p-AlInN electron blocking layer for AlGaN-based deep-ultraviolet light-emitting diode

Commonly, the Al-rich AlGaN layer acts as electron blocking layer (EBL) to block the overflow of electrons from the active region in conventional AlGaN deep-ultraviolet (DUV) light-emitting diode (LED). However, the Al-rich AlGaN layer leads to the disadvantages of severe electron overflow and hole...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and Microstructures Vol. 158; p. 107022
Main Authors Sharif, Muhammad Nawaz, Niass, Mussaab Ibrahim, Liou, Juin J., Wang, Fang, Liu, Yuhuai
Format Journal Article
LanguageEnglish
Japanese
Published Elsevier Ltd 01.10.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Commonly, the Al-rich AlGaN layer acts as electron blocking layer (EBL) to block the overflow of electrons from the active region in conventional AlGaN deep-ultraviolet (DUV) light-emitting diode (LED). However, the Al-rich AlGaN layer leads to the disadvantages of severe electron overflow and hole blocking effect. Herein, we proposed a new AlInN-based EBL to improve the optoelectronic characteristics of AlGaN-based DUV LED. The calculated results show that conventional (fixed Al composition) AlInN EBL has superior hole injection, reduced electron overflow, and lower electric field as compared to conventional AlGaN EBL. By using AlInN EBL, internal quantum efficiency (IQE) drop is reduced by 20%, and light output power improved by 165.30%. It was noticed that conventional AlInN EBL has a 28% IQE drop which can further be minimized by employing AlInN/AlInN superlattice EBL structure. It is found that superlattice EBL improved carrier distribution and reduced electric field resulting in a higher electron-hole wave-function overlap of 55% within multiple quantum wells (MQW) which elevate radiative recombination rate. AlInN superlattice EBL LED has drop-free 93% IQE, twice light output power, and spontaneous emission rate compared to conventional AlInN EBL LED. •AlInN-based EBL is used to improve the optoelectronic characteristics of AlGaN-based DUV LED.•Conventional (fixed Al composition) AlInN EBL has superior hole injection, reduced electron overflow, and lower electric field as compared to conventional.•AlInN superlattice EBL LED has drop-free IQE, twice light output power, and spontaneous emission rate compared to conventional AlInN EBL LED.
AbstractList Commonly, the Al-rich AlGaN layer acts as electron blocking layer (EBL) to block the overflow of electrons from the active region in conventional AlGaN deep-ultraviolet (DUV) light-emitting diode (LED). However, the Al-rich AlGaN layer leads to the disadvantages of severe electron overflow and hole blocking effect. Herein, we proposed a new AlInN-based EBL to improve the optoelectronic characteristics of AlGaN-based DUV LED. The calculated results show that conventional (fixed Al composition) AlInN EBL has superior hole injection, reduced electron overflow, and lower electric field as compared to conventional AlGaN EBL. By using AlInN EBL, internal quantum efficiency (IQE) drop is reduced by 20%, and light output power improved by 165.30%. It was noticed that conventional AlInN EBL has a 28% IQE drop which can further be minimized by employing AlInN/AlInN superlattice EBL structure. It is found that superlattice EBL improved carrier distribution and reduced electric field resulting in a higher electron-hole wave-function overlap of 55% within multiple quantum wells (MQW) which elevate radiative recombination rate. AlInN superlattice EBL LED has drop-free 93% IQE, twice light output power, and spontaneous emission rate compared to conventional AlInN EBL LED. •AlInN-based EBL is used to improve the optoelectronic characteristics of AlGaN-based DUV LED.•Conventional (fixed Al composition) AlInN EBL has superior hole injection, reduced electron overflow, and lower electric field as compared to conventional.•AlInN superlattice EBL LED has drop-free IQE, twice light output power, and spontaneous emission rate compared to conventional AlInN EBL LED.
ArticleNumber 107022
Author Niass, Mussaab Ibrahim
Liu, Yuhuai
Wang, Fang
Sharif, Muhammad Nawaz
Liou, Juin J.
Author_xml – sequence: 1
  givenname: Muhammad Nawaz
  orcidid: 0000-0002-8531-4695
  surname: Sharif
  fullname: Sharif, Muhammad Nawaz
  email: nawazkhattak@gs.zzu.edu.com
  organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
– sequence: 2
  givenname: Mussaab Ibrahim
  surname: Niass
  fullname: Niass, Mussaab Ibrahim
  organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
– sequence: 3
  givenname: Juin J.
  surname: Liou
  fullname: Liou, Juin J.
  organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
– sequence: 4
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  email: iefwang@zzu.edu.cn
  organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
– sequence: 5
  givenname: Yuhuai
  surname: Liu
  fullname: Liu, Yuhuai
  email: ieyhliu@zzu.edu.cn
  organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
BackLink https://cir.nii.ac.jp/crid/1873679867473774848$$DView record in CiNii
BookMark eNp9kD1vwjAQQK2KSgXaP9ApQ1dTO3FiR-qCUEuREF3KbDn2hZqaGDkuEv--jujUgeVOOt27jzdBo853gNAjJTNKaPW8n_XHg53lJKepwEme36AxJXWFi4rzERoTzmpckaK6Q5O-3xNCakb5GG2PeO5W3SYDBzoG32WN8_rbdrvMqTOErPUhm7ul2uBG9WAyA3DEPy4GdbLeQcyc3X1FDAcb40AZ6w3co9tWuR4e_vIUbd9ePxfveP2xXC3ma6yLuozYUEO0ahvBGTTaMMEIM0DKuiibpmStKHOuhNKiUFAJTYXOFVWsEQlvdd4UUyQuc3XwfR-gldpGFa3v0n3WSUrkoEfu5aBHDnrkRU9C83_oMdiDCufr0NMF6qxNq4ZIBU-Ka1FxxgvO0w8itb1c2iD9frIQZK8tdBqMDcmyNN5e2_ILPhCMFg
CitedBy_id crossref_primary_10_7498_aps_73_20231969
crossref_primary_10_1364_OME_502136
crossref_primary_10_1016_j_micrna_2024_207872
crossref_primary_10_1016_j_optlastec_2022_108156
crossref_primary_10_1016_j_micrna_2022_207489
crossref_primary_10_1109_TED_2024_3379964
crossref_primary_10_1063_5_0131013
crossref_primary_10_1016_j_micrna_2022_207208
crossref_primary_10_1016_j_optlastec_2024_111567
crossref_primary_10_1002_pssa_202300192
crossref_primary_10_1109_JPHOT_2022_3165036
crossref_primary_10_1007_s11664_022_09778_2
crossref_primary_10_1007_s10946_023_10139_5
crossref_primary_10_1002_aelm_202400247
crossref_primary_10_1007_s10946_023_10148_4
crossref_primary_10_1140_epjd_s10053_024_00811_z
crossref_primary_10_1007_s11664_024_11190_x
crossref_primary_10_1051_e3sconf_202456001006
crossref_primary_10_1016_j_optlastec_2024_112025
crossref_primary_10_1016_j_ijleo_2023_171002
crossref_primary_10_1002_pssa_202200674
crossref_primary_10_1117_1_OE_61_7_076113
crossref_primary_10_1088_1674_4926_45_5_052501
crossref_primary_10_1088_1402_4896_ad185f
Cites_doi 10.1143/APEX.5.032101
10.1364/OME.380409
10.1016/j.spmi.2019.106167
10.1364/OE.27.0A1544
10.1557/mrc.2016.26
10.1021/acsphotonics.7b00443
10.1063/1.1448668
10.1109/LPT.2008.922937
10.1063/1.3675451
10.1016/j.spmi.2020.106643
10.1063/1.4967837
10.1016/j.ajic.2020.07.031
10.1088/1361-6641/ab8c2a
10.1002/pssb.201147145
10.1088/1361-6528/abe4f9
10.1364/OE.22.00A320
10.1364/PRJ.7.0000B1
10.1088/1674-4926/40/12/122802
10.1115/1.4047286
10.1063/1.4961680
10.1063/1.4976203
10.1063/1.4858386
10.1007/s11664-019-07001-3
10.1364/OE.415258
10.1016/j.spmi.2017.11.046
10.3390/app8081264
10.1021/acsaelm.0c00172
10.7567/1347-4065/ab106b
10.1016/j.sse.2005.09.002
10.1016/j.ijleo.2021.166528
10.1109/JSTQE.2016.2597541
10.1126/science.1183226
10.1016/j.spmi.2017.11.029
10.1016/j.spmi.2018.03.066
10.1016/j.spmi.2020.106543
10.7567/APEX.10.031002
10.1016/j.optcom.2019.02.054
10.1063/1.4883894
10.1063/1.4738983
10.1109/JPHOT.2019.2922280
10.1088/1361-6463/aa70dd
10.7567/1882-0786/aaf62b
10.1016/j.physe.2018.11.022
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID RYH
AAYXX
CITATION
DOI 10.1016/j.spmi.2021.107022
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2021_107022
S0749603621002202
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
RYH
SSH
AAYXX
ABWVN
ACRPL
ADNMO
AGQPQ
CITATION
ID FETCH-LOGICAL-c395t-d1d0cafb874ebcd48404de05935bb54f8527a8ac83ae68c18c2a1a4b8c39fc2b3
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Thu Apr 24 22:52:25 EDT 2025
Tue Jul 01 01:35:17 EDT 2025
Thu Jun 26 23:57:25 EDT 2025
Fri Feb 23 02:43:13 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Electron blocking layer
AlInN
Superlattice electron blocking layer
Light-emitting diode
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-d1d0cafb874ebcd48404de05935bb54f8527a8ac83ae68c18c2a1a4b8c39fc2b3
ORCID 0000-0002-8531-4695
0000-0003-1034-1856
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2021_107022
crossref_primary_10_1016_j_spmi_2021_107022
nii_cinii_1873679867473774848
elsevier_sciencedirect_doi_10_1016_j_spmi_2021_107022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-01
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Superlattices and Microstructures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Banas (bib2) 2005
Zhao (bib15) 2016; 109
Zhang (bib19) 2013; 103
Usman (bib47) 2018; 113
Park, Ahn (bib34) 2018; 117
Chen, Wang, Fan (bib35) 2019; 48
Cheng, Su, Lai (bib39) 2008; 20
Fiorentini, Bernardini, Ambacher (bib6) 2002; 80
Muhammad (bib17) 2021; 32
Simon (bib9) 2010; 327
Nagasawa, Hirano (bib7) 2018; 8
Dong (bib21) 2014; 22
Zhang (bib23) 2019; 7
Zhang (bib44) 2014; 104
Wu (bib14) 2017; 50
Takano (bib18) 2017; 10
Li (bib8) 2019; 12
Würtele (bib1) 2011; 45
Prasad (bib26) 2019; 132
Northrup (bib11) 2012; 100
Piprek (bib40) 2013
Gutt (bib4) 2012; 5
Yu (bib29) 2019; 11
Ren (bib45) 2019; 11
Mehnke (bib3) 2016; 23
Liu (bib31) 2020; 35
Liu (bib12) 2017; 110
Chu (bib22) 2018; 113
Fu (bib38) 2011; 248
Wang (bib20) 2012; 101
Shi (bib25) 2019; 441
Velpula (bib36) 2020; 10
Khan (bib43) 2020; 2
Moustakas (bib13) 2016; 6
Mondal, Chatterjee, Pal (bib24) 2019; 108
Zhang (bib28) 2017; 4
Jia (bib32) 2020; 142
Pieniak (bib46) 2021; 29
Pampili (bib37) 2019; 58
Niass (bib42) 2019; 40
Gupta (bib33) 2020; 142
Zhao (bib16) 2016; 4
Turin (bib10) 2005; 49
Nawaz (bib41) 2020; 145
Usman (bib27) 2021
Heilingloh (bib5) 2020; 48
Yu (bib30) 2019; 27
Niass (10.1016/j.spmi.2021.107022_bib42) 2019; 40
Mondal (10.1016/j.spmi.2021.107022_bib24) 2019; 108
Jia (10.1016/j.spmi.2021.107022_bib32) 2020; 142
Northrup (10.1016/j.spmi.2021.107022_bib11) 2012; 100
Piprek (10.1016/j.spmi.2021.107022_bib40) 2013
Pampili (10.1016/j.spmi.2021.107022_bib37) 2019; 58
Chen (10.1016/j.spmi.2021.107022_bib35) 2019; 48
Yu (10.1016/j.spmi.2021.107022_bib30) 2019; 27
Würtele (10.1016/j.spmi.2021.107022_bib1) 2011; 45
Heilingloh (10.1016/j.spmi.2021.107022_bib5) 2020; 48
Muhammad (10.1016/j.spmi.2021.107022_bib17) 2021; 32
Mehnke (10.1016/j.spmi.2021.107022_bib3) 2016; 23
Nagasawa (10.1016/j.spmi.2021.107022_bib7) 2018; 8
Velpula (10.1016/j.spmi.2021.107022_bib36) 2020; 10
Wu (10.1016/j.spmi.2021.107022_bib14) 2017; 50
Banas (10.1016/j.spmi.2021.107022_bib2) 2005
Li (10.1016/j.spmi.2021.107022_bib8) 2019; 12
Dong (10.1016/j.spmi.2021.107022_bib21) 2014; 22
Simon (10.1016/j.spmi.2021.107022_bib9) 2010; 327
Prasad (10.1016/j.spmi.2021.107022_bib26) 2019; 132
Wang (10.1016/j.spmi.2021.107022_bib20) 2012; 101
Ren (10.1016/j.spmi.2021.107022_bib45) 2019; 11
Gupta (10.1016/j.spmi.2021.107022_bib33) 2020; 142
Chu (10.1016/j.spmi.2021.107022_bib22) 2018; 113
Takano (10.1016/j.spmi.2021.107022_bib18) 2017; 10
Shi (10.1016/j.spmi.2021.107022_bib25) 2019; 441
Fiorentini (10.1016/j.spmi.2021.107022_bib6) 2002; 80
Turin (10.1016/j.spmi.2021.107022_bib10) 2005; 49
Liu (10.1016/j.spmi.2021.107022_bib31) 2020; 35
Zhang (10.1016/j.spmi.2021.107022_bib44) 2014; 104
Usman (10.1016/j.spmi.2021.107022_bib47) 2018; 113
Gutt (10.1016/j.spmi.2021.107022_bib4) 2012; 5
Cheng (10.1016/j.spmi.2021.107022_bib39) 2008; 20
Khan (10.1016/j.spmi.2021.107022_bib43) 2020; 2
Moustakas (10.1016/j.spmi.2021.107022_bib13) 2016; 6
Zhao (10.1016/j.spmi.2021.107022_bib16) 2016; 4
Liu (10.1016/j.spmi.2021.107022_bib12) 2017; 110
Nawaz (10.1016/j.spmi.2021.107022_bib41) 2020; 145
Zhang (10.1016/j.spmi.2021.107022_bib23) 2019; 7
Zhang (10.1016/j.spmi.2021.107022_bib19) 2013; 103
Fu (10.1016/j.spmi.2021.107022_bib38) 2011; 248
Pieniak (10.1016/j.spmi.2021.107022_bib46) 2021; 29
Park (10.1016/j.spmi.2021.107022_bib34) 2018; 117
Zhao (10.1016/j.spmi.2021.107022_bib15) 2016; 109
Zhang (10.1016/j.spmi.2021.107022_bib28) 2017; 4
Usman (10.1016/j.spmi.2021.107022_bib27) 2021
Yu (10.1016/j.spmi.2021.107022_bib29) 2019; 11
References_xml – volume: 113
  start-page: 585
  year: 2018
  end-page: 591
  ident: bib47
  article-title: Efficiency improvement of green light-emitting diodes by employing all-quaternary active region and electron-blocking layer
  publication-title: Superlattice. Microst.
– volume: 108
  start-page: 233
  year: 2019
  end-page: 237
  ident: bib24
  article-title: Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 4
  start-page: 86115
  year: 2016
  ident: bib16
  article-title: Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics
  publication-title: Apl. Mater.
– volume: 10
  start-page: 472
  year: 2020
  end-page: 483
  ident: bib36
  article-title: Numerical investigation on the device performance of electron blocking layer free AlInN nanowire deep ultraviolet light-emitting diodes
  publication-title: Opt. Mater. Express
– volume: 103
  start-page: 263501
  year: 2013
  ident: bib19
  article-title: p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas
  publication-title: Appl. Phys. Lett.
– year: 2013
  ident: bib40
  article-title: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation
– volume: 6
  start-page: 247
  year: 2016
  end-page: 269
  ident: bib13
  article-title: Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy
  publication-title: MRS Communications
– volume: 35
  start-page: 075021
  year: 2020
  ident: bib31
  article-title: Polarization-engineered AlGaN last quantum barrier for efficient deep-ultraviolet light-emitting diodes
  publication-title: Semicond. Sci. Technol.
– volume: 22
  start-page: A320
  year: 2014
  end-page: A327
  ident: bib21
  article-title: Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes
  publication-title: Opt Express
– volume: 49
  start-page: 1678
  year: 2005
  end-page: 1682
  ident: bib10
  article-title: A modified transferred-electron high-field mobility model for GaN devices simulation
  publication-title: Solid State Electron.
– volume: 40
  start-page: 122802
  year: 2019
  ident: bib42
  article-title: A contrivance of 277 nm DUV LD with B0. 313Ga0. 687N/B0. 40Ga0. 60N QWs and Al x Ga1–x N heterojunction grown on AlN substrate
  publication-title: J. Semiconduct.
– volume: 5
  start-page: 32101
  year: 2012
  ident: bib4
  article-title: AlGaN-Based 355 nm UV light-emitting diodes with high power efficiency
  publication-title: APEX
– volume: 20
  start-page: 970
  year: 2008
  end-page: 972
  ident: bib39
  article-title: Improved light output of nitride-based light-emitting diodes by lattice-matched AlInN cladding structure
  publication-title: IEEE Photon. Technol. Lett.
– start-page: 166528
  year: 2021
  ident: bib27
  article-title: Designing anti-trapezoidal electron blocking layer for the amelioration of AlGaN-based deep ultraviolet light-emitting diodes internal quantum efficiency
  publication-title: Optik
– volume: 50
  start-page: 245101
  year: 2017
  ident: bib14
  article-title: Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at~ 350 nm via step quantum well structure design
  publication-title: J. Phys. Appl. Phys.
– volume: 327
  start-page: 60
  year: 2010
  end-page: 64
  ident: bib9
  article-title: Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures
  publication-title: Science
– volume: 8
  start-page: 1264
  year: 2018
  ident: bib7
  article-title: A review of AlGaN-based deep-ultraviolet light-emitting diodes on sapphire
  publication-title: Appl. Sci.
– volume: 145
  start-page: 106643
  year: 2020
  ident: bib41
  article-title: Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide
  publication-title: Superlattice. Microst.
– volume: 11
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib45
  article-title: III-nitride deep UV LED without electron blocking layer
  publication-title: IEEE Photonics Journal
– volume: 2
  start-page: 1892
  year: 2020
  end-page: 1907
  ident: bib43
  article-title: External quantum efficiency of 6.5% at 300 nm emission and 4.7% at 310 nm emission on bare wafer of AlGaN-based UVB LEDs
  publication-title: ACS Applied Electronic Materials
– volume: 132
  start-page: 106167
  year: 2019
  ident: bib26
  article-title: Double-side step-graded AlGaN electron blocking layer for nearly droop-free GaN-based blue LEDs
  publication-title: Superlattice. Microst.
– volume: 23
  start-page: 29
  year: 2016
  end-page: 36
  ident: bib3
  article-title: Gas sensing of nitrogen oxide utilizing spectrally pure deep UV LEDs
  publication-title: IEEE J. Sel. Top. Quant. Electron.
– volume: 48
  start-page: 2572
  year: 2019
  end-page: 2576
  ident: bib35
  article-title: Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with AlInGaN/AlInGaN superlattice electron blocking layer
  publication-title: J. Electron. Mater.
– volume: 109
  start-page: 201106
  year: 2016
  ident: bib15
  article-title: Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242 nm
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: B1
  year: 2019
  end-page: B6
  ident: bib23
  article-title: Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high-performance deep ultraviolet light-emitting diodes
  publication-title: Photon. Res.
– volume: 142
  start-page: 106543
  year: 2020
  ident: bib33
  article-title: Improvement in efficiency and luminous power of AlGaN-based D-UV LEDs by using partially graded quantum barriers
  publication-title: Superlattice. Microst.
– volume: 104
  start-page: 243501
  year: 2014
  ident: bib44
  article-title: Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 1824
  year: 2021
  end-page: 1837
  ident: bib46
  article-title: Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction
  publication-title: Opt Express
– volume: 32
  start-page: 215703
  year: 2021
  ident: bib17
  article-title: Suppressing the efficiency droop in the AlGaN-based UVB LED
  publication-title: Nanotechnology
– volume: 100
  start-page: 21101
  year: 2012
  ident: bib11
  article-title: Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells
  publication-title: Appl. Phys. Lett.
– volume: 80
  start-page: 1204
  year: 2002
  end-page: 1206
  ident: bib6
  article-title: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures
  publication-title: Appl. Phys. Lett.
– volume: 441
  start-page: 149
  year: 2019
  end-page: 154
  ident: bib25
  article-title: Performance improvements of AlGaN-based deep-ultraviolet light-emitting diodes with specifically designed irregular sawtooth hole and electron blocking layers
  publication-title: Opt Commun.
– year: 2005
  ident: bib2
  article-title: Final LDRD report: ultraviolet water purification systems for rural environments and mobile applications
  publication-title: Sandia Natl. Lab.
– volume: 10
  start-page: 31002
  year: 2017
  ident: bib18
  article-title: Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency
  publication-title: APEX
– volume: 11
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib29
  article-title: Enhanced performance of an AlGaN-based deep-ultraviolet LED having graded quantum well structure
  publication-title: IEEE Photonics Journal
– volume: 45
  start-page: 1481
  year: 2011
  end-page: 1489
  ident: bib1
  article-title: Water research
– volume: 117
  start-page: 413
  year: 2018
  end-page: 417
  ident: bib34
  article-title: Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices
  publication-title: Superlattice. Microst.
– volume: 27
  start-page: A1544
  year: 2019
  end-page: A1553
  ident: bib30
  article-title: Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier
  publication-title: Opt Express
– volume: 248
  start-page: 2816
  year: 2011
  end-page: 2820
  ident: bib38
  article-title: Exploring optimal UV emission windows for AlGaN and AlInN alloys grown on different templates
  publication-title: Phys. Status Solidi
– volume: 110
  start-page: 71103
  year: 2017
  ident: bib12
  article-title: Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes
  publication-title: Appl. Phys. Lett.
– volume: 113
  start-page: 472
  year: 2018
  end-page: 477
  ident: bib22
  article-title: On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x> y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes
  publication-title: Superlattice. Microst.
– volume: 142
  year: 2020
  ident: bib32
  article-title: Nearly efficiency-droop-free AlGaN-based deep-ultraviolet light-emitting diode without electron-blocking layer
  publication-title: J. Electron. Packag.
– volume: 12
  start-page: 11010
  year: 2019
  ident: bib8
  article-title: Ultrathin inserted AlGaN/InAlN heterojunction for performance improvement in AlGaN-based deep ultraviolet light-emitting diodes
  publication-title: APEX
– volume: 101
  start-page: 43115
  year: 2012
  ident: bib20
  article-title: High efficiency ultraviolet emission from AlxGa1− xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 1846
  year: 2017
  end-page: 1850
  ident: bib28
  article-title: Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes
  publication-title: ACS Photonics
– volume: 48
  start-page: 1273
  year: 2020
  end-page: 1275
  ident: bib5
  article-title: Susceptibility of SARS-CoV-2 to UV irradiation
  publication-title: Am. J. Infect. Contr.
– volume: 58
  start-page: SCCB33
  year: 2019
  ident: bib37
  article-title: InAlN-based LEDs emitting in the near-UV region
  publication-title: Jpn. J. Appl. Phys.
– volume: 5
  start-page: 32101
  issue: 3
  year: 2012
  ident: 10.1016/j.spmi.2021.107022_bib4
  article-title: AlGaN-Based 355 nm UV light-emitting diodes with high power efficiency
  publication-title: APEX
  doi: 10.1143/APEX.5.032101
– volume: 10
  start-page: 472
  issue: 2
  year: 2020
  ident: 10.1016/j.spmi.2021.107022_bib36
  article-title: Numerical investigation on the device performance of electron blocking layer free AlInN nanowire deep ultraviolet light-emitting diodes
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.380409
– volume: 11
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib45
  article-title: III-nitride deep UV LED without electron blocking layer
  publication-title: IEEE Photonics Journal
– year: 2005
  ident: 10.1016/j.spmi.2021.107022_bib2
  article-title: Final LDRD report: ultraviolet water purification systems for rural environments and mobile applications
  publication-title: Sandia Natl. Lab.
– volume: 132
  start-page: 106167
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib26
  article-title: Double-side step-graded AlGaN electron blocking layer for nearly droop-free GaN-based blue LEDs
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2019.106167
– volume: 27
  start-page: A1544
  issue: 20
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib30
  article-title: Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier
  publication-title: Opt Express
  doi: 10.1364/OE.27.0A1544
– volume: 6
  start-page: 247
  issue: 3
  year: 2016
  ident: 10.1016/j.spmi.2021.107022_bib13
  article-title: Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy
  publication-title: MRS Communications
  doi: 10.1557/mrc.2016.26
– volume: 45
  start-page: 1481
  issue: 3
  year: 2011
  ident: 10.1016/j.spmi.2021.107022_bib1
  article-title: Application of GaN-based ultraviolet-C light emitting diodes–UV LEDs–for water disinfection. Water research
– volume: 4
  start-page: 1846
  issue: 7
  year: 2017
  ident: 10.1016/j.spmi.2021.107022_bib28
  article-title: Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00443
– volume: 80
  start-page: 1204
  issue: 7
  year: 2002
  ident: 10.1016/j.spmi.2021.107022_bib6
  article-title: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1448668
– volume: 20
  start-page: 970
  issue: 12
  year: 2008
  ident: 10.1016/j.spmi.2021.107022_bib39
  article-title: Improved light output of nitride-based light-emitting diodes by lattice-matched AlInN cladding structure
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2008.922937
– volume: 100
  start-page: 21101
  issue: 2
  year: 2012
  ident: 10.1016/j.spmi.2021.107022_bib11
  article-title: Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3675451
– volume: 145
  start-page: 106643
  year: 2020
  ident: 10.1016/j.spmi.2021.107022_bib41
  article-title: Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2020.106643
– volume: 109
  start-page: 201106
  issue: 20
  year: 2016
  ident: 10.1016/j.spmi.2021.107022_bib15
  article-title: Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242 nm
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4967837
– volume: 48
  start-page: 1273
  issue: 10
  year: 2020
  ident: 10.1016/j.spmi.2021.107022_bib5
  article-title: Susceptibility of SARS-CoV-2 to UV irradiation
  publication-title: Am. J. Infect. Contr.
  doi: 10.1016/j.ajic.2020.07.031
– volume: 35
  start-page: 075021
  issue: 7
  year: 2020
  ident: 10.1016/j.spmi.2021.107022_bib31
  article-title: Polarization-engineered AlGaN last quantum barrier for efficient deep-ultraviolet light-emitting diodes
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/ab8c2a
– volume: 248
  start-page: 2816
  issue: 12
  year: 2011
  ident: 10.1016/j.spmi.2021.107022_bib38
  article-title: Exploring optimal UV emission windows for AlGaN and AlInN alloys grown on different templates
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssb.201147145
– volume: 32
  start-page: 215703
  issue: 21
  year: 2021
  ident: 10.1016/j.spmi.2021.107022_bib17
  article-title: Suppressing the efficiency droop in the AlGaN-based UVB LED
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/abe4f9
– volume: 22
  start-page: A320
  issue: 102
  year: 2014
  ident: 10.1016/j.spmi.2021.107022_bib21
  article-title: Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes
  publication-title: Opt Express
  doi: 10.1364/OE.22.00A320
– volume: 7
  start-page: B1
  issue: 4
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib23
  article-title: Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high-performance deep ultraviolet light-emitting diodes
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.7.0000B1
– volume: 40
  start-page: 122802
  issue: 12
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib42
  article-title: A contrivance of 277 nm DUV LD with B0. 313Ga0. 687N/B0. 40Ga0. 60N QWs and Al x Ga1–x N heterojunction grown on AlN substrate
  publication-title: J. Semiconduct.
  doi: 10.1088/1674-4926/40/12/122802
– volume: 142
  issue: 3
  year: 2020
  ident: 10.1016/j.spmi.2021.107022_bib32
  article-title: Nearly efficiency-droop-free AlGaN-based deep-ultraviolet light-emitting diode without electron-blocking layer
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.4047286
– volume: 4
  start-page: 86115
  issue: 8
  year: 2016
  ident: 10.1016/j.spmi.2021.107022_bib16
  article-title: Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics
  publication-title: Apl. Mater.
  doi: 10.1063/1.4961680
– year: 2013
  ident: 10.1016/j.spmi.2021.107022_bib40
– volume: 110
  start-page: 71103
  issue: 7
  year: 2017
  ident: 10.1016/j.spmi.2021.107022_bib12
  article-title: Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4976203
– volume: 103
  start-page: 263501
  issue: 26
  year: 2013
  ident: 10.1016/j.spmi.2021.107022_bib19
  article-title: p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4858386
– volume: 48
  start-page: 2572
  issue: 4
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib35
  article-title: Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with AlInGaN/AlInGaN superlattice electron blocking layer
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07001-3
– volume: 29
  start-page: 1824
  issue: 2
  year: 2021
  ident: 10.1016/j.spmi.2021.107022_bib46
  article-title: Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction
  publication-title: Opt Express
  doi: 10.1364/OE.415258
– volume: 113
  start-page: 585
  year: 2018
  ident: 10.1016/j.spmi.2021.107022_bib47
  article-title: Efficiency improvement of green light-emitting diodes by employing all-quaternary active region and electron-blocking layer
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2017.11.046
– volume: 8
  start-page: 1264
  issue: 8
  year: 2018
  ident: 10.1016/j.spmi.2021.107022_bib7
  article-title: A review of AlGaN-based deep-ultraviolet light-emitting diodes on sapphire
  publication-title: Appl. Sci.
  doi: 10.3390/app8081264
– volume: 2
  start-page: 1892
  issue: 7
  year: 2020
  ident: 10.1016/j.spmi.2021.107022_bib43
  article-title: External quantum efficiency of 6.5% at 300 nm emission and 4.7% at 310 nm emission on bare wafer of AlGaN-based UVB LEDs
  publication-title: ACS Applied Electronic Materials
  doi: 10.1021/acsaelm.0c00172
– volume: 58
  start-page: SCCB33
  issue: SC
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib37
  article-title: InAlN-based LEDs emitting in the near-UV region
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/1347-4065/ab106b
– volume: 49
  start-page: 1678
  issue: 10
  year: 2005
  ident: 10.1016/j.spmi.2021.107022_bib10
  article-title: A modified transferred-electron high-field mobility model for GaN devices simulation
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2005.09.002
– start-page: 166528
  year: 2021
  ident: 10.1016/j.spmi.2021.107022_bib27
  article-title: Designing anti-trapezoidal electron blocking layer for the amelioration of AlGaN-based deep ultraviolet light-emitting diodes internal quantum efficiency
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.166528
– volume: 23
  start-page: 29
  issue: 2
  year: 2016
  ident: 10.1016/j.spmi.2021.107022_bib3
  article-title: Gas sensing of nitrogen oxide utilizing spectrally pure deep UV LEDs
  publication-title: IEEE J. Sel. Top. Quant. Electron.
  doi: 10.1109/JSTQE.2016.2597541
– volume: 327
  start-page: 60
  issue: 5961
  year: 2010
  ident: 10.1016/j.spmi.2021.107022_bib9
  article-title: Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures
  publication-title: Science
  doi: 10.1126/science.1183226
– volume: 113
  start-page: 472
  year: 2018
  ident: 10.1016/j.spmi.2021.107022_bib22
  article-title: On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x> y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2017.11.029
– volume: 117
  start-page: 413
  year: 2018
  ident: 10.1016/j.spmi.2021.107022_bib34
  article-title: Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2018.03.066
– volume: 142
  start-page: 106543
  year: 2020
  ident: 10.1016/j.spmi.2021.107022_bib33
  article-title: Improvement in efficiency and luminous power of AlGaN-based D-UV LEDs by using partially graded quantum barriers
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2020.106543
– volume: 10
  start-page: 31002
  issue: 3
  year: 2017
  ident: 10.1016/j.spmi.2021.107022_bib18
  article-title: Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency
  publication-title: APEX
  doi: 10.7567/APEX.10.031002
– volume: 441
  start-page: 149
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib25
  article-title: Performance improvements of AlGaN-based deep-ultraviolet light-emitting diodes with specifically designed irregular sawtooth hole and electron blocking layers
  publication-title: Opt Commun.
  doi: 10.1016/j.optcom.2019.02.054
– volume: 104
  start-page: 243501
  issue: 24
  year: 2014
  ident: 10.1016/j.spmi.2021.107022_bib44
  article-title: Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4883894
– volume: 101
  start-page: 43115
  issue: 4
  year: 2012
  ident: 10.1016/j.spmi.2021.107022_bib20
  article-title: High efficiency ultraviolet emission from AlxGa1− xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4738983
– volume: 11
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib29
  article-title: Enhanced performance of an AlGaN-based deep-ultraviolet LED having graded quantum well structure
  publication-title: IEEE Photonics Journal
  doi: 10.1109/JPHOT.2019.2922280
– volume: 50
  start-page: 245101
  issue: 24
  year: 2017
  ident: 10.1016/j.spmi.2021.107022_bib14
  article-title: Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at~ 350 nm via step quantum well structure design
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/1361-6463/aa70dd
– volume: 12
  start-page: 11010
  issue: 1
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib8
  article-title: Ultrathin inserted AlGaN/InAlN heterojunction for performance improvement in AlGaN-based deep ultraviolet light-emitting diodes
  publication-title: APEX
  doi: 10.7567/1882-0786/aaf62b
– volume: 108
  start-page: 233
  year: 2019
  ident: 10.1016/j.spmi.2021.107022_bib24
  article-title: Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2018.11.022
SSID ssj0009417
ssib000404820
ssib006540745
ssib054718990
ssib006540744
Score 2.0514867
Snippet Commonly, the Al-rich AlGaN layer acts as electron blocking layer (EBL) to block the overflow of electrons from the active region in conventional AlGaN...
SourceID crossref
nii
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107022
SubjectTerms AlInN
Electron blocking layer
Light-emitting diode
Superlattice electron blocking layer
Title p-AlInN electron blocking layer for AlGaN-based deep-ultraviolet light-emitting diode
URI https://dx.doi.org/10.1016/j.spmi.2021.107022
https://cir.nii.ac.jp/crid/1873679867473774848
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-EL2IT3yTgzeJu03SbXpcFnVV2IsueCt5FSq1Fq1Xf7szaevjoAcvhYYkhMlk5kvyZYaQUw9KEanE4cn9kEkDamyEEyxPcynjXGlYU8i2mI2mc3nzED8skEn_FgZplZ3tb216sNZdyaCT5qAuisEdOD-A32CAMYooDwElpUxQy8_fv2geqQxZd7Eyw9rdw5mW4_VaPxWwR-QRFCRDzn9zTotVUXxzO5cbZL3Di3TcDmmTLPhqi6xO-jRtW2QlcDjt6zaZ12xcXlcz2qe2oQY8FR6F01IDsqaAT-m4vNIzhr7LUed9zd7K5kWH6_mGliGqCHQdyNDUFc_O75D55cX9ZMq6rAnMijRumIvc0OocpC69sU7CDk46j5n7YmNimauYJ1ppq4T2I2UjZbmONMwSNM8tN2KXLFXPld8jNIq8lyHpgQHUJKRxqbTK5WKUcg7QcZ9Evbgy24UUx8wWZdZzxx4zFHGGIs5aEe-Ts882dRtQ48_acT8L2Q-1yMDi_9nuGKYMBoVf0EWBl00j2DqJBIOnqoN_9ntI1vCvZfMdkaXm5c0fAyppzElQuxOyPL6-nc4-ANpy3Sw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4CMGCeIry9MCGTBvbaZ2xqoDy6gKV2CK_IgWFNIJ05bdzlwePAQaWDI5tWefz3dn-fB8hpx6UIlADhyf3PSYNqLERTrAkSqQME6VhTSHaYtIfT-XNU_i0QEbtWxiEVTa2v7bplbVuSrqNNLtFmnYfwPlB-A0GGLOIckwouSxh-SKNwfn7F84jkhXtLtZmWL15OVODvN6KlxQ2iTyAgkGP89-802Kept_8zuUGWW8CRjqsx7RJFny-RVZHLU_bFlmpQJz2bZtMCzbMrvMJbbltqAFXhWfhNNMQWlMIUOkwu9IThs7LUed9weZZ-aqr-_mSZlVaEei6QkNTl86c3yHTy4vH0Zg1tAnMiigsmQtcz-oExC69sU7CFk46j9R9oTGhTFTIB1ppq4T2fWUDZbkONEwTNE8sN2KXLOWz3O8RGgTey4r1wEDYJKRxkbTKJaIfcQ6xY4cErbhi2-QUR2qLLG7BY88xijhGEce1iDvk7LNNUWfU-LN22M5C_EMvYjD5f7Y7gimDQeEXlFHgbVMf9k5igNlT1f4_-z0hq-PH-7v47npye0DW8E8N7TskS-Xr3B9BiFKa40oFPwAIJt66
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p-AlInN+electron+blocking+layer+for+AlGaN-based+deep-ultraviolet+light-emitting+diode&rft.jtitle=Superlattices+and+Microstructures&rft.au=Juin+J.+Liou&rft.au=Fang+Wang&rft.au=Muhammad+Nawaz+Sharif&rft.au=Yuhuai+Liu&rft.date=2021-10-01&rft.pub=Elsevier+BV&rft.issn=0749-6036&rft.volume=158&rft.spage=107022&rft_id=info:doi/10.1016%2Fj.spmi.2021.107022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon