Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications
Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed. Porous nanomullite developed by sol–gel route is loaded with copper and silver nanoparticle by simple adsorption method. These...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1840; no. 11; pp. 3264 - 3276 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed.
Porous nanomullite developed by sol–gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV–visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line.
Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control.
The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929).
The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications.
•Nanomullite was developed and loaded with copper and silver nanoparticles.•The nano composite shows excellent antibacterial property.•Nanoparticle/ion release, ROS and membrane rupture cause the bacterial killing.•The material was biocompatible with mammalian cell line.•Wound healing study by scratch assay shows normal cell migration and mobility. |
---|---|
AbstractList | Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed.
Porous nanomullite developed by sol–gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV–visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line.
Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control.
The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929).
The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications.
•Nanomullite was developed and loaded with copper and silver nanoparticles.•The nano composite shows excellent antibacterial property.•Nanoparticle/ion release, ROS and membrane rupture cause the bacterial killing.•The material was biocompatible with mammalian cell line.•Wound healing study by scratch assay shows normal cell migration and mobility. Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed.BACKGROUNDMicrobial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed.Porous nanomullite developed by sol-gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV-visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line.METHODPorous nanomullite developed by sol-gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV-visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line.Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control.RESULTSNanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control.The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929).CONCLUSIONThe fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929).The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications.GENERAL SIGNIFICANCEThe newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications. Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed. Porous nanomullite developed by sol-gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV-visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line. Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control. The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929). The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications. Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed.Porous nanomullite developed by sol–gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV–visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line.Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control.The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929).The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications. |
Author | Das, S. Kundu, B. Nandy, P. Basu, R. Bhandary, S. Kar, S. Bagchi, B. |
Author_xml | – sequence: 1 givenname: S. surname: Kar fullname: Kar, S. organization: Physics Department, Jadavpur University, Kolkata 700 032, India – sequence: 2 givenname: B. surname: Bagchi fullname: Bagchi, B. organization: Fuel Cell and Battery Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India – sequence: 3 givenname: B. surname: Kundu fullname: Kundu, B. organization: Biotechnology Department, IIT Kharagpur, Kharagpur 721302, India – sequence: 4 givenname: S. orcidid: 0000-0001-6723-4838 surname: Bhandary fullname: Bhandary, S. organization: Bose Institute, Department of Molecular Medicine, Kolkata 700 054, India – sequence: 5 givenname: R. surname: Basu fullname: Basu, R. organization: Physics Department, Jogamaya Devi College, Kolkata 700 026, India – sequence: 6 givenname: P. surname: Nandy fullname: Nandy, P. organization: Centre for Interdisciplinary Research and Education, Kolkata 700 068, India – sequence: 7 givenname: S. surname: Das fullname: Das, S. email: sukhendasju@gmail.com organization: Physics Department, Jadavpur University, Kolkata 700 032, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25088798$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu1DAUtVARnRb-ACEv2SS1kzhxukAajWhBqsQCWFuOfdN65NjBdioNH8O34sy0GxbUG8u653F9zgU6c94BQu8pKSmh7dW-HAZ5D66sCG1KwkpCq1doQ3lXFZyQ9gxtSE2aoqEtO0cXMe5JPqxnb9B5xQjnXc836M_3g0sPEE3E0mmsHmSQKkEwv2Uy3mE_4t1ytb3HTjo_y5CMsoCtlxo0nhZrTYLjTPlp9nF9xUNMMF3jLZ59ApeMtFhlcaNlno4-ZKdkJqOCH9bZ6ptXCHKGJctjOc_WqKN9fItej9JGePd0X6KfN59_7L4Ud99uv-62d4Wqe5YK3XEKI4Nh7Nq-I0PbdKRv2gpqKSWHEShnwBVvRwqNpmpgGTMCgK5JxXtVX6KPJ905-F8LxCQmExVYKx34JYoqR1dVDSXdi1DKWkrqmrA2Qz88QZdhAi3mYCYZDuI5_gy4PgFyFjEGGIUy6fjzFKSxghKxdi324tS1WLsWhIncdSY3_5Cf9V-gfTrRIOf5aCCIqAw4BdoEUElob_4v8Bfi1MkP |
CitedBy_id | crossref_primary_10_13168_cs_2016_0030 crossref_primary_10_1007_s00339_016_0395_y crossref_primary_10_1155_2023_3971686 crossref_primary_10_1021_acsomega_1c03925 crossref_primary_10_3389_fmicb_2021_659614 crossref_primary_10_1002_app_50433 crossref_primary_10_1021_acsinfecdis_1c00496 crossref_primary_10_1016_j_inoche_2025_114019 crossref_primary_10_1016_j_ceramint_2017_10_051 crossref_primary_10_1039_C6NJ04008J crossref_primary_10_1515_zpch_2023_0206 crossref_primary_10_1016_j_archoralbio_2017_09_028 crossref_primary_10_1016_j_jhazmat_2021_126721 crossref_primary_10_1002_chem_201800820 crossref_primary_10_1016_j_msec_2020_111190 crossref_primary_10_1016_j_rinma_2020_100099 crossref_primary_10_2174_1381612826666200113162114 crossref_primary_10_1038_s41598_022_24172_y crossref_primary_10_1016_j_cej_2015_04_107 crossref_primary_10_1016_j_ceramint_2017_01_118 crossref_primary_10_1016_j_jiec_2023_01_019 crossref_primary_10_1088_1361_6528_ab9da5 crossref_primary_10_1016_j_jmst_2022_03_023 crossref_primary_10_13005_ojc_380533 crossref_primary_10_3390_ma16165647 crossref_primary_10_1002_ceat_201600380 crossref_primary_10_1002_advs_202201111 crossref_primary_10_3390_inorganics6030064 crossref_primary_10_1016_j_ejmcr_2024_100190 crossref_primary_10_1002_adhm_201500712 crossref_primary_10_1002_ceat_202200576 crossref_primary_10_1515_revce_2017_0011 crossref_primary_10_1002_pc_23885 crossref_primary_10_1016_j_colsurfb_2019_110449 |
Cites_doi | 10.1016/S0924-2031(02)00065-6 10.1016/j.biomaterials.2009.07.030 10.1016/j.matlet.2011.12.055 10.1124/pr.55.1.2 10.1016/j.jeurceramsoc.2012.08.009 10.1039/a900568d 10.1016/j.mseb.2010.01.044 10.1016/j.tibtech.2012.06.004 10.1016/j.biomaterials.2012.06.091 10.1016/j.nano.2006.12.001 10.1002/jbm.b.31316 10.1007/s11051-010-9900-y 10.1002/1097-0320(20000701)40:3<214::AID-CYTO6>3.0.CO;2-M 10.1038/nbt.2458 10.1016/j.jhazmat.2010.04.016 10.1016/j.biomaterials.2013.08.047 10.1016/j.actbio.2007.11.006 10.1111/jace.12386 10.1063/1.1727057 10.1111/j.1551-2916.2006.00963.x 10.1016/j.bbamem.2010.06.016 10.1038/nrm2330 10.3390/molecules16042862 10.1016/j.cell.2007.06.049 10.1016/j.msec.2012.05.011 10.1016/S1466-6049(01)00189-1 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2014.05.012 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 3276 |
ExternalDocumentID | 25088798 10_1016_j_bbagen_2014_05_012 S0304416514001858 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. F5P H~9 K-O MVM NPM PKN RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c395t-d781ef5ebf76970b64709462e3aaa8efe185e8c86f1e4d1cb50b6feeed30289c3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Mon Jul 21 10:27:19 EDT 2025 Fri Jul 11 02:26:53 EDT 2025 Wed Feb 19 02:42:35 EST 2025 Tue Jul 01 00:22:03 EDT 2025 Thu Apr 24 22:51:35 EDT 2025 Fri Feb 23 02:32:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Mullite Antibacterial activity Cyto-compatibility Metal nanoparticle |
Language | English |
License | Copyright © 2014 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-d781ef5ebf76970b64709462e3aaa8efe185e8c86f1e4d1cb50b6feeed30289c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6723-4838 |
PMID | 25088798 |
PQID | 1561033056 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2000224107 proquest_miscellaneous_1561033056 pubmed_primary_25088798 crossref_citationtrail_10_1016_j_bbagen_2014_05_012 crossref_primary_10_1016_j_bbagen_2014_05_012 elsevier_sciencedirect_doi_10_1016_j_bbagen_2014_05_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ramyadevi, Jeyasubramanian, Marikani, Rajakumar, Rahuman (bb0015) 2012; 71 Hajipour, Fromm, Ashkarran, de Aberasturi, de Larramendi, Rojo, Serpooshan, Parak, Mahmoudi (bb0005) 2012; 30 Kundu, Saha, Datta, Kundu (bb0105) 2013; 34 Brynildsen, Winkler, Spina, MacDonald, Collins (bb0125) 2013; 31 Nath, Basu, Mohanty, Mohanan (bb0095) 1999; 90B Ruparelia, Chatterjee, Duttagupta, Mukherji (bb0120) 2008; 4 Bajpai, Balani, Basu (bb0050) 2013; 96 Miller (bb0055) 1972 Lewis, Alei, Morgan (bb0085) 1966; 44 Kim (bb0110) 2007; 3 Wang, Cao, Huang, Fei (bb0075) 2013; 33 Su, Chou, Hung, Lin, Pao, Lin, Huang, Dong, Lin (bb0060) 2009; 30 Barbesti, Citterio, Labra, Baroni, Neri, Sgorbati (bb0065) 2000; 40 Meer, Voelker, Feigenson (bb0135) 2008; 9 Madejova (bb0040) 2003 Saleh, Taha, Haddadin, Marzooqa, Hodali (bb0025) 2011; 16 Joshi, Bisht, Rawat, Kumar, Kumar, Maiti, Pasha (bb0045) 2010; 1798 Salkar, Jeevanandam, Aruna, Koltypin, Gedanken (bb0090) 1999; 9 Padmaja, Anilkumar, Mukundan, Aruldhas, Warrier (bb0080) 2001; 3 Bagchi, Dey, Bhandary, Das, Bhattacharya, Basu, Nandy (bb0030) 2012; 32 Yoshida, Hyuga, Kondo, Kita (bb0035) 2010; 173 Marambio-Jones, Hoek (bb0010) 2010; 12 Theerakittayakorn, Bunprasert (bb0100) 2011; 50 Bernardo, Colombo, Pippel, Woltersdorf (bb0020) 2006; 89 Kundu, Kundu (bb0070) 2012; 33 Kohanski, Dwyer, Hayete, Lawrence, Collins (bb0130) 2007; 130 Yeaman, Yount (bb0140) 2003; 55 Cabiscol, Tamarit, Ros (bb0145) 2000; 3 Rispoli, Angelov, Badia, Kumar, Seal, Shah (bb0115) 2010; 180 Hajipour (10.1016/j.bbagen.2014.05.012_bb0005) 2012; 30 Cabiscol (10.1016/j.bbagen.2014.05.012_bb0145) 2000; 3 Lewis (10.1016/j.bbagen.2014.05.012_bb0085) 1966; 44 Madejova (10.1016/j.bbagen.2014.05.012_bb0040) 2003 Miller (10.1016/j.bbagen.2014.05.012_bb0055) 1972 Su (10.1016/j.bbagen.2014.05.012_bb0060) 2009; 30 Nath (10.1016/j.bbagen.2014.05.012_bb0095) 1999; 90B Marambio-Jones (10.1016/j.bbagen.2014.05.012_bb0010) 2010; 12 Wang (10.1016/j.bbagen.2014.05.012_bb0075) 2013; 33 Ruparelia (10.1016/j.bbagen.2014.05.012_bb0120) 2008; 4 Brynildsen (10.1016/j.bbagen.2014.05.012_bb0125) 2013; 31 Yeaman (10.1016/j.bbagen.2014.05.012_bb0140) 2003; 55 Barbesti (10.1016/j.bbagen.2014.05.012_bb0065) 2000; 40 Bernardo (10.1016/j.bbagen.2014.05.012_bb0020) 2006; 89 Kohanski (10.1016/j.bbagen.2014.05.012_bb0130) 2007; 130 Yoshida (10.1016/j.bbagen.2014.05.012_bb0035) 2010; 173 Kim (10.1016/j.bbagen.2014.05.012_bb0110) 2007; 3 Bajpai (10.1016/j.bbagen.2014.05.012_bb0050) 2013; 96 Kundu (10.1016/j.bbagen.2014.05.012_bb0070) 2012; 33 Saleh (10.1016/j.bbagen.2014.05.012_bb0025) 2011; 16 Meer (10.1016/j.bbagen.2014.05.012_bb0135) 2008; 9 Padmaja (10.1016/j.bbagen.2014.05.012_bb0080) 2001; 3 Theerakittayakorn (10.1016/j.bbagen.2014.05.012_bb0100) 2011; 50 Rispoli (10.1016/j.bbagen.2014.05.012_bb0115) 2010; 180 Salkar (10.1016/j.bbagen.2014.05.012_bb0090) 1999; 9 Ramyadevi (10.1016/j.bbagen.2014.05.012_bb0015) 2012; 71 Kundu (10.1016/j.bbagen.2014.05.012_bb0105) 2013; 34 Bagchi (10.1016/j.bbagen.2014.05.012_bb0030) 2012; 32 Joshi (10.1016/j.bbagen.2014.05.012_bb0045) 2010; 1798 |
References_xml | – volume: 9 start-page: 112 year: 2008 end-page: 124 ident: bb0135 article-title: Membrane lipids: where they are and how they behave publication-title: Nat. Rev. Mol. Cell Biol. – start-page: 1 year: 2003 end-page: 10 ident: bb0040 article-title: FTIR techniques in clay mineral studies publication-title: Vib. Spectrosc. – volume: 31 start-page: 160 year: 2013 end-page: 167 ident: bb0125 article-title: Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production publication-title: Nat. Biotechnol. – volume: 130 start-page: 797 year: 2007 end-page: 810 ident: bb0130 article-title: A common mechanism of cellular death induced by bactericidal antibiotics publication-title: Cell – volume: 12 start-page: 1531 year: 2010 end-page: 1551 ident: bb0010 article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment publication-title: J. Nanopart. Res. – volume: 3 start-page: 3 year: 2000 end-page: 8 ident: bb0145 article-title: Oxidative stress in bacteria and protein damage by reactive oxygen species publication-title: Int. Microb. – volume: 30 start-page: 5979 year: 2009 end-page: 5987 ident: bb0060 article-title: The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay publication-title: Biomaterials – volume: 32 start-page: 1897 year: 2012 end-page: 1905 ident: bb0030 article-title: Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates publication-title: Mater. Sci. Eng. C – volume: 16 start-page: 2862 year: 2011 end-page: 2870 ident: bb0025 article-title: Preparation of silver- and zinc-doped mullite-based ceramics showing anti-bacterial biofilm properties publication-title: Molecules – volume: 44 start-page: 2409 year: 1966 end-page: 2417 ident: bb0085 article-title: Magnetic resonance studies on copper(II) complex ions in solution. I. Temperature dependences of the 170 NMR and copper(II) EPR linewidths of Cu(H publication-title: J. Chem. Phys. – volume: 33 start-page: 191 year: 2013 end-page: 198 ident: bb0075 article-title: A mullite/SiC oxidation protective coating for carbon/carbon composites publication-title: J. Eur. Ceram. Soc. – volume: 89 start-page: 1577 year: 2006 end-page: 1583 ident: bb0020 article-title: Novel mullite synthesis based on alumina nanoparticles and a preceramic polymer publication-title: J. Am. Ceram. Soc. – volume: 33 start-page: 7456 year: 2012 end-page: 7467 ident: bb0070 article-title: Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction publication-title: Biomaterials – volume: 50 start-page: 373 year: 2011 end-page: 376 ident: bb0100 article-title: Differentiation capacity of mouse L929 fibroblastic cell line compare with human dermal fibroblast publication-title: World Acad. Sci. Eng. Technol. – volume: 3 start-page: 693 year: 2001 end-page: 698 ident: bb0080 article-title: Characterisation of stoichiometric sol–gel mullite by Fourier transform infrared spectroscopy publication-title: Inorg. Mater. – volume: 9 start-page: 1333 year: 1999 end-page: 1335 ident: bb0090 article-title: The sonochemical preparation of amorphous silver nanoparticles publication-title: J. Mater. Chem. – volume: 3 start-page: 95 year: 2007 end-page: 101 ident: bb0110 article-title: Antimicrobial effects of silver nanoparticles publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 55 start-page: 27 year: 2003 end-page: 55 ident: bb0140 article-title: Mechanisms of antimicrobial peptide action and resistance publication-title: Pharmacol. Rev. – volume: 173 start-page: 66 year: 2010 end-page: 71 ident: bb0035 article-title: Synthesis of precursor for fibrous mullite powder by alkoxide hydrolysis method publication-title: Mater. Sci. Eng. B – volume: 34 start-page: 9462 year: 2013 end-page: 9474 ident: bb0105 article-title: A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells publication-title: Biomaterials – start-page: 352 year: 1972 end-page: 355 ident: bb0055 article-title: Experiments in Molecular Genetics – volume: 1798 start-page: 1864 year: 2010 end-page: 1875 ident: bb0045 article-title: Interaction studies of novel cell selective antimicrobial peptides with model membranes and publication-title: Biochim. Biophys. Acta – volume: 90B start-page: 547 year: 1999 end-page: 557 ident: bb0095 article-title: In vivo response of novel calcium phosphate–mullite composites: results up to 12 weeks of implantation publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 40 start-page: 214 year: 2000 end-page: 218 ident: bb0065 article-title: Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria publication-title: Cytometry – volume: 30 start-page: 499 year: 2012 end-page: 511 ident: bb0005 article-title: Antibacterial properties of nanoparticles publication-title: Trends Biotechnol. – volume: 4 start-page: 707 year: 2008 end-page: 716 ident: bb0120 article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles publication-title: Acta Biomater. – volume: 71 start-page: 114 year: 2012 end-page: 116 ident: bb0015 article-title: Synthesis and antimicrobial activity of copper nanoparticles publication-title: Mater. Lett. – volume: 180 start-page: 212 year: 2010 end-page: 216 ident: bb0115 article-title: Understanding the toxicity of aggregated zero valent copper nanoparticles against publication-title: J. Hazard. Mater. – volume: 96 start-page: 2100 year: 2013 end-page: 2108 ident: bb0050 article-title: Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites publication-title: J. Am. Ceram. Soc. – start-page: 1 year: 2003 ident: 10.1016/j.bbagen.2014.05.012_bb0040 article-title: FTIR techniques in clay mineral studies publication-title: Vib. Spectrosc. doi: 10.1016/S0924-2031(02)00065-6 – volume: 30 start-page: 5979 year: 2009 ident: 10.1016/j.bbagen.2014.05.012_bb0060 article-title: The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.07.030 – volume: 71 start-page: 114 year: 2012 ident: 10.1016/j.bbagen.2014.05.012_bb0015 article-title: Synthesis and antimicrobial activity of copper nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.12.055 – volume: 55 start-page: 27 year: 2003 ident: 10.1016/j.bbagen.2014.05.012_bb0140 article-title: Mechanisms of antimicrobial peptide action and resistance publication-title: Pharmacol. Rev. doi: 10.1124/pr.55.1.2 – volume: 3 start-page: 3 year: 2000 ident: 10.1016/j.bbagen.2014.05.012_bb0145 article-title: Oxidative stress in bacteria and protein damage by reactive oxygen species publication-title: Int. Microb. – volume: 33 start-page: 191 year: 2013 ident: 10.1016/j.bbagen.2014.05.012_bb0075 article-title: A mullite/SiC oxidation protective coating for carbon/carbon composites publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2012.08.009 – volume: 9 start-page: 1333 year: 1999 ident: 10.1016/j.bbagen.2014.05.012_bb0090 article-title: The sonochemical preparation of amorphous silver nanoparticles publication-title: J. Mater. Chem. doi: 10.1039/a900568d – volume: 173 start-page: 66 year: 2010 ident: 10.1016/j.bbagen.2014.05.012_bb0035 article-title: Synthesis of precursor for fibrous mullite powder by alkoxide hydrolysis method publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2010.01.044 – start-page: 352 year: 1972 ident: 10.1016/j.bbagen.2014.05.012_bb0055 – volume: 30 start-page: 499 year: 2012 ident: 10.1016/j.bbagen.2014.05.012_bb0005 article-title: Antibacterial properties of nanoparticles publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2012.06.004 – volume: 33 start-page: 7456 year: 2012 ident: 10.1016/j.bbagen.2014.05.012_bb0070 article-title: Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.091 – volume: 50 start-page: 373 year: 2011 ident: 10.1016/j.bbagen.2014.05.012_bb0100 article-title: Differentiation capacity of mouse L929 fibroblastic cell line compare with human dermal fibroblast publication-title: World Acad. Sci. Eng. Technol. – volume: 3 start-page: 95 year: 2007 ident: 10.1016/j.bbagen.2014.05.012_bb0110 article-title: Antimicrobial effects of silver nanoparticles publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2006.12.001 – volume: 90B start-page: 547 year: 1999 ident: 10.1016/j.bbagen.2014.05.012_bb0095 article-title: In vivo response of novel calcium phosphate–mullite composites: results up to 12 weeks of implantation publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.31316 – volume: 12 start-page: 1531 year: 2010 ident: 10.1016/j.bbagen.2014.05.012_bb0010 article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment publication-title: J. Nanopart. Res. doi: 10.1007/s11051-010-9900-y – volume: 40 start-page: 214 year: 2000 ident: 10.1016/j.bbagen.2014.05.012_bb0065 article-title: Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria publication-title: Cytometry doi: 10.1002/1097-0320(20000701)40:3<214::AID-CYTO6>3.0.CO;2-M – volume: 31 start-page: 160 year: 2013 ident: 10.1016/j.bbagen.2014.05.012_bb0125 article-title: Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2458 – volume: 180 start-page: 212 year: 2010 ident: 10.1016/j.bbagen.2014.05.012_bb0115 article-title: Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.04.016 – volume: 34 start-page: 9462 year: 2013 ident: 10.1016/j.bbagen.2014.05.012_bb0105 article-title: A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.08.047 – volume: 4 start-page: 707 year: 2008 ident: 10.1016/j.bbagen.2014.05.012_bb0120 article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles publication-title: Acta Biomater. doi: 10.1016/j.actbio.2007.11.006 – volume: 96 start-page: 2100 year: 2013 ident: 10.1016/j.bbagen.2014.05.012_bb0050 article-title: Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12386 – volume: 44 start-page: 2409 year: 1966 ident: 10.1016/j.bbagen.2014.05.012_bb0085 article-title: Magnetic resonance studies on copper(II) complex ions in solution. I. Temperature dependences of the 170 NMR and copper(II) EPR linewidths of Cu(H20)62+ publication-title: J. Chem. Phys. doi: 10.1063/1.1727057 – volume: 89 start-page: 1577 year: 2006 ident: 10.1016/j.bbagen.2014.05.012_bb0020 article-title: Novel mullite synthesis based on alumina nanoparticles and a preceramic polymer publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2006.00963.x – volume: 1798 start-page: 1864 year: 2010 ident: 10.1016/j.bbagen.2014.05.012_bb0045 article-title: Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2010.06.016 – volume: 9 start-page: 112 year: 2008 ident: 10.1016/j.bbagen.2014.05.012_bb0135 article-title: Membrane lipids: where they are and how they behave publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2330 – volume: 16 start-page: 2862 year: 2011 ident: 10.1016/j.bbagen.2014.05.012_bb0025 article-title: Preparation of silver- and zinc-doped mullite-based ceramics showing anti-bacterial biofilm properties publication-title: Molecules doi: 10.3390/molecules16042862 – volume: 130 start-page: 797 year: 2007 ident: 10.1016/j.bbagen.2014.05.012_bb0130 article-title: A common mechanism of cellular death induced by bactericidal antibiotics publication-title: Cell doi: 10.1016/j.cell.2007.06.049 – volume: 32 start-page: 1897 year: 2012 ident: 10.1016/j.bbagen.2014.05.012_bb0030 article-title: Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2012.05.011 – volume: 3 start-page: 693 year: 2001 ident: 10.1016/j.bbagen.2014.05.012_bb0080 article-title: Characterisation of stoichiometric sol–gel mullite by Fourier transform infrared spectroscopy publication-title: Inorg. Mater. doi: 10.1016/S1466-6049(01)00189-1 |
SSID | ssj0000595 ssj0025309 |
Score | 2.321283 |
Snippet | Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3264 |
SubjectTerms | adsorption Antibacterial activity antibacterial properties antibiotic resistance beta-galactosidase cell death cell movement cell viability ceramics coatings copper Cyto-compatibility electron paramagnetic resonance spectroscopy energy-dispersive X-ray analysis exposure duration fibroblasts flow cytometry Fourier transform infrared spectroscopy Gram-negative bacteria medical equipment metal ions Metal nanoparticle mice Mullite nanocomposites nanoparticles nanosilver oxidative stress scanning electron microscopy silver spectrophotometers tissue repair transmission electron microscopy X-ray diffraction |
Title | Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications |
URI | https://dx.doi.org/10.1016/j.bbagen.2014.05.012 https://www.ncbi.nlm.nih.gov/pubmed/25088798 https://www.proquest.com/docview/1561033056 https://www.proquest.com/docview/2000224107 |
Volume | 1840 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgSXCsproVRG4ho2iR3H4bZatVpY0QOlojfLccYoqE1W3eyhF34Kv5WZOFnKYVWJU5R4HFuZsedz5sXYe9zzpRNVGtnC4wGlAMAlpW3kZIHKw8dO9k40X87U4kJ-vswu99h8jIUht8ph7w97er9bD0-mw9ecrup6ek5GPYQTqPGpslxGAb9S5iTlH379dfNA-JAFS4KMiHoMn-t9vMoSFy1lQU1kyN-Z7lJPu-Bnr4ZOn7CDAT_yWZjiU7YHzSF7GCpK3h6yR_OxgNsz9vv8tkF4t67X3DYVd9vUzCHykreezzfT2Q_e2AaPzuGN_Kq1FVT8moxEHfRt5HZOvl3AQ97nj3zGV21HfkY4FUeBMfTfgCP-xZG6-rruszthG417J8KL3zWXP2cXpyff5otoKMcQOVFkXVTlOgGfQelzVeRxqWSOZ0OVgrDWavCATADttPIJyCpxZYY0HlAJCzJnOvGC7TdtA68YtzqHSistlCqRZ2DBa6G1gMqqNLVqwsTIBeOGXOVUMuPKjE5pP03gnSHemTgzyLsJi7a9ViFXxz30-chg84_MGVQn9_R8N8qDQaaSjcU20G7WJiE8KuhctpsmjQNyivMJexmEaTvftAfMhX7933N7wx7TXYiXPGL73c0G3iJw6srjfmUcswezT8vFGV2XX78v_wAl0Byz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKESoXBOW1PI3ENWwSO47DbbWiWqDtpa3Um-U44yqoTVbd7KGX_hR-KzNxspTDqhLX2I5HGY_nm8yLsc9450snqjSyhUcDpQBAkdI2crJA5eFjJ_sgmqNjtTiTP86z8x02H3NhKKxyuPvDnd7f1sOT6fA1p8u6np6QUw_hBGp86iyX6QfsoUTxpTYGX27_xnkgfsiCK0FGNH3Mn-uDvMoSpZbKoCYyFPBMt-mnbfiz10MHT9mTAUDyWaDxGduBZp89Ci0lb_bZ3nzs4Pac_T65aRDfreoVt03F3aY2c0i95K3n8_V0dsEb26DtHN7IL1tbQcWvyEvUQT9GcecU3AU8FH7-ymd82XYUaISkOMqMoR8HHAEw7tTVV3Vf3gnHaN87KV78rr_8BTs7-HY6X0RDP4bIiSLroirXCfgMSp-rIo9LJXM0DlUKwlqrwQNyAbTTyicgq8SVGc7xgFpYkD_TiZdst2kbeM241TlUWmmhVCllDha8FloLqKxKU6smTIxcMG4oVk49My7NGJX2ywTeGeKdiTODvJuwaLNqGYp13DM_Hxls_jl0BvXJPSs_jefBIFPJyWIbaNcrkxAgFWSYbZ-TxgE6xfmEvQqHaUNv2iPmQr_5b9o-sr3F6dGhOfx-_PMte0wjIXnyHdvtrtfwHlFUV37opeQPjDAcng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+Cu%2FAg+nanoparticle+loaded+mullite+nanocomposite+system%3A+A+potential+candidate+for+antimicrobial+and+therapeutic+applications&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Kar%2C+S&rft.au=Bagchi%2C+B&rft.au=Kundu%2C+B&rft.au=Bhandary%2C+S&rft.date=2014-11-01&rft.issn=0006-3002&rft.volume=1840&rft.issue=11&rft.spage=3264&rft_id=info:doi/10.1016%2Fj.bbagen.2014.05.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |