Water channel structures analysed by electron crystallography
The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydroge...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1840; no. 5; pp. 1605 - 1613 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 1872-8006 |
DOI | 10.1016/j.bbagen.2013.10.007 |
Cover
Loading…
Abstract | The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.
The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.
Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.
Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.
[Display omitted]
•Electron crystallography solved the first atomic structure of AQP.•Electron crystallography determined the structures of AQP1, AQP0, and AQP4.•Electron crystallography can be used to observe membrane proteins in lipids.•H-bond isolation mechanism is proposed to explain water channel functions.•Double-layered crystals of AQP0 and AQP4 revealed the cell adhesion function. |
---|---|
AbstractList | The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.
The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.
Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.
Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.
[Display omitted]
•Electron crystallography solved the first atomic structure of AQP.•Electron crystallography determined the structures of AQP1, AQP0, and AQP4.•Electron crystallography can be used to observe membrane proteins in lipids.•H-bond isolation mechanism is proposed to explain water channel functions.•Double-layered crystals of AQP0 and AQP4 revealed the cell adhesion function. The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.BACKGROUNDThe mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.SCOPE OF REVIEWThe AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.MAJOR CONCLUSIONSMany AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.GENERAL SIGNIFICANCEElectron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins. The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules. The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids. Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function. Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins. The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins. |
Author | Fujiyoshi, Yoshinori Tani, Kazutoshi |
Author_xml | – sequence: 1 givenname: Kazutoshi surname: Tani fullname: Tani, Kazutoshi – sequence: 2 givenname: Yoshinori surname: Fujiyoshi fullname: Fujiyoshi, Yoshinori email: yoshi@cespi.nagoya-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24120524$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LHEEQhpugxNXkH4Qwx1xm7c_5EBIQiR8geFFybGq6a7WX3p61u0eYf59e1njwEOtSUDxvQdVzTA7CGJCQb4wuGWXN6Xo5DPCIYckpE2W0pLT9RBasa3ndUdockAUVVNaSNeqIHKe0pqVUrz6TIy4Zp4rLBfn5BzLGyjxBCOirlONk8hQxVRDAzwltNcwVejQ5jqEycU4ZvB8fI2yf5i_kcAU-4dfXfkIeLn_fX1zXt3dXNxfnt7URvcq1bduBM4mNshZ6JUwnFdh-ZaQA1TRW9oNR1gD2crAKTAFbbAGEUIyiBHFCfuz3buP4PGHKeuOSQe8h4DglzctlnDe96D9EmWJdU47vWEG_v6LTsEGrt9FtIM7633cKIPeAiWNKEVdvCKN6J0Gv9V6C3knYTYuEEjt7FzMuQ3ZjyBGc_yj8ax_G8s8Xh1En4zAYtC4WCdqO7v8L_gKeG6R6 |
CitedBy_id | crossref_primary_10_1134_S1819712420010171 crossref_primary_10_1128_AEM_02127_15 crossref_primary_10_3390_ani12050573 crossref_primary_10_1021_acs_macromol_8b01063 crossref_primary_10_3390_ijms232012317 crossref_primary_10_1679_aohc_77_25 crossref_primary_10_1016_S1773_035X_16_30420_8 crossref_primary_10_3389_fpls_2018_00382 crossref_primary_10_1038_s41467_024_53504_x crossref_primary_10_1111_rda_13082 crossref_primary_10_1093_jmicro_dfv368 crossref_primary_10_1126_sciadv_aao3013 crossref_primary_10_1007_s00018_014_1773_2 crossref_primary_10_1016_j_sbi_2016_06_001 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119777 crossref_primary_10_1007_s10585_014_9687_9 crossref_primary_10_1007_s00436_016_5114_2 crossref_primary_10_3390_ijms24021412 crossref_primary_10_1007_s00232_019_00061_w crossref_primary_10_1007_s00018_016_2142_0 crossref_primary_10_1038_s41467_025_57728_3 crossref_primary_10_1086_BBLv229n1p6 crossref_primary_10_1096_fj_201601282R |
Cites_doi | 10.1038/emboj.2009.102 10.1038/nature04316 10.1038/nature04321 10.1016/S0263-7855(97)00009-X 10.1006/jmbi.1999.3413 10.1038/414872a 10.1111/j.1742-4658.2010.07993.x 10.1038/nature02503 10.1038/367614a0 10.1016/j.jmb.2004.07.076 10.1038/nrn1252 10.1016/j.jsb.2011.01.003 10.1083/jcb.105.4.1679 10.1073/pnas.95.20.11981 10.1152/ajprenal.00439.2003 10.1016/S0014-5793(01)02743-0 10.1083/jcb.92.1.213 10.1073/pnas.0802401105 10.1016/S0065-227X(98)80003-8 10.1126/science.256.5055.385 10.1126/science.1067778 10.1073/pnas.2235843100 10.1371/journal.pbio.1000130 10.1016/j.jmb.2006.04.039 10.1016/S0021-9258(19)37635-5 10.1242/jeb.95.1.35 10.1016/j.str.2005.03.010 10.1038/257028a0 10.1007/s002329900266 10.1038/46045 10.1016/j.jmb.2005.10.081 10.1523/JNEUROSCI.17-01-00171.1997 10.1016/S0959-440X(03)00102-7 10.1126/science.1234306 10.1038/emboj.2009.182 10.1073/pnas.0801466105 10.1126/science.1062459 10.1016/j.str.2003.11.017 10.1371/journal.pbio.0000072 10.1016/j.jmb.2009.04.049 10.1016/0092-8674(84)90190-9 10.1016/j.jmb.2004.08.036 10.1074/jbc.270.15.9010 10.1038/35036519 10.1016/j.jmb.2010.10.032 10.1016/j.jmb.2003.08.003 10.1016/S0022-2836(05)80271-2 10.1073/pnas.0405274101 10.1073/pnas.0507225103 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2013. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2013. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2013.10.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1613 |
ExternalDocumentID | 24120524 10_1016_j_bbagen_2013_10_007 S0304416513004479 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-d77b214e65dda953c845ad9fc43a566d49bc5dcae94bd5ace657e7aa33510e4a3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Fri Jul 11 02:27:43 EDT 2025 Fri Jul 11 08:28:28 EDT 2025 Thu Apr 03 07:06:28 EDT 2025 Tue Jul 01 00:22:02 EDT 2025 Thu Apr 24 23:06:58 EDT 2025 Fri Feb 23 02:32:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | AQP Electron crystallography Water channel H-bond Cryo-electron microscopy 2D AQP4M23 MD Cell adhesion ar/R AQP4M1 NPA Aquaporin |
Language | English |
License | 2013. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-d77b214e65dda953c845ad9fc43a566d49bc5dcae94bd5ace657e7aa33510e4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 24120524 |
PQID | 1518620581 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000226939 proquest_miscellaneous_1518620581 pubmed_primary_24120524 crossref_primary_10_1016_j_bbagen_2013_10_007 crossref_citationtrail_10_1016_j_bbagen_2013_10_007 elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_10_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Oshima, Tani, Toloue, Hiroaki, Smock, Inukai, Cone, Nicholson, Sosinsky, Fujiyoshi (bb0075) 2011; 405 Gonen, Cheng, Kistler, Walz (bb0150) 2004; 342 Bok, Dockstader, Horwitz (bb0130) 1982; 92 Chakrabarti, Roux, Pomès (bb0040) 2004; 343 Gorin, Yancey, Cline, Revel, Horwitz (bb0125) 1984; 39 Henderson, Unwin (bb0055) 1975; 257 Landis, Reese (bb0185) 1981; 95 de Groot, Frigato, Helms, Grubmüller (bb0030) 2003; 333 Fischer, Kosinska-Eriksson, Aponte-Santamaría, Palmgren, Geijer, Hedfalk, Hohman, de Groot, Neutze, Lindkvist-Petersson (bb0050) 2009; 7 Rash, Yasumura, Hudson, Agre, Nielsen (bb0180) 1998; 95 Nielsen, Nagelhus, Amiry-Moghaddam, Bourque, Agre, Ottersen (bb0250) 1997; 17 Savage, Egea, Robles-Colmenares, O'Connell, Stroud (bb0215) 2003; 1 Abe, Tani, Nishizawa, Fujiyoshi (bb0070) 2009; 28 Murata, Mitsuoka, Hirai, Walz, Agre, Heymann, Engel, Fujiyoshi (bb0015) 2000; 407 Mulders, Preston, Deen, Guggino, van Os, Agre (bb0140) 1995; 270 Kühlbrandt, Wang, Fujiyoshi (bb0065) 1994; 367 Preston, Carroll, Guggino, Agre (bb0005) 1992; 256 Heymann, Engel (bb0085) 2000; 295 Beitz, Wu, Holm, Schultz, Zeuthen (bb0105) 2006; 103 Wree, Wu, Zeuthen, Beitz (bb0115) 2011; 278 Chandy, Zampighi, Kreman, Hall (bb0235) 1977; 159 Kosinska-Eriksson, Fischer, Friemann, Enkavi, Tajkhorshid, Neutze (bb0045) 2013; 340 Hiroaki, Tani, Kamegawa, Gyobu, Nishikawa, Suzuki, Walz, Sasaki, Mitsuoka, Kimura, Mizoguchi, Fujiyoshi (bb0205) 2006; 355 Harries, Akhavan, Miercke, Khademi, Stroud (bb0160) 2004; 101 Smart, Neduvelil, Wang, Wallace, Sansom (bb0230) 1996; 14 Fujiyoshi (bb0200) 1998; 35 Henderson, Baldwin, Ceska, Zemlin, Beckmann, Downing (bb0060) 1990; 213 Sengupta, Behera, Smith, Ullmann (bb0210) 2005; 13 de Groot, Engel, Grubmüller (bb0095) 2001; 504 Moghaddam, Ottersen (bb0175) 2003; 4 Tajkhorshid, Nollert, Jensen, Miercke, O'Connell, Stroud, Schulten (bb0025) 2002; 296 Sui, Han, Lee, Walian, Jap (bb0100) 2001; 414 Gonen, Cheng, Sliz, Hiroaki, Fujiyoshi, Harrison, Walz (bb0155) 2005; 438 Curran, Engelman (bb0090) 2003; 13 Gonen, Sliz, Kistler, Cheng, Walz (bb0145) 2004; 429 Silberstein, Bouley, Huang, Fang, Pastor-Soler, Brown, Van Hoek (bb0195) 2004; 287 Denker, Smith, Kuhajda, Agre (bb0010) 1988; 263 Yakata, Tani, Fujiyoshi (bb0245) 2011; 174 Wu, Steinbronn, Alsterfjord, Zeuthen, Beitz (bb0110) 2009; 28 Törnroth-Horsefield, Wang, Hedfalk, Johanson, Karlsson, Tajkhorshid, Stroud (bb0220) 2006; 439 Jensen, Dror, Xu, Borhani, Arkin, Eastwood, Shaw (bb0170) 2008; 105 Dunia, Manenti, Rousselet, Benedetti (bb0135) 1987; 105 Han, Guliaev, Walian, Jap (bb0165) 2006; 360 Furman, Gorelick-Feldman, Davidson, Yasumura, Neely, Agre, Rash (bb0190) 2003; 100 Horsefield, Norden, Fellert, Backmark, Törnroth-Horsefield, Terwisscha van Scheltinga, Kcassman, Kjellbom, Johanson, Neutze (bb0225) 2008; 105 Yasui, Hazama, Kwon, Nielsen, Guggino, Agre (bb0240) 1999; 402 Fujiyoshi (bb0080) 2011; 60 Tani, Mitsuma, Hiroaki, Kamegawa, Nishikawa, Tanimura, Fujiyoshi (bb0120) 2009; 389 de Groot, Grubmüller (bb0020) 2001; 294 Chakrabarti, Tajkhorshid, Roux, Pomès (bb0035) 2004; 12 Fujiyoshi (10.1016/j.bbagen.2013.10.007_bb0080) 2011; 60 Törnroth-Horsefield (10.1016/j.bbagen.2013.10.007_bb0220) 2006; 439 de Groot (10.1016/j.bbagen.2013.10.007_bb0020) 2001; 294 Fischer (10.1016/j.bbagen.2013.10.007_bb0050) 2009; 7 de Groot (10.1016/j.bbagen.2013.10.007_bb0095) 2001; 504 Furman (10.1016/j.bbagen.2013.10.007_bb0190) 2003; 100 Abe (10.1016/j.bbagen.2013.10.007_bb0070) 2009; 28 Murata (10.1016/j.bbagen.2013.10.007_bb0015) 2000; 407 Kosinska-Eriksson (10.1016/j.bbagen.2013.10.007_bb0045) 2013; 340 Bok (10.1016/j.bbagen.2013.10.007_bb0130) 1982; 92 Wree (10.1016/j.bbagen.2013.10.007_bb0115) 2011; 278 Fujiyoshi (10.1016/j.bbagen.2013.10.007_bb0200) 1998; 35 Preston (10.1016/j.bbagen.2013.10.007_bb0005) 1992; 256 Henderson (10.1016/j.bbagen.2013.10.007_bb0055) 1975; 257 Denker (10.1016/j.bbagen.2013.10.007_bb0010) 1988; 263 Heymann (10.1016/j.bbagen.2013.10.007_bb0085) 2000; 295 Curran (10.1016/j.bbagen.2013.10.007_bb0090) 2003; 13 Tajkhorshid (10.1016/j.bbagen.2013.10.007_bb0025) 2002; 296 Silberstein (10.1016/j.bbagen.2013.10.007_bb0195) 2004; 287 Nielsen (10.1016/j.bbagen.2013.10.007_bb0250) 1997; 17 Chakrabarti (10.1016/j.bbagen.2013.10.007_bb0035) 2004; 12 Gonen (10.1016/j.bbagen.2013.10.007_bb0150) 2004; 342 Savage (10.1016/j.bbagen.2013.10.007_bb0215) 2003; 1 Sui (10.1016/j.bbagen.2013.10.007_bb0100) 2001; 414 Wu (10.1016/j.bbagen.2013.10.007_bb0110) 2009; 28 Gonen (10.1016/j.bbagen.2013.10.007_bb0155) 2005; 438 Yakata (10.1016/j.bbagen.2013.10.007_bb0245) 2011; 174 Horsefield (10.1016/j.bbagen.2013.10.007_bb0225) 2008; 105 Mulders (10.1016/j.bbagen.2013.10.007_bb0140) 1995; 270 Tani (10.1016/j.bbagen.2013.10.007_bb0120) 2009; 389 Jensen (10.1016/j.bbagen.2013.10.007_bb0170) 2008; 105 Moghaddam (10.1016/j.bbagen.2013.10.007_bb0175) 2003; 4 Chakrabarti (10.1016/j.bbagen.2013.10.007_bb0040) 2004; 343 Sengupta (10.1016/j.bbagen.2013.10.007_bb0210) 2005; 13 Landis (10.1016/j.bbagen.2013.10.007_bb0185) 1981; 95 Harries (10.1016/j.bbagen.2013.10.007_bb0160) 2004; 101 Gonen (10.1016/j.bbagen.2013.10.007_bb0145) 2004; 429 Beitz (10.1016/j.bbagen.2013.10.007_bb0105) 2006; 103 Chandy (10.1016/j.bbagen.2013.10.007_bb0235) 1977; 159 Oshima (10.1016/j.bbagen.2013.10.007_bb0075) 2011; 405 Smart (10.1016/j.bbagen.2013.10.007_bb0230) 1996; 14 Han (10.1016/j.bbagen.2013.10.007_bb0165) 2006; 360 de Groot (10.1016/j.bbagen.2013.10.007_bb0030) 2003; 333 Henderson (10.1016/j.bbagen.2013.10.007_bb0060) 1990; 213 Hiroaki (10.1016/j.bbagen.2013.10.007_bb0205) 2006; 355 Gorin (10.1016/j.bbagen.2013.10.007_bb0125) 1984; 39 Dunia (10.1016/j.bbagen.2013.10.007_bb0135) 1987; 105 Rash (10.1016/j.bbagen.2013.10.007_bb0180) 1998; 95 Yasui (10.1016/j.bbagen.2013.10.007_bb0240) 1999; 402 Kühlbrandt (10.1016/j.bbagen.2013.10.007_bb0065) 1994; 367 |
References_xml | – volume: 263 start-page: 15634 year: 1988 end-page: 15642 ident: bb0010 article-title: Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules publication-title: J. Biol. Chem. – volume: 407 start-page: 599 year: 2000 end-page: 605 ident: bb0015 article-title: Structural determinants of water permeation through aquaporin-1 publication-title: Nature – volume: 438 start-page: 633 year: 2005 end-page: 638 ident: bb0155 article-title: Lipid–protein interactions in double-layered two-dimensional AQP0 crystals publication-title: Nature – volume: 1 start-page: 334 year: 2003 end-page: 340 ident: bb0215 article-title: Architecture and selectivity in aquaporins: 2.5 publication-title: PLoS Biol. – volume: 296 start-page: 525 year: 2002 end-page: 530 ident: bb0025 article-title: Control of the selectivity of the aquaporin water channel family by global orientational tuning publication-title: Science – volume: 14 start-page: 354 year: 1996 end-page: 360 ident: bb0230 article-title: HOLE: a program for the analysis of the pore dimensions of ion channel structural models publication-title: J. Mol. Graph. – volume: 159 start-page: 29 year: 1977 end-page: 39 ident: bb0235 article-title: Comparison of the water transporting properties of MIP and AQP1 publication-title: J. Membr. Biol. – volume: 95 start-page: 11981 year: 1998 end-page: 11986 ident: bb0180 article-title: Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 start-page: 65 year: 2004 end-page: 74 ident: bb0035 article-title: Molecular basis of proton blockage in aquaporins publication-title: Structure – volume: 213 start-page: 899 year: 1990 end-page: 929 ident: bb0060 article-title: Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy publication-title: J. Mol. Biol. – volume: 270 start-page: 9010 year: 1995 end-page: 9016 ident: bb0140 article-title: Water channel properties of major intrinsic protein of lens publication-title: J. Biol. Chem. – volume: 105 start-page: 13327 year: 2008 end-page: 13332 ident: bb0225 article-title: High-resolution x-ray structure of human aquaporin 5 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 28 start-page: 1637 year: 2009 end-page: 1643 ident: bb0070 article-title: Inter-subunit interaction of gastric H publication-title: EMBO J. – volume: 367 start-page: 614 year: 1994 end-page: 621 ident: bb0065 article-title: Atomic model of plant light-harvesting complex by electron crystallography publication-title: Nature – volume: 13 start-page: 412 year: 2003 end-page: 417 ident: bb0090 article-title: Sequence motifs, polar interactions and conformational changes in helical membrane proteins publication-title: Curr. Opin. Struct. Biol. – volume: 439 start-page: 688 year: 2006 end-page: 694 ident: bb0220 article-title: Structural mechanism of plant aquaporin gating publication-title: Nature – volume: 174 start-page: 315 year: 2011 end-page: 320 ident: bb0245 article-title: Water permeability and characterization of aquaporin-11 publication-title: J. Struct. Biol. – volume: 92 start-page: 213 year: 1982 end-page: 220 ident: bb0130 article-title: Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions publication-title: J. Cell Biol. – volume: 39 start-page: 49 year: 1984 end-page: 59 ident: bb0125 article-title: The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning publication-title: Cell – volume: 504 start-page: 206 year: 2001 end-page: 211 ident: bb0095 article-title: A refined structure of human aquaporin-1 publication-title: FEBS Lett. – volume: 294 start-page: 2353 year: 2001 end-page: 2357 ident: bb0020 article-title: Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF publication-title: Science – volume: 256 start-page: 385 year: 1992 end-page: 387 ident: bb0005 article-title: Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein publication-title: Science – volume: 103 start-page: 269 year: 2006 end-page: 274 ident: bb0105 article-title: Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 342 start-page: 1337 year: 2004 end-page: 1345 ident: bb0150 article-title: Aquaporin-0 membrane junctions form upon proteolytic cleavage publication-title: J. Mol. Biol. – volume: 343 start-page: 493 year: 2004 end-page: 510 ident: bb0040 article-title: Structural determinants of proton blockage in aquaporins publication-title: J. Mol. Biol. – volume: 360 start-page: 285 year: 2006 end-page: 296 ident: bb0165 article-title: Water transport in AQP0 aquaporin: molecular dynamics studies publication-title: J. Mol. Biol. – volume: 100 start-page: 13609 year: 2003 end-page: 13614 ident: bb0190 article-title: Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 start-page: e1000130 year: 2009 ident: bb0050 article-title: Crystal structure of a yeast aquaporin at 1.15 publication-title: PLoS Biol. – volume: 101 start-page: 14045 year: 2004 end-page: 14050 ident: bb0160 article-title: The channel architecture of aquaporin 0 at a 2.2-Å resolution publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 389 start-page: 694 year: 2009 end-page: 706 ident: bb0120 article-title: Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion publication-title: J. Mol. Biol. – volume: 429 start-page: 193 year: 2004 end-page: 197 ident: bb0145 article-title: Aquaporin-0 membrane junctions reveal the structure of a closed water pore publication-title: Nature – volume: 105 start-page: 14430 year: 2008 end-page: 14435 ident: bb0170 article-title: Dynamic control of slow water transport by aquaporin 0: implications for hydration and junction stability in the eye lens publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 95 start-page: 35 year: 1981 end-page: 48 ident: bb0185 article-title: Membrane structure in mammalian astrocytes: a review of freeze-fracture studies on adult, developing, reactive and cultured astrocytes publication-title: J. Exp. Biol. – volume: 13 start-page: 849 year: 2005 end-page: 855 ident: bb0210 article-title: The α helix dipole: screened out? publication-title: Structure – volume: 402 start-page: 184 year: 1999 end-page: 187 ident: bb0240 article-title: Rapid gating and anion permeability of an intracellular aquaporin publication-title: Nature – volume: 340 start-page: 1346 year: 2013 end-page: 1349 ident: bb0045 article-title: Subangstrom resolution X-ray structure details aquaporin–water interactions publication-title: Science – volume: 278 start-page: 740 year: 2011 end-page: 748 ident: bb0115 article-title: Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion publication-title: FEBS J. – volume: 295 start-page: 1039 year: 2000 end-page: 1053 ident: bb0085 article-title: Structural clues in the sequences of the aquaporins publication-title: J. Mol. Biol. – volume: 287 start-page: F501 year: 2004 end-page: F511 ident: bb0195 article-title: Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells publication-title: Am. J. Physiol. Renal Physiol. – volume: 257 start-page: 28 year: 1975 end-page: 32 ident: bb0055 article-title: Three-dimensional model of purple membrane obtained by electron microscopy publication-title: Nature – volume: 414 start-page: 872 year: 2001 end-page: 878 ident: bb0100 article-title: Structural basis of water-specific transport through the AQP1 water channel publication-title: Nature – volume: 105 start-page: 1679 year: 1987 end-page: 1689 ident: bb0135 article-title: Electron microscopic observations of reconstituted proteoliposomes with the purified major intrinsic membrane protein of eye lens fibers publication-title: J. Cell Biol. – volume: 60 start-page: S149 year: 2011 end-page: S159 ident: bb0080 article-title: Electron crystallography for structural and functional studies of membrane proteins publication-title: J. Electron Microsc. – volume: 35 start-page: 25 year: 1998 end-page: 80 ident: bb0200 article-title: The structural study of membrane proteins by electron crystallography publication-title: Adv. Biophys. – volume: 17 start-page: 171 year: 1997 end-page: 180 ident: bb0250 article-title: Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain publication-title: J. Neurosci. – volume: 355 start-page: 628 year: 2006 end-page: 639 ident: bb0205 article-title: Implications of the aquaporin-4 structure on array formation and cell adhesion publication-title: J. Mol. Biol. – volume: 333 start-page: 279 year: 2003 end-page: 293 ident: bb0030 article-title: The mechanism of proton exclusion in the aquaporin-1 water channel publication-title: J. Mol. Biol. – volume: 28 start-page: 2188 year: 2009 end-page: 2194 ident: bb0110 article-title: Concerted action of two cation filters in the aquaporin water channel publication-title: EMBO J. – volume: 4 start-page: 991 year: 2003 end-page: 1001 ident: bb0175 article-title: The molecular basis of water transport in the brain publication-title: Nat. Rev. Neurosci. – volume: 405 start-page: 724 year: 2011 end-page: 735 ident: bb0075 article-title: Asymmetric configurations and N-terminal rearrangements in connexin26 gap junction channels publication-title: J. Mol. Biol. – volume: 28 start-page: 1637 year: 2009 ident: 10.1016/j.bbagen.2013.10.007_bb0070 article-title: Inter-subunit interaction of gastric H+, K+-ATPase prevents reverse reaction of the transport cycle publication-title: EMBO J. doi: 10.1038/emboj.2009.102 – volume: 439 start-page: 688 year: 2006 ident: 10.1016/j.bbagen.2013.10.007_bb0220 article-title: Structural mechanism of plant aquaporin gating publication-title: Nature doi: 10.1038/nature04316 – volume: 438 start-page: 633 year: 2005 ident: 10.1016/j.bbagen.2013.10.007_bb0155 article-title: Lipid–protein interactions in double-layered two-dimensional AQP0 crystals publication-title: Nature doi: 10.1038/nature04321 – volume: 14 start-page: 354 year: 1996 ident: 10.1016/j.bbagen.2013.10.007_bb0230 article-title: HOLE: a program for the analysis of the pore dimensions of ion channel structural models publication-title: J. Mol. Graph. doi: 10.1016/S0263-7855(97)00009-X – volume: 295 start-page: 1039 year: 2000 ident: 10.1016/j.bbagen.2013.10.007_bb0085 article-title: Structural clues in the sequences of the aquaporins publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3413 – volume: 414 start-page: 872 year: 2001 ident: 10.1016/j.bbagen.2013.10.007_bb0100 article-title: Structural basis of water-specific transport through the AQP1 water channel publication-title: Nature doi: 10.1038/414872a – volume: 278 start-page: 740 year: 2011 ident: 10.1016/j.bbagen.2013.10.007_bb0115 article-title: Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion publication-title: FEBS J. doi: 10.1111/j.1742-4658.2010.07993.x – volume: 429 start-page: 193 year: 2004 ident: 10.1016/j.bbagen.2013.10.007_bb0145 article-title: Aquaporin-0 membrane junctions reveal the structure of a closed water pore publication-title: Nature doi: 10.1038/nature02503 – volume: 367 start-page: 614 year: 1994 ident: 10.1016/j.bbagen.2013.10.007_bb0065 article-title: Atomic model of plant light-harvesting complex by electron crystallography publication-title: Nature doi: 10.1038/367614a0 – volume: 342 start-page: 1337 year: 2004 ident: 10.1016/j.bbagen.2013.10.007_bb0150 article-title: Aquaporin-0 membrane junctions form upon proteolytic cleavage publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.07.076 – volume: 4 start-page: 991 year: 2003 ident: 10.1016/j.bbagen.2013.10.007_bb0175 article-title: The molecular basis of water transport in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1252 – volume: 174 start-page: 315 year: 2011 ident: 10.1016/j.bbagen.2013.10.007_bb0245 article-title: Water permeability and characterization of aquaporin-11 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2011.01.003 – volume: 105 start-page: 1679 year: 1987 ident: 10.1016/j.bbagen.2013.10.007_bb0135 article-title: Electron microscopic observations of reconstituted proteoliposomes with the purified major intrinsic membrane protein of eye lens fibers publication-title: J. Cell Biol. doi: 10.1083/jcb.105.4.1679 – volume: 95 start-page: 11981 year: 1998 ident: 10.1016/j.bbagen.2013.10.007_bb0180 article-title: Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.20.11981 – volume: 287 start-page: F501 year: 2004 ident: 10.1016/j.bbagen.2013.10.007_bb0195 article-title: Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00439.2003 – volume: 504 start-page: 206 year: 2001 ident: 10.1016/j.bbagen.2013.10.007_bb0095 article-title: A refined structure of human aquaporin-1 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02743-0 – volume: 92 start-page: 213 year: 1982 ident: 10.1016/j.bbagen.2013.10.007_bb0130 article-title: Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions publication-title: J. Cell Biol. doi: 10.1083/jcb.92.1.213 – volume: 105 start-page: 14430 year: 2008 ident: 10.1016/j.bbagen.2013.10.007_bb0170 article-title: Dynamic control of slow water transport by aquaporin 0: implications for hydration and junction stability in the eye lens publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0802401105 – volume: 35 start-page: 25 year: 1998 ident: 10.1016/j.bbagen.2013.10.007_bb0200 article-title: The structural study of membrane proteins by electron crystallography publication-title: Adv. Biophys. doi: 10.1016/S0065-227X(98)80003-8 – volume: 256 start-page: 385 year: 1992 ident: 10.1016/j.bbagen.2013.10.007_bb0005 article-title: Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein publication-title: Science doi: 10.1126/science.256.5055.385 – volume: 296 start-page: 525 year: 2002 ident: 10.1016/j.bbagen.2013.10.007_bb0025 article-title: Control of the selectivity of the aquaporin water channel family by global orientational tuning publication-title: Science doi: 10.1126/science.1067778 – volume: 100 start-page: 13609 year: 2003 ident: 10.1016/j.bbagen.2013.10.007_bb0190 article-title: Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2235843100 – volume: 7 start-page: e1000130 year: 2009 ident: 10.1016/j.bbagen.2013.10.007_bb0050 article-title: Crystal structure of a yeast aquaporin at 1.15Å reveals a novel gating mechanism publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000130 – volume: 360 start-page: 285 year: 2006 ident: 10.1016/j.bbagen.2013.10.007_bb0165 article-title: Water transport in AQP0 aquaporin: molecular dynamics studies publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.04.039 – volume: 263 start-page: 15634 year: 1988 ident: 10.1016/j.bbagen.2013.10.007_bb0010 article-title: Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)37635-5 – volume: 95 start-page: 35 year: 1981 ident: 10.1016/j.bbagen.2013.10.007_bb0185 article-title: Membrane structure in mammalian astrocytes: a review of freeze-fracture studies on adult, developing, reactive and cultured astrocytes publication-title: J. Exp. Biol. doi: 10.1242/jeb.95.1.35 – volume: 13 start-page: 849 year: 2005 ident: 10.1016/j.bbagen.2013.10.007_bb0210 article-title: The α helix dipole: screened out? publication-title: Structure doi: 10.1016/j.str.2005.03.010 – volume: 60 start-page: S149 year: 2011 ident: 10.1016/j.bbagen.2013.10.007_bb0080 article-title: Electron crystallography for structural and functional studies of membrane proteins publication-title: J. Electron Microsc. – volume: 257 start-page: 28 year: 1975 ident: 10.1016/j.bbagen.2013.10.007_bb0055 article-title: Three-dimensional model of purple membrane obtained by electron microscopy publication-title: Nature doi: 10.1038/257028a0 – volume: 159 start-page: 29 year: 1977 ident: 10.1016/j.bbagen.2013.10.007_bb0235 article-title: Comparison of the water transporting properties of MIP and AQP1 publication-title: J. Membr. Biol. doi: 10.1007/s002329900266 – volume: 402 start-page: 184 year: 1999 ident: 10.1016/j.bbagen.2013.10.007_bb0240 article-title: Rapid gating and anion permeability of an intracellular aquaporin publication-title: Nature doi: 10.1038/46045 – volume: 355 start-page: 628 year: 2006 ident: 10.1016/j.bbagen.2013.10.007_bb0205 article-title: Implications of the aquaporin-4 structure on array formation and cell adhesion publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.10.081 – volume: 17 start-page: 171 year: 1997 ident: 10.1016/j.bbagen.2013.10.007_bb0250 article-title: Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-01-00171.1997 – volume: 13 start-page: 412 year: 2003 ident: 10.1016/j.bbagen.2013.10.007_bb0090 article-title: Sequence motifs, polar interactions and conformational changes in helical membrane proteins publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(03)00102-7 – volume: 340 start-page: 1346 year: 2013 ident: 10.1016/j.bbagen.2013.10.007_bb0045 article-title: Subangstrom resolution X-ray structure details aquaporin–water interactions publication-title: Science doi: 10.1126/science.1234306 – volume: 28 start-page: 2188 year: 2009 ident: 10.1016/j.bbagen.2013.10.007_bb0110 article-title: Concerted action of two cation filters in the aquaporin water channel publication-title: EMBO J. doi: 10.1038/emboj.2009.182 – volume: 105 start-page: 13327 year: 2008 ident: 10.1016/j.bbagen.2013.10.007_bb0225 article-title: High-resolution x-ray structure of human aquaporin 5 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0801466105 – volume: 294 start-page: 2353 year: 2001 ident: 10.1016/j.bbagen.2013.10.007_bb0020 article-title: Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF publication-title: Science doi: 10.1126/science.1062459 – volume: 12 start-page: 65 year: 2004 ident: 10.1016/j.bbagen.2013.10.007_bb0035 article-title: Molecular basis of proton blockage in aquaporins publication-title: Structure doi: 10.1016/j.str.2003.11.017 – volume: 1 start-page: 334 year: 2003 ident: 10.1016/j.bbagen.2013.10.007_bb0215 article-title: Architecture and selectivity in aquaporins: 2.5Å X-ray structure of aquaporin Z publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0000072 – volume: 389 start-page: 694 year: 2009 ident: 10.1016/j.bbagen.2013.10.007_bb0120 article-title: Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.04.049 – volume: 39 start-page: 49 year: 1984 ident: 10.1016/j.bbagen.2013.10.007_bb0125 article-title: The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning publication-title: Cell doi: 10.1016/0092-8674(84)90190-9 – volume: 343 start-page: 493 year: 2004 ident: 10.1016/j.bbagen.2013.10.007_bb0040 article-title: Structural determinants of proton blockage in aquaporins publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.08.036 – volume: 270 start-page: 9010 year: 1995 ident: 10.1016/j.bbagen.2013.10.007_bb0140 article-title: Water channel properties of major intrinsic protein of lens publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.15.9010 – volume: 407 start-page: 599 year: 2000 ident: 10.1016/j.bbagen.2013.10.007_bb0015 article-title: Structural determinants of water permeation through aquaporin-1 publication-title: Nature doi: 10.1038/35036519 – volume: 405 start-page: 724 year: 2011 ident: 10.1016/j.bbagen.2013.10.007_bb0075 article-title: Asymmetric configurations and N-terminal rearrangements in connexin26 gap junction channels publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.10.032 – volume: 333 start-page: 279 year: 2003 ident: 10.1016/j.bbagen.2013.10.007_bb0030 article-title: The mechanism of proton exclusion in the aquaporin-1 water channel publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.08.003 – volume: 213 start-page: 899 year: 1990 ident: 10.1016/j.bbagen.2013.10.007_bb0060 article-title: Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80271-2 – volume: 101 start-page: 14045 year: 2004 ident: 10.1016/j.bbagen.2013.10.007_bb0160 article-title: The channel architecture of aquaporin 0 at a 2.2-Å resolution publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0405274101 – volume: 103 start-page: 269 year: 2006 ident: 10.1016/j.bbagen.2013.10.007_bb0105 article-title: Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507225103 |
SSID | ssj0000595 ssj0025309 |
Score | 2.2283106 |
SecondaryResourceType | review_article |
Snippet | The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1605 |
SubjectTerms | Aquaporin aquaporins Aquaporins - chemistry brain Cell adhesion Cryo-electron microscopy crystallography Crystallography - methods crystals Electron crystallography Electrons hydrogen bonding lipid bilayers lipids Models, Molecular permeability Protein Conformation Water - chemistry Water channel |
Title | Water channel structures analysed by electron crystallography |
URI | https://dx.doi.org/10.1016/j.bbagen.2013.10.007 https://www.ncbi.nlm.nih.gov/pubmed/24120524 https://www.proquest.com/docview/1518620581 https://www.proquest.com/docview/2000226939 |
Volume | 1840 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5EEb2I1ld9sYLX9LFJNpuDBylKtdiDD-xtSbIpKGVbaj304m93stlUPJSCp7DZCYSZZOYL8wK4YjSRPE00QesuCRNWEIWwnCRMCc1VikbdJQo_9pPuK3sY8MEadEIujAurrHS_1-mltq5mmhU3m5P39-azc-ohnODOIcOYcEl8OLhT3vj-DfNA-MC9J4ERRx3S58oYL63x0roqqG3aKGO8xDLztAx-lmbobhd2KvwY3fgt7sGaLWqw6TtKzmuw1QkN3Pbh-g1x5DRyqb2FHUW-UuwXPq8jVVYisXmk51HogxOZ6RyR4ijUsD6A17vbl06XVN0SiKGSz0guhI7bzCY8z5Xk1KSMq1wODaMKMVvOpDY8N8pKpnOuDBKiZJSiFK-lZYoewnoxLuwxRFQrhAExStem-EOmNhY6bZmhESleWFEHGpiUmaqUuOtoMcpCzNhH5lmbOda6WWRtHchi1cSX0lhBLwL_sz9HIkNtv2LlZRBXhjx3LhBV2PHXZ4b4Bp9wLZ62l9PEZVGgRFJZhyMv68V-Ee_g6pid_Htvp7CNX8zHTJ7BOsreniOumemL8uBewMbNfa_bd2Pv6a33A4n696o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qRfQivq3PFbzGtptkszl4kKJUW3tRsbeQZFOolFVqPfTfO9ndVDwUwWsyA2GSzHwhM98AXDKaSJ4mhmB0l4QJJ4hGWE4SpoXhOsWg7guFHwdJ94U9DPmwBp1QC-PTKivfX_r0wltXI83Kms2P8bj55D_1EE5w_yHDmJArsOrZqXgdVm_ue93Bj0PmRfMVL0-8QqigK9K8jMF764lQ2_SqSPMSyyLUMgRaRKK7LdisIGR0U65yG2ou34G1sqnkfAfWO6GH2y5cvyKUnEa-ujd3k6gki_3CF3akCzISl0VmHoVWOJGdzhEsTgKN9R683N0-d7qkaphALJV8RjIhTNxmLuFZpiWnNmVcZ3JkGdUI2zImjeWZ1U4yk3FtURA3R2tK8WY6puk-1PP33B1CRI1GJBDjBrsUJ2TqYmHSlh1ZkeKdFQ2gwUjKVmzivqnFRIW0sTdVmlZ50_pRNG0DyELro2TT-ENeBPurX6dCocP_Q_MibJdCm_tfEJ27969PhRAHX3EtnraXy8QFL1AiqWzAQbnXi_Ui5EHtmB39e23nsN59fuyr_v2gdwwbOMPKFMoTqOM5cKcIc2bmrDrG30KK-Lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+channel+structures+analysed+by+electron+crystallography&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Tani%2C+Kazutoshi&rft.au=Fujiyoshi%2C+Yoshinori&rft.date=2014-05-01&rft.issn=0304-4165&rft.volume=1840&rft.issue=5&rft.spage=1605&rft.epage=1613&rft_id=info:doi/10.1016%2Fj.bbagen.2013.10.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2013_10_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |