, Hueglin, Fierz, Arn (bib13) 2015; 16 Friberg, Kahn, Holmes, Chang, Sarnat, Tolbert, Russell, Mulholland (bib9) 2017; 158 Shafran-Nathan, Yuval, Broday (bib26) 2017; 580 Dadvand, de Nazelle, Triguero-Mas, Schembari, Cirach, Amoly (bib4) 2012; 120 De Montjoye, Hidalgo, Verleysen, Blondel (bib6) 2013; 3 Zhang, He, Lin, Munir, Stankovic (bib30) 2014 Han, Zhou, Li, Li (bib11) 2014; 194 Cheng, Li, Li, Jiang, Li, Jia (bib3) 2014 Hasenfratz (10.1016/j.envpol.2017.10.077_bib13) 2015; 16 Kondor (10.1016/j.envpol.2017.10.077_bib17) 2017; 4 Khoury (10.1016/j.envpol.2017.10.077_bib16) 2014; 346 Zhang (10.1016/j.envpol.2017.10.077_bib31) 2015 Pope (10.1016/j.envpol.2017.10.077_bib24) 2006; 56 Shenzhen Statistics Bureau (10.1016/j.envpol.2017.10.077_bib27) 2016 Park (10.1016/j.envpol.2017.10.077_bib22) 2017; 43 Grauwin (10.1016/j.envpol.2017.10.077_bib10) 2015 Porter (10.1016/j.envpol.2017.10.077_bib25) 2015; 112 Fan (10.1016/j.envpol.2017.10.077_bib7) 2015 Zheng (10.1016/j.envpol.2017.10.077_bib33) 2013 Shafran-Nathan (10.1016/j.envpol.2017.10.077_bib26) 2017; 580 Zhang (10.1016/j.envpol.2017.10.077_bib30) 2014 Dadvand (10.1016/j.envpol.2017.10.077_bib4) 2012; 120 Koo (10.1016/j.envpol.2017.10.077_bib18) 2015; 116 Lim (10.1016/j.envpol.2017.10.077_bib19) 2012; 380 Huang (10.1016/j.envpol.2017.10.077_bib14) 2015; 2 Cheng (10.1016/j.envpol.2017.10.077_bib3) 2014 Friberg (10.1016/j.envpol.2017.10.077_bib9) 2017; 158 Kaufman (10.1016/j.envpol.2017.10.077_bib15) 2016; 388 Zhang (10.1016/j.envpol.2017.10.077_bib32) 2015 Hasan (10.1016/j.envpol.2017.10.077_bib12) 2013; 151 Han (10.1016/j.envpol.2017.10.077_bib11) 2014; 194 Pew Research Center (10.1016/j.envpol.2017.10.077_bib23) 2016 Zheng (10.1016/j.envpol.2017.10.077_bib34) 2015 de la Torre Díez (10.1016/j.envpol.2017.10.077_bib5) 2016; 40 Zhong (10.1016/j.envpol.2017.10.077_bib35) 2013; 76 Zhang (10.1016/j.envpol.2017.10.077_bib29) 2013 Byun (10.1016/j.envpol.2017.10.077_bib1) 2006; 59 Nyhan (10.1016/j.envpol.2017.10.077_bib21) 2016; 50 Che (10.1016/j.envpol.2017.10.077_bib2) 2011; 45 Friberg (10.1016/j.envpol.2017.10.077_bib8) 2016; 50 De Montjoye (10.1016/j.envpol.2017.10.077_bib6) 2013; 3 Lu (10.1016/j.envpol.2017.10.077_bib20) 2016 Steinle (10.1016/j.envpol.2017.10.077_bib28) 2013; 443 |
References_xml | – volume: 59 start-page: 51 year: 2006 end-page: 77 ident: bib1 article-title: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (cmaq) modeling system publication-title: Appl. Mech. Rev. – volume: 2 start-page: 2 year: 2015 end-page: 11 ident: bib14 article-title: Promises and challenges of big data computing in health sciences publication-title: Big Data Res. – volume: 112 start-page: 178 year: 2015 end-page: 188 ident: bib25 article-title: Methods for reducing biases and errors in regional photochemical model outputs for use in emission reduction and exposure assessments publication-title: Atmos. Environ. – start-page: 152 year: 2014 end-page: 159 ident: bib30 article-title: Dmodel: online taxicab demand model from big sensor data in a roving sensor network publication-title: Proceedings of the 2014 IEEE International Congress on Big Data, June 27 2014-July 2 2014 – start-page: 414 year: 2016 end-page: 426 ident: bib20 article-title: Temporal-spatial aggregated urban air quality inference with heterogeneous big data publication-title: Wireless Algorithms, Systems, and Applications: 11th International Conference, Wasa 2016, Bozeman, Mt, USA, August 8-10, 2016 Proceedings – volume: 56 start-page: 709 year: 2006 end-page: 742 ident: bib24 article-title: Health effects of fine particulate air pollution: lines that connect publication-title: J. air & waste Manag. Assoc. – start-page: 439 year: 2013 end-page: 447 ident: bib29 article-title: Callcab: a unified recommendation system for carpooling and regular taxicab services publication-title: Proceedings of the 2013 IEEE International Conference on Big Data, 6-9 Oct. 2013 – year: 2016 ident: bib23 article-title: Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies. But Advanced Economies Still Have Higher Rates of Technology Use – start-page: 1 year: 2015 end-page: 10 ident: bib31 article-title: Comobile: real-time human mobility modeling at urban scale using multi-view learning publication-title: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems – start-page: 251 year: 2014 end-page: 265 ident: bib3 article-title: Aircloud: a cloud-based air-quality monitoring system for everyone publication-title: Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems – volume: 16 start-page: 268 year: 2015 end-page: 285 ident: bib13 article-title: Deriving high-resolution urban air pollution maps using mobile sensor nodes publication-title: Pervasive Mob. Comput. – volume: 50 start-page: 9671 year: 2016 end-page: 9681 ident: bib21 article-title: “Exposure track”—the impact of mobile-device-based mobility patterns on quantifying population exposure to air pollution publication-title: Environ. Sci. Technol. – volume: 580 start-page: 1401 year: 2017 end-page: 1409 ident: bib26 article-title: Exposure estimation errors to nitrogen oxides on a population scale due to daytime activity away from home publication-title: Sci. Total Environ. – start-page: 2267 year: 2015 end-page: 2276 ident: bib34 article-title: Forecasting fine-grained air quality based on big data publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 3 start-page: 1376 year: 2013 ident: bib6 article-title: Unique in the crowd: the privacy bounds of human mobility publication-title: Sci. Rep. – year: 2016 ident: bib27 article-title: Shenzhen Statistical Yearbook 2016. Shenzhen, Guangzhou, China – volume: 50 start-page: 3695 year: 2016 end-page: 3705 ident: bib8 article-title: Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution publication-title: Environ. Sci. Technol. – volume: 120 start-page: 1286 year: 2012 ident: bib4 article-title: Surrounding greenness and exposure to air pollution during pregnancy: an analysis of personal monitoring data publication-title: Environ. Health Perspect. – volume: 388 start-page: 696 year: 2016 end-page: 704 ident: bib15 article-title: Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the multi-ethnic study of atherosclerosis and air pollution): a longitudinal cohort study publication-title: Lancet – volume: 43 start-page: 85 year: 2017 end-page: 94 ident: bib22 article-title: Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored publication-title: Health & Place – volume: 4 start-page: 160900 year: 2017 ident: bib17 article-title: Prediction limits of mobile phone activity modelling publication-title: R. Soc. Open Sci. – volume: 194 start-page: 163 year: 2014 end-page: 170 ident: bib11 article-title: Impact of urbanization level on urban air quality: a case of fine particles (PM2.5) in Chinese cities publication-title: Environ. Pollut. – start-page: 363 year: 2015 end-page: 387 ident: bib10 article-title: Towards a comparative science of cities: using mobile traffic records in New York, london, and Hong Kong publication-title: Computational Approaches for Urban Environments – volume: 45 start-page: 1740 year: 2011 end-page: 1751 ident: bib2 article-title: Assessment of motor vehicle emission control policies using model-3/cmaq model for the pearl river delta region, China publication-title: Atmos. Environ. – year: 2015 ident: bib7 article-title: Smartrac: a Smartphone Solution for Context-aware Travel and Activity Capturing – volume: 346 start-page: 1054 year: 2014 end-page: 1055 ident: bib16 article-title: Big data meets public health publication-title: Science – volume: 76 start-page: 3 year: 2013 end-page: 10 ident: bib35 article-title: Science–policy interplay: air quality management in the pearl river delta region and Hong Kong publication-title: Atmos. Environ. – start-page: 1436 year: 2013 end-page: 1444 ident: bib33 article-title: U-air: when urban air quality inference meets big data publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 158 start-page: 36 year: 2017 end-page: 50 ident: bib9 article-title: Daily ambient air pollution metrics for five cities: evaluation of data-fusion-based estimates and uncertainties publication-title: Atmos. Environ. – volume: 151 start-page: 304 year: 2013 end-page: 318 ident: bib12 article-title: Spatiotemporal patterns of urban human mobility publication-title: J. Stat. Phys. – volume: 116 start-page: 159 year: 2015 end-page: 171 ident: bib18 article-title: Chemical transport model consistency in simulating regulatory outcomes and the relationship to model performance publication-title: Atmos. Environ. – volume: 40 start-page: 209 year: 2016 ident: bib5 article-title: Big data in health: a literature review from the year 2005 publication-title: J. Med. Syst. – volume: 380 start-page: 2224 year: 2012 end-page: 2260 ident: bib19 article-title: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010 publication-title: Lancet – start-page: 238 year: 2015 end-page: 247 ident: bib32 article-title: Urbancps: a cyber-physical system based on multi-source big infrastructure data for heterogeneous model integration publication-title: Proceedings of the Proceedings of the ACM/IEEE Sixth International Conference on Cyber-physical Systems – volume: 443 start-page: 184 year: 2013 end-page: 193 ident: bib28 article-title: Quantifying human exposure to air pollution—moving from static monitoring to spatio-temporally resolved personal exposure assessment publication-title: Sci. Total Environ. – volume: 112 start-page: 178 year: 2015 ident: 10.1016/j.envpol.2017.10.077_bib25 article-title: Methods for reducing biases and errors in regional photochemical model outputs for use in emission reduction and exposure assessments publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.04.039 – volume: 388 start-page: 696 year: 2016 ident: 10.1016/j.envpol.2017.10.077_bib15 article-title: Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the multi-ethnic study of atherosclerosis and air pollution): a longitudinal cohort study publication-title: Lancet doi: 10.1016/S0140-6736(16)00378-0 – start-page: 1436 year: 2013 ident: 10.1016/j.envpol.2017.10.077_bib33 article-title: U-air: when urban air quality inference meets big data – volume: 59 start-page: 51 year: 2006 ident: 10.1016/j.envpol.2017.10.077_bib1 article-title: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (cmaq) modeling system publication-title: Appl. Mech. Rev. doi: 10.1115/1.2128636 – volume: 50 start-page: 3695 year: 2016 ident: 10.1016/j.envpol.2017.10.077_bib8 article-title: Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05134 – start-page: 2267 year: 2015 ident: 10.1016/j.envpol.2017.10.077_bib34 article-title: Forecasting fine-grained air quality based on big data – volume: 4 start-page: 160900 issue: 2 year: 2017 ident: 10.1016/j.envpol.2017.10.077_bib17 article-title: Prediction limits of mobile phone activity modelling publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.160900 – volume: 116 start-page: 159 year: 2015 ident: 10.1016/j.envpol.2017.10.077_bib18 article-title: Chemical transport model consistency in simulating regulatory outcomes and the relationship to model performance publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.06.036 – volume: 380 start-page: 2224 year: 2012 ident: 10.1016/j.envpol.2017.10.077_bib19 article-title: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010 publication-title: Lancet doi: 10.1016/S0140-6736(12)61766-8 – year: 2015 ident: 10.1016/j.envpol.2017.10.077_bib7 – volume: 346 start-page: 1054 year: 2014 ident: 10.1016/j.envpol.2017.10.077_bib16 article-title: Big data meets public health publication-title: Science doi: 10.1126/science.aaa2709 – start-page: 251 year: 2014 ident: 10.1016/j.envpol.2017.10.077_bib3 article-title: Aircloud: a cloud-based air-quality monitoring system for everyone – year: 2016 ident: 10.1016/j.envpol.2017.10.077_bib23 – volume: 3 start-page: 1376 year: 2013 ident: 10.1016/j.envpol.2017.10.077_bib6 article-title: Unique in the crowd: the privacy bounds of human mobility publication-title: Sci. Rep. doi: 10.1038/srep01376 – start-page: 363 year: 2015 ident: 10.1016/j.envpol.2017.10.077_bib10 article-title: Towards a comparative science of cities: using mobile traffic records in New York, london, and Hong Kong – start-page: 238 year: 2015 ident: 10.1016/j.envpol.2017.10.077_bib32 article-title: Urbancps: a cyber-physical system based on multi-source big infrastructure data for heterogeneous model integration – volume: 120 start-page: 1286 year: 2012 ident: 10.1016/j.envpol.2017.10.077_bib4 article-title: Surrounding greenness and exposure to air pollution during pregnancy: an analysis of personal monitoring data publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1104609 – volume: 40 start-page: 209 year: 2016 ident: 10.1016/j.envpol.2017.10.077_bib5 article-title: Big data in health: a literature review from the year 2005 publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0565-7 – volume: 2 start-page: 2 year: 2015 ident: 10.1016/j.envpol.2017.10.077_bib14 article-title: Promises and challenges of big data computing in health sciences publication-title: Big Data Res. doi: 10.1016/j.bdr.2015.02.002 – volume: 50 start-page: 9671 year: 2016 ident: 10.1016/j.envpol.2017.10.077_bib21 article-title: “Exposure track”—the impact of mobile-device-based mobility patterns on quantifying population exposure to air pollution publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02385 – volume: 43 start-page: 85 year: 2017 ident: 10.1016/j.envpol.2017.10.077_bib22 article-title: Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored publication-title: Health & Place doi: 10.1016/j.healthplace.2016.10.002 – start-page: 152 year: 2014 ident: 10.1016/j.envpol.2017.10.077_bib30 article-title: Dmodel: online taxicab demand model from big sensor data in a roving sensor network – start-page: 439 year: 2013 ident: 10.1016/j.envpol.2017.10.077_bib29 article-title: Callcab: a unified recommendation system for carpooling and regular taxicab services – volume: 76 start-page: 3 year: 2013 ident: 10.1016/j.envpol.2017.10.077_bib35 article-title: Science–policy interplay: air quality management in the pearl river delta region and Hong Kong publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.03.012 – volume: 45 start-page: 1740 year: 2011 ident: 10.1016/j.envpol.2017.10.077_bib2 article-title: Assessment of motor vehicle emission control policies using model-3/cmaq model for the pearl river delta region, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.12.050 – start-page: 1 year: 2015 ident: 10.1016/j.envpol.2017.10.077_bib31 article-title: Comobile: real-time human mobility modeling at urban scale using multi-view learning – volume: 56 start-page: 709 year: 2006 ident: 10.1016/j.envpol.2017.10.077_bib24 article-title: Health effects of fine particulate air pollution: lines that connect publication-title: J. air & waste Manag. Assoc. doi: 10.1080/10473289.2006.10464485 – volume: 443 start-page: 184 year: 2013 ident: 10.1016/j.envpol.2017.10.077_bib28 article-title: Quantifying human exposure to air pollution—moving from static monitoring to spatio-temporally resolved personal exposure assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.10.098 – volume: 16 start-page: 268 issue: Part B year: 2015 ident: 10.1016/j.envpol.2017.10.077_bib13 article-title: Deriving high-resolution urban air pollution maps using mobile sensor nodes publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2014.11.008 – volume: 151 start-page: 304 year: 2013 ident: 10.1016/j.envpol.2017.10.077_bib12 article-title: Spatiotemporal patterns of urban human mobility publication-title: J. Stat. Phys. doi: 10.1007/s10955-012-0645-0 – volume: 194 start-page: 163 year: 2014 ident: 10.1016/j.envpol.2017.10.077_bib11 article-title: Impact of urbanization level on urban air quality: a case of fine particles (PM2.5) in Chinese cities publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2014.07.022 – start-page: 414 year: 2016 ident: 10.1016/j.envpol.2017.10.077_bib20 article-title: Temporal-spatial aggregated urban air quality inference with heterogeneous big data – year: 2016 ident: 10.1016/j.envpol.2017.10.077_bib27 – volume: 580 start-page: 1401 year: 2017 ident: 10.1016/j.envpol.2017.10.077_bib26 article-title: Exposure estimation errors to nitrogen oxides on a population scale due to daytime activity away from home publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.12.105 – volume: 158 start-page: 36 year: 2017 ident: 10.1016/j.envpol.2017.10.077_bib9 article-title: Daily ambient air pollution metrics for five cities: evaluation of data-fusion-based estimates and uncertainties publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.03.022 |
SSID | ssj0004333 |
Score | 2.46592 |
Snippet | Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 261 |
SubjectTerms | air pollutants Air Pollutants - analysis Air pollution Air Pollution - analysis Air Pollution - statistics & numerical data air quality Call detail record Cell Phone China Environmental Exposure - analysis Environmental Exposure - statistics & numerical data epidemiology Exposure estimation Exposure misclassification Health assessment Humans |
Title | Using cell phone location to assess misclassification errors in air pollution exposure estimation |
URI | https://dx.doi.org/10.1016/j.envpol.2017.10.077 https://www.ncbi.nlm.nih.gov/pubmed/29096298 https://www.proquest.com/docview/1988266943 https://www.proquest.com/docview/2000544940 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heqGHql2g3T6QK1XcwnptZx0fVwi0BZULReIWOY4jLaJJlF1Qe-G3M2Mn0B5WSL0lzjiyPOPxjP3NDMC3ItUO_QqX8KISVMKsSGxqbFIqYV3GZTkNcWs_LmaLK3V2nV5vwfEQC0Owyl73R50etHXfMulnc9Iul5NL9B7QGMbFqqXgaBhTBLvSJOVHD88wDyVjOXkkToh6CJ8LGC9f37cNXUBM9RFhvLTetD1tMj_DNnT6Ft709iObxyG-gy1fj2B3XqPv_OsPO2QB0RmOykfw-q9kgyPYP3mOacM_9It6tQs2wAYYHeEzQqp7RhscMYytG2bDrTBDcXBkaBOyKH7zXdd0K7asmV12rKWSybH9d9vQsSOj_B0xMHIPrk5Pfh4vkr7yQuKkSdeJd57KVhmZugofjbGlQm5nOOG2NNPUC1IUVea4Fra0SkvDPZfSV5LzCrXGPmzXON4PwFxRpkaUylAqQl1xK1VG0ayV8K7E_4xBDhOeuz4tOVXHuM0H_NlNHtmUE5uoFdk0huSpVxvTcrxArwde5v-IV447xws9vw6sz2mqCZNW--ZulU8NeiezmVFyM40INrEyio_hfZSbp_EKg-6jMNnH_x7bJ9jBtyyCyD_D9rq781_QRloXB2ERHMCr-ffzxcUjsrETDg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoAeEGwpLFAwEuKWrtd21vGxqlot0PZCK_UWOY4jbQVJlN1WcOlv74ydtHBYVeotcmzL8nhe9jczAF-KVDv0K1zCi0pQCbMisamxSamEdRmX5TTErZ2czubn6vtFerEBB0MsDMEqe9kfZXqQ1n3LpN_NSbtYTH6i94DGMDKrloKjYfwEnipkXypjsHdzj_NQMtaTx94JdR_i5wLIy9fXbUMvEFO9RyAvrdfpp3X2Z9BDRy_hRW9Asv24xlew4esRbO_X6Dz__su-sgDpDHflI9j6J9vgCHYO74PacIaeq5fbYANugNEdPiOoumek4YhibNUwG56FGZ4HR5Y2QYviP991Tbdki5rZRcdaqpkc2_-0Dd07MkrgESMjX8P50eHZwTzpSy8kTpp0lXjnqW6Vkamr8NMYWyokd4Y7bkszTb0gSVFljmthS6u0NNxzKX0lOa9QbOzAZo3rfQvMFWVqRKkM5SLUFbdSZRTOWgnvSpxnDHLY8Nz1ecmpPMavfACgXeaRTDmRiVqRTGNI7ka1MS_HA_31QMv8v_OVo-p4YOTngfQ5bTWB0mrfXC3zqUH3ZDYzSq7vI4JRrIziY3gTz83deoVB_1GY7N2j1_YJns3PTo7z42-nP97Dc_yTRUT5B9hcdVd-Fw2mVfExMMQt0wwUnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+cell+phone+location+to+assess+misclassification+errors+in+air+pollution+exposure+estimation&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Yu%2C+Haofei&rft.au=Russell%2C+Armistead&rft.au=Mulholland%2C+James&rft.au=Huang%2C+Zhijiong&rft.date=2018-02-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=233&rft.spage=261&rft_id=info:doi/10.1016%2Fj.envpol.2017.10.077&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |