Effective degradation of tetracycline by organic-inorganic hybrid materials induced by triethylenediamine

As an important advanced oxidation technology for environmental purification, photocatalytic degradation has received extensive attention. Designing and synthesizing a catalyst with high-intensity photocatalytic performance is a very challenging subject. Herein, one polydentate cation was synthesize...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research Vol. 198; p. 111253
Main Authors Wang, Xiaojia, Zhu, Gaihong, Wang, Chaohai, Niu, Yunyin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.07.2021
Subjects
Online AccessGet full text
ISSN0013-9351
1096-0953
1096-0953
DOI10.1016/j.envres.2021.111253

Cover

Loading…
Abstract As an important advanced oxidation technology for environmental purification, photocatalytic degradation has received extensive attention. Designing and synthesizing a catalyst with high-intensity photocatalytic performance is a very challenging subject. Herein, one polydentate cation was synthesized by 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1, 4-bis (bromomethyl) benzene. Inorganic-organic hybrid compounds 1, 2 were synthesized by hydrothermal and room temperature volatilization with inorganic metal salts, namely, {[L1]0.5·[Cu2Br4]0.5}n (1), {[L1]·[Cu2I4]·CH3CN}n (2). Under visible light, compounds 1 and 2 were investigated for their degradation effects on tetracycline (TC) in water. The experimental results showed that compounds 1 and 2 with appropriate concentration of H2O2 had obvious photocatalytic degradation effect on TC. In addition, the influencing factors of photocatalysis such as the amount of adsorbent, the initial concentration of TC and the different pH value were investigated. The photocatalyst exhibits good stability and cyclability. [Display omitted] •Cation induced self-assembly for the synthesis of two MOF-based hybrid materials.•MOF-based hybrid materials have high efficiency for photodegradation of TC.•The stability of catalysts was demonstrated through TC degrading cycling experiments.
AbstractList As an important advanced oxidation technology for environmental purification, photocatalytic degradation has received extensive attention. Designing and synthesizing a catalyst with high-intensity photocatalytic performance is a very challenging subject. Herein, one polydentate cation was synthesized by 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1, 4-bis (bromomethyl) benzene. Inorganic-organic hybrid compounds 1, 2 were synthesized by hydrothermal and room temperature volatilization with inorganic metal salts, namely, {[L1]0.5·[Cu2Br4]0.5}n (1), {[L1]·[Cu2I4]·CH3CN}n (2). Under visible light, compounds 1 and 2 were investigated for their degradation effects on tetracycline (TC) in water. The experimental results showed that compounds 1 and 2 with appropriate concentration of H2O2 had obvious photocatalytic degradation effect on TC. In addition, the influencing factors of photocatalysis such as the amount of adsorbent, the initial concentration of TC and the different pH value were investigated. The photocatalyst exhibits good stability and cyclability.As an important advanced oxidation technology for environmental purification, photocatalytic degradation has received extensive attention. Designing and synthesizing a catalyst with high-intensity photocatalytic performance is a very challenging subject. Herein, one polydentate cation was synthesized by 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1, 4-bis (bromomethyl) benzene. Inorganic-organic hybrid compounds 1, 2 were synthesized by hydrothermal and room temperature volatilization with inorganic metal salts, namely, {[L1]0.5·[Cu2Br4]0.5}n (1), {[L1]·[Cu2I4]·CH3CN}n (2). Under visible light, compounds 1 and 2 were investigated for their degradation effects on tetracycline (TC) in water. The experimental results showed that compounds 1 and 2 with appropriate concentration of H2O2 had obvious photocatalytic degradation effect on TC. In addition, the influencing factors of photocatalysis such as the amount of adsorbent, the initial concentration of TC and the different pH value were investigated. The photocatalyst exhibits good stability and cyclability.
As an important advanced oxidation technology for environmental purification, photocatalytic degradation has received extensive attention. Designing and synthesizing a catalyst with high-intensity photocatalytic performance is a very challenging subject. Herein, one polydentate cation was synthesized by 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1, 4-bis (bromomethyl) benzene. Inorganic-organic hybrid compounds 1, 2 were synthesized by hydrothermal and room temperature volatilization with inorganic metal salts, namely, {[L1] ·[Cu Br ] } (1), {[L1]·[Cu I ]·CH CN} (2). Under visible light, compounds 1 and 2 were investigated for their degradation effects on tetracycline (TC) in water. The experimental results showed that compounds 1 and 2 with appropriate concentration of H O had obvious photocatalytic degradation effect on TC. In addition, the influencing factors of photocatalysis such as the amount of adsorbent, the initial concentration of TC and the different pH value were investigated. The photocatalyst exhibits good stability and cyclability.
As an important advanced oxidation technology for environmental purification, photocatalytic degradation has received extensive attention. Designing and synthesizing a catalyst with high-intensity photocatalytic performance is a very challenging subject. Herein, one polydentate cation was synthesized by 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1, 4-bis (bromomethyl) benzene. Inorganic-organic hybrid compounds 1, 2 were synthesized by hydrothermal and room temperature volatilization with inorganic metal salts, namely, {[L1]₀.₅·[Cu₂Br₄]₀.₅}ₙ (1), {[L1]·[Cu₂I₄]·CH₃CN}ₙ (2). Under visible light, compounds 1 and 2 were investigated for their degradation effects on tetracycline (TC) in water. The experimental results showed that compounds 1 and 2 with appropriate concentration of H₂O₂ had obvious photocatalytic degradation effect on TC. In addition, the influencing factors of photocatalysis such as the amount of adsorbent, the initial concentration of TC and the different pH value were investigated. The photocatalyst exhibits good stability and cyclability.
As an important advanced oxidation technology for environmental purification, photocatalytic degradation has received extensive attention. Designing and synthesizing a catalyst with high-intensity photocatalytic performance is a very challenging subject. Herein, one polydentate cation was synthesized by 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1, 4-bis (bromomethyl) benzene. Inorganic-organic hybrid compounds 1, 2 were synthesized by hydrothermal and room temperature volatilization with inorganic metal salts, namely, {[L1]0.5·[Cu2Br4]0.5}n (1), {[L1]·[Cu2I4]·CH3CN}n (2). Under visible light, compounds 1 and 2 were investigated for their degradation effects on tetracycline (TC) in water. The experimental results showed that compounds 1 and 2 with appropriate concentration of H2O2 had obvious photocatalytic degradation effect on TC. In addition, the influencing factors of photocatalysis such as the amount of adsorbent, the initial concentration of TC and the different pH value were investigated. The photocatalyst exhibits good stability and cyclability. [Display omitted] •Cation induced self-assembly for the synthesis of two MOF-based hybrid materials.•MOF-based hybrid materials have high efficiency for photodegradation of TC.•The stability of catalysts was demonstrated through TC degrading cycling experiments.
ArticleNumber 111253
Author Wang, Xiaojia
Niu, Yunyin
Wang, Chaohai
Zhu, Gaihong
Author_xml – sequence: 1
  givenname: Xiaojia
  surname: Wang
  fullname: Wang, Xiaojia
  organization: Green Catalysis Center, And College of Chemistry, Zhengzhou University, Henan, 450001, PR China
– sequence: 2
  givenname: Gaihong
  surname: Zhu
  fullname: Zhu, Gaihong
  organization: Green Catalysis Center, And College of Chemistry, Zhengzhou University, Henan, 450001, PR China
– sequence: 3
  givenname: Chaohai
  surname: Wang
  fullname: Wang, Chaohai
  email: wch2016@njust.edu.cn
  organization: Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
– sequence: 4
  givenname: Yunyin
  surname: Niu
  fullname: Niu, Yunyin
  email: niuyy@zzu.edu.cn
  organization: Green Catalysis Center, And College of Chemistry, Zhengzhou University, Henan, 450001, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33989626$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1P3DAQhi1EVRbaf4CqHHvJ4rHJh3uoVCEKSEi90LPl2BOYVeJQ27tS_n29ZOmhh5aTx9Lzjkbvc8qO_eSRsXPga-BQX2zW6HcB41pwAWsAEJU8Yivgqi65quQxW3EOslSyghN2GuMmf6GS_D07kVK1qhb1itF136NNtMPC4WMwziSafDH1RcIUjJ3tQB6Lbi6m8Gg82ZL8YSqe5i6QK0aTMJAZYkHebS26PZ0CYXqaB_ToyIx5xwf2rs8Qfjy8Z-zn9-uHq9vy_sfN3dW3-9JKVaUShW0ATSdMbxrbcC6lyZc61zbtJcfa9k51YKVpXeeErfuuatpGGOck1MpKecY-L3ufw_RrizHpkaLFYTAep23UoqpAKSngLahooYV8V0Y_HdBtN6LTz4FGE2b92mQGLhfAhinGgP0fBLjeC9MbvQjTe2F6EZZjX_6KWUovDnL7NPwv_HUJY-5zRxh0tIQ-K6CQpWo30b8X_Ab46rWL
CitedBy_id crossref_primary_10_3390_catal12101100
crossref_primary_10_3390_molecules27227731
crossref_primary_10_1002_aoc_6953
crossref_primary_10_1021_acsapm_3c02805
crossref_primary_10_1016_j_heliyon_2023_e21423
crossref_primary_10_3390_molecules28072934
crossref_primary_10_1007_s10876_023_02412_z
crossref_primary_10_1016_j_chemosphere_2022_136204
crossref_primary_10_1016_j_apcatb_2024_124624
crossref_primary_10_1016_j_envres_2021_111689
crossref_primary_10_1016_j_envres_2021_111873
crossref_primary_10_1016_j_envres_2021_112652
crossref_primary_10_3390_molecules28093841
crossref_primary_10_1080_00914037_2022_2082427
crossref_primary_10_1016_j_molstruc_2024_139062
crossref_primary_10_1016_j_jece_2022_107626
Cites_doi 10.1016/j.envres.2021.110785
10.1002/adma.202002914
10.1016/j.jhazmat.2020.122121
10.1016/j.apcatb.2017.09.025
10.1016/j.jallcom.2020.157166
10.1021/acs.inorgchem.9b01862
10.1016/j.apcatb.2018.07.049
10.1016/j.envres.2020.109698
10.1016/j.watres.2016.06.006
10.1016/j.scitotenv.2018.06.149
10.1021/acsomega.9b00669
10.1016/j.jhazmat.2010.11.019
10.1016/j.cej.2019.122535
10.1021/acssuschemeng.8b00782
10.1016/j.catcom.2015.10.003
10.1016/j.envres.2018.12.038
10.1016/j.apcatb.2020.119017
10.1021/jp072085x
10.3233/MGC-190891
10.1021/acs.jpcc.9b04312
10.1021/acs.inorgchem.0c00573
10.1039/D0NR09064F
10.1007/s11164-020-04347-w
10.1021/acsami.6b12278
10.1038/238037a0
10.1016/j.inoche.2020.108126
10.1002/chem.201402665
10.3233/MGC-190900
10.1021/acsomega.9b01356
10.1021/acs.iecr.9b06911
10.1055/s-2000-6419
10.1021/acsami.9b23314
10.1002/anie.201913719
10.1016/j.cej.2019.121991
10.1016/j.envres.2020.110018
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envres.2021.111253
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
EISSN 1096-0953
ExternalDocumentID 33989626
10_1016_j_envres_2021_111253
S0013935121005478
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
C45
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
L7B
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TAE
TEORI
TN5
TWZ
UPT
VOH
WH7
WUQ
XOL
XPP
ZCA
ZGI
ZKB
ZMT
ZU3
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c395t-e2c71eab2afa7c70033a626dd87840e6cfd9b1c3a8dbd2c6fb57872add3169c33
IEDL.DBID .~1
ISSN 0013-9351
1096-0953
IngestDate Fri Jul 11 06:34:26 EDT 2025
Sun Aug 24 03:47:18 EDT 2025
Thu Apr 03 07:08:55 EDT 2025
Thu Apr 24 22:50:53 EDT 2025
Tue Jul 01 03:06:01 EDT 2025
Fri Feb 23 02:43:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photocatalytic degradation
MOFs
1,4-diazabicyclo[2.2.2]octane
TC
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-e2c71eab2afa7c70033a626dd87840e6cfd9b1c3a8dbd2c6fb57872add3169c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33989626
PQID 2528181395
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551993213
proquest_miscellaneous_2528181395
pubmed_primary_33989626
crossref_primary_10_1016_j_envres_2021_111253
crossref_citationtrail_10_1016_j_envres_2021_111253
elsevier_sciencedirect_doi_10_1016_j_envres_2021_111253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Environmental research
PublicationTitleAlternate Environ Res
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Yan, Dong, Han, Li, Fu, Zhu, Zheng, Niu, Zang (bib36) 2020; 32
Ba, Liang, Li, Deng, Du, Hou (bib2) 2020; 380
Ali, Han, Kim (bib1) 2019; 170
Fujishima, Honda (bib7) 1972; 238
Huang, Wei, Jiang (bib10) 2020
Zhang, Li, Lin, Fang (bib34) 2020; 188
Li, Yu, Dong, Liu, Wu, Che, Chen (bib18) 2018; 238
Wang, Qiao, Li (bib24) 2020; 119
Li, Wang, Li, Yan, Niu (bib19) 2019; 4
Zhou, Lai, Xu, Zeng, Huang, Li, Zhang, Cheng, Hu, Wan, Chen, Xiong, Deng (bib37) 2018; 6
Qiao, Li, Niu (bib22) 2020; 19
Xiong, Zhang (bib29) 2021; 195
Garima, Amandeep, Sushil (bib8) 2019; 123
Wang, Kim, Tang, Kim, Lim, Malgras, You, Xu, Li, Yamauchi (bib27) 2020; 6
Qiao, Ge, Li, Niu, Wu (bib23) 2019; 4
Qiu, Fang, Huang, Bi (bib20) 2020; 190
Xue, Zhao, Yang, Chu, Chen, Wang, Huang (bib30) 2021; 13
Yang, Guo, Zhang, Hu (bib32) 2012; 47
Huang, Li, Zeng, Xue, Chen, Li, Deng, Yang, Cheng (bib11) 2019; 375
Jia, Guang, Cheng, Chen, He, Wang (bib13) 2018; 642
Qiao, Wang, Niu (bib21) 2020; 391
Chen, Yang, Zhong, An, Zhao, Xie, Xu, Li, Wang, Zeng (bib6) 2016; 101
Gao, Wu, Wang, Fan, Zhang, Dai (bib9) 2020; 12
Li, Dou, Chen, Hu, Li, Sun, Jiang, Zhai (bib16) 2019; 58
Chen, Yang, Sun, Yao, Wang, Wang, Wang, Li, Niu, Wang, Zeng (bib4) 2016; 8
Kuc, Enyashin, Seifert (bib14) 2007; 111
Jiang, Li, Liu, Wang, Yan, Liu, Che (bib12) 2021; 854
Wang, Qiao, Niu (bib25) 2020; 19
Zhu, Huang, Li, Wu, Niu, Zang (bib35) 2020
Zhang, Wang, Chai, Xue, Ru, Wang, Jiang, Wang, Zhang, Dionysiou (bib38) 2020; 272
Wei, Li, Chen, Li, Huo, He, Wang (bib26) 2020; 59
Wang, Kim, Tang, Na, Kang, Kim, Lim, Bando, Li, Yamauchi (bib28) 2020; 59
Yang, Peng, Zheng, He, Hou, Wu, Fu (bib31) 2018; 221
Chen, Yang, Niu, Li, Zhang, Zhao, Xu, Zhong, Deng, Zeng (bib5) 2016; 73
Yang, Im, Kim, Lee, Park (bib33) 2011; 186
Li, Wang, Li, Yan, Niu (bib17) 2019; 4
Cohen, Sheto, Engel (bib3) 2000; 9
Kore, Srivastava, Satpati (bib15) 2014; 20
Ba (10.1016/j.envres.2021.111253_bib2) 2020; 380
Zhu (10.1016/j.envres.2021.111253_bib35) 2020; 59
Zhang (10.1016/j.envres.2021.111253_bib34) 2020; 188
Qiao (10.1016/j.envres.2021.111253_bib21) 2020; 391
Li (10.1016/j.envres.2021.111253_bib18) 2018; 238
Chen (10.1016/j.envres.2021.111253_bib6) 2016; 101
Jiang (10.1016/j.envres.2021.111253_bib12) 2021; 854
Zhou (10.1016/j.envres.2021.111253_bib37) 2018; 6
Huang (10.1016/j.envres.2021.111253_bib11) 2019; 375
Wei (10.1016/j.envres.2021.111253_bib26) 2020; 59
Yang (10.1016/j.envres.2021.111253_bib31) 2018; 221
Li (10.1016/j.envres.2021.111253_bib19) 2019; 4
Gao (10.1016/j.envres.2021.111253_bib9) 2020; 12
Qiao (10.1016/j.envres.2021.111253_bib23) 2019; 4
Jia (10.1016/j.envres.2021.111253_bib13) 2018; 642
Li (10.1016/j.envres.2021.111253_bib17) 2019; 4
Cohen (10.1016/j.envres.2021.111253_bib3) 2000; 9
Kuc (10.1016/j.envres.2021.111253_bib14) 2007; 111
Zhang (10.1016/j.envres.2021.111253_bib36) 2020; 32
Wang (10.1016/j.envres.2021.111253_bib25) 2020; 19
Garima (10.1016/j.envres.2021.111253_bib8) 2019; 123
Xue (10.1016/j.envres.2021.111253_bib30) 2021; 13
Chen (10.1016/j.envres.2021.111253_bib5) 2016; 73
Li (10.1016/j.envres.2021.111253_bib16) 2019; 58
Wang (10.1016/j.envres.2021.111253_bib28) 2020; 59
Wang (10.1016/j.envres.2021.111253_bib24) 2020; 119
Chen (10.1016/j.envres.2021.111253_bib4) 2016; 8
Qiao (10.1016/j.envres.2021.111253_bib22) 2020; 19
Ali (10.1016/j.envres.2021.111253_bib1) 2019; 170
Kore (10.1016/j.envres.2021.111253_bib15) 2014; 20
Huang (10.1016/j.envres.2021.111253_bib10) 2020
Qiu (10.1016/j.envres.2021.111253_bib20) 2020; 190
Yang (10.1016/j.envres.2021.111253_bib32) 2012; 47
Wang (10.1016/j.envres.2021.111253_bib27) 2020; 6
Zhang (10.1016/j.envres.2021.111253_bib38) 2020; 272
Xiong (10.1016/j.envres.2021.111253_bib29) 2021; 195
Yang (10.1016/j.envres.2021.111253_bib33) 2011; 186
Fujishima (10.1016/j.envres.2021.111253_bib7) 1972; 238
References_xml – volume: 19
  start-page: 217
  year: 2020
  end-page: 225
  ident: bib22
  article-title: One new copper iodide coordination polymer directed by 4-pyridyl dithioether ligand: syntheses, structures, and photocatalysis
  publication-title: Main Group Chem.
– volume: 8
  start-page: 32887
  year: 2016
  end-page: 32900
  ident: bib4
  article-title: Enhanced photocatalytic degradation of tetracycline by AgI/BiVO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 108126
  year: 2020
  ident: bib24
  article-title: Wei D.H., Niu, Y.Y., Influence of 4-cyanopyridinium multicationic isomers on the structure–property relationships of two-dimensional hybrid as photocatalyst for the degradation of organic dyes
  publication-title: Inorg. Chem. Commun.
– volume: 59
  start-page: 2860
  year: 2020
  end-page: 2873
  ident: bib26
  article-title: Efficient photocatalytic degradation and adsorption of tetracycline over type-II heterojunctions consisting of ZnO nanorods and K-doped exfoliated g-C
  publication-title: Ind. Eng. Chem. Res.
– volume: 20
  start-page: 11511
  year: 2014
  end-page: 11521
  ident: bib15
  article-title: ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents
  publication-title: Chem. Eur J.
– volume: 391
  start-page: 122121
  year: 2020
  ident: bib21
  article-title: N-Benzyl HMTA induced self-assembly of organic-inorganic hybrid materials for efficient photocatalytic degradation of tetracycline
  publication-title: J. Hazard Mater.
– volume: 13
  start-page: 3911
  year: 2021
  end-page: 3936
  ident: bib30
  article-title: 2D metal–organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications
  publication-title: Nanoscale
– volume: 9
  start-page: 1263
  year: 2000
  end-page: 1268
  ident: bib3
  article-title: Polycations 8: the synthesis of polycationic rings
  publication-title: Synthesis
– start-page: 1
  year: 2020
  end-page: 15
  ident: bib10
  article-title: Photocatalytic degradation of tetracycline and copper complex by Bi
  publication-title: Environ. Sci.
– volume: 188
  start-page: 109698
  year: 2020
  ident: bib34
  article-title: A stiff ZnO/carbon foam composite with second-level macroporous structure filled ZnO particles for heavy metal ions removal
  publication-title: Environ. Res.
– volume: 59
  start-page: 2066
  year: 2020
  end-page: 2070
  ident: bib28
  article-title: Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 187
  year: 2020
  end-page: 198
  ident: bib25
  article-title: Synthesis, characterization, adsorption and catalytic activity of a polyoxometalate supramolecule templated by arylmethylamine
  publication-title: Main Group Chem.
– volume: 170
  start-page: 222
  year: 2019
  end-page: 229
  ident: bib1
  article-title: Reusability and photocatalytic activity of bismuth-TiO
  publication-title: Environ. Res.
– volume: 4
  start-page: 12402
  year: 2019
  end-page: 12409
  ident: bib23
  article-title: Preparation and analyses of the multifunctional properties of 2D and 3D MOFs constructed from copper(I) halides and hexamethylenetetramine
  publication-title: ACS Omega
– volume: 642
  start-page: 1136
  year: 2018
  end-page: 1144
  ident: bib13
  article-title: Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River
  publication-title: Sci. Total Environ.
– volume: 4
  start-page: 8926
  year: 2019
  end-page: 8934
  ident: bib17
  article-title: Assembly and adsorption properties of seven supramolecular compounds with heteromacrocycle imidazolium
  publication-title: ACS Omega
– volume: 186
  start-page: 376
  year: 2011
  end-page: 382
  ident: bib33
  article-title: MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity
  publication-title: J. Hazard Mater.
– start-page: 9579
  year: 2020
  end-page: 9586
  ident: bib35
  article-title: Two nanometer-sized high-nuclearity homometallic bromide clusters (M26Br38) 12− (M = Cu, Ag): syntheses, crystal structures, and efficient adsorption properties
  publication-title: Inorg. Chem.
– volume: 238
  start-page: 284
  year: 2018
  end-page: 298
  ident: bib18
  article-title: Z-scheme mesoporous photocatalyst constructed by modification of Sn
  publication-title: Appl. Catal. B Environ.
– volume: 4
  start-page: 8926
  year: 2019
  end-page: 8934
  ident: bib19
  article-title: Assembly and adsorption properties of seven supramolecular compounds with heteromacrocycle imidazolium
  publication-title: ACS Omega
– volume: 6
  start-page: 19
  year: 2020
  end-page: 40
  ident: bib27
  article-title: New strategies for novel MOF-derived carbon materials based on nanoarchitectures
  publication-title: 'Inside Chem' as 'Chem'
– volume: 221
  start-page: 223
  year: 2018
  end-page: 234
  ident: bib31
  article-title: Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO
  publication-title: Appl. Catal. B Environ.
– volume: 854
  start-page: 157166
  year: 2021
  ident: bib12
  article-title: Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125(Ti) composite photocatalyst
  publication-title: J. Alloys Compd.
– volume: 123
  start-page: 16857
  year: 2019
  end-page: 16867
  ident: bib8
  article-title: CdS-decorated MIL-53(Fe) microrods with enhanced visible light photocatalytic performance for the degradation of ketorolac tromethamine and mechanism insight
  publication-title: J. Phys. Chem. C
– volume: 111
  start-page: 8179
  year: 2007
  end-page: 8186
  ident: bib14
  article-title: Metal-organic frameworks: structural, energetic, electronic, and mechanical properties
  publication-title: J. Phys. Chem. B
– volume: 380
  start-page: 122535
  year: 2020
  ident: bib2
  article-title: Synthesis of hierarchically mesoporous polymeric carbon nitride with mesoporous melamine as a precursor for enhanced photocatalytic performance
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 6941
  year: 2018
  end-page: 6949
  ident: bib37
  article-title: Rational design of carbon-doped carbon nitride/Bi
  publication-title: ACS Sustain. Chem. Eng.
– volume: 190
  start-page: 110018
  year: 2020
  ident: bib20
  article-title: A novel application of In
  publication-title: Environ. Res.
– volume: 12
  start-page: 11036
  year: 2020
  end-page: 11044
  ident: bib9
  article-title: A novel multifunctional p-type semiconductor @MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline interfaces
  publication-title: ACS Appl. Mater
– volume: 195
  start-page: 110785
  year: 2021
  ident: bib29
  article-title: Construction of novel in-situ photo-Fenton system based on modified g-C3N4 composite photocatalyst
  publication-title: Environ. Res.
– volume: 73
  start-page: 1
  year: 2016
  end-page: 6
  ident: bib5
  article-title: Enhanced visible light photocatalytic activity and mechanism of ZnSn(OH)
  publication-title: Catal. Commun.
– volume: 101
  start-page: 555
  year: 2016
  end-page: 563
  ident: bib6
  article-title: Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO
  publication-title: Water Res.
– volume: 375
  start-page: 121991
  year: 2019
  ident: bib11
  article-title: Facile construction of hierarchical flower-like Z-scheme AgBr/Bi
  publication-title: Chem. Eng. J.
– volume: 272
  year: 2020
  ident: bib38
  article-title: Construction of novel symmetric double Z-scheme BiFeO
  publication-title: Appl. Catal. B Environ.
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  ident: bib7
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
– volume: 58
  start-page: 11220
  year: 2019
  end-page: 11230
  ident: bib16
  article-title: Design of a multifunctional Indium−Organic framework: fluorescent sensing of nitro compounds, physical adsorption, and photocatalytic degradation of organic dyes
  publication-title: Inorg. Chem.
– volume: 47
  start-page: 325
  year: 2012
  end-page: 343
  ident: bib32
  article-title: The development and application of metal-organic frameworks in the feld of photocatalysis
  publication-title: Res. Chem. Intermed.
– volume: 32
  start-page: 2002914
  year: 2020
  ident: bib36
  article-title: Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence
  publication-title: Adv. Mater.
– volume: 195
  start-page: 110785
  year: 2021
  ident: 10.1016/j.envres.2021.111253_bib29
  article-title: Construction of novel in-situ photo-Fenton system based on modified g-C3N4 composite photocatalyst
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.110785
– volume: 32
  start-page: 2002914
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib36
  article-title: Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002914
– volume: 391
  start-page: 122121
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib21
  article-title: N-Benzyl HMTA induced self-assembly of organic-inorganic hybrid materials for efficient photocatalytic degradation of tetracycline
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122121
– volume: 221
  start-page: 223
  year: 2018
  ident: 10.1016/j.envres.2021.111253_bib31
  article-title: Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.09.025
– volume: 854
  start-page: 157166
  year: 2021
  ident: 10.1016/j.envres.2021.111253_bib12
  article-title: Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125(Ti) composite photocatalyst
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.157166
– volume: 58
  start-page: 11220
  year: 2019
  ident: 10.1016/j.envres.2021.111253_bib16
  article-title: Design of a multifunctional Indium−Organic framework: fluorescent sensing of nitro compounds, physical adsorption, and photocatalytic degradation of organic dyes
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b01862
– volume: 238
  start-page: 284
  year: 2018
  ident: 10.1016/j.envres.2021.111253_bib18
  article-title: Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g C3N4 nanosheets with improved photocatalytic performance and mechanism insight
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.07.049
– volume: 188
  start-page: 109698
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib34
  article-title: A stiff ZnO/carbon foam composite with second-level macroporous structure filled ZnO particles for heavy metal ions removal
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109698
– volume: 101
  start-page: 555
  year: 2016
  ident: 10.1016/j.envres.2021.111253_bib6
  article-title: Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.06.006
– volume: 642
  start-page: 1136
  year: 2018
  ident: 10.1016/j.envres.2021.111253_bib13
  article-title: Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.149
– volume: 4
  start-page: 8926
  year: 2019
  ident: 10.1016/j.envres.2021.111253_bib17
  article-title: Assembly and adsorption properties of seven supramolecular compounds with heteromacrocycle imidazolium
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00669
– volume: 186
  start-page: 376
  year: 2011
  ident: 10.1016/j.envres.2021.111253_bib33
  article-title: MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.11.019
– volume: 380
  start-page: 122535
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib2
  article-title: Synthesis of hierarchically mesoporous polymeric carbon nitride with mesoporous melamine as a precursor for enhanced photocatalytic performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122535
– volume: 6
  start-page: 19
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib27
  article-title: New strategies for novel MOF-derived carbon materials based on nanoarchitectures
  publication-title: 'Inside Chem' as 'Chem'
– volume: 6
  start-page: 6941
  year: 2018
  ident: 10.1016/j.envres.2021.111253_bib37
  article-title: Rational design of carbon-doped carbon nitride/Bi12O17Cl2 composites: a promising candidate photocatalyst for boosting visible-light-driven photocatalytic degradation of tetracycline
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00782
– volume: 73
  start-page: 1
  year: 2016
  ident: 10.1016/j.envres.2021.111253_bib5
  article-title: Enhanced visible light photocatalytic activity and mechanism of ZnSn(OH)6 nanocubes modified with AgI nanoparticles
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2015.10.003
– volume: 170
  start-page: 222
  year: 2019
  ident: 10.1016/j.envres.2021.111253_bib1
  article-title: Reusability and photocatalytic activity of bismuth-TiO2 nanocomposites for industrial wastewater treatment
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2018.12.038
– volume: 272
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib38
  article-title: Construction of novel symmetric double Z-scheme BiFeO3/CuBi2O4/BaTiO3 photocatalyst with enhanced solar-light-driven photocatalytic performance for degradation of norfloxacin
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119017
– volume: 111
  start-page: 8179
  year: 2007
  ident: 10.1016/j.envres.2021.111253_bib14
  article-title: Metal-organic frameworks: structural, energetic, electronic, and mechanical properties
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp072085x
– volume: 19
  start-page: 187
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib25
  article-title: Synthesis, characterization, adsorption and catalytic activity of a polyoxometalate supramolecule templated by arylmethylamine
  publication-title: Main Group Chem.
  doi: 10.3233/MGC-190891
– volume: 123
  start-page: 16857
  year: 2019
  ident: 10.1016/j.envres.2021.111253_bib8
  article-title: CdS-decorated MIL-53(Fe) microrods with enhanced visible light photocatalytic performance for the degradation of ketorolac tromethamine and mechanism insight
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b04312
– volume: 59
  start-page: 9579
  issue: 14
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib35
  article-title: Two nanometer-sized high-nuclearity homometallic bromide clusters (M26Br38) 12− (M = Cu, Ag): syntheses, crystal structures, and efficient adsorption properties
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c00573
– volume: 13
  start-page: 3911
  year: 2021
  ident: 10.1016/j.envres.2021.111253_bib30
  article-title: 2D metal–organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications
  publication-title: Nanoscale
  doi: 10.1039/D0NR09064F
– volume: 47
  start-page: 325
  year: 2012
  ident: 10.1016/j.envres.2021.111253_bib32
  article-title: The development and application of metal-organic frameworks in the feld of photocatalysis
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-020-04347-w
– volume: 8
  start-page: 32887
  year: 2016
  ident: 10.1016/j.envres.2021.111253_bib4
  article-title: Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12278
– volume: 238
  start-page: 37
  year: 1972
  ident: 10.1016/j.envres.2021.111253_bib7
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 4
  start-page: 8926
  year: 2019
  ident: 10.1016/j.envres.2021.111253_bib19
  article-title: Assembly and adsorption properties of seven supramolecular compounds with heteromacrocycle imidazolium
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00669
– start-page: 1
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib10
  article-title: Photocatalytic degradation of tetracycline and copper complex by Bi2MoO6/Bi2S3 heterojunction
  publication-title: Environ. Sci.
– volume: 119
  start-page: 108126
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib24
  article-title: Wei D.H., Niu, Y.Y., Influence of 4-cyanopyridinium multicationic isomers on the structure–property relationships of two-dimensional hybrid as photocatalyst for the degradation of organic dyes
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2020.108126
– volume: 20
  start-page: 11511
  issue: 36
  year: 2014
  ident: 10.1016/j.envres.2021.111253_bib15
  article-title: ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201402665
– volume: 19
  start-page: 217
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib22
  article-title: One new copper iodide coordination polymer directed by 4-pyridyl dithioether ligand: syntheses, structures, and photocatalysis
  publication-title: Main Group Chem.
  doi: 10.3233/MGC-190900
– volume: 4
  start-page: 12402
  issue: 7
  year: 2019
  ident: 10.1016/j.envres.2021.111253_bib23
  article-title: Preparation and analyses of the multifunctional properties of 2D and 3D MOFs constructed from copper(I) halides and hexamethylenetetramine
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01356
– volume: 59
  start-page: 2860
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib26
  article-title: Efficient photocatalytic degradation and adsorption of tetracycline over type-II heterojunctions consisting of ZnO nanorods and K-doped exfoliated g-C3N4 nanosheets
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b06911
– volume: 9
  start-page: 1263
  year: 2000
  ident: 10.1016/j.envres.2021.111253_bib3
  article-title: Polycations 8: the synthesis of polycationic rings
  publication-title: Synthesis
  doi: 10.1055/s-2000-6419
– volume: 12
  start-page: 11036
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib9
  article-title: A novel multifunctional p-type semiconductor @MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline interfaces
  publication-title: ACS Appl. Mater
  doi: 10.1021/acsami.9b23314
– volume: 59
  start-page: 2066
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib28
  article-title: Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913719
– volume: 375
  start-page: 121991
  year: 2019
  ident: 10.1016/j.envres.2021.111253_bib11
  article-title: Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: degradation pathways and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121991
– volume: 190
  start-page: 110018
  year: 2020
  ident: 10.1016/j.envres.2021.111253_bib20
  article-title: A novel application of In2S3 for visible-light-driven photocatalytic inactivation of bacteria: kinetics, stability, toxicity and mechanism
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.110018
SSID ssj0011530
Score 2.4223378
Snippet As an important advanced oxidation technology for environmental purification, photocatalytic degradation has received extensive attention. Designing and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111253
SubjectTerms 1,4-diazabicyclo[2.2.2]octane
adsorbents
ambient temperature
cations
light
MOFs
oxidation
photocatalysis
photocatalysts
Photocatalytic degradation
tetracycline
volatilization
Title Effective degradation of tetracycline by organic-inorganic hybrid materials induced by triethylenediamine
URI https://dx.doi.org/10.1016/j.envres.2021.111253
https://www.ncbi.nlm.nih.gov/pubmed/33989626
https://www.proquest.com/docview/2528181395
https://www.proquest.com/docview/2551993213
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvQgiWq3WR1nBa2yzm-exlJaq2JOF3sK-ghVNS02FXvztzmSTioda8JbHbFh2ZuexmW-GkFupsV-0Yo6WeHQTGM-RzESOCgMTxkYJTyMa-WkcjCbew9Sf1ki_wsJgWmWp-61OL7R1-aRTrmZnMZshxtdFXClWwOpiVSpEsHshSvnd1ybNAxwe3q26GCB1BZ8rcrxM9glBLUSJzEXdwXy-zTxtcz8LMzQ8Ioel_0h7dorHpGayBmkOfuBq8LLcrx8NcmBP5agFG52QmS1WDBqOaqwSYRsq0XlKc5MvhVojUNJQuaa225NyZll5RV_WCO6i4OFaoaUQzYNcaKTGrlzAcbBgCER5h2-ckslw8NwfOWWzBUfx2M8dw1ToGiGZSEWoQuzxJiDY0ToKIQY0gUp1LF3FRaSlZipIJe51BuqRu0GsOG-SejbPzDmhKYQpKegJExjwz-JAuHEEJkF76JyItNsivFrjRJWVyLEhxltSpZy9JpYzCXImsZxpEWczamErceygDyv2Jb8kKgFjsWPkTcXtBDYb_kERmZmvgMjH4lkgdv5fND4mRTIXvnNmRWUzX87jKIZVvfj33C7JPt7ZhOErUs-XK3MNblEu24Xct8le7_5xNP4GsDIPDg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH5oPSiIuFvXEbwGm5lmOxZR6taTgrdhtmBF06JR6L_3vc6k4kEFbyGzMMzbk_e9B3CiLfWLNjyymj7dpK4bae7yyGSpywpnVNcSGvl2kPbvu1cPycMcnDVYGEqrDLrf6_Sptg5vTsNtno6HQ8L4xoQrpQpYHapKNQ8LVJ0qacFC7_K6P5j9TECh7jSNDGhBg6Cbpnm56gPjWgwUeUzqgyfiJwv1kwc6tUQXq7ASXEjW86dcgzlXrcPW-RdiDQeDyL6tw7L_MMc83mgDhr5eMSo5ZqlQhO-pxEYlq139qsyEsJKO6QnzDZ9MNKzCE3ucEL6LoZPr-ZZhQI-sYWk2NeZCoqMRIyzKC-6xCfcX53dn_Sj0W4iMKJI6ctxksVOaq1JlJqM2bwrjHWvzDMNAl5rSFjo2QuVWW27SUpO4c9SQIk4LI8QWtKpR5XaAlRiplKgqXOrQRStSFRc5WgXbJf9ElZ02iOaOpQnFyKknxrNsss6epKeMJMpIT5k2RLNVY1-M44_5WUM--Y2pJNqLP1YeN9SWKG_0E0VVbvSOkxKqn4Wcl_w2J6G8SB7jPtueVWbnFaLIC7zV3X-f7QgW-3e3N_LmcnC9B0s04vOH96FVv767A_SSan0YpOAT6TYRvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+degradation+of+tetracycline+by+organic-inorganic+hybrid+materials+induced+by+triethylenediamine&rft.jtitle=Environmental+research&rft.au=Wang%2C+Xiaojia&rft.au=Zhu%2C+Gaihong&rft.au=Wang%2C+Chaohai&rft.au=Niu%2C+Yunyin&rft.date=2021-07-01&rft.pub=Elsevier+Inc&rft.issn=0013-9351&rft.eissn=1096-0953&rft.volume=198&rft_id=info:doi/10.1016%2Fj.envres.2021.111253&rft.externalDocID=S0013935121005478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon