STABILITY AND BIFURCATION IN A DELAYED RATIO-DEPENDENT PREDATOR–PREY SYSTEM
Recently, ratio-dependent predator–prey systems have been regarded by some researchers as being more appropriate for predator–prey interactions where predation involves serious searching processes. Due to the fact that every population goes through some distinct life stages in real-life, one often i...
Saved in:
Published in | Proceedings of the Edinburgh Mathematical Society Vol. 46; no. 1; pp. 205 - 220 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.02.2003
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-0915 1464-3839 |
DOI | 10.1017/S0013091500001140 |
Cover
Abstract | Recently, ratio-dependent predator–prey systems have been regarded by some researchers as being more appropriate for predator–prey interactions where predation involves serious searching processes. Due to the fact that every population goes through some distinct life stages in real-life, one often introduces time delays in the variables being modelled. The presence of time delay often greatly complicates the analytical study of such models. In this paper, the qualitative behaviour of a class of ratio-dependent predator–prey systems with delay at the equilibrium in the interior of the first quadrant is studied. It is shown that the interior equilibrium cannot be absolutely stable and there exist non-trivial periodic solutions for the model. Moreover, by choosing delay $\tau$ as the bifurcation parameter we study the Hopf bifurcation and the stability of the periodic solutions. AMS 2000 Mathematics subject classification: Primary 34C25; 92D25. Secondary 58F14 |
---|---|
AbstractList | Recently, ratio-dependent predator-prey systems have been regarded by some researchers as being more appropriate for predator-prey interactions where predation involves serious searching processes. Due to the fact that every population goes through some distinct life stages in real-life, one often introduces time delays in the variables being modelled. The presence of time delay often greatly complicates the analytical study of such models. In this paper, the qualitative behaviour of a class of ratio-dependent predator-prey systems with delay at the equilibrium in the interior of the first quadrant is studied. It is shown that the interior equilibrium cannot be absolutely stable and there exist non-trivial periodic solutions for the model. Moreover, by choosing delay $\tau$ as the bifurcation parameter we study the Hopf bifurcation and the stability of the periodic solutions. AMS 2000 Mathematics subject classification: Primary 34C25; 92D25. Secondary 58F14 [PUBLICATION ABSTRACT] Recently, ratio-dependent predator–prey systems have been regarded by some researchers as being more appropriate for predator–prey interactions where predation involves serious searching processes. Due to the fact that every population goes through some distinct life stages in real-life, one often introduces time delays in the variables being modelled. The presence of time delay often greatly complicates the analytical study of such models. In this paper, the qualitative behaviour of a class of ratio-dependent predator–prey systems with delay at the equilibrium in the interior of the first quadrant is studied. It is shown that the interior equilibrium cannot be absolutely stable and there exist non-trivial periodic solutions for the model. Moreover, by choosing delay $\tau$ as the bifurcation parameter we study the Hopf bifurcation and the stability of the periodic solutions. AMS 2000 Mathematics subject classification: Primary 34C25; 92D25. Secondary 58F14 Recently, ratio-dependent predator–prey systems have been regarded by some researchers as being more appropriate for predator–prey interactions where predation involves serious searching processes. Due to the fact that every population goes through some distinct life stages in real-life, one often introduces time delays in the variables being modelled. The presence of time delay often greatly complicates the analytical study of such models. In this paper, the qualitative behaviour of a class of ratio-dependent predator–prey systems with delay at the equilibrium in the interior of the first quadrant is studied. It is shown that the interior equilibrium cannot be absolutely stable and there exist non-trivial periodic solutions for the model. Moreover, by choosing delay $\tau$ as the bifurcation parameter we study the Hopf bifurcation and the stability of the periodic solutions. AMS 2000 Mathematics subject classification: Primary 34C25; 92D25. Secondary 58F14 |
Author | Xiao, Dongmei Li, Wenxia |
Author_xml | – sequence: 1 givenname: Dongmei surname: Xiao fullname: Xiao, Dongmei organization: Department of Mathematics, Central China Normal University, Wuhan 430079, People's Republic of China – sequence: 2 givenname: Wenxia surname: Li fullname: Li, Wenxia organization: Department of Mathematics, Central China Normal University, Wuhan 430079, People's Republic of China |
BookMark | eNp9UMFOwkAQ3RhMBPQDvDXeq7vd3e7usdACTUrBtsRw2tSyNUWguC2J3vwH_9AvsQjRRKNzmcm89-ZlXge0NuVGAXCJ4DWCiN3EECIMBaKwKYQIPAFtRGxiYo5FC7T3sLnHz0CnqpYNiTGK2mAcJ07PD_xkbjiha_T8wSzqO4k_CQ0_NBzD9QJn7rlGtN-Zrjf1QtcLE2Maea6TTKL317dmnBvxPE688Tk4zdNVpS6OvQtmAy_pj8xgMvT7TmBmWNDaXCiaCW4hbGEiCLKEyiG3qBALyyZMCKTU5wypYpxlPCWc2ykREBIqMpzjLrg63N3q8mmnqlouy53eNJbSsjgmEFLSkNCBlOmyqrTK5VYX61S_SATlPjT5K7RGw35osqJO66Lc1DotVv8qzYOyqGr1_GWV6kdpM8yotIe3kt2NMY_7UI4aPj46pet7XSwe1PcPf7t8APE0hwg |
CitedBy_id | crossref_primary_10_1016_j_cnsns_2010_12_042 crossref_primary_10_1007_s11071_011_0201_5 crossref_primary_10_1007_s11071_020_05659_7 crossref_primary_10_1142_S0218127424501980 crossref_primary_10_1016_j_amc_2007_03_012 crossref_primary_10_1016_j_amc_2009_03_078 crossref_primary_10_1016_j_jmaa_2024_128562 crossref_primary_10_1016_j_chaos_2014_06_012 crossref_primary_10_11948_2017068 crossref_primary_10_1016_j_amc_2011_04_030 crossref_primary_10_1016_j_amc_2006_06_024 crossref_primary_10_1016_j_ecocom_2014_02_001 crossref_primary_10_1007_s00033_023_02036_3 crossref_primary_10_11948_2156_907X_20180238 crossref_primary_10_1016_j_nonrwa_2007_08_004 crossref_primary_10_1016_j_cam_2009_07_008 crossref_primary_10_1016_j_amc_2003_10_012 crossref_primary_10_1142_S0218127413501538 crossref_primary_10_3934_eect_2022034 crossref_primary_10_1016_j_jmaa_2004_08_062 crossref_primary_10_1016_j_jfranklin_2011_08_013 crossref_primary_10_1016_j_apm_2009_02_008 crossref_primary_10_1016_j_amc_2010_02_037 crossref_primary_10_1016_j_chaos_2009_01_026 crossref_primary_10_1016_j_amc_2007_06_017 crossref_primary_10_1016_j_amc_2007_11_050 |
ContentType | Journal Article |
Copyright | Copyright © Edinburgh Mathematical Society
2002 2002 Edinburgh Mathematical Society |
Copyright_xml | – notice: Copyright © Edinburgh Mathematical Society 2002 – notice: 2002 Edinburgh Mathematical Society |
DBID | BSCLL AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S0013091500001140 |
DatabaseName | Istex CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3839 |
EndPage | 220 |
ExternalDocumentID | 1401847211 10_1017_S0013091500001140 ark_67375_6GQ_7WM38SC0_H |
Genre | Feature |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 123 29O 3V. 4.4 5VS 6OB 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB ABBXD ABBZL ABEFU ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTAH ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABZCX ABZUI ACBMC ACDLN ACETC ACGFS ACGOD ACIMK ACIPV ACIWK ACMRT ACNCT ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD FRP GNUQQ HCIFZ HG- HST HZ~ H~9 I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OHT OK1 OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNI ROL RR0 RZO S6- S6U SAAAG T9M TR2 TWZ UT1 WFFJZ WH7 WQ3 WXU WYP XOL YNT ZCG ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ ~V1 AAKNA ABGDZ ABXHF ACEJA AGQPQ AHDLI AKMAY AMVHM ANOYL BSCLL PHGZM PHGZT PQGLB PUEGO AAYXX ABHFL ACOZI CITATION 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c395t-de5c9821323494129ef082599d2647991ee99d2605e787c8a4886a4900459c3f3 |
IEDL.DBID | 8FG |
ISSN | 0013-0915 |
IngestDate | Thu Aug 21 01:10:56 EDT 2025 Tue Jul 01 03:48:02 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Sun Aug 31 06:48:33 EDT 2025 Tue Jan 21 06:20:28 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | bifurcation ratio-dependent response time delay stability predator–prey system |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-de5c9821323494129ef082599d2647991ee99d2605e787c8a4886a4900459c3f3 |
Notes | ArticleID:00114 ark:/67375/6GQ-7WM38SC0-H Present address: Department of Mathematics, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China (xiaodm@sjtu.edu.cn) PII:S0013091500001140 istex:78F449B124C385061CD38533A0BBB22736B67A4E SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/FADB5D0131D72C41E9C25287FB86B934/S0013091500001140a.pdf/div-class-title-stability-and-bifurcation-in-a-delayed-ratio-dependent-predator-prey-system-div.pdf |
PQID | 228340054 |
PQPubID | 41713 |
PageCount | 16 |
ParticipantIDs | proquest_journals_228340054 crossref_primary_10_1017_S0013091500001140 crossref_citationtrail_10_1017_S0013091500001140 istex_primary_ark_67375_6GQ_7WM38SC0_H cambridge_journals_10_1017_S0013091500001140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-02-01 |
PublicationDateYYYYMMDD | 2003-02-01 |
PublicationDate_xml | – month: 02 year: 2003 text: 2003-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Proceedings of the Edinburgh Mathematical Society |
PublicationTitleAlternate | Proceedings of the Edinburgh Mathematical Society |
PublicationYear | 2003 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
SSID | ssj0007751 |
Score | 1.740548 |
Snippet | Recently, ratio-dependent predator–prey systems have been regarded by some researchers as being more appropriate for predator–prey interactions where predation... Recently, ratio-dependent predator-prey systems have been regarded by some researchers as being more appropriate for predator-prey interactions where predation... |
SourceID | proquest crossref istex cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 205 |
SubjectTerms | bifurcation predator–prey system ratio-dependent response stability time delay |
Title | STABILITY AND BIFURCATION IN A DELAYED RATIO-DEPENDENT PREDATOR–PREY SYSTEM |
URI | https://www.cambridge.org/core/product/identifier/S0013091500001140/type/journal_article https://api.istex.fr/ark:/67375/6GQ-7WM38SC0-H/fulltext.pdf https://www.proquest.com/docview/228340054 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oXPRgfEZEyR6MB-PGlra0ezKFtlCFilCiPTWl3V40gICJP9_Z7YMYEm6bdjdpZmbn3W8QulWVGIxixIgqsylRm82IUEllRAPhSZkORlHgzA68Vm-iPn9oH3lvzipvqyx0olDUyTzmOfJHDtOicgfjafFN-NAoXlzNJ2jso6oMhoaLueF0S0Ws65pcDjCgslYUNQViNK_YwTOR3ZZ56mMDrfDPRFU5tX-3NLUwP84xOsr9RmxmjD5Be2x2ig4HJejq6gy9jH2z7fZdP8CmZ-G260xG2W_C2PWwiS27bwa2hUVailj20PYs2_MxMMEy_dcRgUWAx8HYtwfnaOLYfqdH8lkJJFaotiYJ02JqNCG25HgzYMRZyoM_ShPweHRwAhkTa0ljcEVjI4KL24pUyl06GiupcoEqs_mMXSKsQJQhGSwB-uhqlChRmnDAKGC1EiUpjWvooSRVmEv8Ksy6xfRwi7I1JBXUDOMcd5yPv_jadeS-PLLIQDd2bb4TLCp3RstP3q2ma2Gr-xbq7wPFGHeksFdD9YKHm88uxepq59s6OhBdfKJd-xpV1ssfdgPeyHraEDLXQNW27Q1Hf9RxzmQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7R5EA5oNKCCLSwh9IDYoVjr-Psoaoc7BCT2EDiCHIyxl5fQOGRVC0_iv_I7PqBEFJu3Cx717JmPu88dvYbgJ_MSNAoxoKyprimTNdjyjUmqIngyYSFRlHxzPpBqzdmJ5fm5RI8l2dhZFlluSaqhTq9S2SO_FDStDDpYPy5f6CyaZTcXC07aOSo6IunfxixzX57Dqp3T9e7bnjUo0VTAZoY3JzTVJgJb-sYhEliFrR2IpNREucpugYWektCqGvNFIjlpB0jwlsx49L34YmRGfjeT1Bn8kBrDeodNzgbVku_ZZnNqmUCb5rlNqriqJZ7hHhP5dObMtnySubwxijWpX7_v7MNyuB1v8Bq4akSO4fWGiyJ6VdY8Sua19k36I9Cu-MNvHBC7MAhHa87HuYHk4kXEJs47sCeuA5RiTDquGdu4LhBSFDtjh2eDileTMhoMgpdfx3GHyLIDahN76ZiE4iBcY3WFinKx2JxasRZKimqEFxGnGY8acBBJaqo-MdmUV6fZkXvJNsArZRmlBRM57Lhxu2iKfvVlPuc5mPR4F9KRdXI-PFG1sdZZtQ6Po-sC99oj460qNeA7VKHr59dAXlr4dNdWO6F_iAaeEF_Gz6rGkJVLP4davPHv-IH-kLz650CgQSuPhr0L_VFCAY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STABILITY+AND+BIFURCATION+IN+A+DELAYED+RATIO-DEPENDENT+PREDATOR%E2%80%93PREY+SYSTEM&rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&rft.au=Xiao%2C+Dongmei&rft.au=Li%2C+Wenxia&rft.date=2003-02-01&rft.pub=Cambridge+University+Press&rft.issn=0013-0915&rft.eissn=1464-3839&rft.volume=46&rft.issue=1&rft.spage=205&rft.epage=220&rft_id=info:doi/10.1017%2FS0013091500001140&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_6GQ_7WM38SC0_H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-0915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-0915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-0915&client=summon |