Using cell phone location to assess misclassification errors in air pollution exposure estimation

Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimat...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 233; pp. 261 - 266
Main Authors Yu, Haofei, Russell, Armistead, Mulholland, James, Huang, Zhijiong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies. [Display omitted] •Detailed cell phone location data were used to estimate air pollution exposure.•Results were compared with those estimated at home addresses.•Misclassification errors are likely when home address are used in the estimation.•Cell phone location based method could be used to improve exposure estimation. Cell phone location-based exposure estimation has the potential for improving exposure estimates vs. home address-based approaches that are likely to have increased misclassification errors because it does not account for individual mobility.
AbstractList Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies.Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies.
Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies. [Display omitted] •Detailed cell phone location data were used to estimate air pollution exposure.•Results were compared with those estimated at home addresses.•Misclassification errors are likely when home address are used in the estimation.•Cell phone location based method could be used to improve exposure estimation. Cell phone location-based exposure estimation has the potential for improving exposure estimates vs. home address-based approaches that are likely to have increased misclassification errors because it does not account for individual mobility.
Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies.
Author Russell, Armistead
Huang, Zhijiong
Mulholland, James
Yu, Haofei
Author_xml – sequence: 1
  givenname: Haofei
  orcidid: 0000-0002-7930-8934
  surname: Yu
  fullname: Yu, Haofei
  email: haofei.yu@ucf.edu
  organization: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 2
  givenname: Armistead
  surname: Russell
  fullname: Russell, Armistead
  organization: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: James
  surname: Mulholland
  fullname: Mulholland, James
  organization: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 4
  givenname: Zhijiong
  surname: Huang
  fullname: Huang, Zhijiong
  organization: School of Environmental Science and Engineering, South China University of Technology, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29096298$$D View this record in MEDLINE/PubMed
BookMark eNqFUctu2zAQJAIXje32D4qCx1zkLh8WxRwKBEabFAjQS3MmaGqV0pBFlZSC5O9DW84lh_rExXJmd2dmQWZd6JCQLwxWDFj5bbfC7qkP7YoDU7m1AqUuyJxVShSl5HJG5sBLXSip2SVZpLQDACmE-EguuQZdcl3NiX1IvnukDtuW9n_zBtoGZwcfOjoEalPClOjeJ9fm2jf-9Icxhpio76j1keYr2nHqP_chjREppsHvj9hP5ENj24SfT--SPPz88WdzV9z_vv21ubkvnNDroUCHilegxdo1udTa1hK3WJVa2VqzNXIFAprKgeK2tlIJDQhCYCMAGlBiSa6muX0M_8a83xzOzrpsh2FMhmf5aym1hLNQpquKl6XObi3J1xN03O6xNn3MsuKLeXMwA64ngIshpYiNcX44Ch-i9a1hYA5xmZ2Z4jKHuA7dHFcmy3fkt_lnaN8nGmY_nzxGk5zHzmHtI7rB1MH_f8ArAvOygQ
CitedBy_id crossref_primary_10_1080_24694452_2020_1756208
crossref_primary_10_1016_j_jclepro_2021_129409
crossref_primary_10_1021_acs_est_4c00074
crossref_primary_10_3390_ijerph16010089
crossref_primary_10_3390_ijerph20166620
crossref_primary_10_1111_tgis_12978
crossref_primary_10_1016_j_atmosenv_2019_116878
crossref_primary_10_1016_j_socscimed_2023_116040
crossref_primary_10_1016_j_scitotenv_2020_141034
crossref_primary_10_1016_j_scitotenv_2020_138102
crossref_primary_10_1016_j_envres_2020_110519
crossref_primary_10_20517_jeea_2024_56
crossref_primary_10_1016_j_compenvurbsys_2019_101346
crossref_primary_10_1080_13658816_2018_1503276
crossref_primary_10_1080_10962247_2021_1942318
crossref_primary_10_1007_s00168_019_00926_x
crossref_primary_10_1016_j_envint_2020_105772
crossref_primary_10_1016_j_uclim_2023_101684
crossref_primary_10_1016_j_enpol_2018_12_037
crossref_primary_10_3390_jcm9113445
crossref_primary_10_1155_2021_1586010
crossref_primary_10_1016_j_landurbplan_2023_104970
crossref_primary_10_1007_s10707_019_00346_1
crossref_primary_10_3390_ijerph18042194
crossref_primary_10_1016_j_landurbplan_2021_104179
crossref_primary_10_1371_journal_pone_0263649
crossref_primary_10_1016_j_uclim_2024_102261
crossref_primary_10_1016_j_apgeog_2024_103400
crossref_primary_10_1016_j_envres_2019_108999
crossref_primary_10_1186_s12940_022_00939_8
crossref_primary_10_1186_s12940_024_01111_0
crossref_primary_10_1371_journal_pone_0231863
crossref_primary_10_3390_ijerph15091841
crossref_primary_10_3390_ijerph15040573
crossref_primary_10_4236_ojs_2022_123026
crossref_primary_10_3390_ijerph16224522
crossref_primary_10_1097_EE9_0000000000000180
crossref_primary_10_1080_23748834_2024_2376389
crossref_primary_10_1016_j_envres_2021_110736
crossref_primary_10_1016_j_envres_2021_111549
crossref_primary_10_3390_ijerph17082872
crossref_primary_10_1016_j_apgeog_2022_102821
crossref_primary_10_1016_j_scs_2022_104346
crossref_primary_10_1016_j_envpol_2019_05_081
crossref_primary_10_1002_psp_2643
crossref_primary_10_1080_10962247_2025_2455119
crossref_primary_10_1139_er_2022_0125
crossref_primary_10_1080_24694452_2022_2098086
crossref_primary_10_1007_s11783_022_1542_7
crossref_primary_10_1016_j_healthplace_2022_102803
crossref_primary_10_1007_s40615_024_02143_5
crossref_primary_10_1117_1_JRS_18_012003
crossref_primary_10_1016_j_envint_2021_106817
crossref_primary_10_1016_j_healthplace_2021_102584
crossref_primary_10_1080_24694452_2018_1453777
Cites_doi 10.1016/j.atmosenv.2015.04.039
10.1016/S0140-6736(16)00378-0
10.1115/1.2128636
10.1021/acs.est.5b05134
10.1098/rsos.160900
10.1016/j.atmosenv.2015.06.036
10.1016/S0140-6736(12)61766-8
10.1126/science.aaa2709
10.1038/srep01376
10.1289/ehp.1104609
10.1007/s10916-016-0565-7
10.1016/j.bdr.2015.02.002
10.1021/acs.est.6b02385
10.1016/j.healthplace.2016.10.002
10.1016/j.atmosenv.2013.03.012
10.1016/j.atmosenv.2010.12.050
10.1080/10473289.2006.10464485
10.1016/j.scitotenv.2012.10.098
10.1016/j.pmcj.2014.11.008
10.1007/s10955-012-0645-0
10.1016/j.envpol.2014.07.022
10.1016/j.scitotenv.2016.12.105
10.1016/j.atmosenv.2017.03.022
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2017.10.077
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
EndPage 266
ExternalDocumentID 29096298
10_1016_j_envpol_2017_10_077
S0269749117320559
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-ece7280935cfce799ad4ebe8697ad915e27030f8c072ada47390e033ef300f073
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Fri Jul 11 16:44:18 EDT 2025
Fri Jul 11 15:35:46 EDT 2025
Mon Jul 21 06:08:23 EDT 2025
Tue Jul 01 00:54:30 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Fri Feb 23 02:49:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Call detail record
Air pollution
Exposure estimation
Health assessment
Exposure misclassification
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-ece7280935cfce799ad4ebe8697ad915e27030f8c072ada47390e033ef300f073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7930-8934
PMID 29096298
PQID 1988266943
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000544940
proquest_miscellaneous_1988266943
pubmed_primary_29096298
crossref_citationtrail_10_1016_j_envpol_2017_10_077
crossref_primary_10_1016_j_envpol_2017_10_077
elsevier_sciencedirect_doi_10_1016_j_envpol_2017_10_077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
2018-Feb
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Zhao, Zhang, He (bib32) 2015
Koo, Kumar, Knipping, Nopmongcol, Sakulyanontvittaya, Odman, Russell, Yarwood (bib18) 2015; 116
Friberg, Zhai, Holmes, Chang, Strickland, Sarnat, Tolbert, Russell, Mulholland (bib8) 2016; 50
Huang, Lan, Fang, An, Min, Wang (bib14) 2015; 2
Nyhan, Grauwin, Britter, Misstear, McNabola, Laden (bib21) 2016; 50
Park, Kwan (bib22) 2017; 43
Zheng, Liu, Hsieh (bib33) 2013
Pope, Dockery (bib24) 2006; 56
Hasan, Schneider, Ukkusuri, González (bib12) 2013; 151
Zheng, Yi, Li, Li, Shan, Chang (bib34) 2015
Grauwin, Sobolevsky, Moritz, Gódor, Ratti (bib10) 2015
Lu, Wang, Huang, Yang, Shen (bib20) 2016
Pew Research Center (bib23) 2016
Khoury, Ioannidis (bib16) 2014; 346
Shenzhen Statistics Bureau (bib27) 2016
Byun, Schere (bib1) 2006; 59
Kondor, Grauwin, Kallus, Gódor, Sobolevsky, Ratti (bib17) 2017; 4
Kaufman, Adar, Barr, Budoff, Burke, Curl (bib15) 2016; 388
Fan, Wolfson, Adomavicius, Das, Khandelwal, Kang (bib7) 2015
Steinle, Reis, Sabel (bib28) 2013; 443
Lim, Vos, Flaxman, Danaei, Shibuya, Adair-Rohani (bib19) 2012; 380
Zhang, He, Liu, Stankovic (bib29) 2013
Zhang, Zhao, Zhang, He (bib31) 2015
de la Torre Díez, Cosgaya, Garcia-Zapirain, López-Coronado (bib5) 2016; 40
Porter, Rao, Hogrefe, Gego, Mathur (bib25) 2015; 112
Zhong, Louie, Zheng, Yuan, Yue, Ho (bib35) 2013; 76
Che, Zheng, Wang, Zhong, Lau (bib2) 2011; 45
Hasenfratz, Saukh, Walser, Hueglin, Fierz, Arn (bib13) 2015; 16
Friberg, Kahn, Holmes, Chang, Sarnat, Tolbert, Russell, Mulholland (bib9) 2017; 158
Shafran-Nathan, Yuval, Broday (bib26) 2017; 580
Dadvand, de Nazelle, Triguero-Mas, Schembari, Cirach, Amoly (bib4) 2012; 120
De Montjoye, Hidalgo, Verleysen, Blondel (bib6) 2013; 3
Zhang, He, Lin, Munir, Stankovic (bib30) 2014
Han, Zhou, Li, Li (bib11) 2014; 194
Cheng, Li, Li, Jiang, Li, Jia (bib3) 2014
Hasenfratz (10.1016/j.envpol.2017.10.077_bib13) 2015; 16
Kondor (10.1016/j.envpol.2017.10.077_bib17) 2017; 4
Khoury (10.1016/j.envpol.2017.10.077_bib16) 2014; 346
Zhang (10.1016/j.envpol.2017.10.077_bib31) 2015
Pope (10.1016/j.envpol.2017.10.077_bib24) 2006; 56
Shenzhen Statistics Bureau (10.1016/j.envpol.2017.10.077_bib27) 2016
Park (10.1016/j.envpol.2017.10.077_bib22) 2017; 43
Grauwin (10.1016/j.envpol.2017.10.077_bib10) 2015
Porter (10.1016/j.envpol.2017.10.077_bib25) 2015; 112
Fan (10.1016/j.envpol.2017.10.077_bib7) 2015
Zheng (10.1016/j.envpol.2017.10.077_bib33) 2013
Shafran-Nathan (10.1016/j.envpol.2017.10.077_bib26) 2017; 580
Zhang (10.1016/j.envpol.2017.10.077_bib30) 2014
Dadvand (10.1016/j.envpol.2017.10.077_bib4) 2012; 120
Koo (10.1016/j.envpol.2017.10.077_bib18) 2015; 116
Lim (10.1016/j.envpol.2017.10.077_bib19) 2012; 380
Huang (10.1016/j.envpol.2017.10.077_bib14) 2015; 2
Cheng (10.1016/j.envpol.2017.10.077_bib3) 2014
Friberg (10.1016/j.envpol.2017.10.077_bib9) 2017; 158
Kaufman (10.1016/j.envpol.2017.10.077_bib15) 2016; 388
Zhang (10.1016/j.envpol.2017.10.077_bib32) 2015
Hasan (10.1016/j.envpol.2017.10.077_bib12) 2013; 151
Han (10.1016/j.envpol.2017.10.077_bib11) 2014; 194
Pew Research Center (10.1016/j.envpol.2017.10.077_bib23) 2016
Zheng (10.1016/j.envpol.2017.10.077_bib34) 2015
de la Torre Díez (10.1016/j.envpol.2017.10.077_bib5) 2016; 40
Zhong (10.1016/j.envpol.2017.10.077_bib35) 2013; 76
Zhang (10.1016/j.envpol.2017.10.077_bib29) 2013
Byun (10.1016/j.envpol.2017.10.077_bib1) 2006; 59
Nyhan (10.1016/j.envpol.2017.10.077_bib21) 2016; 50
Che (10.1016/j.envpol.2017.10.077_bib2) 2011; 45
Friberg (10.1016/j.envpol.2017.10.077_bib8) 2016; 50
De Montjoye (10.1016/j.envpol.2017.10.077_bib6) 2013; 3
Lu (10.1016/j.envpol.2017.10.077_bib20) 2016
Steinle (10.1016/j.envpol.2017.10.077_bib28) 2013; 443
References_xml – volume: 59
  start-page: 51
  year: 2006
  end-page: 77
  ident: bib1
  article-title: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (cmaq) modeling system
  publication-title: Appl. Mech. Rev.
– volume: 2
  start-page: 2
  year: 2015
  end-page: 11
  ident: bib14
  article-title: Promises and challenges of big data computing in health sciences
  publication-title: Big Data Res.
– volume: 112
  start-page: 178
  year: 2015
  end-page: 188
  ident: bib25
  article-title: Methods for reducing biases and errors in regional photochemical model outputs for use in emission reduction and exposure assessments
  publication-title: Atmos. Environ.
– start-page: 152
  year: 2014
  end-page: 159
  ident: bib30
  article-title: Dmodel: online taxicab demand model from big sensor data in a roving sensor network
  publication-title: Proceedings of the 2014 IEEE International Congress on Big Data, June 27 2014-July 2 2014
– start-page: 414
  year: 2016
  end-page: 426
  ident: bib20
  article-title: Temporal-spatial aggregated urban air quality inference with heterogeneous big data
  publication-title: Wireless Algorithms, Systems, and Applications: 11th International Conference, Wasa 2016, Bozeman, Mt, USA, August 8-10, 2016 Proceedings
– volume: 56
  start-page: 709
  year: 2006
  end-page: 742
  ident: bib24
  article-title: Health effects of fine particulate air pollution: lines that connect
  publication-title: J. air & waste Manag. Assoc.
– start-page: 439
  year: 2013
  end-page: 447
  ident: bib29
  article-title: Callcab: a unified recommendation system for carpooling and regular taxicab services
  publication-title: Proceedings of the 2013 IEEE International Conference on Big Data, 6-9 Oct. 2013
– year: 2016
  ident: bib23
  article-title: Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies. But Advanced Economies Still Have Higher Rates of Technology Use
– start-page: 1
  year: 2015
  end-page: 10
  ident: bib31
  article-title: Comobile: real-time human mobility modeling at urban scale using multi-view learning
  publication-title: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems
– start-page: 251
  year: 2014
  end-page: 265
  ident: bib3
  article-title: Aircloud: a cloud-based air-quality monitoring system for everyone
  publication-title: Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems
– volume: 16
  start-page: 268
  year: 2015
  end-page: 285
  ident: bib13
  article-title: Deriving high-resolution urban air pollution maps using mobile sensor nodes
  publication-title: Pervasive Mob. Comput.
– volume: 50
  start-page: 9671
  year: 2016
  end-page: 9681
  ident: bib21
  article-title: “Exposure track”—the impact of mobile-device-based mobility patterns on quantifying population exposure to air pollution
  publication-title: Environ. Sci. Technol.
– volume: 580
  start-page: 1401
  year: 2017
  end-page: 1409
  ident: bib26
  article-title: Exposure estimation errors to nitrogen oxides on a population scale due to daytime activity away from home
  publication-title: Sci. Total Environ.
– start-page: 2267
  year: 2015
  end-page: 2276
  ident: bib34
  article-title: Forecasting fine-grained air quality based on big data
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 3
  start-page: 1376
  year: 2013
  ident: bib6
  article-title: Unique in the crowd: the privacy bounds of human mobility
  publication-title: Sci. Rep.
– year: 2016
  ident: bib27
  article-title: Shenzhen Statistical Yearbook 2016. Shenzhen, Guangzhou, China
– volume: 50
  start-page: 3695
  year: 2016
  end-page: 3705
  ident: bib8
  article-title: Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution
  publication-title: Environ. Sci. Technol.
– volume: 120
  start-page: 1286
  year: 2012
  ident: bib4
  article-title: Surrounding greenness and exposure to air pollution during pregnancy: an analysis of personal monitoring data
  publication-title: Environ. Health Perspect.
– volume: 388
  start-page: 696
  year: 2016
  end-page: 704
  ident: bib15
  article-title: Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the multi-ethnic study of atherosclerosis and air pollution): a longitudinal cohort study
  publication-title: Lancet
– volume: 43
  start-page: 85
  year: 2017
  end-page: 94
  ident: bib22
  article-title: Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored
  publication-title: Health & Place
– volume: 4
  start-page: 160900
  year: 2017
  ident: bib17
  article-title: Prediction limits of mobile phone activity modelling
  publication-title: R. Soc. Open Sci.
– volume: 194
  start-page: 163
  year: 2014
  end-page: 170
  ident: bib11
  article-title: Impact of urbanization level on urban air quality: a case of fine particles (PM2.5) in Chinese cities
  publication-title: Environ. Pollut.
– start-page: 363
  year: 2015
  end-page: 387
  ident: bib10
  article-title: Towards a comparative science of cities: using mobile traffic records in New York, london, and Hong Kong
  publication-title: Computational Approaches for Urban Environments
– volume: 45
  start-page: 1740
  year: 2011
  end-page: 1751
  ident: bib2
  article-title: Assessment of motor vehicle emission control policies using model-3/cmaq model for the pearl river delta region, China
  publication-title: Atmos. Environ.
– year: 2015
  ident: bib7
  article-title: Smartrac: a Smartphone Solution for Context-aware Travel and Activity Capturing
– volume: 346
  start-page: 1054
  year: 2014
  end-page: 1055
  ident: bib16
  article-title: Big data meets public health
  publication-title: Science
– volume: 76
  start-page: 3
  year: 2013
  end-page: 10
  ident: bib35
  article-title: Science–policy interplay: air quality management in the pearl river delta region and Hong Kong
  publication-title: Atmos. Environ.
– start-page: 1436
  year: 2013
  end-page: 1444
  ident: bib33
  article-title: U-air: when urban air quality inference meets big data
  publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 158
  start-page: 36
  year: 2017
  end-page: 50
  ident: bib9
  article-title: Daily ambient air pollution metrics for five cities: evaluation of data-fusion-based estimates and uncertainties
  publication-title: Atmos. Environ.
– volume: 151
  start-page: 304
  year: 2013
  end-page: 318
  ident: bib12
  article-title: Spatiotemporal patterns of urban human mobility
  publication-title: J. Stat. Phys.
– volume: 116
  start-page: 159
  year: 2015
  end-page: 171
  ident: bib18
  article-title: Chemical transport model consistency in simulating regulatory outcomes and the relationship to model performance
  publication-title: Atmos. Environ.
– volume: 40
  start-page: 209
  year: 2016
  ident: bib5
  article-title: Big data in health: a literature review from the year 2005
  publication-title: J. Med. Syst.
– volume: 380
  start-page: 2224
  year: 2012
  end-page: 2260
  ident: bib19
  article-title: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010
  publication-title: Lancet
– start-page: 238
  year: 2015
  end-page: 247
  ident: bib32
  article-title: Urbancps: a cyber-physical system based on multi-source big infrastructure data for heterogeneous model integration
  publication-title: Proceedings of the Proceedings of the ACM/IEEE Sixth International Conference on Cyber-physical Systems
– volume: 443
  start-page: 184
  year: 2013
  end-page: 193
  ident: bib28
  article-title: Quantifying human exposure to air pollution—moving from static monitoring to spatio-temporally resolved personal exposure assessment
  publication-title: Sci. Total Environ.
– volume: 112
  start-page: 178
  year: 2015
  ident: 10.1016/j.envpol.2017.10.077_bib25
  article-title: Methods for reducing biases and errors in regional photochemical model outputs for use in emission reduction and exposure assessments
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.04.039
– volume: 388
  start-page: 696
  year: 2016
  ident: 10.1016/j.envpol.2017.10.077_bib15
  article-title: Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the multi-ethnic study of atherosclerosis and air pollution): a longitudinal cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00378-0
– start-page: 1436
  year: 2013
  ident: 10.1016/j.envpol.2017.10.077_bib33
  article-title: U-air: when urban air quality inference meets big data
– volume: 59
  start-page: 51
  year: 2006
  ident: 10.1016/j.envpol.2017.10.077_bib1
  article-title: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (cmaq) modeling system
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.2128636
– volume: 50
  start-page: 3695
  year: 2016
  ident: 10.1016/j.envpol.2017.10.077_bib8
  article-title: Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05134
– start-page: 2267
  year: 2015
  ident: 10.1016/j.envpol.2017.10.077_bib34
  article-title: Forecasting fine-grained air quality based on big data
– volume: 4
  start-page: 160900
  issue: 2
  year: 2017
  ident: 10.1016/j.envpol.2017.10.077_bib17
  article-title: Prediction limits of mobile phone activity modelling
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.160900
– volume: 116
  start-page: 159
  year: 2015
  ident: 10.1016/j.envpol.2017.10.077_bib18
  article-title: Chemical transport model consistency in simulating regulatory outcomes and the relationship to model performance
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.06.036
– volume: 380
  start-page: 2224
  year: 2012
  ident: 10.1016/j.envpol.2017.10.077_bib19
  article-title: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61766-8
– year: 2015
  ident: 10.1016/j.envpol.2017.10.077_bib7
– volume: 346
  start-page: 1054
  year: 2014
  ident: 10.1016/j.envpol.2017.10.077_bib16
  article-title: Big data meets public health
  publication-title: Science
  doi: 10.1126/science.aaa2709
– start-page: 251
  year: 2014
  ident: 10.1016/j.envpol.2017.10.077_bib3
  article-title: Aircloud: a cloud-based air-quality monitoring system for everyone
– year: 2016
  ident: 10.1016/j.envpol.2017.10.077_bib23
– volume: 3
  start-page: 1376
  year: 2013
  ident: 10.1016/j.envpol.2017.10.077_bib6
  article-title: Unique in the crowd: the privacy bounds of human mobility
  publication-title: Sci. Rep.
  doi: 10.1038/srep01376
– start-page: 363
  year: 2015
  ident: 10.1016/j.envpol.2017.10.077_bib10
  article-title: Towards a comparative science of cities: using mobile traffic records in New York, london, and Hong Kong
– start-page: 238
  year: 2015
  ident: 10.1016/j.envpol.2017.10.077_bib32
  article-title: Urbancps: a cyber-physical system based on multi-source big infrastructure data for heterogeneous model integration
– volume: 120
  start-page: 1286
  year: 2012
  ident: 10.1016/j.envpol.2017.10.077_bib4
  article-title: Surrounding greenness and exposure to air pollution during pregnancy: an analysis of personal monitoring data
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1104609
– volume: 40
  start-page: 209
  year: 2016
  ident: 10.1016/j.envpol.2017.10.077_bib5
  article-title: Big data in health: a literature review from the year 2005
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0565-7
– volume: 2
  start-page: 2
  year: 2015
  ident: 10.1016/j.envpol.2017.10.077_bib14
  article-title: Promises and challenges of big data computing in health sciences
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2015.02.002
– volume: 50
  start-page: 9671
  year: 2016
  ident: 10.1016/j.envpol.2017.10.077_bib21
  article-title: “Exposure track”—the impact of mobile-device-based mobility patterns on quantifying population exposure to air pollution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02385
– volume: 43
  start-page: 85
  year: 2017
  ident: 10.1016/j.envpol.2017.10.077_bib22
  article-title: Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored
  publication-title: Health & Place
  doi: 10.1016/j.healthplace.2016.10.002
– start-page: 152
  year: 2014
  ident: 10.1016/j.envpol.2017.10.077_bib30
  article-title: Dmodel: online taxicab demand model from big sensor data in a roving sensor network
– start-page: 439
  year: 2013
  ident: 10.1016/j.envpol.2017.10.077_bib29
  article-title: Callcab: a unified recommendation system for carpooling and regular taxicab services
– volume: 76
  start-page: 3
  year: 2013
  ident: 10.1016/j.envpol.2017.10.077_bib35
  article-title: Science–policy interplay: air quality management in the pearl river delta region and Hong Kong
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.03.012
– volume: 45
  start-page: 1740
  year: 2011
  ident: 10.1016/j.envpol.2017.10.077_bib2
  article-title: Assessment of motor vehicle emission control policies using model-3/cmaq model for the pearl river delta region, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.12.050
– start-page: 1
  year: 2015
  ident: 10.1016/j.envpol.2017.10.077_bib31
  article-title: Comobile: real-time human mobility modeling at urban scale using multi-view learning
– volume: 56
  start-page: 709
  year: 2006
  ident: 10.1016/j.envpol.2017.10.077_bib24
  article-title: Health effects of fine particulate air pollution: lines that connect
  publication-title: J. air & waste Manag. Assoc.
  doi: 10.1080/10473289.2006.10464485
– volume: 443
  start-page: 184
  year: 2013
  ident: 10.1016/j.envpol.2017.10.077_bib28
  article-title: Quantifying human exposure to air pollution—moving from static monitoring to spatio-temporally resolved personal exposure assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.10.098
– volume: 16
  start-page: 268
  issue: Part B
  year: 2015
  ident: 10.1016/j.envpol.2017.10.077_bib13
  article-title: Deriving high-resolution urban air pollution maps using mobile sensor nodes
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2014.11.008
– volume: 151
  start-page: 304
  year: 2013
  ident: 10.1016/j.envpol.2017.10.077_bib12
  article-title: Spatiotemporal patterns of urban human mobility
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-012-0645-0
– volume: 194
  start-page: 163
  year: 2014
  ident: 10.1016/j.envpol.2017.10.077_bib11
  article-title: Impact of urbanization level on urban air quality: a case of fine particles (PM2.5) in Chinese cities
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2014.07.022
– start-page: 414
  year: 2016
  ident: 10.1016/j.envpol.2017.10.077_bib20
  article-title: Temporal-spatial aggregated urban air quality inference with heterogeneous big data
– year: 2016
  ident: 10.1016/j.envpol.2017.10.077_bib27
– volume: 580
  start-page: 1401
  year: 2017
  ident: 10.1016/j.envpol.2017.10.077_bib26
  article-title: Exposure estimation errors to nitrogen oxides on a population scale due to daytime activity away from home
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.12.105
– volume: 158
  start-page: 36
  year: 2017
  ident: 10.1016/j.envpol.2017.10.077_bib9
  article-title: Daily ambient air pollution metrics for five cities: evaluation of data-fusion-based estimates and uncertainties
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.03.022
SSID ssj0004333
Score 2.46592
Snippet Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 261
SubjectTerms air pollutants
Air Pollutants - analysis
Air pollution
Air Pollution - analysis
Air Pollution - statistics & numerical data
air quality
Call detail record
Cell Phone
China
Environmental Exposure - analysis
Environmental Exposure - statistics & numerical data
epidemiology
Exposure estimation
Exposure misclassification
Health assessment
Humans
Title Using cell phone location to assess misclassification errors in air pollution exposure estimation
URI https://dx.doi.org/10.1016/j.envpol.2017.10.077
https://www.ncbi.nlm.nih.gov/pubmed/29096298
https://www.proquest.com/docview/1988266943
https://www.proquest.com/docview/2000544940
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heqGHql2g3T6QK1XcwnptZx0fVwi0BZULReIWOY4jLaJJlF1Qe-G3M2Mn0B5WSL0lzjiyPOPxjP3NDMC3ItUO_QqX8KISVMKsSGxqbFIqYV3GZTkNcWs_LmaLK3V2nV5vwfEQC0Owyl73R50etHXfMulnc9Iul5NL9B7QGMbFqqXgaBhTBLvSJOVHD88wDyVjOXkkToh6CJ8LGC9f37cNXUBM9RFhvLTetD1tMj_DNnT6Ft709iObxyG-gy1fj2B3XqPv_OsPO2QB0RmOykfw-q9kgyPYP3mOacM_9It6tQs2wAYYHeEzQqp7RhscMYytG2bDrTBDcXBkaBOyKH7zXdd0K7asmV12rKWSybH9d9vQsSOj_B0xMHIPrk5Pfh4vkr7yQuKkSdeJd57KVhmZugofjbGlQm5nOOG2NNPUC1IUVea4Fra0SkvDPZfSV5LzCrXGPmzXON4PwFxRpkaUylAqQl1xK1VG0ayV8K7E_4xBDhOeuz4tOVXHuM0H_NlNHtmUE5uoFdk0huSpVxvTcrxArwde5v-IV447xws9vw6sz2mqCZNW--ZulU8NeiezmVFyM40INrEyio_hfZSbp_EKg-6jMNnH_x7bJ9jBtyyCyD_D9rq781_QRloXB2ERHMCr-ffzxcUjsrETDg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoAeEGwpLFAwEuKWrtd21vGxqlot0PZCK_UWOY4jbQVJlN1WcOlv74ydtHBYVeotcmzL8nhe9jczAF-KVDv0K1zCi0pQCbMisamxSamEdRmX5TTErZ2czubn6vtFerEBB0MsDMEqe9kfZXqQ1n3LpN_NSbtYTH6i94DGMDKrloKjYfwEnipkXypjsHdzj_NQMtaTx94JdR_i5wLIy9fXbUMvEFO9RyAvrdfpp3X2Z9BDRy_hRW9Asv24xlew4esRbO_X6Dz__su-sgDpDHflI9j6J9vgCHYO74PacIaeq5fbYANugNEdPiOoumek4YhibNUwG56FGZ4HR5Y2QYviP991Tbdki5rZRcdaqpkc2_-0Dd07MkrgESMjX8P50eHZwTzpSy8kTpp0lXjnqW6Vkamr8NMYWyokd4Y7bkszTb0gSVFljmthS6u0NNxzKX0lOa9QbOzAZo3rfQvMFWVqRKkM5SLUFbdSZRTOWgnvSpxnDHLY8Nz1ecmpPMavfACgXeaRTDmRiVqRTGNI7ka1MS_HA_31QMv8v_OVo-p4YOTngfQ5bTWB0mrfXC3zqUH3ZDYzSq7vI4JRrIziY3gTz83deoVB_1GY7N2j1_YJns3PTo7z42-nP97Dc_yTRUT5B9hcdVd-Fw2mVfExMMQt0wwUnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+cell+phone+location+to+assess+misclassification+errors+in+air+pollution+exposure+estimation&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Yu%2C+Haofei&rft.au=Russell%2C+Armistead&rft.au=Mulholland%2C+James&rft.au=Huang%2C+Zhijiong&rft.date=2018-02-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=233&rft.spage=261&rft_id=info:doi/10.1016%2Fj.envpol.2017.10.077&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon