STABILITY AND BIFURCATION IN A DELAYED RATIO-DEPENDENT PREDATOR–PREY SYSTEM

Recently, ratio-dependent predator–prey systems have been regarded by some researchers as being more appropriate for predator–prey interactions where predation involves serious searching processes. Due to the fact that every population goes through some distinct life stages in real-life, one often i...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Edinburgh Mathematical Society Vol. 46; no. 1; pp. 205 - 220
Main Authors Xiao, Dongmei, Li, Wenxia
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2003
Subjects
Online AccessGet full text
ISSN0013-0915
1464-3839
DOI10.1017/S0013091500001140

Cover

Abstract Recently, ratio-dependent predator–prey systems have been regarded by some researchers as being more appropriate for predator–prey interactions where predation involves serious searching processes. Due to the fact that every population goes through some distinct life stages in real-life, one often introduces time delays in the variables being modelled. The presence of time delay often greatly complicates the analytical study of such models. In this paper, the qualitative behaviour of a class of ratio-dependent predator–prey systems with delay at the equilibrium in the interior of the first quadrant is studied. It is shown that the interior equilibrium cannot be absolutely stable and there exist non-trivial periodic solutions for the model. Moreover, by choosing delay $\tau$ as the bifurcation parameter we study the Hopf bifurcation and the stability of the periodic solutions. AMS 2000 Mathematics subject classification: Primary 34C25; 92D25. Secondary 58F14
AbstractList Recently, ratio-dependent predator-prey systems have been regarded by some researchers as being more appropriate for predator-prey interactions where predation involves serious searching processes. Due to the fact that every population goes through some distinct life stages in real-life, one often introduces time delays in the variables being modelled. The presence of time delay often greatly complicates the analytical study of such models. In this paper, the qualitative behaviour of a class of ratio-dependent predator-prey systems with delay at the equilibrium in the interior of the first quadrant is studied. It is shown that the interior equilibrium cannot be absolutely stable and there exist non-trivial periodic solutions for the model. Moreover, by choosing delay $\tau$ as the bifurcation parameter we study the Hopf bifurcation and the stability of the periodic solutions. AMS 2000 Mathematics subject classification: Primary 34C25; 92D25. Secondary 58F14 [PUBLICATION ABSTRACT]
Recently, ratio-dependent predator–prey systems have been regarded by some researchers as being more appropriate for predator–prey interactions where predation involves serious searching processes. Due to the fact that every population goes through some distinct life stages in real-life, one often introduces time delays in the variables being modelled. The presence of time delay often greatly complicates the analytical study of such models. In this paper, the qualitative behaviour of a class of ratio-dependent predator–prey systems with delay at the equilibrium in the interior of the first quadrant is studied. It is shown that the interior equilibrium cannot be absolutely stable and there exist non-trivial periodic solutions for the model. Moreover, by choosing delay $\tau$ as the bifurcation parameter we study the Hopf bifurcation and the stability of the periodic solutions. AMS 2000 Mathematics subject classification: Primary 34C25; 92D25. Secondary 58F14
Recently, ratio-dependent predator–prey systems have been regarded by some researchers as being more appropriate for predator–prey interactions where predation involves serious searching processes. Due to the fact that every population goes through some distinct life stages in real-life, one often introduces time delays in the variables being modelled. The presence of time delay often greatly complicates the analytical study of such models. In this paper, the qualitative behaviour of a class of ratio-dependent predator–prey systems with delay at the equilibrium in the interior of the first quadrant is studied. It is shown that the interior equilibrium cannot be absolutely stable and there exist non-trivial periodic solutions for the model. Moreover, by choosing delay $\tau$ as the bifurcation parameter we study the Hopf bifurcation and the stability of the periodic solutions. AMS 2000 Mathematics subject classification: Primary 34C25; 92D25. Secondary 58F14
Author Xiao, Dongmei
Li, Wenxia
Author_xml – sequence: 1
  givenname: Dongmei
  surname: Xiao
  fullname: Xiao, Dongmei
  organization: Department of Mathematics, Central China Normal University, Wuhan 430079, People's Republic of China
– sequence: 2
  givenname: Wenxia
  surname: Li
  fullname: Li, Wenxia
  organization: Department of Mathematics, Central China Normal University, Wuhan 430079, People's Republic of China
BookMark eNp9UMFOwkAQ3RhMBPQDvDXeq7vd3e7usdACTUrBtsRw2tSyNUWguC2J3vwH_9AvsQjRRKNzmcm89-ZlXge0NuVGAXCJ4DWCiN3EECIMBaKwKYQIPAFtRGxiYo5FC7T3sLnHz0CnqpYNiTGK2mAcJ07PD_xkbjiha_T8wSzqO4k_CQ0_NBzD9QJn7rlGtN-Zrjf1QtcLE2Maea6TTKL317dmnBvxPE688Tk4zdNVpS6OvQtmAy_pj8xgMvT7TmBmWNDaXCiaCW4hbGEiCLKEyiG3qBALyyZMCKTU5wypYpxlPCWc2ykREBIqMpzjLrg63N3q8mmnqlouy53eNJbSsjgmEFLSkNCBlOmyqrTK5VYX61S_SATlPjT5K7RGw35osqJO66Lc1DotVv8qzYOyqGr1_GWV6kdpM8yotIe3kt2NMY_7UI4aPj46pet7XSwe1PcPf7t8APE0hwg
CitedBy_id crossref_primary_10_1016_j_cnsns_2010_12_042
crossref_primary_10_1007_s11071_011_0201_5
crossref_primary_10_1007_s11071_020_05659_7
crossref_primary_10_1142_S0218127424501980
crossref_primary_10_1016_j_amc_2007_03_012
crossref_primary_10_1016_j_amc_2009_03_078
crossref_primary_10_1016_j_jmaa_2024_128562
crossref_primary_10_1016_j_chaos_2014_06_012
crossref_primary_10_11948_2017068
crossref_primary_10_1016_j_amc_2011_04_030
crossref_primary_10_1016_j_amc_2006_06_024
crossref_primary_10_1016_j_ecocom_2014_02_001
crossref_primary_10_1007_s00033_023_02036_3
crossref_primary_10_11948_2156_907X_20180238
crossref_primary_10_1016_j_nonrwa_2007_08_004
crossref_primary_10_1016_j_cam_2009_07_008
crossref_primary_10_1016_j_amc_2003_10_012
crossref_primary_10_1142_S0218127413501538
crossref_primary_10_3934_eect_2022034
crossref_primary_10_1016_j_jmaa_2004_08_062
crossref_primary_10_1016_j_jfranklin_2011_08_013
crossref_primary_10_1016_j_apm_2009_02_008
crossref_primary_10_1016_j_amc_2010_02_037
crossref_primary_10_1016_j_chaos_2009_01_026
crossref_primary_10_1016_j_amc_2007_06_017
crossref_primary_10_1016_j_amc_2007_11_050
ContentType Journal Article
Copyright Copyright © Edinburgh Mathematical Society 2002
2002 Edinburgh Mathematical Society
Copyright_xml – notice: Copyright © Edinburgh Mathematical Society 2002
– notice: 2002 Edinburgh Mathematical Society
DBID BSCLL
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0013091500001140
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3839
EndPage 220
ExternalDocumentID 1401847211
10_1017_S0013091500001140
ark_67375_6GQ_7WM38SC0_H
Genre Feature
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
123
29O
3V.
4.4
5VS
6OB
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZCX
ABZUI
ACBMC
ACDLN
ACETC
ACGFS
ACGOD
ACIMK
ACIPV
ACIWK
ACMRT
ACNCT
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
FRP
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNI
ROL
RR0
RZO
S6-
S6U
SAAAG
T9M
TR2
TWZ
UT1
WFFJZ
WH7
WQ3
WXU
WYP
XOL
YNT
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAKNA
ABGDZ
ABXHF
ACEJA
AGQPQ
AHDLI
AKMAY
AMVHM
ANOYL
BSCLL
PHGZM
PHGZT
PQGLB
PUEGO
AAYXX
ABHFL
ACOZI
CITATION
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c395t-de5c9821323494129ef082599d2647991ee99d2605e787c8a4886a4900459c3f3
IEDL.DBID 8FG
ISSN 0013-0915
IngestDate Thu Aug 21 01:10:56 EDT 2025
Tue Jul 01 03:48:02 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
Sun Aug 31 06:48:33 EDT 2025
Tue Jan 21 06:20:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords bifurcation
ratio-dependent response
time delay
stability
predator–prey system
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-de5c9821323494129ef082599d2647991ee99d2605e787c8a4886a4900459c3f3
Notes ArticleID:00114
ark:/67375/6GQ-7WM38SC0-H
Present address: Department of Mathematics, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China (xiaodm@sjtu.edu.cn)
PII:S0013091500001140
istex:78F449B124C385061CD38533A0BBB22736B67A4E
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/FADB5D0131D72C41E9C25287FB86B934/S0013091500001140a.pdf/div-class-title-stability-and-bifurcation-in-a-delayed-ratio-dependent-predator-prey-system-div.pdf
PQID 228340054
PQPubID 41713
PageCount 16
ParticipantIDs proquest_journals_228340054
crossref_primary_10_1017_S0013091500001140
crossref_citationtrail_10_1017_S0013091500001140
istex_primary_ark_67375_6GQ_7WM38SC0_H
cambridge_journals_10_1017_S0013091500001140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-02-01
PublicationDateYYYYMMDD 2003-02-01
PublicationDate_xml – month: 02
  year: 2003
  text: 2003-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Proceedings of the Edinburgh Mathematical Society
PublicationTitleAlternate Proceedings of the Edinburgh Mathematical Society
PublicationYear 2003
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0007751
Score 1.740548
Snippet Recently, ratio-dependent predator–prey systems have been regarded by some researchers as being more appropriate for predator–prey interactions where predation...
Recently, ratio-dependent predator-prey systems have been regarded by some researchers as being more appropriate for predator-prey interactions where predation...
SourceID proquest
crossref
istex
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 205
SubjectTerms bifurcation
predator–prey system
ratio-dependent response
stability
time delay
Title STABILITY AND BIFURCATION IN A DELAYED RATIO-DEPENDENT PREDATOR–PREY SYSTEM
URI https://www.cambridge.org/core/product/identifier/S0013091500001140/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-7WM38SC0-H/fulltext.pdf
https://www.proquest.com/docview/228340054
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oXPRgfEZEyR6MB-PGlra0ezKFtlCFilCiPTWl3V40gICJP9_Z7YMYEm6bdjdpZmbn3W8QulWVGIxixIgqsylRm82IUEllRAPhSZkORlHgzA68Vm-iPn9oH3lvzipvqyx0olDUyTzmOfJHDtOicgfjafFN-NAoXlzNJ2jso6oMhoaLueF0S0Ws65pcDjCgslYUNQViNK_YwTOR3ZZ56mMDrfDPRFU5tX-3NLUwP84xOsr9RmxmjD5Be2x2ig4HJejq6gy9jH2z7fZdP8CmZ-G260xG2W_C2PWwiS27bwa2hUVailj20PYs2_MxMMEy_dcRgUWAx8HYtwfnaOLYfqdH8lkJJFaotiYJ02JqNCG25HgzYMRZyoM_ShPweHRwAhkTa0ljcEVjI4KL24pUyl06GiupcoEqs_mMXSKsQJQhGSwB-uhqlChRmnDAKGC1EiUpjWvooSRVmEv8Ksy6xfRwi7I1JBXUDOMcd5yPv_jadeS-PLLIQDd2bb4TLCp3RstP3q2ma2Gr-xbq7wPFGHeksFdD9YKHm88uxepq59s6OhBdfKJd-xpV1ssfdgPeyHraEDLXQNW27Q1Hf9RxzmQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7R5EA5oNKCCLSwh9IDYoVjr-Psoaoc7BCT2EDiCHIyxl5fQOGRVC0_iv_I7PqBEFJu3Cx717JmPu88dvYbgJ_MSNAoxoKyprimTNdjyjUmqIngyYSFRlHxzPpBqzdmJ5fm5RI8l2dhZFlluSaqhTq9S2SO_FDStDDpYPy5f6CyaZTcXC07aOSo6IunfxixzX57Dqp3T9e7bnjUo0VTAZoY3JzTVJgJb-sYhEliFrR2IpNREucpugYWektCqGvNFIjlpB0jwlsx49L34YmRGfjeT1Bn8kBrDeodNzgbVku_ZZnNqmUCb5rlNqriqJZ7hHhP5dObMtnySubwxijWpX7_v7MNyuB1v8Bq4akSO4fWGiyJ6VdY8Sua19k36I9Cu-MNvHBC7MAhHa87HuYHk4kXEJs47sCeuA5RiTDquGdu4LhBSFDtjh2eDileTMhoMgpdfx3GHyLIDahN76ZiE4iBcY3WFinKx2JxasRZKimqEFxGnGY8acBBJaqo-MdmUV6fZkXvJNsArZRmlBRM57Lhxu2iKfvVlPuc5mPR4F9KRdXI-PFG1sdZZtQ6Po-sC99oj460qNeA7VKHr59dAXlr4dNdWO6F_iAaeEF_Gz6rGkJVLP4davPHv-IH-kLz650CgQSuPhr0L_VFCAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STABILITY+AND+BIFURCATION+IN+A+DELAYED+RATIO-DEPENDENT+PREDATOR%E2%80%93PREY+SYSTEM&rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&rft.au=Xiao%2C+Dongmei&rft.au=Li%2C+Wenxia&rft.date=2003-02-01&rft.pub=Cambridge+University+Press&rft.issn=0013-0915&rft.eissn=1464-3839&rft.volume=46&rft.issue=1&rft.spage=205&rft.epage=220&rft_id=info:doi/10.1017%2FS0013091500001140&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_6GQ_7WM38SC0_H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-0915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-0915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-0915&client=summon