Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study

Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for further improving its catalytic performance in some electrochemical reactions. Herein, by means of density functional theory (DFT) computation...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 2; pp. 1240 - 1251
Main Authors Jiao, Dongxu, Liu, Yuejie, Cai, Qinghai, Zhao, Jingxiang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for further improving its catalytic performance in some electrochemical reactions. Herein, by means of density functional theory (DFT) computations, the impacts of the coordination structure of an Fe–N–C catalyst on its catalytic activity toward the nitrogen reduction reaction (NRR) were explored. Our results revealed that the NRR activity on the central Fe atom can be greatly improved by its coordination with a boron (B) dopant. In particular, the computed limiting potential of the NRR on Fe–B 2 N 2 is −0.65 V, which is the lowest among all B doped Fe–N–C catalysts, suggesting its high NRR catalytic activity. Interestingly, the introduction of B coordination can effectively modulate the interaction of the single Fe atom with the N 2 H* species, thus improving its NRR catalytic performance. In addition, Fe–B 2 N 2 exhibits high NRR selectivity by effectively suppressing the competing hydrogen evolution reaction (HER) both thermodynamically and kinetically. Therefore, the single Fe catalyst with N and B dual coordination can be utilized as a promising NRR electrocatalyst, which not only highlights the significant effect of local coordination on catalytic activity and selectivity for the NRR, but also provides a new opportunity to further develop more advanced single-atom catalysts for ammonia synthesis.
AbstractList Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for further improving its catalytic performance in some electrochemical reactions. Herein, by means of density functional theory (DFT) computations, the impacts of the coordination structure of an Fe–N–C catalyst on its catalytic activity toward the nitrogen reduction reaction (NRR) were explored. Our results revealed that the NRR activity on the central Fe atom can be greatly improved by its coordination with a boron (B) dopant. In particular, the computed limiting potential of the NRR on Fe–B 2 N 2 is −0.65 V, which is the lowest among all B doped Fe–N–C catalysts, suggesting its high NRR catalytic activity. Interestingly, the introduction of B coordination can effectively modulate the interaction of the single Fe atom with the N 2 H* species, thus improving its NRR catalytic performance. In addition, Fe–B 2 N 2 exhibits high NRR selectivity by effectively suppressing the competing hydrogen evolution reaction (HER) both thermodynamically and kinetically. Therefore, the single Fe catalyst with N and B dual coordination can be utilized as a promising NRR electrocatalyst, which not only highlights the significant effect of local coordination on catalytic activity and selectivity for the NRR, but also provides a new opportunity to further develop more advanced single-atom catalysts for ammonia synthesis.
Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for further improving its catalytic performance in some electrochemical reactions. Herein, by means of density functional theory (DFT) computations, the impacts of the coordination structure of an Fe–N–C catalyst on its catalytic activity toward the nitrogen reduction reaction (NRR) were explored. Our results revealed that the NRR activity on the central Fe atom can be greatly improved by its coordination with a boron (B) dopant. In particular, the computed limiting potential of the NRR on Fe–B2N2 is −0.65 V, which is the lowest among all B doped Fe–N–C catalysts, suggesting its high NRR catalytic activity. Interestingly, the introduction of B coordination can effectively modulate the interaction of the single Fe atom with the N2H* species, thus improving its NRR catalytic performance. In addition, Fe–B2N2 exhibits high NRR selectivity by effectively suppressing the competing hydrogen evolution reaction (HER) both thermodynamically and kinetically. Therefore, the single Fe catalyst with N and B dual coordination can be utilized as a promising NRR electrocatalyst, which not only highlights the significant effect of local coordination on catalytic activity and selectivity for the NRR, but also provides a new opportunity to further develop more advanced single-atom catalysts for ammonia synthesis.
Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for further improving its catalytic performance in some electrochemical reactions. Herein, by means of density functional theory (DFT) computations, the impacts of the coordination structure of an Fe–N–C catalyst on its catalytic activity toward the nitrogen reduction reaction (NRR) were explored. Our results revealed that the NRR activity on the central Fe atom can be greatly improved by its coordination with a boron (B) dopant. In particular, the computed limiting potential of the NRR on Fe–B₂N₂ is −0.65 V, which is the lowest among all B doped Fe–N–C catalysts, suggesting its high NRR catalytic activity. Interestingly, the introduction of B coordination can effectively modulate the interaction of the single Fe atom with the N₂H* species, thus improving its NRR catalytic performance. In addition, Fe–B₂N₂ exhibits high NRR selectivity by effectively suppressing the competing hydrogen evolution reaction (HER) both thermodynamically and kinetically. Therefore, the single Fe catalyst with N and B dual coordination can be utilized as a promising NRR electrocatalyst, which not only highlights the significant effect of local coordination on catalytic activity and selectivity for the NRR, but also provides a new opportunity to further develop more advanced single-atom catalysts for ammonia synthesis.
Author Jiao, Dongxu
Cai, Qinghai
Liu, Yuejie
Zhao, Jingxiang
Author_xml – sequence: 1
  givenname: Dongxu
  surname: Jiao
  fullname: Jiao, Dongxu
  organization: College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin
– sequence: 2
  givenname: Yuejie
  surname: Liu
  fullname: Liu, Yuejie
  organization: Modern Experiment Center, Harbin Normal University, Harbin, China
– sequence: 3
  givenname: Qinghai
  orcidid: 0000-0002-5315-4105
  surname: Cai
  fullname: Cai, Qinghai
  organization: College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin
– sequence: 4
  givenname: Jingxiang
  orcidid: 0000-0001-6023-8887
  surname: Zhao
  fullname: Zhao, Jingxiang
  organization: College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin
BookMark eNptkd1LwzAQwINMcM69-BcEfBGhmjZNm_o25jcDX-ZzSdPrzOiSmaRC_wL_bbPVDxCPwH397nLcHaORNhoQOo3JZUxocXVDljNSpEX2dIDGCWEkyoMz-rE5P0JT59YkCCckK4ox-pgbY2ulhVdGY99pcNi_AhbSq3fleyx0jR208O2bZp_XyluzAo0t1J3cF1sQgxGeU3rVQiS82WBlQ0AKL9reeXeNBZZms-38_kvRYue7uj9Bh41oHUy_9AS93N0u5w_R4vn-cT5bRJIWzEc1Jxmpi7yqGlnLlHLGJUu4rNM4FSRPG1plmUxYkuaCAa0gZhWjsopzWvEEKJ2g86Hv1pq3DpwvN8pJaFuhwXSuTBhLCElZzgN69gddm86GiQOV5jznnBe7hhcDJa1xzkJTbq3aCNuXMSl3Zyl_zxJg8geWatiDt0K1_5V8Au3Nk3s
CitedBy_id crossref_primary_10_1016_j_mcat_2024_114315
crossref_primary_10_1002_adfm_202104620
crossref_primary_10_1039_D0CP06036D
crossref_primary_10_1016_j_apsusc_2023_157480
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_1016_j_cclet_2021_12_054
crossref_primary_10_1016_j_chemosphere_2023_140331
crossref_primary_10_1021_acs_langmuir_4c01246
crossref_primary_10_1016_j_jallcom_2023_171028
crossref_primary_10_1039_D4TA04884A
crossref_primary_10_1021_acsami_3c00559
crossref_primary_10_1016_j_cclet_2021_08_102
crossref_primary_10_1039_D3RA04270G
crossref_primary_10_1016_j_mcat_2024_114044
crossref_primary_10_1016_j_apsusc_2021_151417
crossref_primary_10_1021_acs_jpcc_1c08779
crossref_primary_10_1039_D1CP05442B
crossref_primary_10_1016_j_cej_2023_142384
crossref_primary_10_1039_D4DT01363H
crossref_primary_10_1007_s12274_022_4371_x
crossref_primary_10_1039_D4QI03239J
crossref_primary_10_1016_j_mcat_2023_113117
crossref_primary_10_1021_acs_inorgchem_2c03204
crossref_primary_10_1002_cssc_202102648
crossref_primary_10_1016_j_jechem_2024_01_024
crossref_primary_10_1016_j_partic_2023_11_004
crossref_primary_10_1016_j_jmmm_2023_170418
crossref_primary_10_1021_acsnano_3c06212
crossref_primary_10_1016_j_electacta_2022_140805
crossref_primary_10_1002_jccs_202400033
crossref_primary_10_1016_j_jcis_2023_07_047
crossref_primary_10_1016_j_jpowsour_2023_233970
crossref_primary_10_1039_D4CP04283B
crossref_primary_10_1016_j_apsusc_2022_153829
crossref_primary_10_1016_j_mtnano_2022_100278
crossref_primary_10_2139_ssrn_4145113
crossref_primary_10_1016_j_cclet_2022_06_004
crossref_primary_10_1039_D3CP03451H
crossref_primary_10_1016_j_cej_2021_130745
crossref_primary_10_1016_j_mtcomm_2024_111015
crossref_primary_10_2139_ssrn_4049716
crossref_primary_10_1016_j_cej_2021_134270
crossref_primary_10_3390_molecules28124597
crossref_primary_10_1039_D2CC03410G
crossref_primary_10_1016_j_jcis_2024_04_102
crossref_primary_10_1088_2053_1583_acb784
crossref_primary_10_1016_j_jcis_2022_07_158
crossref_primary_10_1021_acsnano_4c05956
crossref_primary_10_26599_NR_2025_94907289
crossref_primary_10_1002_aenm_202402205
crossref_primary_10_1039_D4NA00298A
crossref_primary_10_1016_j_jpowsour_2022_231449
crossref_primary_10_1039_D2CP05959B
crossref_primary_10_1007_s12274_022_5117_5
crossref_primary_10_1016_j_jcis_2024_03_026
crossref_primary_10_1021_jacs_3c08616
crossref_primary_10_1016_j_mcat_2022_112862
crossref_primary_10_1016_j_matre_2023_100197
crossref_primary_10_1016_j_cclet_2021_12_040
crossref_primary_10_1021_acscatal_1c05820
crossref_primary_10_1021_acs_jpcc_3c06420
crossref_primary_10_1016_j_ces_2022_118242
crossref_primary_10_1016_j_apsusc_2021_151441
crossref_primary_10_1016_j_fuel_2022_123810
crossref_primary_10_1002_cssc_202400095
crossref_primary_10_1016_j_ijhydene_2024_04_265
crossref_primary_10_1039_D4TA05067C
crossref_primary_10_1039_D3NR06549A
crossref_primary_10_3390_nano13081433
crossref_primary_10_1002_cssc_202101462
crossref_primary_10_1016_j_ijhydene_2023_05_353
crossref_primary_10_1039_D1NR03448K
crossref_primary_10_3390_catal14120950
crossref_primary_10_1016_j_mcat_2024_114757
crossref_primary_10_1039_D2DT01431A
crossref_primary_10_1007_s40843_022_2222_6
crossref_primary_10_1039_D3TA06361E
crossref_primary_10_1016_S1872_2067_23_64504_8
crossref_primary_10_1016_j_physe_2021_114975
crossref_primary_10_1039_D2NJ04716K
crossref_primary_10_1039_D3QM00267E
crossref_primary_10_2139_ssrn_4066356
crossref_primary_10_1016_j_fuel_2022_126213
crossref_primary_10_1007_s10562_023_04490_0
crossref_primary_10_1016_j_jcis_2024_07_134
crossref_primary_10_3390_molecules29163719
crossref_primary_10_1039_D3TA00896G
crossref_primary_10_1021_acs_jpclett_3c02530
crossref_primary_10_1002_adfm_202313420
crossref_primary_10_1016_j_apsusc_2022_153755
crossref_primary_10_1002_adfm_202409064
crossref_primary_10_1016_j_apsusc_2023_156747
crossref_primary_10_1016_j_cej_2023_147510
crossref_primary_10_1021_acs_jpcc_2c06889
crossref_primary_10_1039_D2TA00504B
crossref_primary_10_1002_cphc_202200864
crossref_primary_10_1002_slct_202304408
crossref_primary_10_1016_j_apcata_2022_118886
crossref_primary_10_2139_ssrn_4008068
crossref_primary_10_3390_catal15020137
crossref_primary_10_1039_D3SE00830D
crossref_primary_10_1039_D1TA02998C
crossref_primary_10_1016_j_comptc_2023_114074
crossref_primary_10_1016_j_apsusc_2022_154831
crossref_primary_10_1039_D3NR03310D
crossref_primary_10_1039_D1SE00988E
crossref_primary_10_1016_j_nanoen_2023_108404
crossref_primary_10_1039_D1NR08445C
crossref_primary_10_1021_acs_inorgchem_1c02880
crossref_primary_10_1002_adfm_202200333
crossref_primary_10_1039_D3GC04920E
crossref_primary_10_1002_smll_202308416
crossref_primary_10_1016_j_jmst_2022_07_063
crossref_primary_10_1039_D4CP00601A
crossref_primary_10_1002_cctc_202300669
crossref_primary_10_3390_catal13061021
crossref_primary_10_1016_j_apcatb_2025_125230
crossref_primary_10_1016_j_mcat_2025_114931
crossref_primary_10_1016_j_apsadv_2025_100724
crossref_primary_10_1039_D1CP04937B
crossref_primary_10_1039_D2NH00451H
crossref_primary_10_1002_smll_202400564
crossref_primary_10_1016_j_apsusc_2023_158470
crossref_primary_10_1039_D3QM00261F
crossref_primary_10_1016_j_jcis_2023_02_094
crossref_primary_10_1002_chem_202303148
crossref_primary_10_1021_acsami_2c18260
crossref_primary_10_1002_sstr_202200358
crossref_primary_10_1002_cssc_202301105
crossref_primary_10_1007_s11467_021_1115_4
crossref_primary_10_1016_j_apcatb_2024_123732
crossref_primary_10_1016_j_apsusc_2022_155916
crossref_primary_10_1016_j_jcis_2024_06_231
crossref_primary_10_1039_D3CP06077B
crossref_primary_10_1002_smll_202302429
crossref_primary_10_1016_j_cattod_2021_06_008
crossref_primary_10_1016_j_apsusc_2022_153213
crossref_primary_10_1016_j_ijhydene_2024_05_408
crossref_primary_10_1021_acscatal_2c04527
crossref_primary_10_1016_j_apsusc_2022_153338
crossref_primary_10_1016_j_apsusc_2023_158625
crossref_primary_10_1021_acscatal_2c02629
crossref_primary_10_1002_ece2_12
crossref_primary_10_1039_D1SE01390D
crossref_primary_10_1021_acsami_1c20373
crossref_primary_10_1149_1945_7111_ac7c95
crossref_primary_10_1002_smll_202205313
crossref_primary_10_1021_acsami_4c15263
crossref_primary_10_1007_s10562_022_04106_z
crossref_primary_10_1007_s12274_023_5734_7
crossref_primary_10_1016_j_mcat_2023_112967
crossref_primary_10_1002_aenm_202101670
crossref_primary_10_1039_D1CP04926G
crossref_primary_10_1039_D4NR00028E
crossref_primary_10_1016_j_nanoms_2024_06_007
crossref_primary_10_1016_j_apsusc_2022_154380
crossref_primary_10_1016_j_ccr_2022_214741
crossref_primary_10_1016_j_mcat_2022_112706
crossref_primary_10_1016_j_apsusc_2023_157390
crossref_primary_10_1016_j_ijhydene_2021_11_157
crossref_primary_10_1021_acs_inorgchem_1c02946
crossref_primary_10_1039_D4TA04370G
crossref_primary_10_1002_adma_202210575
crossref_primary_10_1360_SSC_2024_0142
Cites_doi 10.1021/jp047349j
10.1016/j.cattod.2019.06.014
10.1002/ange.202002337
10.1021/acsenergylett.9b01015
10.1016/j.nanoen.2016.10.037
10.1039/D0TA05943A
10.1021/jacs.9b03811
10.1021/acscatal.9b02594
10.1002/chem.201701113
10.1002/jcc.20495
10.1002/aenm.201903172
10.1002/anie.201208320
10.1002/cssc.201500322
10.1002/adfm.201905665
10.1039/C8TA10497B
10.1063/1.1329672
10.1002/smtd.201800368
10.1038/s41467-019-09421-5
10.1002/adma.201803498
10.1021/acssuschemeng.9b05393
10.1126/science.1254234
10.1039/C8TA08219G
10.1002/smtd.201800501
10.1021/jacs.8b07472
10.1002/smtd.201900821
10.1038/ngeo325
10.1103/PhysRevB.89.115114
10.1039/C9TA10935H
10.1021/acscatal.8b01022
10.1103/PhysRevB.50.17953
10.1002/anie.202009991
10.1002/cssc.202000487
10.1021/acscatal.8b05061
10.1021/jacs.9b13349
10.1021/acscatal.9b02944
10.1002/anie.201811728
10.1002/adma.201604799
10.1021/acscatal.0c00936
10.1021/acssuschemeng.0c04401
10.1016/j.cattod.2016.06.014
10.1021/acs.chemrev.8b00501
10.1039/C9CS00903E
10.1002/cctc.201900536
10.1021/acsenergylett.8b00474
10.1002/anie.200301553
10.1016/j.joule.2018.06.019
10.1021/acsaem.8b00959
10.1016/S1872-2067(14)60118-2
10.1039/C7EE02716H
10.1002/aenm.201800369
10.1039/C7EE02220D
10.1002/smtd.201800376
10.1002/asia.201901100
10.1016/j.cattod.2016.05.008
10.1021/acs.accounts.6b00635
10.1002/celc.201901967
10.1002/adma.201903841
10.1021/acs.jpclett.0c01450
10.1039/C9TA04650J
10.1039/C8CP01215F
10.1038/nchem.1095
10.1039/C9TA06949F
10.1103/PhysRevB.47.558
10.1039/D0TA06949C
10.1021/acscatal.0c03140
10.1021/acscatal.0c01950
10.1038/s41570-018-0010-1
10.1021/acs.jpcc.9b08827
10.1021/jacs.6b04778
10.1002/anie.201703864
10.1021/acscatal.5b01967
10.1021/acscatal.9b04103
10.1021/acs.chemmater.9b03099
10.1021/acscatal.8b00905
10.1039/c0ee00071j
10.1039/C8TA03302A
10.1038/s41929-018-0092-7
10.1021/acs.chemrev.9b00659
10.1002/aenm.201801226
10.1007/s12274-016-1400-7
10.1039/C7CP05484J
10.1021/acs.jpclett.0c01582
10.1002/anie.202003842
10.1039/C8EE01481G
10.1016/j.apsusc.2019.144943
10.1021/acscatal.9b01405
10.1021/acscatal.9b00959
10.1103/PhysRevLett.77.3865
10.1021/acscatal.6b03035
10.1002/elan.201700780
10.1016/j.jcat.2014.01.013
10.1021/jacs.7b05213
10.1016/j.nanoen.2019.104304
10.1021/acsenergylett.9b00699
10.1021/acs.chemrev.7b00776
10.1039/C9TA13599E
10.1021/ar300361m
10.1021/acs.nanolett.9b02572
10.1002/asia.202000310
10.1038/s41467-018-08120-x
10.1021/acscatal.8b03802
10.1103/PhysRevB.54.11169
10.1002/cssc.201903427
10.1002/aenm.201701343
10.1002/anie.201800269
10.1002/cssc.201903281
10.1103/PhysRevB.59.1758
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/D0TA09496J
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 1251
ExternalDocumentID 10_1039_D0TA09496J
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c395t-d8060d97bbfcdc43858c528cd414a074f3b66c25247a5e3be15b53cb173b82e33
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 23:35:49 EDT 2025
Mon Jun 30 12:06:18 EDT 2025
Tue Jul 01 01:13:02 EDT 2025
Thu Apr 24 22:58:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-d8060d97bbfcdc43858c528cd414a074f3b66c25247a5e3be15b53cb173b82e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6023-8887
0000-0002-5315-4105
PQID 2478788893
PQPubID 2047523
PageCount 12
ParticipantIDs proquest_miscellaneous_2552004578
proquest_journals_2478788893
crossref_primary_10_1039_D0TA09496J
crossref_citationtrail_10_1039_D0TA09496J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Cui (D0TA09496J-(cit6)/*[position()=1]) 2018; 8
Liu (D0TA09496J-(cit28)/*[position()=1]) 2019; 141
Lu (D0TA09496J-(cit57)/*[position()=1]) 2020; 10
Kresse (D0TA09496J-(cit68)/*[position()=1]) 1993; 47
Schlögl (D0TA09496J-(cit3)/*[position()=1]) 2003; 42
Guo (D0TA09496J-(cit16)/*[position()=1]) 2018; 11
Yan (D0TA09496J-(cit36)/*[position()=1]) 2019; 3
Nørskov (D0TA09496J-(cit75)/*[position()=1]) 2004; 108
Blochl (D0TA09496J-(cit70)/*[position()=1]) 1994; 50
Kresse (D0TA09496J-(cit69)/*[position()=1]) 1996; 54
Wang (D0TA09496J-(cit77)/*[position()=1]) 2020
Licht (D0TA09496J-(cit5)/*[position()=1]) 2014; 345
Liu (D0TA09496J-(cit81)/*[position()=1]) 2020; 10
Geng (D0TA09496J-(cit29)/*[position()=1]) 2018; 30
Lv (D0TA09496J-(cit93)/*[position()=1]) 2020; 8
Wang (D0TA09496J-(cit19)/*[position()=1]) 2018; 2
Montoya (D0TA09496J-(cit92)/*[position()=1]) 2015; 8
Yu (D0TA09496J-(cit37)/*[position()=1]) 2020; 30
He (D0TA09496J-(cit90)/*[position()=1]) 2019; 9
Long (D0TA09496J-(cit98)/*[position()=1]) 2020; 132
Peng (D0TA09496J-(cit25)/*[position()=1]) 2018; 30
Wu (D0TA09496J-(cit102)/*[position()=1]) 2019; 123
Xin (D0TA09496J-(cit105)/*[position()=1]) 2014; 89
Zhang (D0TA09496J-(cit22)/*[position()=1]) 2018; 8
Zang (D0TA09496J-(cit91)/*[position()=1]) 2019; 9
Varela (D0TA09496J-(cit49)/*[position()=1]) 2019; 9
Li (D0TA09496J-(cit55)/*[position()=1]) 2016; 138
Ramalingam (D0TA09496J-(cit64)/*[position()=1]) 2019; 31
Wang (D0TA09496J-(cit85)/*[position()=1]) 2018; 20
Han (D0TA09496J-(cit62)/*[position()=1]) 2018; 11
Shen (D0TA09496J-(cit43)/*[position()=1]) 2017; 10
Liu (D0TA09496J-(cit4)/*[position()=1]) 2014; 35
Guo (D0TA09496J-(cit56)/*[position()=1]) 2020; 350
Wang (D0TA09496J-(cit42)/*[position()=1]) 2020; 8
Han (D0TA09496J-(cit31)/*[position()=1]) 2019; 58
Bao (D0TA09496J-(cit13)/*[position()=1]) 2017; 29
Qiao (D0TA09496J-(cit17)/*[position()=1]) 2011; 3
Yao (D0TA09496J-(cit12)/*[position()=1]) 2019; 4
Zhu (D0TA09496J-(cit23)/*[position()=1]) 2017; 56
Niu (D0TA09496J-(cit86)/*[position()=1]) 2020; 8
Shipman (D0TA09496J-(cit10)/*[position()=1]) 2017; 286
Chen (D0TA09496J-(cit24)/*[position()=1]) 2018; 2
Cheng (D0TA09496J-(cit53)/*[position()=1]) 2018; 3
Wang (D0TA09496J-(cit63)/*[position()=1]) 2020; 13
Yang (D0TA09496J-(cit89)/*[position()=1]) 2019; 11
Wang (D0TA09496J-(cit8)/*[position()=1]) 2020; 7
He (D0TA09496J-(cit65)/*[position()=1]) 2020; 506
Li (D0TA09496J-(cit108)/*[position()=1]) 2020; 8
Mukherjee (D0TA09496J-(cit34)/*[position()=1]) 2020; 4
Ji (D0TA09496J-(cit80)/*[position()=1]) 2019; 7
Luo (D0TA09496J-(cit95)/*[position()=1]) 2016; 6
Zhu (D0TA09496J-(cit14)/*[position()=1]) 2017; 50
Zhang (D0TA09496J-(cit60)/*[position()=1]) 2019; 7
He (D0TA09496J-(cit47)/*[position()=1]) 2020; 49
Deng (D0TA09496J-(cit83)/*[position()=1]) 2020; 11
Singh (D0TA09496J-(cit99)/*[position()=1]) 2017; 7
Chen (D0TA09496J-(cit32)/*[position()=1]) 2020; 10
Zhang (D0TA09496J-(cit84)/*[position()=1]) 2018; 20
Liu (D0TA09496J-(cit7)/*[position()=1]) 2020; 13
Erisman (D0TA09496J-(cit2)/*[position()=1]) 2008; 1
Li (D0TA09496J-(cit50)/*[position()=1]) 2019; 9
Ling (D0TA09496J-(cit79)/*[position()=1]) 2019; 3
Nie (D0TA09496J-(cit97)/*[position()=1]) 2014; 312
Zhang (D0TA09496J-(cit107)/*[position()=1]) 2018; 6
Wang (D0TA09496J-(cit103)/*[position()=1]) 2019; 10
Miao (D0TA09496J-(cit52)/*[position()=1]) 2018; 8
Henkelman (D0TA09496J-(cit74)/*[position()=1]) 2000; 113
Foster (D0TA09496J-(cit11)/*[position()=1]) 2018; 1
Zheng (D0TA09496J-(cit45)/*[position()=1]) 2016; 30
Hai (D0TA09496J-(cit58)/*[position()=1]) 2020; 10
Liang (D0TA09496J-(cit26)/*[position()=1]) 2018; 57
Qing (D0TA09496J-(cit1)/*[position()=1]) 2020; 120
Liu (D0TA09496J-(cit18)/*[position()=1]) 2018; 118
Li (D0TA09496J-(cit87)/*[position()=1]) 2020; 10
Azofra (D0TA09496J-(cit66)/*[position()=1]) 2017; 23
Wang (D0TA09496J-(cit20)/*[position()=1]) 2019; 119
Qiu (D0TA09496J-(cit35)/*[position()=1]) 2019; 14
Kyriakou (D0TA09496J-(cit9)/*[position()=1]) 2017; 286
Ling (D0TA09496J-(cit78)/*[position()=1]) 2018; 140
Peterson (D0TA09496J-(cit76)/*[position()=1]) 2010; 3
Yang (D0TA09496J-(cit21)/*[position()=1]) 2013; 46
Chen (D0TA09496J-(cit46)/*[position()=1]) 2018; 1
Zhu (D0TA09496J-(cit106)/*[position()=1]) 2019; 10
Liu (D0TA09496J-(cit41)/*[position()=1]) 2019; 7
Delafontaine (D0TA09496J-(cit48)/*[position()=1]) 2020; 13
Ge (D0TA09496J-(cit88)/*[position()=1]) 2020; 11
Kresse (D0TA09496J-(cit71)/*[position()=1]) 1999; 59
Yang (D0TA09496J-(cit82)/*[position()=1]) 2020; 68
Gu (D0TA09496J-(cit44)/*[position()=1]) 2018; 30
Hu (D0TA09496J-(cit51)/*[position()=1]) 2018; 8
Zhao (D0TA09496J-(cit100)/*[position()=1]) 2019; 9
Qiu (D0TA09496J-(cit27)/*[position()=1]) 2019; 31
Long (D0TA09496J-(cit94)/*[position()=1]) 2020; 8
Qin (D0TA09496J-(cit54)/*[position()=1]) 2019; 4
Sun (D0TA09496J-(cit61)/*[position()=1]) 2019; 7
Xiang (D0TA09496J-(cit15)/*[position()=1]) 2020; 15
Grimme (D0TA09496J-(cit73)/*[position()=1]) 2006; 27
Nie (D0TA09496J-(cit96)/*[position()=1]) 2013; 52
Guo (D0TA09496J-(cit33)/*[position()=1]) 2020; 142
Zhou (D0TA09496J-(cit104)/*[position()=1]) 2017; 10
Perdew (D0TA09496J-(cit72)/*[position()=1]) 1996; 77
Zhao (D0TA09496J-(cit38)/*[position()=1]) 2017; 139
Choi (D0TA09496J-(cit39)/*[position()=1]) 2018; 8
Tang (D0TA09496J-(cit59)/*[position()=1]) 2020; 59
Chen (D0TA09496J-(cit40)/*[position()=1]) 2019; 3
Li (D0TA09496J-(cit67)/*[position()=1]) 2019; 7
Wang (D0TA09496J-(cit30)/*[position()=1]) 2019; 9
Lv (D0TA09496J-(cit101)/*[position()=1]) 2019; 19
References_xml – volume: 108
  start-page: 17886
  year: 2004
  ident: D0TA09496J-(cit75)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 350
  start-page: 91
  year: 2020
  ident: D0TA09496J-(cit56)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.06.014
– volume: 132
  start-page: 9798
  year: 2020
  ident: D0TA09496J-(cit98)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202002337
– volume: 4
  start-page: 1778
  year: 2019
  ident: D0TA09496J-(cit54)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01015
– volume: 30
  start-page: 443
  year: 2016
  ident: D0TA09496J-(cit45)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.037
– volume: 8
  start-page: 17078
  year: 2020
  ident: D0TA09496J-(cit94)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05943A
– volume: 141
  start-page: 9664
  year: 2019
  ident: D0TA09496J-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03811
– volume: 9
  start-page: 10426
  year: 2019
  ident: D0TA09496J-(cit50)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02594
– volume: 23
  start-page: 1
  year: 2017
  ident: D0TA09496J-(cit66)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201701113
– volume: 27
  start-page: 1787
  year: 2006
  ident: D0TA09496J-(cit73)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 10
  start-page: 1903172
  year: 2020
  ident: D0TA09496J-(cit32)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903172
– volume: 52
  start-page: 2459
  year: 2013
  ident: D0TA09496J-(cit96)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201208320
– volume: 8
  start-page: 2180
  year: 2015
  ident: D0TA09496J-(cit92)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500322
– volume: 30
  start-page: 1905665
  year: 2020
  ident: D0TA09496J-(cit37)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905665
– volume: 7
  start-page: 2392
  year: 2019
  ident: D0TA09496J-(cit80)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10497B
– volume: 113
  start-page: 9901
  year: 2000
  ident: D0TA09496J-(cit74)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 3
  start-page: 1800368
  year: 2019
  ident: D0TA09496J-(cit40)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800368
– volume: 10
  start-page: 1428
  year: 2019
  ident: D0TA09496J-(cit106)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09421-5
– volume: 30
  start-page: 1803498
  year: 2018
  ident: D0TA09496J-(cit29)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803498
– volume: 7
  start-page: 18711
  year: 2019
  ident: D0TA09496J-(cit60)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05393
– volume: 345
  start-page: 637
  year: 2014
  ident: D0TA09496J-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1254234
– volume: 7
  start-page: 4771
  year: 2019
  ident: D0TA09496J-(cit41)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08219G
– volume: 3
  start-page: 1800501
  year: 2019
  ident: D0TA09496J-(cit36)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800501
– volume: 140
  start-page: 14161
  year: 2018
  ident: D0TA09496J-(cit78)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07472
– volume: 4
  start-page: 1900821
  year: 2020
  ident: D0TA09496J-(cit34)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201900821
– volume: 1
  start-page: 636
  year: 2008
  ident: D0TA09496J-(cit2)/*[position()=1]
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo325
– volume: 89
  start-page: 115114
  year: 2014
  ident: D0TA09496J-(cit105)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.115114
– volume: 8
  start-page: 1378
  year: 2020
  ident: D0TA09496J-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10935H
– volume: 8
  start-page: 6255
  year: 2018
  ident: D0TA09496J-(cit51)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01022
– volume: 50
  start-page: 17953
  year: 1994
  ident: D0TA09496J-(cit70)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– year: 2020
  ident: D0TA09496J-(cit77)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009991
– volume: 13
  start-page: 3766
  year: 2020
  ident: D0TA09496J-(cit7)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000487
– volume: 9
  start-page: 3419
  year: 2019
  ident: D0TA09496J-(cit100)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b05061
– volume: 142
  start-page: 5709
  year: 2020
  ident: D0TA09496J-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13349
– volume: 9
  start-page: 10166
  year: 2019
  ident: D0TA09496J-(cit91)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02944
– volume: 58
  start-page: 2321
  year: 2019
  ident: D0TA09496J-(cit31)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811728
– volume: 29
  start-page: 1604799
  year: 2017
  ident: D0TA09496J-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604799
– volume: 10
  start-page: 5862
  year: 2020
  ident: D0TA09496J-(cit58)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00936
– volume: 8
  start-page: 13749
  year: 2020
  ident: D0TA09496J-(cit86)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c04401
– volume: 286
  start-page: 2
  year: 2017
  ident: D0TA09496J-(cit9)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.06.014
– volume: 119
  start-page: 1806
  year: 2019
  ident: D0TA09496J-(cit20)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00501
– volume: 49
  start-page: 3484
  year: 2020
  ident: D0TA09496J-(cit47)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00903E
– volume: 11
  start-page: 2821
  year: 2019
  ident: D0TA09496J-(cit89)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900536
– volume: 3
  start-page: 1205
  year: 2018
  ident: D0TA09496J-(cit53)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00474
– volume: 42
  start-page: 2004
  year: 2003
  ident: D0TA09496J-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200301553
– volume: 2
  start-page: 1242
  year: 2018
  ident: D0TA09496J-(cit24)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.019
– volume: 1
  start-page: 5948
  year: 2018
  ident: D0TA09496J-(cit46)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00959
– volume: 35
  start-page: 1619
  year: 2014
  ident: D0TA09496J-(cit4)/*[position()=1]
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(14)60118-2
– volume: 10
  start-page: 2516
  year: 2017
  ident: D0TA09496J-(cit104)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02716H
– volume: 8
  start-page: 1800369
  year: 2018
  ident: D0TA09496J-(cit6)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800369
– volume: 11
  start-page: 45
  year: 2018
  ident: D0TA09496J-(cit16)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02220D
– volume: 3
  start-page: 1800376
  year: 2019
  ident: D0TA09496J-(cit79)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800376
– volume: 14
  start-page: 2770
  year: 2019
  ident: D0TA09496J-(cit35)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201901100
– volume: 286
  start-page: 57
  year: 2017
  ident: D0TA09496J-(cit10)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.05.008
– volume: 50
  start-page: 915
  year: 2017
  ident: D0TA09496J-(cit14)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00635
– volume: 7
  start-page: 1067
  year: 2020
  ident: D0TA09496J-(cit8)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901967
– volume: 31
  start-page: 1903841
  year: 2019
  ident: D0TA09496J-(cit64)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903841
– volume: 11
  start-page: 6320
  year: 2020
  ident: D0TA09496J-(cit83)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01450
– volume: 30
  start-page: 25
  year: 2018
  ident: D0TA09496J-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
– volume: 7
  start-page: 21507
  year: 2019
  ident: D0TA09496J-(cit67)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04650J
– volume: 20
  start-page: 12835
  year: 2018
  ident: D0TA09496J-(cit85)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01215F
– volume: 3
  start-page: 634
  year: 2011
  ident: D0TA09496J-(cit17)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 7
  start-page: 20952
  year: 2019
  ident: D0TA09496J-(cit61)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06949F
– volume: 47
  start-page: 558
  year: 1993
  ident: D0TA09496J-(cit68)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.47.558
– volume: 8
  start-page: 20047
  year: 2020
  ident: D0TA09496J-(cit93)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06949C
– volume: 10
  start-page: 12841
  year: 2020
  ident: D0TA09496J-(cit87)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03140
– volume: 10
  start-page: 7584
  year: 2020
  ident: D0TA09496J-(cit57)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01950
– volume: 2
  start-page: 65
  year: 2018
  ident: D0TA09496J-(cit19)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 123
  start-page: 31043
  year: 2019
  ident: D0TA09496J-(cit102)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b08827
– volume: 138
  start-page: 8706
  year: 2016
  ident: D0TA09496J-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04778
– volume: 56
  start-page: 13944
  year: 2017
  ident: D0TA09496J-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703864
– volume: 6
  start-page: 219
  year: 2016
  ident: D0TA09496J-(cit95)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01967
– volume: 10
  start-page: 1847
  year: 2020
  ident: D0TA09496J-(cit81)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04103
– volume: 31
  start-page: 9413
  year: 2019
  ident: D0TA09496J-(cit27)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03099
– volume: 8
  start-page: 7517
  year: 2018
  ident: D0TA09496J-(cit39)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00905
– volume: 3
  start-page: 1311
  year: 2010
  ident: D0TA09496J-(cit76)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 6
  start-page: 11446
  year: 2018
  ident: D0TA09496J-(cit107)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03302A
– volume: 1
  start-page: 490
  year: 2018
  ident: D0TA09496J-(cit11)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0092-7
– volume: 120
  start-page: 5437
  year: 2020
  ident: D0TA09496J-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00659
– volume: 8
  start-page: 1801226
  year: 2018
  ident: D0TA09496J-(cit52)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801226
– volume: 10
  start-page: 1449
  year: 2017
  ident: D0TA09496J-(cit43)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1400-7
– volume: 20
  start-page: 4982
  year: 2018
  ident: D0TA09496J-(cit84)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP05484J
– volume: 11
  start-page: 5241
  year: 2020
  ident: D0TA09496J-(cit88)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01582
– volume: 59
  start-page: 9171
  year: 2020
  ident: D0TA09496J-(cit59)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202003842
– volume: 11
  start-page: 2348
  year: 2018
  ident: D0TA09496J-(cit62)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01481G
– volume: 506
  start-page: 144943
  year: 2020
  ident: D0TA09496J-(cit65)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144943
– volume: 9
  start-page: 7270
  year: 2019
  ident: D0TA09496J-(cit49)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01405
– volume: 9
  start-page: 7311
  year: 2019
  ident: D0TA09496J-(cit90)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00959
– volume: 77
  start-page: 3865
  year: 1996
  ident: D0TA09496J-(cit72)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 7
  start-page: 706
  year: 2017
  ident: D0TA09496J-(cit99)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03035
– volume: 30
  start-page: 1217
  year: 2018
  ident: D0TA09496J-(cit44)/*[position()=1]
  publication-title: Electroanalysis
  doi: 10.1002/elan.201700780
– volume: 312
  start-page: 108
  year: 2014
  ident: D0TA09496J-(cit97)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.01.013
– volume: 139
  start-page: 12480
  year: 2017
  ident: D0TA09496J-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05213
– volume: 68
  start-page: 104304
  year: 2020
  ident: D0TA09496J-(cit82)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104304
– volume: 4
  start-page: 1336
  year: 2019
  ident: D0TA09496J-(cit12)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00699
– volume: 118
  start-page: 4981
  year: 2018
  ident: D0TA09496J-(cit18)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00776
– volume: 8
  start-page: 4533
  year: 2020
  ident: D0TA09496J-(cit108)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13599E
– volume: 46
  start-page: 1740
  year: 2013
  ident: D0TA09496J-(cit21)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 19
  start-page: 6391
  year: 2019
  ident: D0TA09496J-(cit101)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02572
– volume: 15
  start-page: 1791
  year: 2020
  ident: D0TA09496J-(cit15)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.202000310
– volume: 10
  start-page: 341
  year: 2019
  ident: D0TA09496J-(cit103)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08120-x
– volume: 9
  start-page: 336
  year: 2019
  ident: D0TA09496J-(cit30)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03802
– volume: 54
  start-page: 11169
  year: 1996
  ident: D0TA09496J-(cit69)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 13
  start-page: 929
  year: 2020
  ident: D0TA09496J-(cit63)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201903427
– volume: 8
  start-page: 1701343
  year: 2018
  ident: D0TA09496J-(cit22)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701343
– volume: 57
  start-page: 9604
  year: 2018
  ident: D0TA09496J-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201800269
– volume: 13
  start-page: 1688
  year: 2020
  ident: D0TA09496J-(cit48)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201903281
– volume: 59
  start-page: 1758
  year: 1999
  ident: D0TA09496J-(cit71)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
SSID ssj0000800699
Score 2.637718
Snippet Tuning the electronic structure of a single-atom catalyst (SAC) by controlling its coordination has been recently shown to be a rather promising strategy for...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1240
SubjectTerms Ammonia
Boron
Catalysts
Catalytic activity
Chemical reduction
Chemical synthesis
Computer applications
Coordination
Density functional theory
Electrocatalysts
Electrochemistry
Electronic structure
Hydrogen evolution reactions
hydrogen production
Iron
Nitrogen
Selectivity
Single atom catalysts
thermodynamics
Title Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study
URI https://www.proquest.com/docview/2478788893
https://www.proquest.com/docview/2552004578
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXK9gIPiE9RGMgIXlCUkdqxm_BWlU5jqoaQUqlvUeK4W6eRoDaRBn-A_8kv4dqOExcqBEhR1DqpleaeXB_fXJ-L0OuViGFQFMTnuYQJypgxPxKU-bwQmWRcKI1ylW1xzk8X4dmSLQeDH07WUlPnx-Lb3nUl_2NVaAO7qlWy_2DZrlNogM9gX9iDhWH_VzaeVjB1XJt4nlc3pZJruDT6GLokhA6K60I35nubDwBP8aaCTr2N0m3VPwbqaD7ApqIH19KH2fhnTy2C83SI5-u23pqV0UIXgrBBxF6f9neKC2zY3AZP2Lpyx97ELBGyR7TkuFmAqC_XLuhSObt9fs86qwzdLy9umi6JaN3oEaSRV-sOn1NTX_sT_InLbO3Exc0rJmi-gSfiwo12kNEv0Q4TU7EJrTphpb383m-SgAVKItW4dem2meK51vHHDr6J48SB8gQOIVAUcO9gE1Cl1VoEdQZz5Jhf9UOqTSM4_5ieLObzNJktk1vokMBUBnzx4WSWfJh3kUDF2bkudNpdudXRpfHbvvtd5rRLHDQbSu6hu62N8cRg8j4ayPIBuuOIWz5E3110Yo1ODOjDFp0YzI0ddOJqpY9bdOIOndiiE8PmoBMrdOIOne9whnewiTU2H6HFySyZnvpt2Q9f0JjVfhEFPCjicZ6vRCFC9eZaMKKKbI3CDBjviuacC8JIOM6YpOBjWM6oyEdjmkdEUvoYHZRVKZ8gTEZSETDBeZaFVLJ4RQMZjYKCERkHIh6iN_aWpqLVxFelWa5TnZtB4_R9kEz07T8bolfduV-MEszes46sZdLWU2xTohSwogimBkP0sjsMuFUv57JSVg2cw5QAWggD6NM_d_EM3e4fjCN0UG8a-RyIcZ2_aJH1E-JyxRE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordination+tunes+the+activity+and+selectivity+of+the+nitrogen+reduction+reaction+on+single-atom+iron+catalysts%3A+a+computational+study&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Jiao%2C+Dongxu&rft.au=Liu%2C+Yuejie&rft.au=Cai%2C+Qinghai&rft.au=Zhao%2C+Jingxiang&rft.date=2021-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=2&rft.spage=1240&rft.epage=1251&rft_id=info:doi/10.1039%2Fd0ta09496j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon