Denoising Adversarial Autoencoders

Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabeled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabeled input data from a latent representation sp...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 30; no. 4; pp. 968 - 984
Main Authors Creswell, Antonia, Bharath, Anil Anthony
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabeled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabeled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clean input samples from corrupted ones. Representations may be further improved by introducing regularization during training to shape the distribution of the encoded data in the latent space. We suggest denoising adversarial autoencoders (AAEs), which combine denoising and regularization, shaping the distribution of latent space using adversarial training. We introduce a novel analysis that shows how denoising may be incorporated into the training and sampling of AAEs. Experiments are performed to assess the contributions that denoising makes to the learning of representations for classification and sample synthesis. Our results suggest that autoencoders trained using a denoising criterion achieve higher classification performance and can synthesize samples that are more consistent with the input data than those trained without a corruption process.
AbstractList Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabeled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabeled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clean input samples from corrupted ones. Representations may be further improved by introducing regularization during training to shape the distribution of the encoded data in the latent space. We suggest denoising adversarial autoencoders (AAEs), which combine denoising and regularization, shaping the distribution of latent space using adversarial training. We introduce a novel analysis that shows how denoising may be incorporated into the training and sampling of AAEs. Experiments are performed to assess the contributions that denoising makes to the learning of representations for classification and sample synthesis. Our results suggest that autoencoders trained using a denoising criterion achieve higher classification performance and can synthesize samples that are more consistent with the input data than those trained without a corruption process.
Author Creswell, Antonia
Bharath, Anil Anthony
Author_xml – sequence: 1
  givenname: Antonia
  surname: Creswell
  fullname: Creswell, Antonia
  email: ac2211@ic.ac.uk
  organization: Biologically Inspired Comput. Vision Group, Imperial Coll. London, London, UK
– sequence: 2
  givenname: Anil Anthony
  surname: Bharath
  fullname: Bharath, Anil Anthony
  email: a.bharath@imperial.ac.uk
  organization: Biologically Inspired Comput. Vision Group, Imperial Coll. London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30130236$$D View this record in MEDLINE/PubMed
BookMark eNpdkEtLw0AQgBep2Fr7BxSk6MVL6u7s-1jqE0o9WMHbkiYTSUmzdbcR_PemtvbgXGaY-WYYvlPSqX2NhJwzOmKM2tv5bDZ9HQFlZgRGgubmiPSAKUiAG9M51Pq9SwYxLmkbikol7Anpcso4Ba565OoOa1_Gsv4YjvMvDDENZVoNx83GY535vO2ckeMirSIO9rlP3h7u55OnZPry-DwZT5OMW7lJUCslAGVWgBR5pi1KAZoJabgVNjdK5ZxKkBIUF4XUizSlttDSIOMF15b3yc3u7jr4zwbjxq3KmGFVpTX6JjqglhkAZU2LXv9Dl74JdfudA2YF05xL1lKwo7LgYwxYuHUoV2n4doy6rUT3K9FtJbq9xHbpcn-6WawwP6z8KWuBix1QIuJhbAQ3UlD-A2ovc7M
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCYB_2019_2923756
crossref_primary_10_3390_electronics9101684
crossref_primary_10_1007_s00521_024_09893_7
crossref_primary_10_1109_LSENS_2023_3326458
crossref_primary_10_1109_LSP_2024_3396403
crossref_primary_10_7240_jeps_938188
crossref_primary_10_1016_j_engappai_2023_105838
crossref_primary_10_1016_j_knosys_2021_107122
crossref_primary_10_1109_TNNLS_2020_3048031
crossref_primary_10_1109_TGRS_2022_3207165
crossref_primary_10_1109_TII_2019_2951011
crossref_primary_10_1002_sam_11610
crossref_primary_10_1109_JPROC_2021_3117472
crossref_primary_10_1109_TCYB_2021_3109618
crossref_primary_10_1109_TMECH_2023_3270901
crossref_primary_10_1016_j_jvoice_2024_01_016
crossref_primary_10_1016_j_patrec_2022_06_010
crossref_primary_10_1016_j_artint_2022_103667
crossref_primary_10_1007_s11042_020_10379_6
crossref_primary_10_1016_j_eswa_2022_118093
crossref_primary_10_1109_MAES_2019_2933972
crossref_primary_10_1016_j_sigpro_2020_107729
crossref_primary_10_1109_TDSC_2020_3021008
crossref_primary_10_3390_app12115382
crossref_primary_10_1109_JSEN_2024_3388893
crossref_primary_10_3390_e23101304
crossref_primary_10_1016_j_asoc_2021_108130
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_1016_j_compeleceng_2024_109268
crossref_primary_10_1109_ACCESS_2022_3163270
crossref_primary_10_1016_j_jii_2024_100622
crossref_primary_10_1038_s41598_023_28759_x
crossref_primary_10_1109_ACCESS_2020_3038552
crossref_primary_10_1109_JETCAS_2024_3403524
crossref_primary_10_1109_TCYB_2022_3163811
crossref_primary_10_1364_AOP_484119
crossref_primary_10_1007_s11192_023_04766_7
crossref_primary_10_1007_s11517_023_02984_y
crossref_primary_10_1007_s10489_022_03422_6
crossref_primary_10_1109_TNNLS_2020_3017669
crossref_primary_10_3390_rs15184430
crossref_primary_10_3174_ajnr_A7853
crossref_primary_10_1109_TETCI_2021_3100641
crossref_primary_10_1007_s10032_024_00472_z
crossref_primary_10_1016_j_jsv_2023_117598
crossref_primary_10_1109_TNNLS_2020_3029613
crossref_primary_10_1134_S106935132001005X
crossref_primary_10_3390_app11209751
crossref_primary_10_1016_j_jappgeo_2023_105239
crossref_primary_10_3390_s23229032
crossref_primary_10_1109_TNNLS_2021_3057892
crossref_primary_10_1109_TNNLS_2020_3016321
crossref_primary_10_1016_j_neunet_2019_04_024
crossref_primary_10_1016_j_pharmthera_2019_107395
crossref_primary_10_1016_j_patcog_2022_108562
crossref_primary_10_1109_TNNLS_2020_3037923
crossref_primary_10_1109_TNNLS_2021_3079627
crossref_primary_10_3390_math11081777
crossref_primary_10_1016_j_ymssp_2024_111109
crossref_primary_10_1016_j_patcog_2022_108842
crossref_primary_10_1109_TSP_2020_2977256
crossref_primary_10_1109_TGRS_2021_3121211
crossref_primary_10_1109_TCYB_2020_2978500
crossref_primary_10_1186_s12859_023_05339_4
Cites_doi 10.1109/ICDAR.2003.1227801
10.1145/1390156.1390294
10.1126/science.1127647
10.1126/science.aab3050
10.1109/ICCV.2015.425
10.1561/2200000006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
NPM
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2852738
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 984
ExternalDocumentID 10_1109_TNNLS_2018_2852738
30130236
8438540
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/L504786/1
  funderid: 10.13039/501100000266
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RIG
RNS
NPM
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c395t-e76642e5cf254dc79e542714583949d866d3052552634f57baa09f758e13f3793
IEDL.DBID RIE
ISSN 2162-237X
IngestDate Thu Jul 25 11:22:09 EDT 2024
Thu Oct 10 16:43:32 EDT 2024
Fri Aug 23 00:57:10 EDT 2024
Wed Oct 16 00:49:19 EDT 2024
Wed Jun 26 19:28:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-e76642e5cf254dc79e542714583949d866d3052552634f57baa09f758e13f3793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1037-9395
0000-0001-8808-2714
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8438540
PMID 30130236
PQID 2194173351
PQPubID 85436
PageCount 17
ParticipantIDs proquest_miscellaneous_2091822698
ieee_primary_8438540
proquest_journals_2194173351
crossref_primary_10_1109_TNNLS_2018_2852738
pubmed_primary_30130236
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References theis (ref29) 2015
im (ref12) 2017
ref30
meyn (ref22) 2005
dumoulin (ref7) 2016
ref17
kingma (ref14) 2014
ref19
edwards (ref8) 2016
nguyen (ref21) 2016
bengio (ref5) 2013
alain (ref1) 2014; 15
li (ref18) 2017
vincent (ref31) 2010; 11
makhzani (ref20) 2015
radford (ref24) 2016
kumar (ref16) 2017
bengio (ref4) 2014; 32
reed (ref25) 2015
kingma (ref13) 2014
ref28
bachman (ref2) 2015
higgins (ref10) 2017
paszke (ref23) 2017
salimans (ref26) 2016
krizhevsky (ref15) 2012
santoro (ref27) 2016
vinyals (ref32) 2016
hinton (ref11) 2006; 313
ref3
goodfellow (ref9) 2014
donahue (ref6) 2016
References_xml – year: 2017
  ident: ref10
  article-title: $\beta$ -VAE: Learning basic visual concepts with a constrained variational framework
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: higgins
– year: 2016
  ident: ref6
  publication-title: Adversarial feature learning
  contributor:
    fullname: donahue
– start-page: 1252
  year: 2015
  ident: ref25
  article-title: Deep visual analogy-making
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: reed
– ident: ref28
  doi: 10.1109/ICDAR.2003.1227801
– year: 2016
  ident: ref7
  publication-title: Adversarially learned inference
  contributor:
    fullname: dumoulin
– year: 2014
  ident: ref13
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: kingma
– start-page: 1097
  year: 2012
  ident: ref15
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: krizhevsky
– start-page: 5
  year: 2005
  ident: ref22
  publication-title: Markov Chains and Stochastic Sampling
  contributor:
    fullname: meyn
– year: 2017
  ident: ref23
  article-title: Automatic differentiation in PyTorch
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: paszke
– year: 2016
  ident: ref27
  publication-title: One-shot learning with memory-augmented neural networks
  contributor:
    fullname: santoro
– ident: ref30
  doi: 10.1145/1390156.1390294
– volume: 32
  start-page: ii-226
  year: 2014
  ident: ref4
  article-title: Deep generative stochastic networks trainable by backprop
  publication-title: Proc 31st Int Conf Mach Learn
  contributor:
    fullname: bengio
– volume: 313
  start-page: 504
  year: 2006
  ident: ref11
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
  contributor:
    fullname: hinton
– year: 2014
  ident: ref14
  article-title: Auto-encoding variational Bayes
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: kingma
– start-page: 2059
  year: 2017
  ident: ref12
  article-title: Denoising criterion for variational auto-encoding framework
  publication-title: Proc 31st AAAI Conf Artif Intell
  contributor:
    fullname: im
– year: 2015
  ident: ref29
  article-title: A note on the evaluation of generative models
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: theis
– ident: ref17
  doi: 10.1126/science.aab3050
– year: 2016
  ident: ref8
  publication-title: Towards a neural statistician
  contributor:
    fullname: edwards
– ident: ref19
  doi: 10.1109/ICCV.2015.425
– start-page: 899
  year: 2013
  ident: ref5
  article-title: Generalized denoising auto-encoders as generative models
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: bengio
– start-page: 3630
  year: 2016
  ident: ref32
  article-title: Matching networks for one shot learning
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: vinyals
– year: 2017
  ident: ref16
  publication-title: Variational inference of disentangled latent concepts from unlabeled observations
  contributor:
    fullname: kumar
– start-page: 5495
  year: 2017
  ident: ref18
  article-title: Alice: Towards understanding adversarial learning for joint distribution matching
  publication-title: Proc Neural Inf Process Syst (NIPS)
  contributor:
    fullname: li
– year: 2016
  ident: ref24
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: radford
– start-page: 2672
  year: 2014
  ident: ref9
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: goodfellow
– start-page: 1964
  year: 2015
  ident: ref2
  article-title: Variational generative stochastic networks with collaborative shaping
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
  contributor:
    fullname: bachman
– volume: 15
  start-page: 3563
  year: 2014
  ident: ref1
  article-title: What regularized auto-encoders learn from the data-generating distribution
  publication-title: J Mach Learn Res
  contributor:
    fullname: alain
– year: 2016
  ident: ref26
  publication-title: Improved techniques for training gans
  contributor:
    fullname: salimans
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref31
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
  contributor:
    fullname: vincent
– ident: ref3
  doi: 10.1561/2200000006
– year: 2016
  ident: ref21
  publication-title: Plug & Play Generative Networks Conditional Iterative Generation of Images in Latent Space
  contributor:
    fullname: nguyen
– year: 2015
  ident: ref20
  publication-title: Adversarial autoencoders
  contributor:
    fullname: makhzani
SSID ssj0000605649
Score 2.6255567
Snippet Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabeled data to learn useful representations for...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 968
SubjectTerms Classification
Coding
Corruption
Data models
Data processing
Decoding
Encoding
Image analysis
Learning
Noise reduction
pattern recognition
Probabilistic logic
Regularization
Representations
semisupervised learning
Task analysis
Training
Unsupervised learning
Title Denoising Adversarial Autoencoders
URI https://ieeexplore.ieee.org/document/8438540
https://www.ncbi.nlm.nih.gov/pubmed/30130236
https://www.proquest.com/docview/2194173351
https://search.proquest.com/docview/2091822698
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnHopj23LAq1SxK1kSWzHjyNqWa2qshd2pb1FcTKRqkoJYpMLv56x8xBCReIWJZbjeGYy33heAJeujFKkTRRaLbJQGCtCyywLs1xxy0hj0S0XbbGSy434vU22E7gac2EQ0Qef4dxdel9-UeetOyq71oJrQhh7sKeM6XK1xvOUiHC59GiXxZKFjKvtkCMTmev1avXn3gVy6TnTSZeO8kIP-cYqb2NMr2sWB3A3rLILMfk3bxs7z59eFXB872ccwscedAY3HZccwQSrYzgYGjoEvXxP4eIXVvVfd3oQ-EbNu8yxZ3DTNrWrd-linj_BZnG7_rkM-yYKYc5N0oSoJJkYmOQlmYJFrgwmgqnYuUuNMIWWsuCul13CJBdlomyWRaYkKwJjXnKS3s-wX9UVnkBQmAKLDFkkMBKF1lZhhhjrsiSbozRmBj-GLU0fuloZqbcxIpN6AqSOAGlPgBlM3daMI_tdmcH5QIW0F6ddSr9VESvOk3gG38fHJAjOu5FVWLc0hpAPoR1paOYvHfXGubn3z3J5-v93nsEHWpnpAnLOYb95bPErYY3GfvNM9gwVQsy6
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4t9AAXti2vpbRNK26Q3cR2HPuICmihy15YpL1FcTKRUKWkguTCr2fsPFQhkHqLEstxPDOZbzwvgBNbRilQOvCNEqkvtBG-YYb5aRZzw0hj0S0bbbGU83txs47WIzgbcmEQ0QWf4dReOl9-XmWNPSqbKcEVIYwN-EC4Wsk2W2s4UQkImUuHd1komc94vO6zZAI9Wy2XizsbyqWmTEVtQso_msi1VnkfZTptczWG236dbZDJn2lTm2n2_KqE4_9-yEfY6WCnd97yyScYYfkZxn1LB6-T8F34eYFl9WDPDzzXqvkptQzqnTd1ZSte2qjnPbi_ulz9mvtdGwU_4zqqfYwlGRkYZQUZg3kWa4wEi0PrMNVC50rKnNtudhGTXBRRbNI00AXZERjygpP87sNmWZV4CF6uc8xTZIHAQORKmRhTxFAVBVkdhdYTOO23NPnbVstInJUR6MQRILEESDoCTGDXbs0wstuVCRz3VEg6gXpK6McqwpjzKJzAj-ExiYL1b6QlVg2NIexDeEdqmvmgpd4wN3ceWi6P3n7nd9iar24XyeJ6-fsLbNMqdRuecwyb9WODXwl51OabY7gX9wTQBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+Adversarial+Autoencoders&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Creswell%2C+Antonia&rft.au=Bharath%2C+Anil+Anthony&rft.date=2019-04-01&rft.pub=IEEE&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=30&rft.issue=4&rft.spage=968&rft.epage=984&rft_id=info:doi/10.1109%2FTNNLS.2018.2852738&rft.externalDocID=8438540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon