Denoising Adversarial Autoencoders
Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabeled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabeled input data from a latent representation sp...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 30; no. 4; pp. 968 - 984 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabeled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabeled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clean input samples from corrupted ones. Representations may be further improved by introducing regularization during training to shape the distribution of the encoded data in the latent space. We suggest denoising adversarial autoencoders (AAEs), which combine denoising and regularization, shaping the distribution of latent space using adversarial training. We introduce a novel analysis that shows how denoising may be incorporated into the training and sampling of AAEs. Experiments are performed to assess the contributions that denoising makes to the learning of representations for classification and sample synthesis. Our results suggest that autoencoders trained using a denoising criterion achieve higher classification performance and can synthesize samples that are more consistent with the input data than those trained without a corruption process. |
---|---|
AbstractList | Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabeled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabeled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clean input samples from corrupted ones. Representations may be further improved by introducing regularization during training to shape the distribution of the encoded data in the latent space. We suggest denoising adversarial autoencoders (AAEs), which combine denoising and regularization, shaping the distribution of latent space using adversarial training. We introduce a novel analysis that shows how denoising may be incorporated into the training and sampling of AAEs. Experiments are performed to assess the contributions that denoising makes to the learning of representations for classification and sample synthesis. Our results suggest that autoencoders trained using a denoising criterion achieve higher classification performance and can synthesize samples that are more consistent with the input data than those trained without a corruption process. |
Author | Creswell, Antonia Bharath, Anil Anthony |
Author_xml | – sequence: 1 givenname: Antonia surname: Creswell fullname: Creswell, Antonia email: ac2211@ic.ac.uk organization: Biologically Inspired Comput. Vision Group, Imperial Coll. London, London, UK – sequence: 2 givenname: Anil Anthony surname: Bharath fullname: Bharath, Anil Anthony email: a.bharath@imperial.ac.uk organization: Biologically Inspired Comput. Vision Group, Imperial Coll. London, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30130236$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkEtLw0AQgBep2Fr7BxSk6MVL6u7s-1jqE0o9WMHbkiYTSUmzdbcR_PemtvbgXGaY-WYYvlPSqX2NhJwzOmKM2tv5bDZ9HQFlZgRGgubmiPSAKUiAG9M51Pq9SwYxLmkbikol7Anpcso4Ba565OoOa1_Gsv4YjvMvDDENZVoNx83GY535vO2ckeMirSIO9rlP3h7u55OnZPry-DwZT5OMW7lJUCslAGVWgBR5pi1KAZoJabgVNjdK5ZxKkBIUF4XUizSlttDSIOMF15b3yc3u7jr4zwbjxq3KmGFVpTX6JjqglhkAZU2LXv9Dl74JdfudA2YF05xL1lKwo7LgYwxYuHUoV2n4doy6rUT3K9FtJbq9xHbpcn-6WawwP6z8KWuBix1QIuJhbAQ3UlD-A2ovc7M |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TCYB_2019_2923756 crossref_primary_10_3390_electronics9101684 crossref_primary_10_1007_s00521_024_09893_7 crossref_primary_10_1109_LSENS_2023_3326458 crossref_primary_10_1109_LSP_2024_3396403 crossref_primary_10_7240_jeps_938188 crossref_primary_10_1016_j_engappai_2023_105838 crossref_primary_10_1016_j_knosys_2021_107122 crossref_primary_10_1109_TNNLS_2020_3048031 crossref_primary_10_1109_TGRS_2022_3207165 crossref_primary_10_1109_TII_2019_2951011 crossref_primary_10_1002_sam_11610 crossref_primary_10_1109_JPROC_2021_3117472 crossref_primary_10_1109_TCYB_2021_3109618 crossref_primary_10_1109_TMECH_2023_3270901 crossref_primary_10_1016_j_jvoice_2024_01_016 crossref_primary_10_1016_j_patrec_2022_06_010 crossref_primary_10_1016_j_artint_2022_103667 crossref_primary_10_1007_s11042_020_10379_6 crossref_primary_10_1016_j_eswa_2022_118093 crossref_primary_10_1109_MAES_2019_2933972 crossref_primary_10_1016_j_sigpro_2020_107729 crossref_primary_10_1109_TDSC_2020_3021008 crossref_primary_10_3390_app12115382 crossref_primary_10_1109_JSEN_2024_3388893 crossref_primary_10_3390_e23101304 crossref_primary_10_1016_j_asoc_2021_108130 crossref_primary_10_1007_s00530_021_00884_5 crossref_primary_10_1016_j_compeleceng_2024_109268 crossref_primary_10_1109_ACCESS_2022_3163270 crossref_primary_10_1016_j_jii_2024_100622 crossref_primary_10_1038_s41598_023_28759_x crossref_primary_10_1109_ACCESS_2020_3038552 crossref_primary_10_1109_JETCAS_2024_3403524 crossref_primary_10_1109_TCYB_2022_3163811 crossref_primary_10_1364_AOP_484119 crossref_primary_10_1007_s11192_023_04766_7 crossref_primary_10_1007_s11517_023_02984_y crossref_primary_10_1007_s10489_022_03422_6 crossref_primary_10_1109_TNNLS_2020_3017669 crossref_primary_10_3390_rs15184430 crossref_primary_10_3174_ajnr_A7853 crossref_primary_10_1109_TETCI_2021_3100641 crossref_primary_10_1007_s10032_024_00472_z crossref_primary_10_1016_j_jsv_2023_117598 crossref_primary_10_1109_TNNLS_2020_3029613 crossref_primary_10_1134_S106935132001005X crossref_primary_10_3390_app11209751 crossref_primary_10_1016_j_jappgeo_2023_105239 crossref_primary_10_3390_s23229032 crossref_primary_10_1109_TNNLS_2021_3057892 crossref_primary_10_1109_TNNLS_2020_3016321 crossref_primary_10_1016_j_neunet_2019_04_024 crossref_primary_10_1016_j_pharmthera_2019_107395 crossref_primary_10_1016_j_patcog_2022_108562 crossref_primary_10_1109_TNNLS_2020_3037923 crossref_primary_10_1109_TNNLS_2021_3079627 crossref_primary_10_3390_math11081777 crossref_primary_10_1016_j_ymssp_2024_111109 crossref_primary_10_1016_j_patcog_2022_108842 crossref_primary_10_1109_TSP_2020_2977256 crossref_primary_10_1109_TGRS_2021_3121211 crossref_primary_10_1109_TCYB_2020_2978500 crossref_primary_10_1186_s12859_023_05339_4 |
Cites_doi | 10.1109/ICDAR.2003.1227801 10.1145/1390156.1390294 10.1126/science.1127647 10.1126/science.aab3050 10.1109/ICCV.2015.425 10.1561/2200000006 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2018.2852738 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 984 |
ExternalDocumentID | 10_1109_TNNLS_2018_2852738 30130236 8438540 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/L504786/1 funderid: 10.13039/501100000266 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RIG RNS NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c395t-e76642e5cf254dc79e542714583949d866d3052552634f57baa09f758e13f3793 |
IEDL.DBID | RIE |
ISSN | 2162-237X |
IngestDate | Thu Jul 25 11:22:09 EDT 2024 Thu Oct 10 16:43:32 EDT 2024 Fri Aug 23 00:57:10 EDT 2024 Wed Oct 16 00:49:19 EDT 2024 Wed Jun 26 19:28:05 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-e76642e5cf254dc79e542714583949d866d3052552634f57baa09f758e13f3793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1037-9395 0000-0001-8808-2714 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8438540 |
PMID | 30130236 |
PQID | 2194173351 |
PQPubID | 85436 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2091822698 ieee_primary_8438540 proquest_journals_2194173351 crossref_primary_10_1109_TNNLS_2018_2852738 pubmed_primary_30130236 |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | theis (ref29) 2015 im (ref12) 2017 ref30 meyn (ref22) 2005 dumoulin (ref7) 2016 ref17 kingma (ref14) 2014 ref19 edwards (ref8) 2016 nguyen (ref21) 2016 bengio (ref5) 2013 alain (ref1) 2014; 15 li (ref18) 2017 vincent (ref31) 2010; 11 makhzani (ref20) 2015 radford (ref24) 2016 kumar (ref16) 2017 bengio (ref4) 2014; 32 reed (ref25) 2015 kingma (ref13) 2014 ref28 bachman (ref2) 2015 higgins (ref10) 2017 paszke (ref23) 2017 salimans (ref26) 2016 krizhevsky (ref15) 2012 santoro (ref27) 2016 vinyals (ref32) 2016 hinton (ref11) 2006; 313 ref3 goodfellow (ref9) 2014 donahue (ref6) 2016 |
References_xml | – year: 2017 ident: ref10 article-title: $\beta$ -VAE: Learning basic visual concepts with a constrained variational framework publication-title: Proc Int Conf Learn Represent contributor: fullname: higgins – year: 2016 ident: ref6 publication-title: Adversarial feature learning contributor: fullname: donahue – start-page: 1252 year: 2015 ident: ref25 article-title: Deep visual analogy-making publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: reed – ident: ref28 doi: 10.1109/ICDAR.2003.1227801 – year: 2016 ident: ref7 publication-title: Adversarially learned inference contributor: fullname: dumoulin – year: 2014 ident: ref13 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent contributor: fullname: kingma – start-page: 1097 year: 2012 ident: ref15 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: krizhevsky – start-page: 5 year: 2005 ident: ref22 publication-title: Markov Chains and Stochastic Sampling contributor: fullname: meyn – year: 2017 ident: ref23 article-title: Automatic differentiation in PyTorch publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: paszke – year: 2016 ident: ref27 publication-title: One-shot learning with memory-augmented neural networks contributor: fullname: santoro – ident: ref30 doi: 10.1145/1390156.1390294 – volume: 32 start-page: ii-226 year: 2014 ident: ref4 article-title: Deep generative stochastic networks trainable by backprop publication-title: Proc 31st Int Conf Mach Learn contributor: fullname: bengio – volume: 313 start-page: 504 year: 2006 ident: ref11 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 contributor: fullname: hinton – year: 2014 ident: ref14 article-title: Auto-encoding variational Bayes publication-title: Proc Int Conf Learn Represent contributor: fullname: kingma – start-page: 2059 year: 2017 ident: ref12 article-title: Denoising criterion for variational auto-encoding framework publication-title: Proc 31st AAAI Conf Artif Intell contributor: fullname: im – year: 2015 ident: ref29 article-title: A note on the evaluation of generative models publication-title: Proc Int Conf Learn Represent contributor: fullname: theis – ident: ref17 doi: 10.1126/science.aab3050 – year: 2016 ident: ref8 publication-title: Towards a neural statistician contributor: fullname: edwards – ident: ref19 doi: 10.1109/ICCV.2015.425 – start-page: 899 year: 2013 ident: ref5 article-title: Generalized denoising auto-encoders as generative models publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: bengio – start-page: 3630 year: 2016 ident: ref32 article-title: Matching networks for one shot learning publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: vinyals – year: 2017 ident: ref16 publication-title: Variational inference of disentangled latent concepts from unlabeled observations contributor: fullname: kumar – start-page: 5495 year: 2017 ident: ref18 article-title: Alice: Towards understanding adversarial learning for joint distribution matching publication-title: Proc Neural Inf Process Syst (NIPS) contributor: fullname: li – year: 2016 ident: ref24 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: Proc Int Conf Learn Represent contributor: fullname: radford – start-page: 2672 year: 2014 ident: ref9 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: goodfellow – start-page: 1964 year: 2015 ident: ref2 article-title: Variational generative stochastic networks with collaborative shaping publication-title: Proceedings of the 32nd Intl Conf on Machine Learning contributor: fullname: bachman – volume: 15 start-page: 3563 year: 2014 ident: ref1 article-title: What regularized auto-encoders learn from the data-generating distribution publication-title: J Mach Learn Res contributor: fullname: alain – year: 2016 ident: ref26 publication-title: Improved techniques for training gans contributor: fullname: salimans – volume: 11 start-page: 3371 year: 2010 ident: ref31 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res contributor: fullname: vincent – ident: ref3 doi: 10.1561/2200000006 – year: 2016 ident: ref21 publication-title: Plug & Play Generative Networks Conditional Iterative Generation of Images in Latent Space contributor: fullname: nguyen – year: 2015 ident: ref20 publication-title: Adversarial autoencoders contributor: fullname: makhzani |
SSID | ssj0000605649 |
Score | 2.6255567 |
Snippet | Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabeled data to learn useful representations for... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 968 |
SubjectTerms | Classification Coding Corruption Data models Data processing Decoding Encoding Image analysis Learning Noise reduction pattern recognition Probabilistic logic Regularization Representations semisupervised learning Task analysis Training Unsupervised learning |
Title | Denoising Adversarial Autoencoders |
URI | https://ieeexplore.ieee.org/document/8438540 https://www.ncbi.nlm.nih.gov/pubmed/30130236 https://www.proquest.com/docview/2194173351 https://search.proquest.com/docview/2091822698 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnHopj23LAq1SxK1kSWzHjyNqWa2qshd2pb1FcTKRqkoJYpMLv56x8xBCReIWJZbjeGYy33heAJeujFKkTRRaLbJQGCtCyywLs1xxy0hj0S0XbbGSy434vU22E7gac2EQ0Qef4dxdel9-UeetOyq71oJrQhh7sKeM6XK1xvOUiHC59GiXxZKFjKvtkCMTmev1avXn3gVy6TnTSZeO8kIP-cYqb2NMr2sWB3A3rLILMfk3bxs7z59eFXB872ccwscedAY3HZccwQSrYzgYGjoEvXxP4eIXVvVfd3oQ-EbNu8yxZ3DTNrWrd-linj_BZnG7_rkM-yYKYc5N0oSoJJkYmOQlmYJFrgwmgqnYuUuNMIWWsuCul13CJBdlomyWRaYkKwJjXnKS3s-wX9UVnkBQmAKLDFkkMBKF1lZhhhjrsiSbozRmBj-GLU0fuloZqbcxIpN6AqSOAGlPgBlM3daMI_tdmcH5QIW0F6ddSr9VESvOk3gG38fHJAjOu5FVWLc0hpAPoR1paOYvHfXGubn3z3J5-v93nsEHWpnpAnLOYb95bPErYY3GfvNM9gwVQsy6 |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4t9AAXti2vpbRNK26Q3cR2HPuICmihy15YpL1FcTKRUKWkguTCr2fsPFQhkHqLEstxPDOZbzwvgBNbRilQOvCNEqkvtBG-YYb5aRZzw0hj0S0bbbGU83txs47WIzgbcmEQ0QWf4dReOl9-XmWNPSqbKcEVIYwN-EC4Wsk2W2s4UQkImUuHd1komc94vO6zZAI9Wy2XizsbyqWmTEVtQso_msi1VnkfZTptczWG236dbZDJn2lTm2n2_KqE4_9-yEfY6WCnd97yyScYYfkZxn1LB6-T8F34eYFl9WDPDzzXqvkptQzqnTd1ZSte2qjnPbi_ulz9mvtdGwU_4zqqfYwlGRkYZQUZg3kWa4wEi0PrMNVC50rKnNtudhGTXBRRbNI00AXZERjygpP87sNmWZV4CF6uc8xTZIHAQORKmRhTxFAVBVkdhdYTOO23NPnbVstInJUR6MQRILEESDoCTGDXbs0wstuVCRz3VEg6gXpK6McqwpjzKJzAj-ExiYL1b6QlVg2NIexDeEdqmvmgpd4wN3ceWi6P3n7nd9iar24XyeJ6-fsLbNMqdRuecwyb9WODXwl51OabY7gX9wTQBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+Adversarial+Autoencoders&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Creswell%2C+Antonia&rft.au=Bharath%2C+Anil+Anthony&rft.date=2019-04-01&rft.pub=IEEE&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=30&rft.issue=4&rft.spage=968&rft.epage=984&rft_id=info:doi/10.1109%2FTNNLS.2018.2852738&rft.externalDocID=8438540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |