Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications

Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed. Porous nanomullite developed by sol–gel route is loaded with copper and silver nanoparticle by simple adsorption method. These...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1840; no. 11; pp. 3264 - 3276
Main Authors Kar, S., Bagchi, B., Kundu, B., Bhandary, S., Basu, R., Nandy, P., Das, S.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed. Porous nanomullite developed by sol–gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV–visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line. Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control. The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929). The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications. •Nanomullite was developed and loaded with copper and silver nanoparticles.•The nano composite shows excellent antibacterial property.•Nanoparticle/ion release, ROS and membrane rupture cause the bacterial killing.•The material was biocompatible with mammalian cell line.•Wound healing study by scratch assay shows normal cell migration and mobility.
AbstractList Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed. Porous nanomullite developed by sol–gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV–visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line. Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control. The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929). The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications. •Nanomullite was developed and loaded with copper and silver nanoparticles.•The nano composite shows excellent antibacterial property.•Nanoparticle/ion release, ROS and membrane rupture cause the bacterial killing.•The material was biocompatible with mammalian cell line.•Wound healing study by scratch assay shows normal cell migration and mobility.
Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed.BACKGROUNDMicrobial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed.Porous nanomullite developed by sol-gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV-visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line.METHODPorous nanomullite developed by sol-gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV-visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line.Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control.RESULTSNanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control.The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929).CONCLUSIONThe fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929).The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications.GENERAL SIGNIFICANCEThe newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications.
Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed. Porous nanomullite developed by sol-gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV-visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line. Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control. The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929). The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications.
Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed.Porous nanomullite developed by sol–gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV–visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line.Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control.The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929).The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications.
Author Das, S.
Kundu, B.
Nandy, P.
Basu, R.
Bhandary, S.
Kar, S.
Bagchi, B.
Author_xml – sequence: 1
  givenname: S.
  surname: Kar
  fullname: Kar, S.
  organization: Physics Department, Jadavpur University, Kolkata 700 032, India
– sequence: 2
  givenname: B.
  surname: Bagchi
  fullname: Bagchi, B.
  organization: Fuel Cell and Battery Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India
– sequence: 3
  givenname: B.
  surname: Kundu
  fullname: Kundu, B.
  organization: Biotechnology Department, IIT Kharagpur, Kharagpur 721302, India
– sequence: 4
  givenname: S.
  orcidid: 0000-0001-6723-4838
  surname: Bhandary
  fullname: Bhandary, S.
  organization: Bose Institute, Department of Molecular Medicine, Kolkata 700 054, India
– sequence: 5
  givenname: R.
  surname: Basu
  fullname: Basu, R.
  organization: Physics Department, Jogamaya Devi College, Kolkata 700 026, India
– sequence: 6
  givenname: P.
  surname: Nandy
  fullname: Nandy, P.
  organization: Centre for Interdisciplinary Research and Education, Kolkata 700 068, India
– sequence: 7
  givenname: S.
  surname: Das
  fullname: Das, S.
  email: sukhendasju@gmail.com
  organization: Physics Department, Jadavpur University, Kolkata 700 032, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25088798$$D View this record in MEDLINE/PubMed
BookMark eNqFUctu1DAUtVARnRb-ACEv2SS1kzhxukAajWhBqsQCWFuOfdN65NjBdioNH8O34sy0GxbUG8u653F9zgU6c94BQu8pKSmh7dW-HAZ5D66sCG1KwkpCq1doQ3lXFZyQ9gxtSE2aoqEtO0cXMe5JPqxnb9B5xQjnXc836M_3g0sPEE3E0mmsHmSQKkEwv2Uy3mE_4t1ytb3HTjo_y5CMsoCtlxo0nhZrTYLjTPlp9nF9xUNMMF3jLZ59ApeMtFhlcaNlno4-ZKdkJqOCH9bZ6ptXCHKGJctjOc_WqKN9fItej9JGePd0X6KfN59_7L4Ud99uv-62d4Wqe5YK3XEKI4Nh7Nq-I0PbdKRv2gpqKSWHEShnwBVvRwqNpmpgGTMCgK5JxXtVX6KPJ905-F8LxCQmExVYKx34JYoqR1dVDSXdi1DKWkrqmrA2Qz88QZdhAi3mYCYZDuI5_gy4PgFyFjEGGIUy6fjzFKSxghKxdi324tS1WLsWhIncdSY3_5Cf9V-gfTrRIOf5aCCIqAw4BdoEUElob_4v8Bfi1MkP
CitedBy_id crossref_primary_10_13168_cs_2016_0030
crossref_primary_10_1007_s00339_016_0395_y
crossref_primary_10_1155_2023_3971686
crossref_primary_10_1021_acsomega_1c03925
crossref_primary_10_3389_fmicb_2021_659614
crossref_primary_10_1002_app_50433
crossref_primary_10_1021_acsinfecdis_1c00496
crossref_primary_10_1016_j_inoche_2025_114019
crossref_primary_10_1016_j_ceramint_2017_10_051
crossref_primary_10_1039_C6NJ04008J
crossref_primary_10_1515_zpch_2023_0206
crossref_primary_10_1016_j_archoralbio_2017_09_028
crossref_primary_10_1016_j_jhazmat_2021_126721
crossref_primary_10_1002_chem_201800820
crossref_primary_10_1016_j_msec_2020_111190
crossref_primary_10_1016_j_rinma_2020_100099
crossref_primary_10_2174_1381612826666200113162114
crossref_primary_10_1038_s41598_022_24172_y
crossref_primary_10_1016_j_cej_2015_04_107
crossref_primary_10_1016_j_ceramint_2017_01_118
crossref_primary_10_1016_j_jiec_2023_01_019
crossref_primary_10_1088_1361_6528_ab9da5
crossref_primary_10_1016_j_jmst_2022_03_023
crossref_primary_10_13005_ojc_380533
crossref_primary_10_3390_ma16165647
crossref_primary_10_1002_ceat_201600380
crossref_primary_10_1002_advs_202201111
crossref_primary_10_3390_inorganics6030064
crossref_primary_10_1016_j_ejmcr_2024_100190
crossref_primary_10_1002_adhm_201500712
crossref_primary_10_1002_ceat_202200576
crossref_primary_10_1515_revce_2017_0011
crossref_primary_10_1002_pc_23885
crossref_primary_10_1016_j_colsurfb_2019_110449
Cites_doi 10.1016/S0924-2031(02)00065-6
10.1016/j.biomaterials.2009.07.030
10.1016/j.matlet.2011.12.055
10.1124/pr.55.1.2
10.1016/j.jeurceramsoc.2012.08.009
10.1039/a900568d
10.1016/j.mseb.2010.01.044
10.1016/j.tibtech.2012.06.004
10.1016/j.biomaterials.2012.06.091
10.1016/j.nano.2006.12.001
10.1002/jbm.b.31316
10.1007/s11051-010-9900-y
10.1002/1097-0320(20000701)40:3<214::AID-CYTO6>3.0.CO;2-M
10.1038/nbt.2458
10.1016/j.jhazmat.2010.04.016
10.1016/j.biomaterials.2013.08.047
10.1016/j.actbio.2007.11.006
10.1111/jace.12386
10.1063/1.1727057
10.1111/j.1551-2916.2006.00963.x
10.1016/j.bbamem.2010.06.016
10.1038/nrm2330
10.3390/molecules16042862
10.1016/j.cell.2007.06.049
10.1016/j.msec.2012.05.011
10.1016/S1466-6049(01)00189-1
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright © 2014 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2014.05.012
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 3276
ExternalDocumentID 25088798
10_1016_j_bbagen_2014_05_012
S0304416514001858
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
F5P
H~9
K-O
MVM
NPM
PKN
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c395t-d781ef5ebf76970b64709462e3aaa8efe185e8c86f1e4d1cb50b6feeed30289c3
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Mon Jul 21 10:27:19 EDT 2025
Fri Jul 11 02:26:53 EDT 2025
Wed Feb 19 02:42:35 EST 2025
Tue Jul 01 00:22:03 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Fri Feb 23 02:32:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Mullite
Antibacterial activity
Cyto-compatibility
Metal nanoparticle
Language English
License Copyright © 2014 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-d781ef5ebf76970b64709462e3aaa8efe185e8c86f1e4d1cb50b6feeed30289c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6723-4838
PMID 25088798
PQID 1561033056
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2000224107
proquest_miscellaneous_1561033056
pubmed_primary_25088798
crossref_citationtrail_10_1016_j_bbagen_2014_05_012
crossref_primary_10_1016_j_bbagen_2014_05_012
elsevier_sciencedirect_doi_10_1016_j_bbagen_2014_05_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ramyadevi, Jeyasubramanian, Marikani, Rajakumar, Rahuman (bb0015) 2012; 71
Hajipour, Fromm, Ashkarran, de Aberasturi, de Larramendi, Rojo, Serpooshan, Parak, Mahmoudi (bb0005) 2012; 30
Kundu, Saha, Datta, Kundu (bb0105) 2013; 34
Brynildsen, Winkler, Spina, MacDonald, Collins (bb0125) 2013; 31
Nath, Basu, Mohanty, Mohanan (bb0095) 1999; 90B
Ruparelia, Chatterjee, Duttagupta, Mukherji (bb0120) 2008; 4
Bajpai, Balani, Basu (bb0050) 2013; 96
Miller (bb0055) 1972
Lewis, Alei, Morgan (bb0085) 1966; 44
Kim (bb0110) 2007; 3
Wang, Cao, Huang, Fei (bb0075) 2013; 33
Su, Chou, Hung, Lin, Pao, Lin, Huang, Dong, Lin (bb0060) 2009; 30
Barbesti, Citterio, Labra, Baroni, Neri, Sgorbati (bb0065) 2000; 40
Meer, Voelker, Feigenson (bb0135) 2008; 9
Madejova (bb0040) 2003
Saleh, Taha, Haddadin, Marzooqa, Hodali (bb0025) 2011; 16
Joshi, Bisht, Rawat, Kumar, Kumar, Maiti, Pasha (bb0045) 2010; 1798
Salkar, Jeevanandam, Aruna, Koltypin, Gedanken (bb0090) 1999; 9
Padmaja, Anilkumar, Mukundan, Aruldhas, Warrier (bb0080) 2001; 3
Bagchi, Dey, Bhandary, Das, Bhattacharya, Basu, Nandy (bb0030) 2012; 32
Yoshida, Hyuga, Kondo, Kita (bb0035) 2010; 173
Marambio-Jones, Hoek (bb0010) 2010; 12
Theerakittayakorn, Bunprasert (bb0100) 2011; 50
Bernardo, Colombo, Pippel, Woltersdorf (bb0020) 2006; 89
Kundu, Kundu (bb0070) 2012; 33
Kohanski, Dwyer, Hayete, Lawrence, Collins (bb0130) 2007; 130
Yeaman, Yount (bb0140) 2003; 55
Cabiscol, Tamarit, Ros (bb0145) 2000; 3
Rispoli, Angelov, Badia, Kumar, Seal, Shah (bb0115) 2010; 180
Hajipour (10.1016/j.bbagen.2014.05.012_bb0005) 2012; 30
Cabiscol (10.1016/j.bbagen.2014.05.012_bb0145) 2000; 3
Lewis (10.1016/j.bbagen.2014.05.012_bb0085) 1966; 44
Madejova (10.1016/j.bbagen.2014.05.012_bb0040) 2003
Miller (10.1016/j.bbagen.2014.05.012_bb0055) 1972
Su (10.1016/j.bbagen.2014.05.012_bb0060) 2009; 30
Nath (10.1016/j.bbagen.2014.05.012_bb0095) 1999; 90B
Marambio-Jones (10.1016/j.bbagen.2014.05.012_bb0010) 2010; 12
Wang (10.1016/j.bbagen.2014.05.012_bb0075) 2013; 33
Ruparelia (10.1016/j.bbagen.2014.05.012_bb0120) 2008; 4
Brynildsen (10.1016/j.bbagen.2014.05.012_bb0125) 2013; 31
Yeaman (10.1016/j.bbagen.2014.05.012_bb0140) 2003; 55
Barbesti (10.1016/j.bbagen.2014.05.012_bb0065) 2000; 40
Bernardo (10.1016/j.bbagen.2014.05.012_bb0020) 2006; 89
Kohanski (10.1016/j.bbagen.2014.05.012_bb0130) 2007; 130
Yoshida (10.1016/j.bbagen.2014.05.012_bb0035) 2010; 173
Kim (10.1016/j.bbagen.2014.05.012_bb0110) 2007; 3
Bajpai (10.1016/j.bbagen.2014.05.012_bb0050) 2013; 96
Kundu (10.1016/j.bbagen.2014.05.012_bb0070) 2012; 33
Saleh (10.1016/j.bbagen.2014.05.012_bb0025) 2011; 16
Meer (10.1016/j.bbagen.2014.05.012_bb0135) 2008; 9
Padmaja (10.1016/j.bbagen.2014.05.012_bb0080) 2001; 3
Theerakittayakorn (10.1016/j.bbagen.2014.05.012_bb0100) 2011; 50
Rispoli (10.1016/j.bbagen.2014.05.012_bb0115) 2010; 180
Salkar (10.1016/j.bbagen.2014.05.012_bb0090) 1999; 9
Ramyadevi (10.1016/j.bbagen.2014.05.012_bb0015) 2012; 71
Kundu (10.1016/j.bbagen.2014.05.012_bb0105) 2013; 34
Bagchi (10.1016/j.bbagen.2014.05.012_bb0030) 2012; 32
Joshi (10.1016/j.bbagen.2014.05.012_bb0045) 2010; 1798
References_xml – volume: 9
  start-page: 112
  year: 2008
  end-page: 124
  ident: bb0135
  article-title: Membrane lipids: where they are and how they behave
  publication-title: Nat. Rev. Mol. Cell Biol.
– start-page: 1
  year: 2003
  end-page: 10
  ident: bb0040
  article-title: FTIR techniques in clay mineral studies
  publication-title: Vib. Spectrosc.
– volume: 31
  start-page: 160
  year: 2013
  end-page: 167
  ident: bb0125
  article-title: Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production
  publication-title: Nat. Biotechnol.
– volume: 130
  start-page: 797
  year: 2007
  end-page: 810
  ident: bb0130
  article-title: A common mechanism of cellular death induced by bactericidal antibiotics
  publication-title: Cell
– volume: 12
  start-page: 1531
  year: 2010
  end-page: 1551
  ident: bb0010
  article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment
  publication-title: J. Nanopart. Res.
– volume: 3
  start-page: 3
  year: 2000
  end-page: 8
  ident: bb0145
  article-title: Oxidative stress in bacteria and protein damage by reactive oxygen species
  publication-title: Int. Microb.
– volume: 30
  start-page: 5979
  year: 2009
  end-page: 5987
  ident: bb0060
  article-title: The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay
  publication-title: Biomaterials
– volume: 32
  start-page: 1897
  year: 2012
  end-page: 1905
  ident: bb0030
  article-title: Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates
  publication-title: Mater. Sci. Eng. C
– volume: 16
  start-page: 2862
  year: 2011
  end-page: 2870
  ident: bb0025
  article-title: Preparation of silver- and zinc-doped mullite-based ceramics showing anti-bacterial biofilm properties
  publication-title: Molecules
– volume: 44
  start-page: 2409
  year: 1966
  end-page: 2417
  ident: bb0085
  article-title: Magnetic resonance studies on copper(II) complex ions in solution. I. Temperature dependences of the 170 NMR and copper(II) EPR linewidths of Cu(H
  publication-title: J. Chem. Phys.
– volume: 33
  start-page: 191
  year: 2013
  end-page: 198
  ident: bb0075
  article-title: A mullite/SiC oxidation protective coating for carbon/carbon composites
  publication-title: J. Eur. Ceram. Soc.
– volume: 89
  start-page: 1577
  year: 2006
  end-page: 1583
  ident: bb0020
  article-title: Novel mullite synthesis based on alumina nanoparticles and a preceramic polymer
  publication-title: J. Am. Ceram. Soc.
– volume: 33
  start-page: 7456
  year: 2012
  end-page: 7467
  ident: bb0070
  article-title: Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction
  publication-title: Biomaterials
– volume: 50
  start-page: 373
  year: 2011
  end-page: 376
  ident: bb0100
  article-title: Differentiation capacity of mouse L929 fibroblastic cell line compare with human dermal fibroblast
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 3
  start-page: 693
  year: 2001
  end-page: 698
  ident: bb0080
  article-title: Characterisation of stoichiometric sol–gel mullite by Fourier transform infrared spectroscopy
  publication-title: Inorg. Mater.
– volume: 9
  start-page: 1333
  year: 1999
  end-page: 1335
  ident: bb0090
  article-title: The sonochemical preparation of amorphous silver nanoparticles
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 95
  year: 2007
  end-page: 101
  ident: bb0110
  article-title: Antimicrobial effects of silver nanoparticles
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 55
  start-page: 27
  year: 2003
  end-page: 55
  ident: bb0140
  article-title: Mechanisms of antimicrobial peptide action and resistance
  publication-title: Pharmacol. Rev.
– volume: 173
  start-page: 66
  year: 2010
  end-page: 71
  ident: bb0035
  article-title: Synthesis of precursor for fibrous mullite powder by alkoxide hydrolysis method
  publication-title: Mater. Sci. Eng. B
– volume: 34
  start-page: 9462
  year: 2013
  end-page: 9474
  ident: bb0105
  article-title: A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells
  publication-title: Biomaterials
– start-page: 352
  year: 1972
  end-page: 355
  ident: bb0055
  article-title: Experiments in Molecular Genetics
– volume: 1798
  start-page: 1864
  year: 2010
  end-page: 1875
  ident: bb0045
  article-title: Interaction studies of novel cell selective antimicrobial peptides with model membranes and
  publication-title: Biochim. Biophys. Acta
– volume: 90B
  start-page: 547
  year: 1999
  end-page: 557
  ident: bb0095
  article-title: In vivo response of novel calcium phosphate–mullite composites: results up to 12 weeks of implantation
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 40
  start-page: 214
  year: 2000
  end-page: 218
  ident: bb0065
  article-title: Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria
  publication-title: Cytometry
– volume: 30
  start-page: 499
  year: 2012
  end-page: 511
  ident: bb0005
  article-title: Antibacterial properties of nanoparticles
  publication-title: Trends Biotechnol.
– volume: 4
  start-page: 707
  year: 2008
  end-page: 716
  ident: bb0120
  article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles
  publication-title: Acta Biomater.
– volume: 71
  start-page: 114
  year: 2012
  end-page: 116
  ident: bb0015
  article-title: Synthesis and antimicrobial activity of copper nanoparticles
  publication-title: Mater. Lett.
– volume: 180
  start-page: 212
  year: 2010
  end-page: 216
  ident: bb0115
  article-title: Understanding the toxicity of aggregated zero valent copper nanoparticles against
  publication-title: J. Hazard. Mater.
– volume: 96
  start-page: 2100
  year: 2013
  end-page: 2108
  ident: bb0050
  article-title: Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites
  publication-title: J. Am. Ceram. Soc.
– start-page: 1
  year: 2003
  ident: 10.1016/j.bbagen.2014.05.012_bb0040
  article-title: FTIR techniques in clay mineral studies
  publication-title: Vib. Spectrosc.
  doi: 10.1016/S0924-2031(02)00065-6
– volume: 30
  start-page: 5979
  year: 2009
  ident: 10.1016/j.bbagen.2014.05.012_bb0060
  article-title: The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.07.030
– volume: 71
  start-page: 114
  year: 2012
  ident: 10.1016/j.bbagen.2014.05.012_bb0015
  article-title: Synthesis and antimicrobial activity of copper nanoparticles
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.12.055
– volume: 55
  start-page: 27
  year: 2003
  ident: 10.1016/j.bbagen.2014.05.012_bb0140
  article-title: Mechanisms of antimicrobial peptide action and resistance
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.55.1.2
– volume: 3
  start-page: 3
  year: 2000
  ident: 10.1016/j.bbagen.2014.05.012_bb0145
  article-title: Oxidative stress in bacteria and protein damage by reactive oxygen species
  publication-title: Int. Microb.
– volume: 33
  start-page: 191
  year: 2013
  ident: 10.1016/j.bbagen.2014.05.012_bb0075
  article-title: A mullite/SiC oxidation protective coating for carbon/carbon composites
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2012.08.009
– volume: 9
  start-page: 1333
  year: 1999
  ident: 10.1016/j.bbagen.2014.05.012_bb0090
  article-title: The sonochemical preparation of amorphous silver nanoparticles
  publication-title: J. Mater. Chem.
  doi: 10.1039/a900568d
– volume: 173
  start-page: 66
  year: 2010
  ident: 10.1016/j.bbagen.2014.05.012_bb0035
  article-title: Synthesis of precursor for fibrous mullite powder by alkoxide hydrolysis method
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2010.01.044
– start-page: 352
  year: 1972
  ident: 10.1016/j.bbagen.2014.05.012_bb0055
– volume: 30
  start-page: 499
  year: 2012
  ident: 10.1016/j.bbagen.2014.05.012_bb0005
  article-title: Antibacterial properties of nanoparticles
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2012.06.004
– volume: 33
  start-page: 7456
  year: 2012
  ident: 10.1016/j.bbagen.2014.05.012_bb0070
  article-title: Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.091
– volume: 50
  start-page: 373
  year: 2011
  ident: 10.1016/j.bbagen.2014.05.012_bb0100
  article-title: Differentiation capacity of mouse L929 fibroblastic cell line compare with human dermal fibroblast
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 3
  start-page: 95
  year: 2007
  ident: 10.1016/j.bbagen.2014.05.012_bb0110
  article-title: Antimicrobial effects of silver nanoparticles
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2006.12.001
– volume: 90B
  start-page: 547
  year: 1999
  ident: 10.1016/j.bbagen.2014.05.012_bb0095
  article-title: In vivo response of novel calcium phosphate–mullite composites: results up to 12 weeks of implantation
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.31316
– volume: 12
  start-page: 1531
  year: 2010
  ident: 10.1016/j.bbagen.2014.05.012_bb0010
  article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-010-9900-y
– volume: 40
  start-page: 214
  year: 2000
  ident: 10.1016/j.bbagen.2014.05.012_bb0065
  article-title: Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria
  publication-title: Cytometry
  doi: 10.1002/1097-0320(20000701)40:3<214::AID-CYTO6>3.0.CO;2-M
– volume: 31
  start-page: 160
  year: 2013
  ident: 10.1016/j.bbagen.2014.05.012_bb0125
  article-title: Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2458
– volume: 180
  start-page: 212
  year: 2010
  ident: 10.1016/j.bbagen.2014.05.012_bb0115
  article-title: Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.04.016
– volume: 34
  start-page: 9462
  year: 2013
  ident: 10.1016/j.bbagen.2014.05.012_bb0105
  article-title: A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.08.047
– volume: 4
  start-page: 707
  year: 2008
  ident: 10.1016/j.bbagen.2014.05.012_bb0120
  article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2007.11.006
– volume: 96
  start-page: 2100
  year: 2013
  ident: 10.1016/j.bbagen.2014.05.012_bb0050
  article-title: Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12386
– volume: 44
  start-page: 2409
  year: 1966
  ident: 10.1016/j.bbagen.2014.05.012_bb0085
  article-title: Magnetic resonance studies on copper(II) complex ions in solution. I. Temperature dependences of the 170 NMR and copper(II) EPR linewidths of Cu(H20)62+
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1727057
– volume: 89
  start-page: 1577
  year: 2006
  ident: 10.1016/j.bbagen.2014.05.012_bb0020
  article-title: Novel mullite synthesis based on alumina nanoparticles and a preceramic polymer
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2006.00963.x
– volume: 1798
  start-page: 1864
  year: 2010
  ident: 10.1016/j.bbagen.2014.05.012_bb0045
  article-title: Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2010.06.016
– volume: 9
  start-page: 112
  year: 2008
  ident: 10.1016/j.bbagen.2014.05.012_bb0135
  article-title: Membrane lipids: where they are and how they behave
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2330
– volume: 16
  start-page: 2862
  year: 2011
  ident: 10.1016/j.bbagen.2014.05.012_bb0025
  article-title: Preparation of silver- and zinc-doped mullite-based ceramics showing anti-bacterial biofilm properties
  publication-title: Molecules
  doi: 10.3390/molecules16042862
– volume: 130
  start-page: 797
  year: 2007
  ident: 10.1016/j.bbagen.2014.05.012_bb0130
  article-title: A common mechanism of cellular death induced by bactericidal antibiotics
  publication-title: Cell
  doi: 10.1016/j.cell.2007.06.049
– volume: 32
  start-page: 1897
  year: 2012
  ident: 10.1016/j.bbagen.2014.05.012_bb0030
  article-title: Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2012.05.011
– volume: 3
  start-page: 693
  year: 2001
  ident: 10.1016/j.bbagen.2014.05.012_bb0080
  article-title: Characterisation of stoichiometric sol–gel mullite by Fourier transform infrared spectroscopy
  publication-title: Inorg. Mater.
  doi: 10.1016/S1466-6049(01)00189-1
SSID ssj0000595
ssj0025309
Score 2.321283
Snippet Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3264
SubjectTerms adsorption
Antibacterial activity
antibacterial properties
antibiotic resistance
beta-galactosidase
cell death
cell movement
cell viability
ceramics
coatings
copper
Cyto-compatibility
electron paramagnetic resonance spectroscopy
energy-dispersive X-ray analysis
exposure duration
fibroblasts
flow cytometry
Fourier transform infrared spectroscopy
Gram-negative bacteria
medical equipment
metal ions
Metal nanoparticle
mice
Mullite
nanocomposites
nanoparticles
nanosilver
oxidative stress
scanning electron microscopy
silver
spectrophotometers
tissue repair
transmission electron microscopy
X-ray diffraction
Title Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications
URI https://dx.doi.org/10.1016/j.bbagen.2014.05.012
https://www.ncbi.nlm.nih.gov/pubmed/25088798
https://www.proquest.com/docview/1561033056
https://www.proquest.com/docview/2000224107
Volume 1840
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgSXCsproVRG4ho2iR3H4bZatVpY0QOlojfLccYoqE1W3eyhF34Kv5WZOFnKYVWJU5R4HFuZsedz5sXYe9zzpRNVGtnC4wGlAMAlpW3kZIHKw8dO9k40X87U4kJ-vswu99h8jIUht8ph7w97er9bD0-mw9ecrup6ek5GPYQTqPGpslxGAb9S5iTlH379dfNA-JAFS4KMiHoMn-t9vMoSFy1lQU1kyN-Z7lJPu-Bnr4ZOn7CDAT_yWZjiU7YHzSF7GCpK3h6yR_OxgNsz9vv8tkF4t67X3DYVd9vUzCHykreezzfT2Q_e2AaPzuGN_Kq1FVT8moxEHfRt5HZOvl3AQ97nj3zGV21HfkY4FUeBMfTfgCP-xZG6-rruszthG417J8KL3zWXP2cXpyff5otoKMcQOVFkXVTlOgGfQelzVeRxqWSOZ0OVgrDWavCATADttPIJyCpxZYY0HlAJCzJnOvGC7TdtA68YtzqHSistlCqRZ2DBa6G1gMqqNLVqwsTIBeOGXOVUMuPKjE5pP03gnSHemTgzyLsJi7a9ViFXxz30-chg84_MGVQn9_R8N8qDQaaSjcU20G7WJiE8KuhctpsmjQNyivMJexmEaTvftAfMhX7933N7wx7TXYiXPGL73c0G3iJw6srjfmUcswezT8vFGV2XX78v_wAl0Byz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKESoXBOW1PI3ENWwSO47DbbWiWqDtpa3Um-U44yqoTVbd7KGX_hR-KzNxspTDqhLX2I5HGY_nm8yLsc9450snqjSyhUcDpQBAkdI2crJA5eFjJ_sgmqNjtTiTP86z8x02H3NhKKxyuPvDnd7f1sOT6fA1p8u6np6QUw_hBGp86iyX6QfsoUTxpTYGX27_xnkgfsiCK0FGNH3Mn-uDvMoSpZbKoCYyFPBMt-mnbfiz10MHT9mTAUDyWaDxGduBZp89Ci0lb_bZ3nzs4Pac_T65aRDfreoVt03F3aY2c0i95K3n8_V0dsEb26DtHN7IL1tbQcWvyEvUQT9GcecU3AU8FH7-ymd82XYUaISkOMqMoR8HHAEw7tTVV3Vf3gnHaN87KV78rr_8BTs7-HY6X0RDP4bIiSLroirXCfgMSp-rIo9LJXM0DlUKwlqrwQNyAbTTyicgq8SVGc7xgFpYkD_TiZdst2kbeM241TlUWmmhVCllDha8FloLqKxKU6smTIxcMG4oVk49My7NGJX2ywTeGeKdiTODvJuwaLNqGYp13DM_Hxls_jl0BvXJPSs_jefBIFPJyWIbaNcrkxAgFWSYbZ-TxgE6xfmEvQqHaUNv2iPmQr_5b9o-sr3F6dGhOfx-_PMte0wjIXnyHdvtrtfwHlFUV37opeQPjDAcng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+Cu%2FAg+nanoparticle+loaded+mullite+nanocomposite+system%3A+A+potential+candidate+for+antimicrobial+and+therapeutic+applications&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Kar%2C+S&rft.au=Bagchi%2C+B&rft.au=Kundu%2C+B&rft.au=Bhandary%2C+S&rft.date=2014-11-01&rft.issn=0006-3002&rft.volume=1840&rft.issue=11&rft.spage=3264&rft_id=info:doi/10.1016%2Fj.bbagen.2014.05.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon