p-AlInN electron blocking layer for AlGaN-based deep-ultraviolet light-emitting diode
Commonly, the Al-rich AlGaN layer acts as electron blocking layer (EBL) to block the overflow of electrons from the active region in conventional AlGaN deep-ultraviolet (DUV) light-emitting diode (LED). However, the Al-rich AlGaN layer leads to the disadvantages of severe electron overflow and hole...
Saved in:
Published in | Superlattices and Microstructures Vol. 158; p. 107022 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Elsevier Ltd
01.10.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Commonly, the Al-rich AlGaN layer acts as electron blocking layer (EBL) to block the overflow of electrons from the active region in conventional AlGaN deep-ultraviolet (DUV) light-emitting diode (LED). However, the Al-rich AlGaN layer leads to the disadvantages of severe electron overflow and hole blocking effect. Herein, we proposed a new AlInN-based EBL to improve the optoelectronic characteristics of AlGaN-based DUV LED. The calculated results show that conventional (fixed Al composition) AlInN EBL has superior hole injection, reduced electron overflow, and lower electric field as compared to conventional AlGaN EBL. By using AlInN EBL, internal quantum efficiency (IQE) drop is reduced by 20%, and light output power improved by 165.30%. It was noticed that conventional AlInN EBL has a 28% IQE drop which can further be minimized by employing AlInN/AlInN superlattice EBL structure. It is found that superlattice EBL improved carrier distribution and reduced electric field resulting in a higher electron-hole wave-function overlap of 55% within multiple quantum wells (MQW) which elevate radiative recombination rate. AlInN superlattice EBL LED has drop-free 93% IQE, twice light output power, and spontaneous emission rate compared to conventional AlInN EBL LED.
•AlInN-based EBL is used to improve the optoelectronic characteristics of AlGaN-based DUV LED.•Conventional (fixed Al composition) AlInN EBL has superior hole injection, reduced electron overflow, and lower electric field as compared to conventional.•AlInN superlattice EBL LED has drop-free IQE, twice light output power, and spontaneous emission rate compared to conventional AlInN EBL LED. |
---|---|
AbstractList | Commonly, the Al-rich AlGaN layer acts as electron blocking layer (EBL) to block the overflow of electrons from the active region in conventional AlGaN deep-ultraviolet (DUV) light-emitting diode (LED). However, the Al-rich AlGaN layer leads to the disadvantages of severe electron overflow and hole blocking effect. Herein, we proposed a new AlInN-based EBL to improve the optoelectronic characteristics of AlGaN-based DUV LED. The calculated results show that conventional (fixed Al composition) AlInN EBL has superior hole injection, reduced electron overflow, and lower electric field as compared to conventional AlGaN EBL. By using AlInN EBL, internal quantum efficiency (IQE) drop is reduced by 20%, and light output power improved by 165.30%. It was noticed that conventional AlInN EBL has a 28% IQE drop which can further be minimized by employing AlInN/AlInN superlattice EBL structure. It is found that superlattice EBL improved carrier distribution and reduced electric field resulting in a higher electron-hole wave-function overlap of 55% within multiple quantum wells (MQW) which elevate radiative recombination rate. AlInN superlattice EBL LED has drop-free 93% IQE, twice light output power, and spontaneous emission rate compared to conventional AlInN EBL LED.
•AlInN-based EBL is used to improve the optoelectronic characteristics of AlGaN-based DUV LED.•Conventional (fixed Al composition) AlInN EBL has superior hole injection, reduced electron overflow, and lower electric field as compared to conventional.•AlInN superlattice EBL LED has drop-free IQE, twice light output power, and spontaneous emission rate compared to conventional AlInN EBL LED. |
ArticleNumber | 107022 |
Author | Niass, Mussaab Ibrahim Liu, Yuhuai Wang, Fang Sharif, Muhammad Nawaz Liou, Juin J. |
Author_xml | – sequence: 1 givenname: Muhammad Nawaz orcidid: 0000-0002-8531-4695 surname: Sharif fullname: Sharif, Muhammad Nawaz email: nawazkhattak@gs.zzu.edu.com organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China – sequence: 2 givenname: Mussaab Ibrahim surname: Niass fullname: Niass, Mussaab Ibrahim organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China – sequence: 3 givenname: Juin J. surname: Liou fullname: Liou, Juin J. organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China – sequence: 4 givenname: Fang surname: Wang fullname: Wang, Fang email: iefwang@zzu.edu.cn organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China – sequence: 5 givenname: Yuhuai surname: Liu fullname: Liu, Yuhuai email: ieyhliu@zzu.edu.cn organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China |
BackLink | https://cir.nii.ac.jp/crid/1873679867473774848$$DView record in CiNii |
BookMark | eNp9kD1vwjAQQK2KSgXaP9ApQ1dTO3FiR-qCUEuREF3KbDn2hZqaGDkuEv--jujUgeVOOt27jzdBo853gNAjJTNKaPW8n_XHg53lJKepwEme36AxJXWFi4rzERoTzmpckaK6Q5O-3xNCakb5GG2PeO5W3SYDBzoG32WN8_rbdrvMqTOErPUhm7ul2uBG9WAyA3DEPy4GdbLeQcyc3X1FDAcb40AZ6w3co9tWuR4e_vIUbd9ePxfveP2xXC3ma6yLuozYUEO0ahvBGTTaMMEIM0DKuiibpmStKHOuhNKiUFAJTYXOFVWsEQlvdd4UUyQuc3XwfR-gldpGFa3v0n3WSUrkoEfu5aBHDnrkRU9C83_oMdiDCufr0NMF6qxNq4ZIBU-Ka1FxxgvO0w8itb1c2iD9frIQZK8tdBqMDcmyNN5e2_ILPhCMFg |
CitedBy_id | crossref_primary_10_7498_aps_73_20231969 crossref_primary_10_1364_OME_502136 crossref_primary_10_1016_j_micrna_2024_207872 crossref_primary_10_1016_j_optlastec_2022_108156 crossref_primary_10_1016_j_micrna_2022_207489 crossref_primary_10_1109_TED_2024_3379964 crossref_primary_10_1063_5_0131013 crossref_primary_10_1016_j_micrna_2022_207208 crossref_primary_10_1016_j_optlastec_2024_111567 crossref_primary_10_1002_pssa_202300192 crossref_primary_10_1109_JPHOT_2022_3165036 crossref_primary_10_1007_s11664_022_09778_2 crossref_primary_10_1007_s10946_023_10139_5 crossref_primary_10_1002_aelm_202400247 crossref_primary_10_1007_s10946_023_10148_4 crossref_primary_10_1140_epjd_s10053_024_00811_z crossref_primary_10_1007_s11664_024_11190_x crossref_primary_10_1051_e3sconf_202456001006 crossref_primary_10_1016_j_optlastec_2024_112025 crossref_primary_10_1016_j_ijleo_2023_171002 crossref_primary_10_1002_pssa_202200674 crossref_primary_10_1117_1_OE_61_7_076113 crossref_primary_10_1088_1674_4926_45_5_052501 crossref_primary_10_1088_1402_4896_ad185f |
Cites_doi | 10.1143/APEX.5.032101 10.1364/OME.380409 10.1016/j.spmi.2019.106167 10.1364/OE.27.0A1544 10.1557/mrc.2016.26 10.1021/acsphotonics.7b00443 10.1063/1.1448668 10.1109/LPT.2008.922937 10.1063/1.3675451 10.1016/j.spmi.2020.106643 10.1063/1.4967837 10.1016/j.ajic.2020.07.031 10.1088/1361-6641/ab8c2a 10.1002/pssb.201147145 10.1088/1361-6528/abe4f9 10.1364/OE.22.00A320 10.1364/PRJ.7.0000B1 10.1088/1674-4926/40/12/122802 10.1115/1.4047286 10.1063/1.4961680 10.1063/1.4976203 10.1063/1.4858386 10.1007/s11664-019-07001-3 10.1364/OE.415258 10.1016/j.spmi.2017.11.046 10.3390/app8081264 10.1021/acsaelm.0c00172 10.7567/1347-4065/ab106b 10.1016/j.sse.2005.09.002 10.1016/j.ijleo.2021.166528 10.1109/JSTQE.2016.2597541 10.1126/science.1183226 10.1016/j.spmi.2017.11.029 10.1016/j.spmi.2018.03.066 10.1016/j.spmi.2020.106543 10.7567/APEX.10.031002 10.1016/j.optcom.2019.02.054 10.1063/1.4883894 10.1063/1.4738983 10.1109/JPHOT.2019.2922280 10.1088/1361-6463/aa70dd 10.7567/1882-0786/aaf62b 10.1016/j.physe.2018.11.022 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | RYH AAYXX CITATION |
DOI | 10.1016/j.spmi.2021.107022 |
DatabaseName | CiNii Complete CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2021_107022 S0749603621002202 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV RYH SSH AAYXX ABWVN ACRPL ADNMO AGQPQ CITATION |
ID | FETCH-LOGICAL-c395t-d1d0cafb874ebcd48404de05935bb54f8527a8ac83ae68c18c2a1a4b8c39fc2b3 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Thu Apr 24 22:52:25 EDT 2025 Tue Jul 01 01:35:17 EDT 2025 Thu Jun 26 23:57:25 EDT 2025 Fri Feb 23 02:43:13 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Electron blocking layer AlInN Superlattice electron blocking layer Light-emitting diode |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-d1d0cafb874ebcd48404de05935bb54f8527a8ac83ae68c18c2a1a4b8c39fc2b3 |
ORCID | 0000-0002-8531-4695 0000-0003-1034-1856 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2021_107022 crossref_primary_10_1016_j_spmi_2021_107022 nii_cinii_1873679867473774848 elsevier_sciencedirect_doi_10_1016_j_spmi_2021_107022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-01 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and Microstructures |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Banas (bib2) 2005 Zhao (bib15) 2016; 109 Zhang (bib19) 2013; 103 Usman (bib47) 2018; 113 Park, Ahn (bib34) 2018; 117 Chen, Wang, Fan (bib35) 2019; 48 Cheng, Su, Lai (bib39) 2008; 20 Fiorentini, Bernardini, Ambacher (bib6) 2002; 80 Muhammad (bib17) 2021; 32 Simon (bib9) 2010; 327 Nagasawa, Hirano (bib7) 2018; 8 Dong (bib21) 2014; 22 Zhang (bib23) 2019; 7 Zhang (bib44) 2014; 104 Wu (bib14) 2017; 50 Takano (bib18) 2017; 10 Li (bib8) 2019; 12 Würtele (bib1) 2011; 45 Prasad (bib26) 2019; 132 Northrup (bib11) 2012; 100 Piprek (bib40) 2013 Gutt (bib4) 2012; 5 Yu (bib29) 2019; 11 Ren (bib45) 2019; 11 Mehnke (bib3) 2016; 23 Liu (bib31) 2020; 35 Liu (bib12) 2017; 110 Chu (bib22) 2018; 113 Fu (bib38) 2011; 248 Wang (bib20) 2012; 101 Shi (bib25) 2019; 441 Velpula (bib36) 2020; 10 Khan (bib43) 2020; 2 Moustakas (bib13) 2016; 6 Mondal, Chatterjee, Pal (bib24) 2019; 108 Zhang (bib28) 2017; 4 Jia (bib32) 2020; 142 Pieniak (bib46) 2021; 29 Pampili (bib37) 2019; 58 Niass (bib42) 2019; 40 Gupta (bib33) 2020; 142 Zhao (bib16) 2016; 4 Turin (bib10) 2005; 49 Nawaz (bib41) 2020; 145 Usman (bib27) 2021 Heilingloh (bib5) 2020; 48 Yu (bib30) 2019; 27 Niass (10.1016/j.spmi.2021.107022_bib42) 2019; 40 Mondal (10.1016/j.spmi.2021.107022_bib24) 2019; 108 Jia (10.1016/j.spmi.2021.107022_bib32) 2020; 142 Northrup (10.1016/j.spmi.2021.107022_bib11) 2012; 100 Piprek (10.1016/j.spmi.2021.107022_bib40) 2013 Pampili (10.1016/j.spmi.2021.107022_bib37) 2019; 58 Chen (10.1016/j.spmi.2021.107022_bib35) 2019; 48 Yu (10.1016/j.spmi.2021.107022_bib30) 2019; 27 Würtele (10.1016/j.spmi.2021.107022_bib1) 2011; 45 Heilingloh (10.1016/j.spmi.2021.107022_bib5) 2020; 48 Muhammad (10.1016/j.spmi.2021.107022_bib17) 2021; 32 Mehnke (10.1016/j.spmi.2021.107022_bib3) 2016; 23 Nagasawa (10.1016/j.spmi.2021.107022_bib7) 2018; 8 Velpula (10.1016/j.spmi.2021.107022_bib36) 2020; 10 Wu (10.1016/j.spmi.2021.107022_bib14) 2017; 50 Banas (10.1016/j.spmi.2021.107022_bib2) 2005 Li (10.1016/j.spmi.2021.107022_bib8) 2019; 12 Dong (10.1016/j.spmi.2021.107022_bib21) 2014; 22 Simon (10.1016/j.spmi.2021.107022_bib9) 2010; 327 Prasad (10.1016/j.spmi.2021.107022_bib26) 2019; 132 Wang (10.1016/j.spmi.2021.107022_bib20) 2012; 101 Ren (10.1016/j.spmi.2021.107022_bib45) 2019; 11 Gupta (10.1016/j.spmi.2021.107022_bib33) 2020; 142 Chu (10.1016/j.spmi.2021.107022_bib22) 2018; 113 Takano (10.1016/j.spmi.2021.107022_bib18) 2017; 10 Shi (10.1016/j.spmi.2021.107022_bib25) 2019; 441 Fiorentini (10.1016/j.spmi.2021.107022_bib6) 2002; 80 Turin (10.1016/j.spmi.2021.107022_bib10) 2005; 49 Liu (10.1016/j.spmi.2021.107022_bib31) 2020; 35 Zhang (10.1016/j.spmi.2021.107022_bib44) 2014; 104 Usman (10.1016/j.spmi.2021.107022_bib47) 2018; 113 Gutt (10.1016/j.spmi.2021.107022_bib4) 2012; 5 Cheng (10.1016/j.spmi.2021.107022_bib39) 2008; 20 Khan (10.1016/j.spmi.2021.107022_bib43) 2020; 2 Moustakas (10.1016/j.spmi.2021.107022_bib13) 2016; 6 Zhao (10.1016/j.spmi.2021.107022_bib16) 2016; 4 Liu (10.1016/j.spmi.2021.107022_bib12) 2017; 110 Nawaz (10.1016/j.spmi.2021.107022_bib41) 2020; 145 Zhang (10.1016/j.spmi.2021.107022_bib23) 2019; 7 Zhang (10.1016/j.spmi.2021.107022_bib19) 2013; 103 Fu (10.1016/j.spmi.2021.107022_bib38) 2011; 248 Pieniak (10.1016/j.spmi.2021.107022_bib46) 2021; 29 Park (10.1016/j.spmi.2021.107022_bib34) 2018; 117 Zhao (10.1016/j.spmi.2021.107022_bib15) 2016; 109 Zhang (10.1016/j.spmi.2021.107022_bib28) 2017; 4 Usman (10.1016/j.spmi.2021.107022_bib27) 2021 Yu (10.1016/j.spmi.2021.107022_bib29) 2019; 11 |
References_xml | – volume: 113 start-page: 585 year: 2018 end-page: 591 ident: bib47 article-title: Efficiency improvement of green light-emitting diodes by employing all-quaternary active region and electron-blocking layer publication-title: Superlattice. Microst. – volume: 108 start-page: 233 year: 2019 end-page: 237 ident: bib24 article-title: Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 4 start-page: 86115 year: 2016 ident: bib16 article-title: Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics publication-title: Apl. Mater. – volume: 10 start-page: 472 year: 2020 end-page: 483 ident: bib36 article-title: Numerical investigation on the device performance of electron blocking layer free AlInN nanowire deep ultraviolet light-emitting diodes publication-title: Opt. Mater. Express – volume: 103 start-page: 263501 year: 2013 ident: bib19 article-title: p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas publication-title: Appl. Phys. Lett. – year: 2013 ident: bib40 article-title: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation – volume: 6 start-page: 247 year: 2016 end-page: 269 ident: bib13 article-title: Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy publication-title: MRS Communications – volume: 35 start-page: 075021 year: 2020 ident: bib31 article-title: Polarization-engineered AlGaN last quantum barrier for efficient deep-ultraviolet light-emitting diodes publication-title: Semicond. Sci. Technol. – volume: 22 start-page: A320 year: 2014 end-page: A327 ident: bib21 article-title: Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes publication-title: Opt Express – volume: 49 start-page: 1678 year: 2005 end-page: 1682 ident: bib10 article-title: A modified transferred-electron high-field mobility model for GaN devices simulation publication-title: Solid State Electron. – volume: 40 start-page: 122802 year: 2019 ident: bib42 article-title: A contrivance of 277 nm DUV LD with B0. 313Ga0. 687N/B0. 40Ga0. 60N QWs and Al x Ga1–x N heterojunction grown on AlN substrate publication-title: J. Semiconduct. – volume: 5 start-page: 32101 year: 2012 ident: bib4 article-title: AlGaN-Based 355 nm UV light-emitting diodes with high power efficiency publication-title: APEX – volume: 20 start-page: 970 year: 2008 end-page: 972 ident: bib39 article-title: Improved light output of nitride-based light-emitting diodes by lattice-matched AlInN cladding structure publication-title: IEEE Photon. Technol. Lett. – start-page: 166528 year: 2021 ident: bib27 article-title: Designing anti-trapezoidal electron blocking layer for the amelioration of AlGaN-based deep ultraviolet light-emitting diodes internal quantum efficiency publication-title: Optik – volume: 50 start-page: 245101 year: 2017 ident: bib14 article-title: Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at~ 350 nm via step quantum well structure design publication-title: J. Phys. Appl. Phys. – volume: 327 start-page: 60 year: 2010 end-page: 64 ident: bib9 article-title: Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures publication-title: Science – volume: 8 start-page: 1264 year: 2018 ident: bib7 article-title: A review of AlGaN-based deep-ultraviolet light-emitting diodes on sapphire publication-title: Appl. Sci. – volume: 145 start-page: 106643 year: 2020 ident: bib41 article-title: Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide publication-title: Superlattice. Microst. – volume: 11 start-page: 1 year: 2019 end-page: 11 ident: bib45 article-title: III-nitride deep UV LED without electron blocking layer publication-title: IEEE Photonics Journal – volume: 2 start-page: 1892 year: 2020 end-page: 1907 ident: bib43 article-title: External quantum efficiency of 6.5% at 300 nm emission and 4.7% at 310 nm emission on bare wafer of AlGaN-based UVB LEDs publication-title: ACS Applied Electronic Materials – volume: 132 start-page: 106167 year: 2019 ident: bib26 article-title: Double-side step-graded AlGaN electron blocking layer for nearly droop-free GaN-based blue LEDs publication-title: Superlattice. Microst. – volume: 23 start-page: 29 year: 2016 end-page: 36 ident: bib3 article-title: Gas sensing of nitrogen oxide utilizing spectrally pure deep UV LEDs publication-title: IEEE J. Sel. Top. Quant. Electron. – volume: 48 start-page: 2572 year: 2019 end-page: 2576 ident: bib35 article-title: Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with AlInGaN/AlInGaN superlattice electron blocking layer publication-title: J. Electron. Mater. – volume: 109 start-page: 201106 year: 2016 ident: bib15 article-title: Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242 nm publication-title: Appl. Phys. Lett. – volume: 7 start-page: B1 year: 2019 end-page: B6 ident: bib23 article-title: Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high-performance deep ultraviolet light-emitting diodes publication-title: Photon. Res. – volume: 142 start-page: 106543 year: 2020 ident: bib33 article-title: Improvement in efficiency and luminous power of AlGaN-based D-UV LEDs by using partially graded quantum barriers publication-title: Superlattice. Microst. – volume: 104 start-page: 243501 year: 2014 ident: bib44 article-title: Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers publication-title: Appl. Phys. Lett. – volume: 29 start-page: 1824 year: 2021 end-page: 1837 ident: bib46 article-title: Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction publication-title: Opt Express – volume: 32 start-page: 215703 year: 2021 ident: bib17 article-title: Suppressing the efficiency droop in the AlGaN-based UVB LED publication-title: Nanotechnology – volume: 100 start-page: 21101 year: 2012 ident: bib11 article-title: Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells publication-title: Appl. Phys. Lett. – volume: 80 start-page: 1204 year: 2002 end-page: 1206 ident: bib6 article-title: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures publication-title: Appl. Phys. Lett. – volume: 441 start-page: 149 year: 2019 end-page: 154 ident: bib25 article-title: Performance improvements of AlGaN-based deep-ultraviolet light-emitting diodes with specifically designed irregular sawtooth hole and electron blocking layers publication-title: Opt Commun. – year: 2005 ident: bib2 article-title: Final LDRD report: ultraviolet water purification systems for rural environments and mobile applications publication-title: Sandia Natl. Lab. – volume: 10 start-page: 31002 year: 2017 ident: bib18 article-title: Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency publication-title: APEX – volume: 11 start-page: 1 year: 2019 end-page: 6 ident: bib29 article-title: Enhanced performance of an AlGaN-based deep-ultraviolet LED having graded quantum well structure publication-title: IEEE Photonics Journal – volume: 45 start-page: 1481 year: 2011 end-page: 1489 ident: bib1 article-title: Water research – volume: 117 start-page: 413 year: 2018 end-page: 417 ident: bib34 article-title: Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices publication-title: Superlattice. Microst. – volume: 27 start-page: A1544 year: 2019 end-page: A1553 ident: bib30 article-title: Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier publication-title: Opt Express – volume: 248 start-page: 2816 year: 2011 end-page: 2820 ident: bib38 article-title: Exploring optimal UV emission windows for AlGaN and AlInN alloys grown on different templates publication-title: Phys. Status Solidi – volume: 110 start-page: 71103 year: 2017 ident: bib12 article-title: Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes publication-title: Appl. Phys. Lett. – volume: 113 start-page: 472 year: 2018 end-page: 477 ident: bib22 article-title: On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x> y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes publication-title: Superlattice. Microst. – volume: 142 year: 2020 ident: bib32 article-title: Nearly efficiency-droop-free AlGaN-based deep-ultraviolet light-emitting diode without electron-blocking layer publication-title: J. Electron. Packag. – volume: 12 start-page: 11010 year: 2019 ident: bib8 article-title: Ultrathin inserted AlGaN/InAlN heterojunction for performance improvement in AlGaN-based deep ultraviolet light-emitting diodes publication-title: APEX – volume: 101 start-page: 43115 year: 2012 ident: bib20 article-title: High efficiency ultraviolet emission from AlxGa1− xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy publication-title: Appl. Phys. Lett. – volume: 4 start-page: 1846 year: 2017 end-page: 1850 ident: bib28 article-title: Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes publication-title: ACS Photonics – volume: 48 start-page: 1273 year: 2020 end-page: 1275 ident: bib5 article-title: Susceptibility of SARS-CoV-2 to UV irradiation publication-title: Am. J. Infect. Contr. – volume: 58 start-page: SCCB33 year: 2019 ident: bib37 article-title: InAlN-based LEDs emitting in the near-UV region publication-title: Jpn. J. Appl. Phys. – volume: 5 start-page: 32101 issue: 3 year: 2012 ident: 10.1016/j.spmi.2021.107022_bib4 article-title: AlGaN-Based 355 nm UV light-emitting diodes with high power efficiency publication-title: APEX doi: 10.1143/APEX.5.032101 – volume: 10 start-page: 472 issue: 2 year: 2020 ident: 10.1016/j.spmi.2021.107022_bib36 article-title: Numerical investigation on the device performance of electron blocking layer free AlInN nanowire deep ultraviolet light-emitting diodes publication-title: Opt. Mater. Express doi: 10.1364/OME.380409 – volume: 11 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.spmi.2021.107022_bib45 article-title: III-nitride deep UV LED without electron blocking layer publication-title: IEEE Photonics Journal – year: 2005 ident: 10.1016/j.spmi.2021.107022_bib2 article-title: Final LDRD report: ultraviolet water purification systems for rural environments and mobile applications publication-title: Sandia Natl. Lab. – volume: 132 start-page: 106167 year: 2019 ident: 10.1016/j.spmi.2021.107022_bib26 article-title: Double-side step-graded AlGaN electron blocking layer for nearly droop-free GaN-based blue LEDs publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2019.106167 – volume: 27 start-page: A1544 issue: 20 year: 2019 ident: 10.1016/j.spmi.2021.107022_bib30 article-title: Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier publication-title: Opt Express doi: 10.1364/OE.27.0A1544 – volume: 6 start-page: 247 issue: 3 year: 2016 ident: 10.1016/j.spmi.2021.107022_bib13 article-title: Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy publication-title: MRS Communications doi: 10.1557/mrc.2016.26 – volume: 45 start-page: 1481 issue: 3 year: 2011 ident: 10.1016/j.spmi.2021.107022_bib1 article-title: Application of GaN-based ultraviolet-C light emitting diodes–UV LEDs–for water disinfection. Water research – volume: 4 start-page: 1846 issue: 7 year: 2017 ident: 10.1016/j.spmi.2021.107022_bib28 article-title: Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00443 – volume: 80 start-page: 1204 issue: 7 year: 2002 ident: 10.1016/j.spmi.2021.107022_bib6 article-title: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures publication-title: Appl. Phys. Lett. doi: 10.1063/1.1448668 – volume: 20 start-page: 970 issue: 12 year: 2008 ident: 10.1016/j.spmi.2021.107022_bib39 article-title: Improved light output of nitride-based light-emitting diodes by lattice-matched AlInN cladding structure publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2008.922937 – volume: 100 start-page: 21101 issue: 2 year: 2012 ident: 10.1016/j.spmi.2021.107022_bib11 article-title: Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells publication-title: Appl. Phys. Lett. doi: 10.1063/1.3675451 – volume: 145 start-page: 106643 year: 2020 ident: 10.1016/j.spmi.2021.107022_bib41 article-title: Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2020.106643 – volume: 109 start-page: 201106 issue: 20 year: 2016 ident: 10.1016/j.spmi.2021.107022_bib15 article-title: Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242 nm publication-title: Appl. Phys. Lett. doi: 10.1063/1.4967837 – volume: 48 start-page: 1273 issue: 10 year: 2020 ident: 10.1016/j.spmi.2021.107022_bib5 article-title: Susceptibility of SARS-CoV-2 to UV irradiation publication-title: Am. J. Infect. Contr. doi: 10.1016/j.ajic.2020.07.031 – volume: 35 start-page: 075021 issue: 7 year: 2020 ident: 10.1016/j.spmi.2021.107022_bib31 article-title: Polarization-engineered AlGaN last quantum barrier for efficient deep-ultraviolet light-emitting diodes publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/ab8c2a – volume: 248 start-page: 2816 issue: 12 year: 2011 ident: 10.1016/j.spmi.2021.107022_bib38 article-title: Exploring optimal UV emission windows for AlGaN and AlInN alloys grown on different templates publication-title: Phys. Status Solidi doi: 10.1002/pssb.201147145 – volume: 32 start-page: 215703 issue: 21 year: 2021 ident: 10.1016/j.spmi.2021.107022_bib17 article-title: Suppressing the efficiency droop in the AlGaN-based UVB LED publication-title: Nanotechnology doi: 10.1088/1361-6528/abe4f9 – volume: 22 start-page: A320 issue: 102 year: 2014 ident: 10.1016/j.spmi.2021.107022_bib21 article-title: Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes publication-title: Opt Express doi: 10.1364/OE.22.00A320 – volume: 7 start-page: B1 issue: 4 year: 2019 ident: 10.1016/j.spmi.2021.107022_bib23 article-title: Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high-performance deep ultraviolet light-emitting diodes publication-title: Photon. Res. doi: 10.1364/PRJ.7.0000B1 – volume: 40 start-page: 122802 issue: 12 year: 2019 ident: 10.1016/j.spmi.2021.107022_bib42 article-title: A contrivance of 277 nm DUV LD with B0. 313Ga0. 687N/B0. 40Ga0. 60N QWs and Al x Ga1–x N heterojunction grown on AlN substrate publication-title: J. Semiconduct. doi: 10.1088/1674-4926/40/12/122802 – volume: 142 issue: 3 year: 2020 ident: 10.1016/j.spmi.2021.107022_bib32 article-title: Nearly efficiency-droop-free AlGaN-based deep-ultraviolet light-emitting diode without electron-blocking layer publication-title: J. Electron. Packag. doi: 10.1115/1.4047286 – volume: 4 start-page: 86115 issue: 8 year: 2016 ident: 10.1016/j.spmi.2021.107022_bib16 article-title: Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics publication-title: Apl. Mater. doi: 10.1063/1.4961680 – year: 2013 ident: 10.1016/j.spmi.2021.107022_bib40 – volume: 110 start-page: 71103 issue: 7 year: 2017 ident: 10.1016/j.spmi.2021.107022_bib12 article-title: Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.4976203 – volume: 103 start-page: 263501 issue: 26 year: 2013 ident: 10.1016/j.spmi.2021.107022_bib19 article-title: p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas publication-title: Appl. Phys. Lett. doi: 10.1063/1.4858386 – volume: 48 start-page: 2572 issue: 4 year: 2019 ident: 10.1016/j.spmi.2021.107022_bib35 article-title: Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with AlInGaN/AlInGaN superlattice electron blocking layer publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07001-3 – volume: 29 start-page: 1824 issue: 2 year: 2021 ident: 10.1016/j.spmi.2021.107022_bib46 article-title: Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction publication-title: Opt Express doi: 10.1364/OE.415258 – volume: 113 start-page: 585 year: 2018 ident: 10.1016/j.spmi.2021.107022_bib47 article-title: Efficiency improvement of green light-emitting diodes by employing all-quaternary active region and electron-blocking layer publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2017.11.046 – volume: 8 start-page: 1264 issue: 8 year: 2018 ident: 10.1016/j.spmi.2021.107022_bib7 article-title: A review of AlGaN-based deep-ultraviolet light-emitting diodes on sapphire publication-title: Appl. Sci. doi: 10.3390/app8081264 – volume: 2 start-page: 1892 issue: 7 year: 2020 ident: 10.1016/j.spmi.2021.107022_bib43 article-title: External quantum efficiency of 6.5% at 300 nm emission and 4.7% at 310 nm emission on bare wafer of AlGaN-based UVB LEDs publication-title: ACS Applied Electronic Materials doi: 10.1021/acsaelm.0c00172 – volume: 58 start-page: SCCB33 issue: SC year: 2019 ident: 10.1016/j.spmi.2021.107022_bib37 article-title: InAlN-based LEDs emitting in the near-UV region publication-title: Jpn. J. Appl. Phys. doi: 10.7567/1347-4065/ab106b – volume: 49 start-page: 1678 issue: 10 year: 2005 ident: 10.1016/j.spmi.2021.107022_bib10 article-title: A modified transferred-electron high-field mobility model for GaN devices simulation publication-title: Solid State Electron. doi: 10.1016/j.sse.2005.09.002 – start-page: 166528 year: 2021 ident: 10.1016/j.spmi.2021.107022_bib27 article-title: Designing anti-trapezoidal electron blocking layer for the amelioration of AlGaN-based deep ultraviolet light-emitting diodes internal quantum efficiency publication-title: Optik doi: 10.1016/j.ijleo.2021.166528 – volume: 23 start-page: 29 issue: 2 year: 2016 ident: 10.1016/j.spmi.2021.107022_bib3 article-title: Gas sensing of nitrogen oxide utilizing spectrally pure deep UV LEDs publication-title: IEEE J. Sel. Top. Quant. Electron. doi: 10.1109/JSTQE.2016.2597541 – volume: 327 start-page: 60 issue: 5961 year: 2010 ident: 10.1016/j.spmi.2021.107022_bib9 article-title: Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures publication-title: Science doi: 10.1126/science.1183226 – volume: 113 start-page: 472 year: 2018 ident: 10.1016/j.spmi.2021.107022_bib22 article-title: On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x> y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2017.11.029 – volume: 117 start-page: 413 year: 2018 ident: 10.1016/j.spmi.2021.107022_bib34 article-title: Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2018.03.066 – volume: 142 start-page: 106543 year: 2020 ident: 10.1016/j.spmi.2021.107022_bib33 article-title: Improvement in efficiency and luminous power of AlGaN-based D-UV LEDs by using partially graded quantum barriers publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2020.106543 – volume: 10 start-page: 31002 issue: 3 year: 2017 ident: 10.1016/j.spmi.2021.107022_bib18 article-title: Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency publication-title: APEX doi: 10.7567/APEX.10.031002 – volume: 441 start-page: 149 year: 2019 ident: 10.1016/j.spmi.2021.107022_bib25 article-title: Performance improvements of AlGaN-based deep-ultraviolet light-emitting diodes with specifically designed irregular sawtooth hole and electron blocking layers publication-title: Opt Commun. doi: 10.1016/j.optcom.2019.02.054 – volume: 104 start-page: 243501 issue: 24 year: 2014 ident: 10.1016/j.spmi.2021.107022_bib44 article-title: Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers publication-title: Appl. Phys. Lett. doi: 10.1063/1.4883894 – volume: 101 start-page: 43115 issue: 4 year: 2012 ident: 10.1016/j.spmi.2021.107022_bib20 article-title: High efficiency ultraviolet emission from AlxGa1− xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/1.4738983 – volume: 11 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.spmi.2021.107022_bib29 article-title: Enhanced performance of an AlGaN-based deep-ultraviolet LED having graded quantum well structure publication-title: IEEE Photonics Journal doi: 10.1109/JPHOT.2019.2922280 – volume: 50 start-page: 245101 issue: 24 year: 2017 ident: 10.1016/j.spmi.2021.107022_bib14 article-title: Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at~ 350 nm via step quantum well structure design publication-title: J. Phys. Appl. Phys. doi: 10.1088/1361-6463/aa70dd – volume: 12 start-page: 11010 issue: 1 year: 2019 ident: 10.1016/j.spmi.2021.107022_bib8 article-title: Ultrathin inserted AlGaN/InAlN heterojunction for performance improvement in AlGaN-based deep ultraviolet light-emitting diodes publication-title: APEX doi: 10.7567/1882-0786/aaf62b – volume: 108 start-page: 233 year: 2019 ident: 10.1016/j.spmi.2021.107022_bib24 article-title: Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2018.11.022 |
SSID | ssj0009417 ssib000404820 ssib006540745 ssib054718990 ssib006540744 |
Score | 2.0514867 |
Snippet | Commonly, the Al-rich AlGaN layer acts as electron blocking layer (EBL) to block the overflow of electrons from the active region in conventional AlGaN... |
SourceID | crossref nii elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107022 |
SubjectTerms | AlInN Electron blocking layer Light-emitting diode Superlattice electron blocking layer |
Title | p-AlInN electron blocking layer for AlGaN-based deep-ultraviolet light-emitting diode |
URI | https://dx.doi.org/10.1016/j.spmi.2021.107022 https://cir.nii.ac.jp/crid/1873679867473774848 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-EL2IT3yTgzeJu03SbXpcFnVV2IsueCt5FSq1Fq1Xf7szaevjoAcvhYYkhMlk5kvyZYaQUw9KEanE4cn9kEkDamyEEyxPcynjXGlYU8i2mI2mc3nzED8skEn_FgZplZ3tb216sNZdyaCT5qAuisEdOD-A32CAMYooDwElpUxQy8_fv2geqQxZd7Eyw9rdw5mW4_VaPxWwR-QRFCRDzn9zTotVUXxzO5cbZL3Di3TcDmmTLPhqi6xO-jRtW2QlcDjt6zaZ12xcXlcz2qe2oQY8FR6F01IDsqaAT-m4vNIzhr7LUed9zd7K5kWH6_mGliGqCHQdyNDUFc_O75D55cX9ZMq6rAnMijRumIvc0OocpC69sU7CDk46j5n7YmNimauYJ1ppq4T2I2UjZbmONMwSNM8tN2KXLFXPld8jNIq8lyHpgQHUJKRxqbTK5WKUcg7QcZ9Evbgy24UUx8wWZdZzxx4zFHGGIs5aEe-Ts882dRtQ48_acT8L2Q-1yMDi_9nuGKYMBoVf0EWBl00j2DqJBIOnqoN_9ntI1vCvZfMdkaXm5c0fAyppzElQuxOyPL6-nc4-ANpy3Sw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4CMGCeIry9MCGTBvbaZ2xqoDy6gKV2CK_IgWFNIJ05bdzlwePAQaWDI5tWefz3dn-fB8hpx6UIlADhyf3PSYNqLERTrAkSqQME6VhTSHaYtIfT-XNU_i0QEbtWxiEVTa2v7bplbVuSrqNNLtFmnYfwPlB-A0GGLOIckwouSxh-SKNwfn7F84jkhXtLtZmWL15OVODvN6KlxQ2iTyAgkGP89-802Kept_8zuUGWW8CRjqsx7RJFny-RVZHLU_bFlmpQJz2bZtMCzbMrvMJbbltqAFXhWfhNNMQWlMIUOkwu9IThs7LUed9weZZ-aqr-_mSZlVaEei6QkNTl86c3yHTy4vH0Zg1tAnMiigsmQtcz-oExC69sU7CFk46j9R9oTGhTFTIB1ppq4T2fWUDZbkONEwTNE8sN2KXLOWz3O8RGgTey4r1wEDYJKRxkbTKJaIfcQ6xY4cErbhi2-QUR2qLLG7BY88xijhGEce1iDvk7LNNUWfU-LN22M5C_EMvYjD5f7Y7gimDQeEXlFHgbVMf9k5igNlT1f4_-z0hq-PH-7v47npye0DW8E8N7TskS-Xr3B9BiFKa40oFPwAIJt66 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p-AlInN+electron+blocking+layer+for+AlGaN-based+deep-ultraviolet+light-emitting+diode&rft.jtitle=Superlattices+and+Microstructures&rft.au=Juin+J.+Liou&rft.au=Fang+Wang&rft.au=Muhammad+Nawaz+Sharif&rft.au=Yuhuai+Liu&rft.date=2021-10-01&rft.pub=Elsevier+BV&rft.issn=0749-6036&rft.volume=158&rft.spage=107022&rft_id=info:doi/10.1016%2Fj.spmi.2021.107022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |