Water channel structures analysed by electron crystallography

The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydroge...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1840; no. 5; pp. 1605 - 1613
Main Authors Tani, Kazutoshi, Fujiyoshi, Yoshinori
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2014
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
1872-8006
DOI10.1016/j.bbagen.2013.10.007

Cover

Loading…
Abstract The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules. The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids. Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function. Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins. [Display omitted] •Electron crystallography solved the first atomic structure of AQP.•Electron crystallography determined the structures of AQP1, AQP0, and AQP4.•Electron crystallography can be used to observe membrane proteins in lipids.•H-bond isolation mechanism is proposed to explain water channel functions.•Double-layered crystals of AQP0 and AQP4 revealed the cell adhesion function.
AbstractList The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules. The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids. Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function. Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins. [Display omitted] •Electron crystallography solved the first atomic structure of AQP.•Electron crystallography determined the structures of AQP1, AQP0, and AQP4.•Electron crystallography can be used to observe membrane proteins in lipids.•H-bond isolation mechanism is proposed to explain water channel functions.•Double-layered crystals of AQP0 and AQP4 revealed the cell adhesion function.
The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.BACKGROUNDThe mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.SCOPE OF REVIEWThe AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.MAJOR CONCLUSIONSMany AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.GENERAL SIGNIFICANCEElectron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.
The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules. The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids. Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function. Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.
The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.
Author Fujiyoshi, Yoshinori
Tani, Kazutoshi
Author_xml – sequence: 1
  givenname: Kazutoshi
  surname: Tani
  fullname: Tani, Kazutoshi
– sequence: 2
  givenname: Yoshinori
  surname: Fujiyoshi
  fullname: Fujiyoshi, Yoshinori
  email: yoshi@cespi.nagoya-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24120524$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LHEEQhpugxNXkH4Qwx1xm7c_5EBIQiR8geFFybGq6a7WX3p61u0eYf59e1njwEOtSUDxvQdVzTA7CGJCQb4wuGWXN6Xo5DPCIYckpE2W0pLT9RBasa3ndUdockAUVVNaSNeqIHKe0pqVUrz6TIy4Zp4rLBfn5BzLGyjxBCOirlONk8hQxVRDAzwltNcwVejQ5jqEycU4ZvB8fI2yf5i_kcAU-4dfXfkIeLn_fX1zXt3dXNxfnt7URvcq1bduBM4mNshZ6JUwnFdh-ZaQA1TRW9oNR1gD2crAKTAFbbAGEUIyiBHFCfuz3buP4PGHKeuOSQe8h4DglzctlnDe96D9EmWJdU47vWEG_v6LTsEGrt9FtIM7633cKIPeAiWNKEVdvCKN6J0Gv9V6C3knYTYuEEjt7FzMuQ3ZjyBGc_yj8ax_G8s8Xh1En4zAYtC4WCdqO7v8L_gKeG6R6
CitedBy_id crossref_primary_10_1134_S1819712420010171
crossref_primary_10_1128_AEM_02127_15
crossref_primary_10_3390_ani12050573
crossref_primary_10_1021_acs_macromol_8b01063
crossref_primary_10_3390_ijms232012317
crossref_primary_10_1679_aohc_77_25
crossref_primary_10_1016_S1773_035X_16_30420_8
crossref_primary_10_3389_fpls_2018_00382
crossref_primary_10_1038_s41467_024_53504_x
crossref_primary_10_1111_rda_13082
crossref_primary_10_1093_jmicro_dfv368
crossref_primary_10_1126_sciadv_aao3013
crossref_primary_10_1007_s00018_014_1773_2
crossref_primary_10_1016_j_sbi_2016_06_001
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119777
crossref_primary_10_1007_s10585_014_9687_9
crossref_primary_10_1007_s00436_016_5114_2
crossref_primary_10_3390_ijms24021412
crossref_primary_10_1007_s00232_019_00061_w
crossref_primary_10_1007_s00018_016_2142_0
crossref_primary_10_1038_s41467_025_57728_3
crossref_primary_10_1086_BBLv229n1p6
crossref_primary_10_1096_fj_201601282R
Cites_doi 10.1038/emboj.2009.102
10.1038/nature04316
10.1038/nature04321
10.1016/S0263-7855(97)00009-X
10.1006/jmbi.1999.3413
10.1038/414872a
10.1111/j.1742-4658.2010.07993.x
10.1038/nature02503
10.1038/367614a0
10.1016/j.jmb.2004.07.076
10.1038/nrn1252
10.1016/j.jsb.2011.01.003
10.1083/jcb.105.4.1679
10.1073/pnas.95.20.11981
10.1152/ajprenal.00439.2003
10.1016/S0014-5793(01)02743-0
10.1083/jcb.92.1.213
10.1073/pnas.0802401105
10.1016/S0065-227X(98)80003-8
10.1126/science.256.5055.385
10.1126/science.1067778
10.1073/pnas.2235843100
10.1371/journal.pbio.1000130
10.1016/j.jmb.2006.04.039
10.1016/S0021-9258(19)37635-5
10.1242/jeb.95.1.35
10.1016/j.str.2005.03.010
10.1038/257028a0
10.1007/s002329900266
10.1038/46045
10.1016/j.jmb.2005.10.081
10.1523/JNEUROSCI.17-01-00171.1997
10.1016/S0959-440X(03)00102-7
10.1126/science.1234306
10.1038/emboj.2009.182
10.1073/pnas.0801466105
10.1126/science.1062459
10.1016/j.str.2003.11.017
10.1371/journal.pbio.0000072
10.1016/j.jmb.2009.04.049
10.1016/0092-8674(84)90190-9
10.1016/j.jmb.2004.08.036
10.1074/jbc.270.15.9010
10.1038/35036519
10.1016/j.jmb.2010.10.032
10.1016/j.jmb.2003.08.003
10.1016/S0022-2836(05)80271-2
10.1073/pnas.0405274101
10.1073/pnas.0507225103
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2013.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2013.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2013.10.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 1613
ExternalDocumentID 24120524
10_1016_j_bbagen_2013_10_007
S0304416513004479
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-d77b214e65dda953c845ad9fc43a566d49bc5dcae94bd5ace657e7aa33510e4a3
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Fri Jul 11 02:27:43 EDT 2025
Fri Jul 11 08:28:28 EDT 2025
Thu Apr 03 07:06:28 EDT 2025
Tue Jul 01 00:22:02 EDT 2025
Thu Apr 24 23:06:58 EDT 2025
Fri Feb 23 02:32:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords AQP
Electron crystallography
Water channel
H-bond
Cryo-electron microscopy
2D
AQP4M23
MD
Cell adhesion
ar/R
AQP4M1
NPA
Aquaporin
Language English
License 2013.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-d77b214e65dda953c845ad9fc43a566d49bc5dcae94bd5ace657e7aa33510e4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 24120524
PQID 1518620581
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000226939
proquest_miscellaneous_1518620581
pubmed_primary_24120524
crossref_primary_10_1016_j_bbagen_2013_10_007
crossref_citationtrail_10_1016_j_bbagen_2013_10_007
elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_10_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Oshima, Tani, Toloue, Hiroaki, Smock, Inukai, Cone, Nicholson, Sosinsky, Fujiyoshi (bb0075) 2011; 405
Gonen, Cheng, Kistler, Walz (bb0150) 2004; 342
Bok, Dockstader, Horwitz (bb0130) 1982; 92
Chakrabarti, Roux, Pomès (bb0040) 2004; 343
Gorin, Yancey, Cline, Revel, Horwitz (bb0125) 1984; 39
Henderson, Unwin (bb0055) 1975; 257
Landis, Reese (bb0185) 1981; 95
de Groot, Frigato, Helms, Grubmüller (bb0030) 2003; 333
Fischer, Kosinska-Eriksson, Aponte-Santamaría, Palmgren, Geijer, Hedfalk, Hohman, de Groot, Neutze, Lindkvist-Petersson (bb0050) 2009; 7
Rash, Yasumura, Hudson, Agre, Nielsen (bb0180) 1998; 95
Nielsen, Nagelhus, Amiry-Moghaddam, Bourque, Agre, Ottersen (bb0250) 1997; 17
Savage, Egea, Robles-Colmenares, O'Connell, Stroud (bb0215) 2003; 1
Abe, Tani, Nishizawa, Fujiyoshi (bb0070) 2009; 28
Murata, Mitsuoka, Hirai, Walz, Agre, Heymann, Engel, Fujiyoshi (bb0015) 2000; 407
Mulders, Preston, Deen, Guggino, van Os, Agre (bb0140) 1995; 270
Kühlbrandt, Wang, Fujiyoshi (bb0065) 1994; 367
Preston, Carroll, Guggino, Agre (bb0005) 1992; 256
Heymann, Engel (bb0085) 2000; 295
Beitz, Wu, Holm, Schultz, Zeuthen (bb0105) 2006; 103
Wree, Wu, Zeuthen, Beitz (bb0115) 2011; 278
Chandy, Zampighi, Kreman, Hall (bb0235) 1977; 159
Kosinska-Eriksson, Fischer, Friemann, Enkavi, Tajkhorshid, Neutze (bb0045) 2013; 340
Hiroaki, Tani, Kamegawa, Gyobu, Nishikawa, Suzuki, Walz, Sasaki, Mitsuoka, Kimura, Mizoguchi, Fujiyoshi (bb0205) 2006; 355
Harries, Akhavan, Miercke, Khademi, Stroud (bb0160) 2004; 101
Smart, Neduvelil, Wang, Wallace, Sansom (bb0230) 1996; 14
Fujiyoshi (bb0200) 1998; 35
Henderson, Baldwin, Ceska, Zemlin, Beckmann, Downing (bb0060) 1990; 213
Sengupta, Behera, Smith, Ullmann (bb0210) 2005; 13
de Groot, Engel, Grubmüller (bb0095) 2001; 504
Moghaddam, Ottersen (bb0175) 2003; 4
Tajkhorshid, Nollert, Jensen, Miercke, O'Connell, Stroud, Schulten (bb0025) 2002; 296
Sui, Han, Lee, Walian, Jap (bb0100) 2001; 414
Gonen, Cheng, Sliz, Hiroaki, Fujiyoshi, Harrison, Walz (bb0155) 2005; 438
Curran, Engelman (bb0090) 2003; 13
Gonen, Sliz, Kistler, Cheng, Walz (bb0145) 2004; 429
Silberstein, Bouley, Huang, Fang, Pastor-Soler, Brown, Van Hoek (bb0195) 2004; 287
Denker, Smith, Kuhajda, Agre (bb0010) 1988; 263
Yakata, Tani, Fujiyoshi (bb0245) 2011; 174
Wu, Steinbronn, Alsterfjord, Zeuthen, Beitz (bb0110) 2009; 28
Törnroth-Horsefield, Wang, Hedfalk, Johanson, Karlsson, Tajkhorshid, Stroud (bb0220) 2006; 439
Jensen, Dror, Xu, Borhani, Arkin, Eastwood, Shaw (bb0170) 2008; 105
Dunia, Manenti, Rousselet, Benedetti (bb0135) 1987; 105
Han, Guliaev, Walian, Jap (bb0165) 2006; 360
Furman, Gorelick-Feldman, Davidson, Yasumura, Neely, Agre, Rash (bb0190) 2003; 100
Horsefield, Norden, Fellert, Backmark, Törnroth-Horsefield, Terwisscha van Scheltinga, Kcassman, Kjellbom, Johanson, Neutze (bb0225) 2008; 105
Yasui, Hazama, Kwon, Nielsen, Guggino, Agre (bb0240) 1999; 402
Fujiyoshi (bb0080) 2011; 60
Tani, Mitsuma, Hiroaki, Kamegawa, Nishikawa, Tanimura, Fujiyoshi (bb0120) 2009; 389
de Groot, Grubmüller (bb0020) 2001; 294
Chakrabarti, Tajkhorshid, Roux, Pomès (bb0035) 2004; 12
Fujiyoshi (10.1016/j.bbagen.2013.10.007_bb0080) 2011; 60
Törnroth-Horsefield (10.1016/j.bbagen.2013.10.007_bb0220) 2006; 439
de Groot (10.1016/j.bbagen.2013.10.007_bb0020) 2001; 294
Fischer (10.1016/j.bbagen.2013.10.007_bb0050) 2009; 7
de Groot (10.1016/j.bbagen.2013.10.007_bb0095) 2001; 504
Furman (10.1016/j.bbagen.2013.10.007_bb0190) 2003; 100
Abe (10.1016/j.bbagen.2013.10.007_bb0070) 2009; 28
Murata (10.1016/j.bbagen.2013.10.007_bb0015) 2000; 407
Kosinska-Eriksson (10.1016/j.bbagen.2013.10.007_bb0045) 2013; 340
Bok (10.1016/j.bbagen.2013.10.007_bb0130) 1982; 92
Wree (10.1016/j.bbagen.2013.10.007_bb0115) 2011; 278
Fujiyoshi (10.1016/j.bbagen.2013.10.007_bb0200) 1998; 35
Preston (10.1016/j.bbagen.2013.10.007_bb0005) 1992; 256
Henderson (10.1016/j.bbagen.2013.10.007_bb0055) 1975; 257
Denker (10.1016/j.bbagen.2013.10.007_bb0010) 1988; 263
Heymann (10.1016/j.bbagen.2013.10.007_bb0085) 2000; 295
Curran (10.1016/j.bbagen.2013.10.007_bb0090) 2003; 13
Tajkhorshid (10.1016/j.bbagen.2013.10.007_bb0025) 2002; 296
Silberstein (10.1016/j.bbagen.2013.10.007_bb0195) 2004; 287
Nielsen (10.1016/j.bbagen.2013.10.007_bb0250) 1997; 17
Chakrabarti (10.1016/j.bbagen.2013.10.007_bb0035) 2004; 12
Gonen (10.1016/j.bbagen.2013.10.007_bb0150) 2004; 342
Savage (10.1016/j.bbagen.2013.10.007_bb0215) 2003; 1
Sui (10.1016/j.bbagen.2013.10.007_bb0100) 2001; 414
Wu (10.1016/j.bbagen.2013.10.007_bb0110) 2009; 28
Gonen (10.1016/j.bbagen.2013.10.007_bb0155) 2005; 438
Yakata (10.1016/j.bbagen.2013.10.007_bb0245) 2011; 174
Horsefield (10.1016/j.bbagen.2013.10.007_bb0225) 2008; 105
Mulders (10.1016/j.bbagen.2013.10.007_bb0140) 1995; 270
Tani (10.1016/j.bbagen.2013.10.007_bb0120) 2009; 389
Jensen (10.1016/j.bbagen.2013.10.007_bb0170) 2008; 105
Moghaddam (10.1016/j.bbagen.2013.10.007_bb0175) 2003; 4
Chakrabarti (10.1016/j.bbagen.2013.10.007_bb0040) 2004; 343
Sengupta (10.1016/j.bbagen.2013.10.007_bb0210) 2005; 13
Landis (10.1016/j.bbagen.2013.10.007_bb0185) 1981; 95
Harries (10.1016/j.bbagen.2013.10.007_bb0160) 2004; 101
Gonen (10.1016/j.bbagen.2013.10.007_bb0145) 2004; 429
Beitz (10.1016/j.bbagen.2013.10.007_bb0105) 2006; 103
Chandy (10.1016/j.bbagen.2013.10.007_bb0235) 1977; 159
Oshima (10.1016/j.bbagen.2013.10.007_bb0075) 2011; 405
Smart (10.1016/j.bbagen.2013.10.007_bb0230) 1996; 14
Han (10.1016/j.bbagen.2013.10.007_bb0165) 2006; 360
de Groot (10.1016/j.bbagen.2013.10.007_bb0030) 2003; 333
Henderson (10.1016/j.bbagen.2013.10.007_bb0060) 1990; 213
Hiroaki (10.1016/j.bbagen.2013.10.007_bb0205) 2006; 355
Gorin (10.1016/j.bbagen.2013.10.007_bb0125) 1984; 39
Dunia (10.1016/j.bbagen.2013.10.007_bb0135) 1987; 105
Rash (10.1016/j.bbagen.2013.10.007_bb0180) 1998; 95
Yasui (10.1016/j.bbagen.2013.10.007_bb0240) 1999; 402
Kühlbrandt (10.1016/j.bbagen.2013.10.007_bb0065) 1994; 367
References_xml – volume: 263
  start-page: 15634
  year: 1988
  end-page: 15642
  ident: bb0010
  article-title: Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules
  publication-title: J. Biol. Chem.
– volume: 407
  start-page: 599
  year: 2000
  end-page: 605
  ident: bb0015
  article-title: Structural determinants of water permeation through aquaporin-1
  publication-title: Nature
– volume: 438
  start-page: 633
  year: 2005
  end-page: 638
  ident: bb0155
  article-title: Lipid–protein interactions in double-layered two-dimensional AQP0 crystals
  publication-title: Nature
– volume: 1
  start-page: 334
  year: 2003
  end-page: 340
  ident: bb0215
  article-title: Architecture and selectivity in aquaporins: 2.5
  publication-title: PLoS Biol.
– volume: 296
  start-page: 525
  year: 2002
  end-page: 530
  ident: bb0025
  article-title: Control of the selectivity of the aquaporin water channel family by global orientational tuning
  publication-title: Science
– volume: 14
  start-page: 354
  year: 1996
  end-page: 360
  ident: bb0230
  article-title: HOLE: a program for the analysis of the pore dimensions of ion channel structural models
  publication-title: J. Mol. Graph.
– volume: 159
  start-page: 29
  year: 1977
  end-page: 39
  ident: bb0235
  article-title: Comparison of the water transporting properties of MIP and AQP1
  publication-title: J. Membr. Biol.
– volume: 95
  start-page: 11981
  year: 1998
  end-page: 11986
  ident: bb0180
  article-title: Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  start-page: 65
  year: 2004
  end-page: 74
  ident: bb0035
  article-title: Molecular basis of proton blockage in aquaporins
  publication-title: Structure
– volume: 213
  start-page: 899
  year: 1990
  end-page: 929
  ident: bb0060
  article-title: Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy
  publication-title: J. Mol. Biol.
– volume: 270
  start-page: 9010
  year: 1995
  end-page: 9016
  ident: bb0140
  article-title: Water channel properties of major intrinsic protein of lens
  publication-title: J. Biol. Chem.
– volume: 105
  start-page: 13327
  year: 2008
  end-page: 13332
  ident: bb0225
  article-title: High-resolution x-ray structure of human aquaporin 5
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 28
  start-page: 1637
  year: 2009
  end-page: 1643
  ident: bb0070
  article-title: Inter-subunit interaction of gastric H
  publication-title: EMBO J.
– volume: 367
  start-page: 614
  year: 1994
  end-page: 621
  ident: bb0065
  article-title: Atomic model of plant light-harvesting complex by electron crystallography
  publication-title: Nature
– volume: 13
  start-page: 412
  year: 2003
  end-page: 417
  ident: bb0090
  article-title: Sequence motifs, polar interactions and conformational changes in helical membrane proteins
  publication-title: Curr. Opin. Struct. Biol.
– volume: 439
  start-page: 688
  year: 2006
  end-page: 694
  ident: bb0220
  article-title: Structural mechanism of plant aquaporin gating
  publication-title: Nature
– volume: 174
  start-page: 315
  year: 2011
  end-page: 320
  ident: bb0245
  article-title: Water permeability and characterization of aquaporin-11
  publication-title: J. Struct. Biol.
– volume: 92
  start-page: 213
  year: 1982
  end-page: 220
  ident: bb0130
  article-title: Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions
  publication-title: J. Cell Biol.
– volume: 39
  start-page: 49
  year: 1984
  end-page: 59
  ident: bb0125
  article-title: The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning
  publication-title: Cell
– volume: 504
  start-page: 206
  year: 2001
  end-page: 211
  ident: bb0095
  article-title: A refined structure of human aquaporin-1
  publication-title: FEBS Lett.
– volume: 294
  start-page: 2353
  year: 2001
  end-page: 2357
  ident: bb0020
  article-title: Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF
  publication-title: Science
– volume: 256
  start-page: 385
  year: 1992
  end-page: 387
  ident: bb0005
  article-title: Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein
  publication-title: Science
– volume: 103
  start-page: 269
  year: 2006
  end-page: 274
  ident: bb0105
  article-title: Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 342
  start-page: 1337
  year: 2004
  end-page: 1345
  ident: bb0150
  article-title: Aquaporin-0 membrane junctions form upon proteolytic cleavage
  publication-title: J. Mol. Biol.
– volume: 343
  start-page: 493
  year: 2004
  end-page: 510
  ident: bb0040
  article-title: Structural determinants of proton blockage in aquaporins
  publication-title: J. Mol. Biol.
– volume: 360
  start-page: 285
  year: 2006
  end-page: 296
  ident: bb0165
  article-title: Water transport in AQP0 aquaporin: molecular dynamics studies
  publication-title: J. Mol. Biol.
– volume: 100
  start-page: 13609
  year: 2003
  end-page: 13614
  ident: bb0190
  article-title: Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 7
  start-page: e1000130
  year: 2009
  ident: bb0050
  article-title: Crystal structure of a yeast aquaporin at 1.15
  publication-title: PLoS Biol.
– volume: 101
  start-page: 14045
  year: 2004
  end-page: 14050
  ident: bb0160
  article-title: The channel architecture of aquaporin 0 at a 2.2-Å resolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 389
  start-page: 694
  year: 2009
  end-page: 706
  ident: bb0120
  article-title: Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion
  publication-title: J. Mol. Biol.
– volume: 429
  start-page: 193
  year: 2004
  end-page: 197
  ident: bb0145
  article-title: Aquaporin-0 membrane junctions reveal the structure of a closed water pore
  publication-title: Nature
– volume: 105
  start-page: 14430
  year: 2008
  end-page: 14435
  ident: bb0170
  article-title: Dynamic control of slow water transport by aquaporin 0: implications for hydration and junction stability in the eye lens
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 95
  start-page: 35
  year: 1981
  end-page: 48
  ident: bb0185
  article-title: Membrane structure in mammalian astrocytes: a review of freeze-fracture studies on adult, developing, reactive and cultured astrocytes
  publication-title: J. Exp. Biol.
– volume: 13
  start-page: 849
  year: 2005
  end-page: 855
  ident: bb0210
  article-title: The α helix dipole: screened out?
  publication-title: Structure
– volume: 402
  start-page: 184
  year: 1999
  end-page: 187
  ident: bb0240
  article-title: Rapid gating and anion permeability of an intracellular aquaporin
  publication-title: Nature
– volume: 340
  start-page: 1346
  year: 2013
  end-page: 1349
  ident: bb0045
  article-title: Subangstrom resolution X-ray structure details aquaporin–water interactions
  publication-title: Science
– volume: 278
  start-page: 740
  year: 2011
  end-page: 748
  ident: bb0115
  article-title: Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion
  publication-title: FEBS J.
– volume: 295
  start-page: 1039
  year: 2000
  end-page: 1053
  ident: bb0085
  article-title: Structural clues in the sequences of the aquaporins
  publication-title: J. Mol. Biol.
– volume: 287
  start-page: F501
  year: 2004
  end-page: F511
  ident: bb0195
  article-title: Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells
  publication-title: Am. J. Physiol. Renal Physiol.
– volume: 257
  start-page: 28
  year: 1975
  end-page: 32
  ident: bb0055
  article-title: Three-dimensional model of purple membrane obtained by electron microscopy
  publication-title: Nature
– volume: 414
  start-page: 872
  year: 2001
  end-page: 878
  ident: bb0100
  article-title: Structural basis of water-specific transport through the AQP1 water channel
  publication-title: Nature
– volume: 105
  start-page: 1679
  year: 1987
  end-page: 1689
  ident: bb0135
  article-title: Electron microscopic observations of reconstituted proteoliposomes with the purified major intrinsic membrane protein of eye lens fibers
  publication-title: J. Cell Biol.
– volume: 60
  start-page: S149
  year: 2011
  end-page: S159
  ident: bb0080
  article-title: Electron crystallography for structural and functional studies of membrane proteins
  publication-title: J. Electron Microsc.
– volume: 35
  start-page: 25
  year: 1998
  end-page: 80
  ident: bb0200
  article-title: The structural study of membrane proteins by electron crystallography
  publication-title: Adv. Biophys.
– volume: 17
  start-page: 171
  year: 1997
  end-page: 180
  ident: bb0250
  article-title: Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain
  publication-title: J. Neurosci.
– volume: 355
  start-page: 628
  year: 2006
  end-page: 639
  ident: bb0205
  article-title: Implications of the aquaporin-4 structure on array formation and cell adhesion
  publication-title: J. Mol. Biol.
– volume: 333
  start-page: 279
  year: 2003
  end-page: 293
  ident: bb0030
  article-title: The mechanism of proton exclusion in the aquaporin-1 water channel
  publication-title: J. Mol. Biol.
– volume: 28
  start-page: 2188
  year: 2009
  end-page: 2194
  ident: bb0110
  article-title: Concerted action of two cation filters in the aquaporin water channel
  publication-title: EMBO J.
– volume: 4
  start-page: 991
  year: 2003
  end-page: 1001
  ident: bb0175
  article-title: The molecular basis of water transport in the brain
  publication-title: Nat. Rev. Neurosci.
– volume: 405
  start-page: 724
  year: 2011
  end-page: 735
  ident: bb0075
  article-title: Asymmetric configurations and N-terminal rearrangements in connexin26 gap junction channels
  publication-title: J. Mol. Biol.
– volume: 28
  start-page: 1637
  year: 2009
  ident: 10.1016/j.bbagen.2013.10.007_bb0070
  article-title: Inter-subunit interaction of gastric H+, K+-ATPase prevents reverse reaction of the transport cycle
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.102
– volume: 439
  start-page: 688
  year: 2006
  ident: 10.1016/j.bbagen.2013.10.007_bb0220
  article-title: Structural mechanism of plant aquaporin gating
  publication-title: Nature
  doi: 10.1038/nature04316
– volume: 438
  start-page: 633
  year: 2005
  ident: 10.1016/j.bbagen.2013.10.007_bb0155
  article-title: Lipid–protein interactions in double-layered two-dimensional AQP0 crystals
  publication-title: Nature
  doi: 10.1038/nature04321
– volume: 14
  start-page: 354
  year: 1996
  ident: 10.1016/j.bbagen.2013.10.007_bb0230
  article-title: HOLE: a program for the analysis of the pore dimensions of ion channel structural models
  publication-title: J. Mol. Graph.
  doi: 10.1016/S0263-7855(97)00009-X
– volume: 295
  start-page: 1039
  year: 2000
  ident: 10.1016/j.bbagen.2013.10.007_bb0085
  article-title: Structural clues in the sequences of the aquaporins
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3413
– volume: 414
  start-page: 872
  year: 2001
  ident: 10.1016/j.bbagen.2013.10.007_bb0100
  article-title: Structural basis of water-specific transport through the AQP1 water channel
  publication-title: Nature
  doi: 10.1038/414872a
– volume: 278
  start-page: 740
  year: 2011
  ident: 10.1016/j.bbagen.2013.10.007_bb0115
  article-title: Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2010.07993.x
– volume: 429
  start-page: 193
  year: 2004
  ident: 10.1016/j.bbagen.2013.10.007_bb0145
  article-title: Aquaporin-0 membrane junctions reveal the structure of a closed water pore
  publication-title: Nature
  doi: 10.1038/nature02503
– volume: 367
  start-page: 614
  year: 1994
  ident: 10.1016/j.bbagen.2013.10.007_bb0065
  article-title: Atomic model of plant light-harvesting complex by electron crystallography
  publication-title: Nature
  doi: 10.1038/367614a0
– volume: 342
  start-page: 1337
  year: 2004
  ident: 10.1016/j.bbagen.2013.10.007_bb0150
  article-title: Aquaporin-0 membrane junctions form upon proteolytic cleavage
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.07.076
– volume: 4
  start-page: 991
  year: 2003
  ident: 10.1016/j.bbagen.2013.10.007_bb0175
  article-title: The molecular basis of water transport in the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1252
– volume: 174
  start-page: 315
  year: 2011
  ident: 10.1016/j.bbagen.2013.10.007_bb0245
  article-title: Water permeability and characterization of aquaporin-11
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2011.01.003
– volume: 105
  start-page: 1679
  year: 1987
  ident: 10.1016/j.bbagen.2013.10.007_bb0135
  article-title: Electron microscopic observations of reconstituted proteoliposomes with the purified major intrinsic membrane protein of eye lens fibers
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.105.4.1679
– volume: 95
  start-page: 11981
  year: 1998
  ident: 10.1016/j.bbagen.2013.10.007_bb0180
  article-title: Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.20.11981
– volume: 287
  start-page: F501
  year: 2004
  ident: 10.1016/j.bbagen.2013.10.007_bb0195
  article-title: Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00439.2003
– volume: 504
  start-page: 206
  year: 2001
  ident: 10.1016/j.bbagen.2013.10.007_bb0095
  article-title: A refined structure of human aquaporin-1
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02743-0
– volume: 92
  start-page: 213
  year: 1982
  ident: 10.1016/j.bbagen.2013.10.007_bb0130
  article-title: Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.92.1.213
– volume: 105
  start-page: 14430
  year: 2008
  ident: 10.1016/j.bbagen.2013.10.007_bb0170
  article-title: Dynamic control of slow water transport by aquaporin 0: implications for hydration and junction stability in the eye lens
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0802401105
– volume: 35
  start-page: 25
  year: 1998
  ident: 10.1016/j.bbagen.2013.10.007_bb0200
  article-title: The structural study of membrane proteins by electron crystallography
  publication-title: Adv. Biophys.
  doi: 10.1016/S0065-227X(98)80003-8
– volume: 256
  start-page: 385
  year: 1992
  ident: 10.1016/j.bbagen.2013.10.007_bb0005
  article-title: Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein
  publication-title: Science
  doi: 10.1126/science.256.5055.385
– volume: 296
  start-page: 525
  year: 2002
  ident: 10.1016/j.bbagen.2013.10.007_bb0025
  article-title: Control of the selectivity of the aquaporin water channel family by global orientational tuning
  publication-title: Science
  doi: 10.1126/science.1067778
– volume: 100
  start-page: 13609
  year: 2003
  ident: 10.1016/j.bbagen.2013.10.007_bb0190
  article-title: Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2235843100
– volume: 7
  start-page: e1000130
  year: 2009
  ident: 10.1016/j.bbagen.2013.10.007_bb0050
  article-title: Crystal structure of a yeast aquaporin at 1.15Å reveals a novel gating mechanism
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000130
– volume: 360
  start-page: 285
  year: 2006
  ident: 10.1016/j.bbagen.2013.10.007_bb0165
  article-title: Water transport in AQP0 aquaporin: molecular dynamics studies
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.04.039
– volume: 263
  start-page: 15634
  year: 1988
  ident: 10.1016/j.bbagen.2013.10.007_bb0010
  article-title: Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)37635-5
– volume: 95
  start-page: 35
  year: 1981
  ident: 10.1016/j.bbagen.2013.10.007_bb0185
  article-title: Membrane structure in mammalian astrocytes: a review of freeze-fracture studies on adult, developing, reactive and cultured astrocytes
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.95.1.35
– volume: 13
  start-page: 849
  year: 2005
  ident: 10.1016/j.bbagen.2013.10.007_bb0210
  article-title: The α helix dipole: screened out?
  publication-title: Structure
  doi: 10.1016/j.str.2005.03.010
– volume: 60
  start-page: S149
  year: 2011
  ident: 10.1016/j.bbagen.2013.10.007_bb0080
  article-title: Electron crystallography for structural and functional studies of membrane proteins
  publication-title: J. Electron Microsc.
– volume: 257
  start-page: 28
  year: 1975
  ident: 10.1016/j.bbagen.2013.10.007_bb0055
  article-title: Three-dimensional model of purple membrane obtained by electron microscopy
  publication-title: Nature
  doi: 10.1038/257028a0
– volume: 159
  start-page: 29
  year: 1977
  ident: 10.1016/j.bbagen.2013.10.007_bb0235
  article-title: Comparison of the water transporting properties of MIP and AQP1
  publication-title: J. Membr. Biol.
  doi: 10.1007/s002329900266
– volume: 402
  start-page: 184
  year: 1999
  ident: 10.1016/j.bbagen.2013.10.007_bb0240
  article-title: Rapid gating and anion permeability of an intracellular aquaporin
  publication-title: Nature
  doi: 10.1038/46045
– volume: 355
  start-page: 628
  year: 2006
  ident: 10.1016/j.bbagen.2013.10.007_bb0205
  article-title: Implications of the aquaporin-4 structure on array formation and cell adhesion
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.10.081
– volume: 17
  start-page: 171
  year: 1997
  ident: 10.1016/j.bbagen.2013.10.007_bb0250
  article-title: Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-01-00171.1997
– volume: 13
  start-page: 412
  year: 2003
  ident: 10.1016/j.bbagen.2013.10.007_bb0090
  article-title: Sequence motifs, polar interactions and conformational changes in helical membrane proteins
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(03)00102-7
– volume: 340
  start-page: 1346
  year: 2013
  ident: 10.1016/j.bbagen.2013.10.007_bb0045
  article-title: Subangstrom resolution X-ray structure details aquaporin–water interactions
  publication-title: Science
  doi: 10.1126/science.1234306
– volume: 28
  start-page: 2188
  year: 2009
  ident: 10.1016/j.bbagen.2013.10.007_bb0110
  article-title: Concerted action of two cation filters in the aquaporin water channel
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.182
– volume: 105
  start-page: 13327
  year: 2008
  ident: 10.1016/j.bbagen.2013.10.007_bb0225
  article-title: High-resolution x-ray structure of human aquaporin 5
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0801466105
– volume: 294
  start-page: 2353
  year: 2001
  ident: 10.1016/j.bbagen.2013.10.007_bb0020
  article-title: Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF
  publication-title: Science
  doi: 10.1126/science.1062459
– volume: 12
  start-page: 65
  year: 2004
  ident: 10.1016/j.bbagen.2013.10.007_bb0035
  article-title: Molecular basis of proton blockage in aquaporins
  publication-title: Structure
  doi: 10.1016/j.str.2003.11.017
– volume: 1
  start-page: 334
  year: 2003
  ident: 10.1016/j.bbagen.2013.10.007_bb0215
  article-title: Architecture and selectivity in aquaporins: 2.5Å X-ray structure of aquaporin Z
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0000072
– volume: 389
  start-page: 694
  year: 2009
  ident: 10.1016/j.bbagen.2013.10.007_bb0120
  article-title: Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.04.049
– volume: 39
  start-page: 49
  year: 1984
  ident: 10.1016/j.bbagen.2013.10.007_bb0125
  article-title: The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning
  publication-title: Cell
  doi: 10.1016/0092-8674(84)90190-9
– volume: 343
  start-page: 493
  year: 2004
  ident: 10.1016/j.bbagen.2013.10.007_bb0040
  article-title: Structural determinants of proton blockage in aquaporins
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.08.036
– volume: 270
  start-page: 9010
  year: 1995
  ident: 10.1016/j.bbagen.2013.10.007_bb0140
  article-title: Water channel properties of major intrinsic protein of lens
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.15.9010
– volume: 407
  start-page: 599
  year: 2000
  ident: 10.1016/j.bbagen.2013.10.007_bb0015
  article-title: Structural determinants of water permeation through aquaporin-1
  publication-title: Nature
  doi: 10.1038/35036519
– volume: 405
  start-page: 724
  year: 2011
  ident: 10.1016/j.bbagen.2013.10.007_bb0075
  article-title: Asymmetric configurations and N-terminal rearrangements in connexin26 gap junction channels
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.10.032
– volume: 333
  start-page: 279
  year: 2003
  ident: 10.1016/j.bbagen.2013.10.007_bb0030
  article-title: The mechanism of proton exclusion in the aquaporin-1 water channel
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2003.08.003
– volume: 213
  start-page: 899
  year: 1990
  ident: 10.1016/j.bbagen.2013.10.007_bb0060
  article-title: Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(05)80271-2
– volume: 101
  start-page: 14045
  year: 2004
  ident: 10.1016/j.bbagen.2013.10.007_bb0160
  article-title: The channel architecture of aquaporin 0 at a 2.2-Å resolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0405274101
– volume: 103
  start-page: 269
  year: 2006
  ident: 10.1016/j.bbagen.2013.10.007_bb0105
  article-title: Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0507225103
SSID ssj0000595
ssj0025309
Score 2.2283106
SecondaryResourceType review_article
Snippet The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1605
SubjectTerms Aquaporin
aquaporins
Aquaporins - chemistry
brain
Cell adhesion
Cryo-electron microscopy
crystallography
Crystallography - methods
crystals
Electron crystallography
Electrons
hydrogen bonding
lipid bilayers
lipids
Models, Molecular
permeability
Protein Conformation
Water - chemistry
Water channel
Title Water channel structures analysed by electron crystallography
URI https://dx.doi.org/10.1016/j.bbagen.2013.10.007
https://www.ncbi.nlm.nih.gov/pubmed/24120524
https://www.proquest.com/docview/1518620581
https://www.proquest.com/docview/2000226939
Volume 1840
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5EEb2I1ld9sYLX9LFJNpuDBylKtdiDD-xtSbIpKGVbaj304m93stlUPJSCp7DZCYSZZOYL8wK4YjSRPE00QesuCRNWEIWwnCRMCc1VikbdJQo_9pPuK3sY8MEadEIujAurrHS_1-mltq5mmhU3m5P39-azc-ohnODOIcOYcEl8OLhT3vj-DfNA-MC9J4ERRx3S58oYL63x0roqqG3aKGO8xDLztAx-lmbobhd2KvwY3fgt7sGaLWqw6TtKzmuw1QkN3Pbh-g1x5DRyqb2FHUW-UuwXPq8jVVYisXmk51HogxOZ6RyR4ijUsD6A17vbl06XVN0SiKGSz0guhI7bzCY8z5Xk1KSMq1wODaMKMVvOpDY8N8pKpnOuDBKiZJSiFK-lZYoewnoxLuwxRFQrhAExStem-EOmNhY6bZmhESleWFEHGpiUmaqUuOtoMcpCzNhH5lmbOda6WWRtHchi1cSX0lhBLwL_sz9HIkNtv2LlZRBXhjx3LhBV2PHXZ4b4Bp9wLZ62l9PEZVGgRFJZhyMv68V-Ee_g6pid_Htvp7CNX8zHTJ7BOsreniOumemL8uBewMbNfa_bd2Pv6a33A4n696o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qRfQivq3PFbzGtptkszl4kKJUW3tRsbeQZFOolFVqPfTfO9ndVDwUwWsyA2GSzHwhM98AXDKaSJ4mhmB0l4QJJ4hGWE4SpoXhOsWg7guFHwdJ94U9DPmwBp1QC-PTKivfX_r0wltXI83Kms2P8bj55D_1EE5w_yHDmJArsOrZqXgdVm_ue93Bj0PmRfMVL0-8QqigK9K8jMF764lQ2_SqSPMSyyLUMgRaRKK7LdisIGR0U65yG2ou34G1sqnkfAfWO6GH2y5cvyKUnEa-ujd3k6gki_3CF3akCzISl0VmHoVWOJGdzhEsTgKN9R683N0-d7qkaphALJV8RjIhTNxmLuFZpiWnNmVcZ3JkGdUI2zImjeWZ1U4yk3FtURA3R2tK8WY6puk-1PP33B1CRI1GJBDjBrsUJ2TqYmHSlh1ZkeKdFQ2gwUjKVmzivqnFRIW0sTdVmlZ50_pRNG0DyELro2TT-ENeBPurX6dCocP_Q_MibJdCm_tfEJ27969PhRAHX3EtnraXy8QFL1AiqWzAQbnXi_Ui5EHtmB39e23nsN59fuyr_v2gdwwbOMPKFMoTqOM5cKcIc2bmrDrG30KK-Lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+channel+structures+analysed+by+electron+crystallography&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Tani%2C+Kazutoshi&rft.au=Fujiyoshi%2C+Yoshinori&rft.date=2014-05-01&rft.issn=0304-4165&rft.volume=1840&rft.issue=5&rft.spage=1605&rft.epage=1613&rft_id=info:doi/10.1016%2Fj.bbagen.2013.10.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2013_10_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon