Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study
Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for further improving its catalytic performance in some electrochemical reactions. Herein, by means of density functional theory (DFT) computation...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 2; pp. 1240 - 1251 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for further improving its catalytic performance in some electrochemical reactions. Herein, by means of density functional theory (DFT) computations, the impacts of the coordination structure of an Fe–N–C catalyst on its catalytic activity toward the nitrogen reduction reaction (NRR) were explored. Our results revealed that the NRR activity on the central Fe atom can be greatly improved by its coordination with a boron (B) dopant. In particular, the computed limiting potential of the NRR on Fe–B
2
N
2
is −0.65 V, which is the lowest among all B doped Fe–N–C catalysts, suggesting its high NRR catalytic activity. Interestingly, the introduction of B coordination can effectively modulate the interaction of the single Fe atom with the N
2
H* species, thus improving its NRR catalytic performance. In addition, Fe–B
2
N
2
exhibits high NRR selectivity by effectively suppressing the competing hydrogen evolution reaction (HER) both thermodynamically and kinetically. Therefore, the single Fe catalyst with N and B dual coordination can be utilized as a promising NRR electrocatalyst, which not only highlights the significant effect of local coordination on catalytic activity and selectivity for the NRR, but also provides a new opportunity to further develop more advanced single-atom catalysts for ammonia synthesis. |
---|---|
AbstractList | Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for further improving its catalytic performance in some electrochemical reactions. Herein, by means of density functional theory (DFT) computations, the impacts of the coordination structure of an Fe–N–C catalyst on its catalytic activity toward the nitrogen reduction reaction (NRR) were explored. Our results revealed that the NRR activity on the central Fe atom can be greatly improved by its coordination with a boron (B) dopant. In particular, the computed limiting potential of the NRR on Fe–B
2
N
2
is −0.65 V, which is the lowest among all B doped Fe–N–C catalysts, suggesting its high NRR catalytic activity. Interestingly, the introduction of B coordination can effectively modulate the interaction of the single Fe atom with the N
2
H* species, thus improving its NRR catalytic performance. In addition, Fe–B
2
N
2
exhibits high NRR selectivity by effectively suppressing the competing hydrogen evolution reaction (HER) both thermodynamically and kinetically. Therefore, the single Fe catalyst with N and B dual coordination can be utilized as a promising NRR electrocatalyst, which not only highlights the significant effect of local coordination on catalytic activity and selectivity for the NRR, but also provides a new opportunity to further develop more advanced single-atom catalysts for ammonia synthesis. Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for further improving its catalytic performance in some electrochemical reactions. Herein, by means of density functional theory (DFT) computations, the impacts of the coordination structure of an Fe–N–C catalyst on its catalytic activity toward the nitrogen reduction reaction (NRR) were explored. Our results revealed that the NRR activity on the central Fe atom can be greatly improved by its coordination with a boron (B) dopant. In particular, the computed limiting potential of the NRR on Fe–B2N2 is −0.65 V, which is the lowest among all B doped Fe–N–C catalysts, suggesting its high NRR catalytic activity. Interestingly, the introduction of B coordination can effectively modulate the interaction of the single Fe atom with the N2H* species, thus improving its NRR catalytic performance. In addition, Fe–B2N2 exhibits high NRR selectivity by effectively suppressing the competing hydrogen evolution reaction (HER) both thermodynamically and kinetically. Therefore, the single Fe catalyst with N and B dual coordination can be utilized as a promising NRR electrocatalyst, which not only highlights the significant effect of local coordination on catalytic activity and selectivity for the NRR, but also provides a new opportunity to further develop more advanced single-atom catalysts for ammonia synthesis. Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for further improving its catalytic performance in some electrochemical reactions. Herein, by means of density functional theory (DFT) computations, the impacts of the coordination structure of an Fe–N–C catalyst on its catalytic activity toward the nitrogen reduction reaction (NRR) were explored. Our results revealed that the NRR activity on the central Fe atom can be greatly improved by its coordination with a boron (B) dopant. In particular, the computed limiting potential of the NRR on Fe–B₂N₂ is −0.65 V, which is the lowest among all B doped Fe–N–C catalysts, suggesting its high NRR catalytic activity. Interestingly, the introduction of B coordination can effectively modulate the interaction of the single Fe atom with the N₂H* species, thus improving its NRR catalytic performance. In addition, Fe–B₂N₂ exhibits high NRR selectivity by effectively suppressing the competing hydrogen evolution reaction (HER) both thermodynamically and kinetically. Therefore, the single Fe catalyst with N and B dual coordination can be utilized as a promising NRR electrocatalyst, which not only highlights the significant effect of local coordination on catalytic activity and selectivity for the NRR, but also provides a new opportunity to further develop more advanced single-atom catalysts for ammonia synthesis. |
Author | Jiao, Dongxu Cai, Qinghai Liu, Yuejie Zhao, Jingxiang |
Author_xml | – sequence: 1 givenname: Dongxu surname: Jiao fullname: Jiao, Dongxu organization: College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin – sequence: 2 givenname: Yuejie surname: Liu fullname: Liu, Yuejie organization: Modern Experiment Center, Harbin Normal University, Harbin, China – sequence: 3 givenname: Qinghai orcidid: 0000-0002-5315-4105 surname: Cai fullname: Cai, Qinghai organization: College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin – sequence: 4 givenname: Jingxiang orcidid: 0000-0001-6023-8887 surname: Zhao fullname: Zhao, Jingxiang organization: College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin |
BookMark | eNptkd1LwzAQwINMcM69-BcEfBGhmjZNm_o25jcDX-ZzSdPrzOiSmaRC_wL_bbPVDxCPwH397nLcHaORNhoQOo3JZUxocXVDljNSpEX2dIDGCWEkyoMz-rE5P0JT59YkCCckK4ox-pgbY2ulhVdGY99pcNi_AhbSq3fleyx0jR208O2bZp_XyluzAo0t1J3cF1sQgxGeU3rVQiS82WBlQ0AKL9reeXeNBZZms-38_kvRYue7uj9Bh41oHUy_9AS93N0u5w_R4vn-cT5bRJIWzEc1Jxmpi7yqGlnLlHLGJUu4rNM4FSRPG1plmUxYkuaCAa0gZhWjsopzWvEEKJ2g86Hv1pq3DpwvN8pJaFuhwXSuTBhLCElZzgN69gddm86GiQOV5jznnBe7hhcDJa1xzkJTbq3aCNuXMSl3Zyl_zxJg8geWatiDt0K1_5V8Au3Nk3s |
CitedBy_id | crossref_primary_10_1016_j_mcat_2024_114315 crossref_primary_10_1002_adfm_202104620 crossref_primary_10_1039_D0CP06036D crossref_primary_10_1016_j_apsusc_2023_157480 crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_1016_j_cclet_2021_12_054 crossref_primary_10_1016_j_chemosphere_2023_140331 crossref_primary_10_1021_acs_langmuir_4c01246 crossref_primary_10_1016_j_jallcom_2023_171028 crossref_primary_10_1039_D4TA04884A crossref_primary_10_1021_acsami_3c00559 crossref_primary_10_1016_j_cclet_2021_08_102 crossref_primary_10_1039_D3RA04270G crossref_primary_10_1016_j_mcat_2024_114044 crossref_primary_10_1016_j_apsusc_2021_151417 crossref_primary_10_1021_acs_jpcc_1c08779 crossref_primary_10_1039_D1CP05442B crossref_primary_10_1016_j_cej_2023_142384 crossref_primary_10_1039_D4DT01363H crossref_primary_10_1007_s12274_022_4371_x crossref_primary_10_1039_D4QI03239J crossref_primary_10_1016_j_mcat_2023_113117 crossref_primary_10_1021_acs_inorgchem_2c03204 crossref_primary_10_1002_cssc_202102648 crossref_primary_10_1016_j_jechem_2024_01_024 crossref_primary_10_1016_j_partic_2023_11_004 crossref_primary_10_1016_j_jmmm_2023_170418 crossref_primary_10_1021_acsnano_3c06212 crossref_primary_10_1016_j_electacta_2022_140805 crossref_primary_10_1002_jccs_202400033 crossref_primary_10_1016_j_jcis_2023_07_047 crossref_primary_10_1016_j_jpowsour_2023_233970 crossref_primary_10_1039_D4CP04283B crossref_primary_10_1016_j_apsusc_2022_153829 crossref_primary_10_1016_j_mtnano_2022_100278 crossref_primary_10_2139_ssrn_4145113 crossref_primary_10_1016_j_cclet_2022_06_004 crossref_primary_10_1039_D3CP03451H crossref_primary_10_1016_j_cej_2021_130745 crossref_primary_10_1016_j_mtcomm_2024_111015 crossref_primary_10_2139_ssrn_4049716 crossref_primary_10_1016_j_cej_2021_134270 crossref_primary_10_3390_molecules28124597 crossref_primary_10_1039_D2CC03410G crossref_primary_10_1016_j_jcis_2024_04_102 crossref_primary_10_1088_2053_1583_acb784 crossref_primary_10_1016_j_jcis_2022_07_158 crossref_primary_10_1021_acsnano_4c05956 crossref_primary_10_26599_NR_2025_94907289 crossref_primary_10_1002_aenm_202402205 crossref_primary_10_1039_D4NA00298A crossref_primary_10_1016_j_jpowsour_2022_231449 crossref_primary_10_1039_D2CP05959B crossref_primary_10_1007_s12274_022_5117_5 crossref_primary_10_1016_j_jcis_2024_03_026 crossref_primary_10_1021_jacs_3c08616 crossref_primary_10_1016_j_mcat_2022_112862 crossref_primary_10_1016_j_matre_2023_100197 crossref_primary_10_1016_j_cclet_2021_12_040 crossref_primary_10_1021_acscatal_1c05820 crossref_primary_10_1021_acs_jpcc_3c06420 crossref_primary_10_1016_j_ces_2022_118242 crossref_primary_10_1016_j_apsusc_2021_151441 crossref_primary_10_1016_j_fuel_2022_123810 crossref_primary_10_1002_cssc_202400095 crossref_primary_10_1016_j_ijhydene_2024_04_265 crossref_primary_10_1039_D4TA05067C crossref_primary_10_1039_D3NR06549A crossref_primary_10_3390_nano13081433 crossref_primary_10_1002_cssc_202101462 crossref_primary_10_1016_j_ijhydene_2023_05_353 crossref_primary_10_1039_D1NR03448K crossref_primary_10_3390_catal14120950 crossref_primary_10_1016_j_mcat_2024_114757 crossref_primary_10_1039_D2DT01431A crossref_primary_10_1007_s40843_022_2222_6 crossref_primary_10_1039_D3TA06361E crossref_primary_10_1016_S1872_2067_23_64504_8 crossref_primary_10_1016_j_physe_2021_114975 crossref_primary_10_1039_D2NJ04716K crossref_primary_10_1039_D3QM00267E crossref_primary_10_2139_ssrn_4066356 crossref_primary_10_1016_j_fuel_2022_126213 crossref_primary_10_1007_s10562_023_04490_0 crossref_primary_10_1016_j_jcis_2024_07_134 crossref_primary_10_3390_molecules29163719 crossref_primary_10_1039_D3TA00896G crossref_primary_10_1021_acs_jpclett_3c02530 crossref_primary_10_1002_adfm_202313420 crossref_primary_10_1016_j_apsusc_2022_153755 crossref_primary_10_1002_adfm_202409064 crossref_primary_10_1016_j_apsusc_2023_156747 crossref_primary_10_1016_j_cej_2023_147510 crossref_primary_10_1021_acs_jpcc_2c06889 crossref_primary_10_1039_D2TA00504B crossref_primary_10_1002_cphc_202200864 crossref_primary_10_1002_slct_202304408 crossref_primary_10_1016_j_apcata_2022_118886 crossref_primary_10_2139_ssrn_4008068 crossref_primary_10_3390_catal15020137 crossref_primary_10_1039_D3SE00830D crossref_primary_10_1039_D1TA02998C crossref_primary_10_1016_j_comptc_2023_114074 crossref_primary_10_1016_j_apsusc_2022_154831 crossref_primary_10_1039_D3NR03310D crossref_primary_10_1039_D1SE00988E crossref_primary_10_1016_j_nanoen_2023_108404 crossref_primary_10_1039_D1NR08445C crossref_primary_10_1021_acs_inorgchem_1c02880 crossref_primary_10_1002_adfm_202200333 crossref_primary_10_1039_D3GC04920E crossref_primary_10_1002_smll_202308416 crossref_primary_10_1016_j_jmst_2022_07_063 crossref_primary_10_1039_D4CP00601A crossref_primary_10_1002_cctc_202300669 crossref_primary_10_3390_catal13061021 crossref_primary_10_1016_j_apcatb_2025_125230 crossref_primary_10_1016_j_mcat_2025_114931 crossref_primary_10_1016_j_apsadv_2025_100724 crossref_primary_10_1039_D1CP04937B crossref_primary_10_1039_D2NH00451H crossref_primary_10_1002_smll_202400564 crossref_primary_10_1016_j_apsusc_2023_158470 crossref_primary_10_1039_D3QM00261F crossref_primary_10_1016_j_jcis_2023_02_094 crossref_primary_10_1002_chem_202303148 crossref_primary_10_1021_acsami_2c18260 crossref_primary_10_1002_sstr_202200358 crossref_primary_10_1002_cssc_202301105 crossref_primary_10_1007_s11467_021_1115_4 crossref_primary_10_1016_j_apcatb_2024_123732 crossref_primary_10_1016_j_apsusc_2022_155916 crossref_primary_10_1016_j_jcis_2024_06_231 crossref_primary_10_1039_D3CP06077B crossref_primary_10_1002_smll_202302429 crossref_primary_10_1016_j_cattod_2021_06_008 crossref_primary_10_1016_j_apsusc_2022_153213 crossref_primary_10_1016_j_ijhydene_2024_05_408 crossref_primary_10_1021_acscatal_2c04527 crossref_primary_10_1016_j_apsusc_2022_153338 crossref_primary_10_1016_j_apsusc_2023_158625 crossref_primary_10_1021_acscatal_2c02629 crossref_primary_10_1002_ece2_12 crossref_primary_10_1039_D1SE01390D crossref_primary_10_1021_acsami_1c20373 crossref_primary_10_1149_1945_7111_ac7c95 crossref_primary_10_1002_smll_202205313 crossref_primary_10_1021_acsami_4c15263 crossref_primary_10_1007_s10562_022_04106_z crossref_primary_10_1007_s12274_023_5734_7 crossref_primary_10_1016_j_mcat_2023_112967 crossref_primary_10_1002_aenm_202101670 crossref_primary_10_1039_D1CP04926G crossref_primary_10_1039_D4NR00028E crossref_primary_10_1016_j_nanoms_2024_06_007 crossref_primary_10_1016_j_apsusc_2022_154380 crossref_primary_10_1016_j_ccr_2022_214741 crossref_primary_10_1016_j_mcat_2022_112706 crossref_primary_10_1016_j_apsusc_2023_157390 crossref_primary_10_1016_j_ijhydene_2021_11_157 crossref_primary_10_1021_acs_inorgchem_1c02946 crossref_primary_10_1039_D4TA04370G crossref_primary_10_1002_adma_202210575 crossref_primary_10_1360_SSC_2024_0142 |
Cites_doi | 10.1021/jp047349j 10.1016/j.cattod.2019.06.014 10.1002/ange.202002337 10.1021/acsenergylett.9b01015 10.1016/j.nanoen.2016.10.037 10.1039/D0TA05943A 10.1021/jacs.9b03811 10.1021/acscatal.9b02594 10.1002/chem.201701113 10.1002/jcc.20495 10.1002/aenm.201903172 10.1002/anie.201208320 10.1002/cssc.201500322 10.1002/adfm.201905665 10.1039/C8TA10497B 10.1063/1.1329672 10.1002/smtd.201800368 10.1038/s41467-019-09421-5 10.1002/adma.201803498 10.1021/acssuschemeng.9b05393 10.1126/science.1254234 10.1039/C8TA08219G 10.1002/smtd.201800501 10.1021/jacs.8b07472 10.1002/smtd.201900821 10.1038/ngeo325 10.1103/PhysRevB.89.115114 10.1039/C9TA10935H 10.1021/acscatal.8b01022 10.1103/PhysRevB.50.17953 10.1002/anie.202009991 10.1002/cssc.202000487 10.1021/acscatal.8b05061 10.1021/jacs.9b13349 10.1021/acscatal.9b02944 10.1002/anie.201811728 10.1002/adma.201604799 10.1021/acscatal.0c00936 10.1021/acssuschemeng.0c04401 10.1016/j.cattod.2016.06.014 10.1021/acs.chemrev.8b00501 10.1039/C9CS00903E 10.1002/cctc.201900536 10.1021/acsenergylett.8b00474 10.1002/anie.200301553 10.1016/j.joule.2018.06.019 10.1021/acsaem.8b00959 10.1016/S1872-2067(14)60118-2 10.1039/C7EE02716H 10.1002/aenm.201800369 10.1039/C7EE02220D 10.1002/smtd.201800376 10.1002/asia.201901100 10.1016/j.cattod.2016.05.008 10.1021/acs.accounts.6b00635 10.1002/celc.201901967 10.1002/adma.201903841 10.1021/acs.jpclett.0c01450 10.1039/C9TA04650J 10.1039/C8CP01215F 10.1038/nchem.1095 10.1039/C9TA06949F 10.1103/PhysRevB.47.558 10.1039/D0TA06949C 10.1021/acscatal.0c03140 10.1021/acscatal.0c01950 10.1038/s41570-018-0010-1 10.1021/acs.jpcc.9b08827 10.1021/jacs.6b04778 10.1002/anie.201703864 10.1021/acscatal.5b01967 10.1021/acscatal.9b04103 10.1021/acs.chemmater.9b03099 10.1021/acscatal.8b00905 10.1039/c0ee00071j 10.1039/C8TA03302A 10.1038/s41929-018-0092-7 10.1021/acs.chemrev.9b00659 10.1002/aenm.201801226 10.1007/s12274-016-1400-7 10.1039/C7CP05484J 10.1021/acs.jpclett.0c01582 10.1002/anie.202003842 10.1039/C8EE01481G 10.1016/j.apsusc.2019.144943 10.1021/acscatal.9b01405 10.1021/acscatal.9b00959 10.1103/PhysRevLett.77.3865 10.1021/acscatal.6b03035 10.1002/elan.201700780 10.1016/j.jcat.2014.01.013 10.1021/jacs.7b05213 10.1016/j.nanoen.2019.104304 10.1021/acsenergylett.9b00699 10.1021/acs.chemrev.7b00776 10.1039/C9TA13599E 10.1021/ar300361m 10.1021/acs.nanolett.9b02572 10.1002/asia.202000310 10.1038/s41467-018-08120-x 10.1021/acscatal.8b03802 10.1103/PhysRevB.54.11169 10.1002/cssc.201903427 10.1002/aenm.201701343 10.1002/anie.201800269 10.1002/cssc.201903281 10.1103/PhysRevB.59.1758 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/D0TA09496J |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 1251 |
ExternalDocumentID | 10_1039_D0TA09496J |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-d8060d97bbfcdc43858c528cd414a074f3b66c25247a5e3be15b53cb173b82e33 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 23:35:49 EDT 2025 Mon Jun 30 12:06:18 EDT 2025 Tue Jul 01 01:13:02 EDT 2025 Thu Apr 24 22:58:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-d8060d97bbfcdc43858c528cd414a074f3b66c25247a5e3be15b53cb173b82e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6023-8887 0000-0002-5315-4105 |
PQID | 2478788893 |
PQPubID | 2047523 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2552004578 proquest_journals_2478788893 crossref_primary_10_1039_D0TA09496J crossref_citationtrail_10_1039_D0TA09496J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 20210101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Cui (D0TA09496J-(cit6)/*[position()=1]) 2018; 8 Liu (D0TA09496J-(cit28)/*[position()=1]) 2019; 141 Lu (D0TA09496J-(cit57)/*[position()=1]) 2020; 10 Kresse (D0TA09496J-(cit68)/*[position()=1]) 1993; 47 Schlögl (D0TA09496J-(cit3)/*[position()=1]) 2003; 42 Guo (D0TA09496J-(cit16)/*[position()=1]) 2018; 11 Yan (D0TA09496J-(cit36)/*[position()=1]) 2019; 3 Nørskov (D0TA09496J-(cit75)/*[position()=1]) 2004; 108 Blochl (D0TA09496J-(cit70)/*[position()=1]) 1994; 50 Kresse (D0TA09496J-(cit69)/*[position()=1]) 1996; 54 Wang (D0TA09496J-(cit77)/*[position()=1]) 2020 Licht (D0TA09496J-(cit5)/*[position()=1]) 2014; 345 Liu (D0TA09496J-(cit81)/*[position()=1]) 2020; 10 Geng (D0TA09496J-(cit29)/*[position()=1]) 2018; 30 Lv (D0TA09496J-(cit93)/*[position()=1]) 2020; 8 Wang (D0TA09496J-(cit19)/*[position()=1]) 2018; 2 Montoya (D0TA09496J-(cit92)/*[position()=1]) 2015; 8 Yu (D0TA09496J-(cit37)/*[position()=1]) 2020; 30 He (D0TA09496J-(cit90)/*[position()=1]) 2019; 9 Long (D0TA09496J-(cit98)/*[position()=1]) 2020; 132 Peng (D0TA09496J-(cit25)/*[position()=1]) 2018; 30 Wu (D0TA09496J-(cit102)/*[position()=1]) 2019; 123 Xin (D0TA09496J-(cit105)/*[position()=1]) 2014; 89 Zhang (D0TA09496J-(cit22)/*[position()=1]) 2018; 8 Zang (D0TA09496J-(cit91)/*[position()=1]) 2019; 9 Varela (D0TA09496J-(cit49)/*[position()=1]) 2019; 9 Li (D0TA09496J-(cit55)/*[position()=1]) 2016; 138 Ramalingam (D0TA09496J-(cit64)/*[position()=1]) 2019; 31 Wang (D0TA09496J-(cit85)/*[position()=1]) 2018; 20 Han (D0TA09496J-(cit62)/*[position()=1]) 2018; 11 Shen (D0TA09496J-(cit43)/*[position()=1]) 2017; 10 Liu (D0TA09496J-(cit4)/*[position()=1]) 2014; 35 Guo (D0TA09496J-(cit56)/*[position()=1]) 2020; 350 Wang (D0TA09496J-(cit42)/*[position()=1]) 2020; 8 Han (D0TA09496J-(cit31)/*[position()=1]) 2019; 58 Bao (D0TA09496J-(cit13)/*[position()=1]) 2017; 29 Qiao (D0TA09496J-(cit17)/*[position()=1]) 2011; 3 Yao (D0TA09496J-(cit12)/*[position()=1]) 2019; 4 Zhu (D0TA09496J-(cit23)/*[position()=1]) 2017; 56 Niu (D0TA09496J-(cit86)/*[position()=1]) 2020; 8 Shipman (D0TA09496J-(cit10)/*[position()=1]) 2017; 286 Chen (D0TA09496J-(cit24)/*[position()=1]) 2018; 2 Cheng (D0TA09496J-(cit53)/*[position()=1]) 2018; 3 Wang (D0TA09496J-(cit63)/*[position()=1]) 2020; 13 Yang (D0TA09496J-(cit89)/*[position()=1]) 2019; 11 Wang (D0TA09496J-(cit8)/*[position()=1]) 2020; 7 He (D0TA09496J-(cit65)/*[position()=1]) 2020; 506 Li (D0TA09496J-(cit108)/*[position()=1]) 2020; 8 Mukherjee (D0TA09496J-(cit34)/*[position()=1]) 2020; 4 Ji (D0TA09496J-(cit80)/*[position()=1]) 2019; 7 Luo (D0TA09496J-(cit95)/*[position()=1]) 2016; 6 Zhu (D0TA09496J-(cit14)/*[position()=1]) 2017; 50 Zhang (D0TA09496J-(cit60)/*[position()=1]) 2019; 7 He (D0TA09496J-(cit47)/*[position()=1]) 2020; 49 Deng (D0TA09496J-(cit83)/*[position()=1]) 2020; 11 Singh (D0TA09496J-(cit99)/*[position()=1]) 2017; 7 Chen (D0TA09496J-(cit32)/*[position()=1]) 2020; 10 Zhang (D0TA09496J-(cit84)/*[position()=1]) 2018; 20 Liu (D0TA09496J-(cit7)/*[position()=1]) 2020; 13 Erisman (D0TA09496J-(cit2)/*[position()=1]) 2008; 1 Li (D0TA09496J-(cit50)/*[position()=1]) 2019; 9 Ling (D0TA09496J-(cit79)/*[position()=1]) 2019; 3 Nie (D0TA09496J-(cit97)/*[position()=1]) 2014; 312 Zhang (D0TA09496J-(cit107)/*[position()=1]) 2018; 6 Wang (D0TA09496J-(cit103)/*[position()=1]) 2019; 10 Miao (D0TA09496J-(cit52)/*[position()=1]) 2018; 8 Henkelman (D0TA09496J-(cit74)/*[position()=1]) 2000; 113 Foster (D0TA09496J-(cit11)/*[position()=1]) 2018; 1 Zheng (D0TA09496J-(cit45)/*[position()=1]) 2016; 30 Hai (D0TA09496J-(cit58)/*[position()=1]) 2020; 10 Liang (D0TA09496J-(cit26)/*[position()=1]) 2018; 57 Qing (D0TA09496J-(cit1)/*[position()=1]) 2020; 120 Liu (D0TA09496J-(cit18)/*[position()=1]) 2018; 118 Li (D0TA09496J-(cit87)/*[position()=1]) 2020; 10 Azofra (D0TA09496J-(cit66)/*[position()=1]) 2017; 23 Wang (D0TA09496J-(cit20)/*[position()=1]) 2019; 119 Qiu (D0TA09496J-(cit35)/*[position()=1]) 2019; 14 Kyriakou (D0TA09496J-(cit9)/*[position()=1]) 2017; 286 Ling (D0TA09496J-(cit78)/*[position()=1]) 2018; 140 Peterson (D0TA09496J-(cit76)/*[position()=1]) 2010; 3 Yang (D0TA09496J-(cit21)/*[position()=1]) 2013; 46 Chen (D0TA09496J-(cit46)/*[position()=1]) 2018; 1 Zhu (D0TA09496J-(cit106)/*[position()=1]) 2019; 10 Liu (D0TA09496J-(cit41)/*[position()=1]) 2019; 7 Delafontaine (D0TA09496J-(cit48)/*[position()=1]) 2020; 13 Ge (D0TA09496J-(cit88)/*[position()=1]) 2020; 11 Kresse (D0TA09496J-(cit71)/*[position()=1]) 1999; 59 Yang (D0TA09496J-(cit82)/*[position()=1]) 2020; 68 Gu (D0TA09496J-(cit44)/*[position()=1]) 2018; 30 Hu (D0TA09496J-(cit51)/*[position()=1]) 2018; 8 Zhao (D0TA09496J-(cit100)/*[position()=1]) 2019; 9 Qiu (D0TA09496J-(cit27)/*[position()=1]) 2019; 31 Long (D0TA09496J-(cit94)/*[position()=1]) 2020; 8 Qin (D0TA09496J-(cit54)/*[position()=1]) 2019; 4 Sun (D0TA09496J-(cit61)/*[position()=1]) 2019; 7 Xiang (D0TA09496J-(cit15)/*[position()=1]) 2020; 15 Grimme (D0TA09496J-(cit73)/*[position()=1]) 2006; 27 Nie (D0TA09496J-(cit96)/*[position()=1]) 2013; 52 Guo (D0TA09496J-(cit33)/*[position()=1]) 2020; 142 Zhou (D0TA09496J-(cit104)/*[position()=1]) 2017; 10 Perdew (D0TA09496J-(cit72)/*[position()=1]) 1996; 77 Zhao (D0TA09496J-(cit38)/*[position()=1]) 2017; 139 Choi (D0TA09496J-(cit39)/*[position()=1]) 2018; 8 Tang (D0TA09496J-(cit59)/*[position()=1]) 2020; 59 Chen (D0TA09496J-(cit40)/*[position()=1]) 2019; 3 Li (D0TA09496J-(cit67)/*[position()=1]) 2019; 7 Wang (D0TA09496J-(cit30)/*[position()=1]) 2019; 9 Lv (D0TA09496J-(cit101)/*[position()=1]) 2019; 19 |
References_xml | – volume: 108 start-page: 17886 year: 2004 ident: D0TA09496J-(cit75)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 350 start-page: 91 year: 2020 ident: D0TA09496J-(cit56)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2019.06.014 – volume: 132 start-page: 9798 year: 2020 ident: D0TA09496J-(cit98)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202002337 – volume: 4 start-page: 1778 year: 2019 ident: D0TA09496J-(cit54)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01015 – volume: 30 start-page: 443 year: 2016 ident: D0TA09496J-(cit45)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.037 – volume: 8 start-page: 17078 year: 2020 ident: D0TA09496J-(cit94)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05943A – volume: 141 start-page: 9664 year: 2019 ident: D0TA09496J-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03811 – volume: 9 start-page: 10426 year: 2019 ident: D0TA09496J-(cit50)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b02594 – volume: 23 start-page: 1 year: 2017 ident: D0TA09496J-(cit66)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201701113 – volume: 27 start-page: 1787 year: 2006 ident: D0TA09496J-(cit73)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 10 start-page: 1903172 year: 2020 ident: D0TA09496J-(cit32)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903172 – volume: 52 start-page: 2459 year: 2013 ident: D0TA09496J-(cit96)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201208320 – volume: 8 start-page: 2180 year: 2015 ident: D0TA09496J-(cit92)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201500322 – volume: 30 start-page: 1905665 year: 2020 ident: D0TA09496J-(cit37)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905665 – volume: 7 start-page: 2392 year: 2019 ident: D0TA09496J-(cit80)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10497B – volume: 113 start-page: 9901 year: 2000 ident: D0TA09496J-(cit74)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 3 start-page: 1800368 year: 2019 ident: D0TA09496J-(cit40)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800368 – volume: 10 start-page: 1428 year: 2019 ident: D0TA09496J-(cit106)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09421-5 – volume: 30 start-page: 1803498 year: 2018 ident: D0TA09496J-(cit29)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803498 – volume: 7 start-page: 18711 year: 2019 ident: D0TA09496J-(cit60)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b05393 – volume: 345 start-page: 637 year: 2014 ident: D0TA09496J-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.1254234 – volume: 7 start-page: 4771 year: 2019 ident: D0TA09496J-(cit41)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08219G – volume: 3 start-page: 1800501 year: 2019 ident: D0TA09496J-(cit36)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800501 – volume: 140 start-page: 14161 year: 2018 ident: D0TA09496J-(cit78)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07472 – volume: 4 start-page: 1900821 year: 2020 ident: D0TA09496J-(cit34)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201900821 – volume: 1 start-page: 636 year: 2008 ident: D0TA09496J-(cit2)/*[position()=1] publication-title: Nat. Geosci. doi: 10.1038/ngeo325 – volume: 89 start-page: 115114 year: 2014 ident: D0TA09496J-(cit105)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.115114 – volume: 8 start-page: 1378 year: 2020 ident: D0TA09496J-(cit42)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10935H – volume: 8 start-page: 6255 year: 2018 ident: D0TA09496J-(cit51)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b01022 – volume: 50 start-page: 17953 year: 1994 ident: D0TA09496J-(cit70)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 – year: 2020 ident: D0TA09496J-(cit77)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009991 – volume: 13 start-page: 3766 year: 2020 ident: D0TA09496J-(cit7)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.202000487 – volume: 9 start-page: 3419 year: 2019 ident: D0TA09496J-(cit100)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b05061 – volume: 142 start-page: 5709 year: 2020 ident: D0TA09496J-(cit33)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13349 – volume: 9 start-page: 10166 year: 2019 ident: D0TA09496J-(cit91)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b02944 – volume: 58 start-page: 2321 year: 2019 ident: D0TA09496J-(cit31)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811728 – volume: 29 start-page: 1604799 year: 2017 ident: D0TA09496J-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604799 – volume: 10 start-page: 5862 year: 2020 ident: D0TA09496J-(cit58)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c00936 – volume: 8 start-page: 13749 year: 2020 ident: D0TA09496J-(cit86)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c04401 – volume: 286 start-page: 2 year: 2017 ident: D0TA09496J-(cit9)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2016.06.014 – volume: 119 start-page: 1806 year: 2019 ident: D0TA09496J-(cit20)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00501 – volume: 49 start-page: 3484 year: 2020 ident: D0TA09496J-(cit47)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00903E – volume: 11 start-page: 2821 year: 2019 ident: D0TA09496J-(cit89)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201900536 – volume: 3 start-page: 1205 year: 2018 ident: D0TA09496J-(cit53)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00474 – volume: 42 start-page: 2004 year: 2003 ident: D0TA09496J-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200301553 – volume: 2 start-page: 1242 year: 2018 ident: D0TA09496J-(cit24)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.06.019 – volume: 1 start-page: 5948 year: 2018 ident: D0TA09496J-(cit46)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00959 – volume: 35 start-page: 1619 year: 2014 ident: D0TA09496J-(cit4)/*[position()=1] publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(14)60118-2 – volume: 10 start-page: 2516 year: 2017 ident: D0TA09496J-(cit104)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02716H – volume: 8 start-page: 1800369 year: 2018 ident: D0TA09496J-(cit6)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800369 – volume: 11 start-page: 45 year: 2018 ident: D0TA09496J-(cit16)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02220D – volume: 3 start-page: 1800376 year: 2019 ident: D0TA09496J-(cit79)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800376 – volume: 14 start-page: 2770 year: 2019 ident: D0TA09496J-(cit35)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201901100 – volume: 286 start-page: 57 year: 2017 ident: D0TA09496J-(cit10)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.008 – volume: 50 start-page: 915 year: 2017 ident: D0TA09496J-(cit14)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00635 – volume: 7 start-page: 1067 year: 2020 ident: D0TA09496J-(cit8)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201901967 – volume: 31 start-page: 1903841 year: 2019 ident: D0TA09496J-(cit64)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201903841 – volume: 11 start-page: 6320 year: 2020 ident: D0TA09496J-(cit83)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01450 – volume: 30 start-page: 25 year: 2018 ident: D0TA09496J-(cit25)/*[position()=1] publication-title: Adv. Mater. – volume: 7 start-page: 21507 year: 2019 ident: D0TA09496J-(cit67)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04650J – volume: 20 start-page: 12835 year: 2018 ident: D0TA09496J-(cit85)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP01215F – volume: 3 start-page: 634 year: 2011 ident: D0TA09496J-(cit17)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 7 start-page: 20952 year: 2019 ident: D0TA09496J-(cit61)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06949F – volume: 47 start-page: 558 year: 1993 ident: D0TA09496J-(cit68)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.47.558 – volume: 8 start-page: 20047 year: 2020 ident: D0TA09496J-(cit93)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06949C – volume: 10 start-page: 12841 year: 2020 ident: D0TA09496J-(cit87)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c03140 – volume: 10 start-page: 7584 year: 2020 ident: D0TA09496J-(cit57)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c01950 – volume: 2 start-page: 65 year: 2018 ident: D0TA09496J-(cit19)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 123 start-page: 31043 year: 2019 ident: D0TA09496J-(cit102)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b08827 – volume: 138 start-page: 8706 year: 2016 ident: D0TA09496J-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04778 – volume: 56 start-page: 13944 year: 2017 ident: D0TA09496J-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703864 – volume: 6 start-page: 219 year: 2016 ident: D0TA09496J-(cit95)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01967 – volume: 10 start-page: 1847 year: 2020 ident: D0TA09496J-(cit81)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b04103 – volume: 31 start-page: 9413 year: 2019 ident: D0TA09496J-(cit27)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03099 – volume: 8 start-page: 7517 year: 2018 ident: D0TA09496J-(cit39)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b00905 – volume: 3 start-page: 1311 year: 2010 ident: D0TA09496J-(cit76)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 6 start-page: 11446 year: 2018 ident: D0TA09496J-(cit107)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03302A – volume: 1 start-page: 490 year: 2018 ident: D0TA09496J-(cit11)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0092-7 – volume: 120 start-page: 5437 year: 2020 ident: D0TA09496J-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00659 – volume: 8 start-page: 1801226 year: 2018 ident: D0TA09496J-(cit52)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801226 – volume: 10 start-page: 1449 year: 2017 ident: D0TA09496J-(cit43)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-016-1400-7 – volume: 20 start-page: 4982 year: 2018 ident: D0TA09496J-(cit84)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP05484J – volume: 11 start-page: 5241 year: 2020 ident: D0TA09496J-(cit88)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01582 – volume: 59 start-page: 9171 year: 2020 ident: D0TA09496J-(cit59)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202003842 – volume: 11 start-page: 2348 year: 2018 ident: D0TA09496J-(cit62)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01481G – volume: 506 start-page: 144943 year: 2020 ident: D0TA09496J-(cit65)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144943 – volume: 9 start-page: 7270 year: 2019 ident: D0TA09496J-(cit49)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b01405 – volume: 9 start-page: 7311 year: 2019 ident: D0TA09496J-(cit90)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b00959 – volume: 77 start-page: 3865 year: 1996 ident: D0TA09496J-(cit72)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 7 start-page: 706 year: 2017 ident: D0TA09496J-(cit99)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b03035 – volume: 30 start-page: 1217 year: 2018 ident: D0TA09496J-(cit44)/*[position()=1] publication-title: Electroanalysis doi: 10.1002/elan.201700780 – volume: 312 start-page: 108 year: 2014 ident: D0TA09496J-(cit97)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2014.01.013 – volume: 139 start-page: 12480 year: 2017 ident: D0TA09496J-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05213 – volume: 68 start-page: 104304 year: 2020 ident: D0TA09496J-(cit82)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104304 – volume: 4 start-page: 1336 year: 2019 ident: D0TA09496J-(cit12)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00699 – volume: 118 start-page: 4981 year: 2018 ident: D0TA09496J-(cit18)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00776 – volume: 8 start-page: 4533 year: 2020 ident: D0TA09496J-(cit108)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13599E – volume: 46 start-page: 1740 year: 2013 ident: D0TA09496J-(cit21)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 19 start-page: 6391 year: 2019 ident: D0TA09496J-(cit101)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02572 – volume: 15 start-page: 1791 year: 2020 ident: D0TA09496J-(cit15)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.202000310 – volume: 10 start-page: 341 year: 2019 ident: D0TA09496J-(cit103)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-08120-x – volume: 9 start-page: 336 year: 2019 ident: D0TA09496J-(cit30)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b03802 – volume: 54 start-page: 11169 year: 1996 ident: D0TA09496J-(cit69)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 13 start-page: 929 year: 2020 ident: D0TA09496J-(cit63)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201903427 – volume: 8 start-page: 1701343 year: 2018 ident: D0TA09496J-(cit22)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701343 – volume: 57 start-page: 9604 year: 2018 ident: D0TA09496J-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800269 – volume: 13 start-page: 1688 year: 2020 ident: D0TA09496J-(cit48)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201903281 – volume: 59 start-page: 1758 year: 1999 ident: D0TA09496J-(cit71)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 |
SSID | ssj0000800699 |
Score | 2.637718 |
Snippet | Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1240 |
SubjectTerms | Ammonia Boron Catalysts Catalytic activity Chemical reduction Chemical synthesis Computer applications Coordination Density functional theory Electrocatalysts Electrochemistry Electronic structure Hydrogen evolution reactions hydrogen production Iron Nitrogen Selectivity Single atom catalysts thermodynamics |
Title | Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study |
URI | https://www.proquest.com/docview/2478788893 https://www.proquest.com/docview/2552004578 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXK9gIPiE9RGMgIXlCUkdqxm_BWlU5jqoaQUqlvUeK4W6eRoDaRBn-A_8kv4dqOExcqBEhR1DqpleaeXB_fXJ-L0OuViGFQFMTnuYQJypgxPxKU-bwQmWRcKI1ylW1xzk8X4dmSLQeDH07WUlPnx-Lb3nUl_2NVaAO7qlWy_2DZrlNogM9gX9iDhWH_VzaeVjB1XJt4nlc3pZJruDT6GLokhA6K60I35nubDwBP8aaCTr2N0m3VPwbqaD7ApqIH19KH2fhnTy2C83SI5-u23pqV0UIXgrBBxF6f9neKC2zY3AZP2Lpyx97ELBGyR7TkuFmAqC_XLuhSObt9fs86qwzdLy9umi6JaN3oEaSRV-sOn1NTX_sT_InLbO3Exc0rJmi-gSfiwo12kNEv0Q4TU7EJrTphpb383m-SgAVKItW4dem2meK51vHHDr6J48SB8gQOIVAUcO9gE1Cl1VoEdQZz5Jhf9UOqTSM4_5ieLObzNJktk1vokMBUBnzx4WSWfJh3kUDF2bkudNpdudXRpfHbvvtd5rRLHDQbSu6hu62N8cRg8j4ayPIBuuOIWz5E3110Yo1ODOjDFp0YzI0ddOJqpY9bdOIOndiiE8PmoBMrdOIOne9whnewiTU2H6HFySyZnvpt2Q9f0JjVfhEFPCjicZ6vRCFC9eZaMKKKbI3CDBjviuacC8JIOM6YpOBjWM6oyEdjmkdEUvoYHZRVKZ8gTEZSETDBeZaFVLJ4RQMZjYKCERkHIh6iN_aWpqLVxFelWa5TnZtB4_R9kEz07T8bolfduV-MEszes46sZdLWU2xTohSwogimBkP0sjsMuFUv57JSVg2cw5QAWggD6NM_d_EM3e4fjCN0UG8a-RyIcZ2_aJH1E-JyxRE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordination+tunes+the+activity+and+selectivity+of+the+nitrogen+reduction+reaction+on+single-atom+iron+catalysts%3A+a+computational+study&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Jiao%2C+Dongxu&rft.au=Liu%2C+Yuejie&rft.au=Cai%2C+Qinghai&rft.au=Zhao%2C+Jingxiang&rft.date=2021-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=2&rft.spage=1240&rft.epage=1251&rft_id=info:doi/10.1039%2Fd0ta09496j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |