Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system

We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial transmission. This optomechanical system is driven from both fixed end mirrors in a symmetric scheme by two strong coupling fields and two weak probe fi...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 22; no. 5; p. 4886
Main Authors Yan, Xiao-Bo, Cui, Cui-Li, Gu, Kai-Hui, Tian, Xue-Dong, Fu, Chang-Bao, Wu, Jin-Hui
Format Journal Article
LanguageEnglish
Published United States 10.03.2014
Online AccessGet full text

Cover

Loading…
Abstract We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial transmission. This optomechanical system is driven from both fixed end mirrors in a symmetric scheme by two strong coupling fields and two weak probe fields. We find that three interesting phenomena: coherent perfect absorption (CPA), coherent perfect transmission (CPT), and coherent perfect synthesis (CPS) can be attained within different parameter regimes. That is, we can make two input probe fields totally absorbed by the movable mirror without yielding any energy output from either end mirror (CPA); make an input probe field transmitted from one end mirror to the other end mirror without suffering any energy loss in the two cavities (CPT); make two input probe fields synthesized into one output probe field after undergoing either a perfect transmission or a perfect reflection (CPS). These interesting phenomena originate from the efficient hybrid coupling of optical and mechanical modes and may be all-optically controlled to realize novel photonic devices in quantum information networks.
AbstractList We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial transmission. This optomechanical system is driven from both fixed end mirrors in a symmetric scheme by two strong coupling fields and two weak probe fields. We find that three interesting phenomena: coherent perfect absorption (CPA), coherent perfect transmission (CPT), and coherent perfect synthesis (CPS) can be attained within different parameter regimes. That is, we can make two input probe fields totally absorbed by the movable mirror without yielding any energy output from either end mirror (CPA); make an input probe field transmitted from one end mirror to the other end mirror without suffering any energy loss in the two cavities (CPT); make two input probe fields synthesized into one output probe field after undergoing either a perfect transmission or a perfect reflection (CPS). These interesting phenomena originate from the efficient hybrid coupling of optical and mechanical modes and may be all-optically controlled to realize novel photonic devices in quantum information networks.We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial transmission. This optomechanical system is driven from both fixed end mirrors in a symmetric scheme by two strong coupling fields and two weak probe fields. We find that three interesting phenomena: coherent perfect absorption (CPA), coherent perfect transmission (CPT), and coherent perfect synthesis (CPS) can be attained within different parameter regimes. That is, we can make two input probe fields totally absorbed by the movable mirror without yielding any energy output from either end mirror (CPA); make an input probe field transmitted from one end mirror to the other end mirror without suffering any energy loss in the two cavities (CPT); make two input probe fields synthesized into one output probe field after undergoing either a perfect transmission or a perfect reflection (CPS). These interesting phenomena originate from the efficient hybrid coupling of optical and mechanical modes and may be all-optically controlled to realize novel photonic devices in quantum information networks.
We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial transmission. This optomechanical system is driven from both fixed end mirrors in a symmetric scheme by two strong coupling fields and two weak probe fields. We find that three interesting phenomena: coherent perfect absorption (CPA), coherent perfect transmission (CPT), and coherent perfect synthesis (CPS) can be attained within different parameter regimes. That is, we can make two input probe fields totally absorbed by the movable mirror without yielding any energy output from either end mirror (CPA); make an input probe field transmitted from one end mirror to the other end mirror without suffering any energy loss in the two cavities (CPT); make two input probe fields synthesized into one output probe field after undergoing either a perfect transmission or a perfect reflection (CPS). These interesting phenomena originate from the efficient hybrid coupling of optical and mechanical modes and may be all-optically controlled to realize novel photonic devices in quantum information networks.
Author Cui, Cui-Li
Fu, Chang-Bao
Wu, Jin-Hui
Tian, Xue-Dong
Yan, Xiao-Bo
Gu, Kai-Hui
Author_xml – sequence: 1
  givenname: Xiao-Bo
  surname: Yan
  fullname: Yan, Xiao-Bo
– sequence: 2
  givenname: Cui-Li
  surname: Cui
  fullname: Cui, Cui-Li
– sequence: 3
  givenname: Kai-Hui
  surname: Gu
  fullname: Gu, Kai-Hui
– sequence: 4
  givenname: Xue-Dong
  surname: Tian
  fullname: Tian, Xue-Dong
– sequence: 5
  givenname: Chang-Bao
  surname: Fu
  fullname: Fu, Chang-Bao
– sequence: 6
  givenname: Jin-Hui
  surname: Wu
  fullname: Wu, Jin-Hui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24663828$$D View this record in MEDLINE/PubMed
BookMark eNptkE1LxDAQhoMoft88S48e7JpkmzQ9yrJ-gLAXPYdJOmUjbVKTrLD_3uoqiHiaGXjel-E5Ifs-eCTkgtEZm8vqZrWccT6jtFJK7pFjRpuqrKiq93_tR-QkpVdKWVU39SE54pWUc8XVMYFFWGNEn4sRY4c2F2BSiGN2wV8XOYJPg0vp6wLfFmnr8xqTS4XzBRRt2JgeSwvvLm-LMOYwoF2Ddxb6iU0ZhzNy0EGf8Px7npKXu-Xz4qF8Wt0_Lm6fSjtvRC5bapEq6JpOQodGCNUII4xhUnJhoFYMaNtiwyuOtqmpEaiU5QJraRtQ3fyUXO16xxjeNpiynh632PfgMWySZoLRalIg-YRefqMbM2Crx-gGiFv9o2UC-A6wMaQUsdPWZfh0MhlxvWZUf7rXq6XmXO_cT6HrP6Gf3n_xD80Vhjw
CitedBy_id crossref_primary_10_12677_APP_2015_512024
crossref_primary_10_7498_aps_69_20200184
crossref_primary_10_1088_0253_6102_71_8_1011
crossref_primary_10_1088_1674_1056_26_5_054210
crossref_primary_10_1103_PhysRevA_101_043820
crossref_primary_10_1021_acsphotonics_7b00921
crossref_primary_10_1007_s10773_021_04761_9
crossref_primary_10_1364_OE_23_018534
crossref_primary_10_1088_1555_6611_aada3f
crossref_primary_10_1007_s11467_015_0456_2
crossref_primary_10_1103_PhysRevA_101_063822
crossref_primary_10_1038_srep22920
crossref_primary_10_1364_JOSAB_35_001649
crossref_primary_10_1140_epjp_s13360_022_03364_5
crossref_primary_10_1016_j_ijleo_2018_02_053
crossref_primary_10_1364_OE_379990
crossref_primary_10_3390_photonics8090384
crossref_primary_10_1088_1674_1056_abd7d9
crossref_primary_10_1109_JPHOT_2020_2992100
crossref_primary_10_1007_s11467_019_0922_3
crossref_primary_10_1007_s10773_016_3237_y
crossref_primary_10_1063_5_0150194
crossref_primary_10_7498_aps_68_20190205
crossref_primary_10_1016_j_spmi_2017_11_006
crossref_primary_10_1103_PhysRevA_96_053831
crossref_primary_10_7498_aps_71_20220191
crossref_primary_10_1063_1_5027122
crossref_primary_10_1142_S0218863522500059
crossref_primary_10_1088_1555_6611_abb1be
crossref_primary_10_1088_1612_202X_aafcb0
crossref_primary_10_1364_JOSAB_32_001712
crossref_primary_10_1088_1674_1056_ac1924
crossref_primary_10_3788_CJL220630
crossref_primary_10_1364_OE_27_021843
crossref_primary_10_7498_aps_68_20181424
crossref_primary_10_1007_s11128_020_02940_x
crossref_primary_10_1364_OE_26_012330
crossref_primary_10_1364_OE_385049
crossref_primary_10_3788_LOP221165
crossref_primary_10_1007_s11128_018_1980_0
crossref_primary_10_1016_j_physe_2021_114759
crossref_primary_10_1088_1674_1056_23_11_114201
crossref_primary_10_1002_andp_202200484
crossref_primary_10_1103_PhysRevB_110_205431
crossref_primary_10_1088_2040_8986_abb9c3
crossref_primary_10_1007_s11467_023_1279_1
crossref_primary_10_1007_s11128_021_03166_1
crossref_primary_10_1103_PhysRevB_110_035431
crossref_primary_10_1038_srep09663
crossref_primary_10_1364_JOSAB_35_002550
crossref_primary_10_3788_AOS230998
crossref_primary_10_1088_1361_6455_aaf0bd
crossref_primary_10_1209_0295_5075_122_24001
crossref_primary_10_3390_photonics10040407
crossref_primary_10_1016_j_optcom_2014_11_036
crossref_primary_10_1364_OL_41_004472
crossref_primary_10_1364_OE_480597
crossref_primary_10_7498_aps_66_107101
crossref_primary_10_1038_srep35356
crossref_primary_10_1016_j_optcom_2019_06_059
crossref_primary_10_1140_epjd_e2019_100404_1
crossref_primary_10_1209_0295_5075_ad12a2
crossref_primary_10_1002_andp_202200231
crossref_primary_10_1088_1674_1056_ab6836
crossref_primary_10_1016_j_physe_2020_114394
crossref_primary_10_1088_2040_8986_aa7a85
crossref_primary_10_1364_OE_449275
crossref_primary_10_1007_s11082_024_07900_8
crossref_primary_10_1103_PhysRevA_91_043843
crossref_primary_10_1016_j_ijleo_2018_04_058
Cites_doi 10.1103/PhysRevLett.99.250401
10.1103/PhysRevA.84.023834
10.1103/PhysRevA.81.041803
10.1038/nphys939
10.1103/PhysRevA.87.013417
10.1103/PhysRevLett.110.253601
10.1103/PhysRevA.80.033807
10.1103/PhysRevA.88.013804
10.1038/nature05231
10.1103/PhysRevLett.99.073601
10.1103/Physics.2.40
10.1103/PhysRevLett.110.223603
10.1103/PhysRevLett.107.133601
10.1103/PhysRevA.87.013621
10.1038/nature09933
10.1103/PhysRevLett.108.120602
10.1103/RevModPhys.77.633
10.1103/PhysRevLett.104.243602
10.1103/PhysRevA.87.013839
10.1038/nature08171
10.1103/PhysRevA.83.052324
10.1364/OE.15.017172
10.1103/PhysRevA.86.021801
10.1126/science.1156032
10.1103/PhysRevLett.104.133602
10.1088/1367-2630/13/2/023003
10.1103/PhysRevA.86.042323
10.1126/science.1195596
10.1103/PhysRevA.84.013808
10.1038/nature05273
10.1038/nature01371
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.22.004886
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 24663828
10_1364_OE_22_004886
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
7X8
ID FETCH-LOGICAL-c395t-d0ce08af9f6afeb55895b5bb16625ba781a0dde9242ec970b5e88c25e76c9a8f3
ISSN 1094-4087
IngestDate Fri Jul 11 09:40:58 EDT 2025
Thu Apr 03 07:09:16 EDT 2025
Thu Apr 24 22:55:22 EDT 2025
Tue Jul 01 03:08:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://opg.optica.org/policies/opg-tdm-policy.json
https://doi.org/10.1364/OA_License_v1#VOR-OA
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-d0ce08af9f6afeb55895b5bb16625ba781a0dde9242ec970b5e88c25e76c9a8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.22.004886
PMID 24663828
PQID 1510400162
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1510400162
pubmed_primary_24663828
crossref_citationtrail_10_1364_OE_22_004886
crossref_primary_10_1364_OE_22_004886
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-10
PublicationDateYYYYMMDD 2014-03-10
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2014
References Fiore (oe-22-5-4886-R29) 2011; 107
Kippenberg (oe-22-5-4886-R1) 2008; 321
De Chiara (oe-22-5-4886-R13) 2011; 83
Wang (oe-22-5-4886-R18) 2013; 110
Safavi-Naeini (oe-22-5-4886-R25) 2011; 472
Fleischhauer (oe-22-5-4886-R27) 2005; 77
Paternostro (oe-22-5-4886-R12) 2010; 104
Schmid (oe-22-5-4886-R11) 2011; 84
Huang (oe-22-5-4886-R23) 2009; 80
Weis (oe-22-5-4886-R24) 2010; 330
Chang (oe-22-5-4886-R28) 2011; 13
Mahajan (oe-22-5-4886-R4) 2013; 87
Kleckner (oe-22-5-4886-R6) 2006; 444
Marquardt (oe-22-5-4886-R2) 2009; 2
Agarwal (oe-22-5-4886-R7) 2010; 81
Verlot (oe-22-5-4886-R3) 2010; 104
Kómár (oe-22-5-4886-R20) 2013; 87
Liu (oe-22-5-4886-R26) 2013; 110
Armani (oe-22-5-4886-R9) 2003; 421
Gröblacher (oe-22-5-4886-R31) 2009; 460
Steinke (oe-22-5-4886-R14) 2011; 84
Rogers (oe-22-5-4886-R16) 2012; 86
Bhattacharya (oe-22-5-4886-R21) 2007; 99
Schliesser (oe-22-5-4886-R10) 2008; 4
Gigan (oe-22-5-4886-R5) 2006; 444
Mari (oe-22-5-4886-R22) 2012; 108
Dalafi (oe-22-5-4886-R17) 2013; 87
Karuza (oe-22-5-4886-R19) 2013; 88
Singh (oe-22-5-4886-R15) 2012; 86
Kippenberg (oe-22-5-4886-R8) 2007; 15
Paternostro (oe-22-5-4886-R30) 2007; 99
References_xml – volume: 99
  start-page: 250401
  year: 2007
  ident: oe-22-5-4886-R30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.250401
– volume: 84
  start-page: 023834
  year: 2011
  ident: oe-22-5-4886-R14
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.023834
– volume: 81
  start-page: 041803(R
  year: 2010
  ident: oe-22-5-4886-R7
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.041803
– volume: 4
  start-page: 415
  year: 2008
  ident: oe-22-5-4886-R10
  publication-title: Nature Phys.
  doi: 10.1038/nphys939
– volume: 87
  start-page: 013417
  year: 2013
  ident: oe-22-5-4886-R17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.013417
– volume: 110
  start-page: 253601
  year: 2013
  ident: oe-22-5-4886-R18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.253601
– volume: 80
  start-page: 033807
  year: 2009
  ident: oe-22-5-4886-R23
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.80.033807
– volume: 88
  start-page: 013804
  year: 2013
  ident: oe-22-5-4886-R19
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.013804
– volume: 444
  start-page: 75
  year: 2006
  ident: oe-22-5-4886-R6
  publication-title: Nature (London)
  doi: 10.1038/nature05231
– volume: 99
  start-page: 073601
  year: 2007
  ident: oe-22-5-4886-R21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.073601
– volume: 2
  start-page: 40
  year: 2009
  ident: oe-22-5-4886-R2
  publication-title: Physics
  doi: 10.1103/Physics.2.40
– volume: 110
  start-page: 223603
  year: 2013
  ident: oe-22-5-4886-R26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.223603
– volume: 107
  start-page: 133601
  year: 2011
  ident: oe-22-5-4886-R29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.133601
– volume: 87
  start-page: 013621
  year: 2013
  ident: oe-22-5-4886-R4
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.013621
– volume: 472
  start-page: 69
  year: 2011
  ident: oe-22-5-4886-R25
  publication-title: Nature (London)
  doi: 10.1038/nature09933
– volume: 108
  start-page: 120602
  year: 2012
  ident: oe-22-5-4886-R22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.120602
– volume: 77
  start-page: 633
  year: 2005
  ident: oe-22-5-4886-R27
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.633
– volume: 104
  start-page: 243602
  year: 2010
  ident: oe-22-5-4886-R12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.243602
– volume: 87
  start-page: 013839
  year: 2013
  ident: oe-22-5-4886-R20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.013839
– volume: 460
  start-page: 724
  year: 2009
  ident: oe-22-5-4886-R31
  publication-title: Nature (London)
  doi: 10.1038/nature08171
– volume: 83
  start-page: 052324
  year: 2011
  ident: oe-22-5-4886-R13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.052324
– volume: 15
  start-page: 17172
  year: 2007
  ident: oe-22-5-4886-R8
  publication-title: Opt. Express
  doi: 10.1364/OE.15.017172
– volume: 86
  start-page: 021801(R
  year: 2012
  ident: oe-22-5-4886-R15
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.021801
– volume: 321
  start-page: 1172
  year: 2008
  ident: oe-22-5-4886-R1
  publication-title: Science
  doi: 10.1126/science.1156032
– volume: 104
  start-page: 133602
  year: 2010
  ident: oe-22-5-4886-R3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.133602
– volume: 13
  start-page: 023003
  year: 2011
  ident: oe-22-5-4886-R28
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/2/023003
– volume: 86
  start-page: 042323
  year: 2012
  ident: oe-22-5-4886-R16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.042323
– volume: 330
  start-page: 1520
  year: 2010
  ident: oe-22-5-4886-R24
  publication-title: Science
  doi: 10.1126/science.1195596
– volume: 84
  start-page: 013808
  year: 2011
  ident: oe-22-5-4886-R11
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.013808
– volume: 444
  start-page: 67
  year: 2006
  ident: oe-22-5-4886-R5
  publication-title: Nature (London)
  doi: 10.1038/nature05273
– volume: 421
  start-page: 925
  year: 2003
  ident: oe-22-5-4886-R9
  publication-title: Nature (London)
  doi: 10.1038/nature01371
SSID ssj0014797
Score 2.4139464
Snippet We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 4886
Title Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system
URI https://www.ncbi.nlm.nih.gov/pubmed/24663828
https://www.proquest.com/docview/1510400162
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbtlkIvpe9m2y4qtKestrYi2fKxjyyhpJuLA7kZyZbBsLVNYkO3h_72jmTZcSAL215MIpQhzHyehzQPhD6IzAtkbip6IqYJAxNGFGcSHLmMcqq4p5TNtrgKFmv2fcM3-6motrqkURfp76N1Jf8jVVgDuZoq2X-Q7EAUFuAzyBeeIGF43knGprbCdleq9dY2IZZqV22tEjCsa4wdAjnu3Hd7Rn5TgstnupAU5VROs6pV15qk0o6QqOqm-qlNLXBXLGm7PI_d11VtuzrrX_WQuWE0RneIuilkRb5Uw61GW3Q9OwuyLIY0n7ZL4SjIoh0W48IRaDX5VjlT6k4ifEZsWttIeUKoCPGoM6D6yJrTuJSOkMVH6hO0SXBUr88CBsJYzS-o6a_abztsn321Si7Xy2USzzfxffSAQtxgFN-PP_PhWomF3bSd_k-5Sgig_mlM-9BHuSXwsA5I_AQ9dpED_tzB4Cm6p8tn6KHN4E13z5HswYAdGPAeDOd4DIVzDEDAAxBwUWKJD4CAD4GAOyC8QOvLefx1Qdz8DJLOIt6QzEu1J2Qe5fA6asW5iLjiSvkBBL1KhsKXHlg3iMCpTqPQU1wLkVKuwyCNpMhnL9FJWZX6NcK5H-Z5kGeMZoLRkEfwjouZpgFlGXhZ6QRNe44lqWsub2acXCf2xjRgyWqeUJp0_J2gj8Puumuqcsu-9z3zE2CRucqSpa7aXQJ-qrE-fkAn6FUnlYESZeBFCypO7_DrN-jRHslv0UmzbfU78DIbdWZPZ84sfv4CU5F_cw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+perfect+absorption%2C+transmission%2C+and+synthesis+in+a+double-cavity+optomechanical+system&rft.jtitle=Optics+express&rft.au=Yan%2C+Xiao-Bo&rft.au=Cui%2C+Cui-Li&rft.au=Gu%2C+Kai-Hui&rft.au=Tian%2C+Xue-Dong&rft.date=2014-03-10&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=22&rft.issue=5&rft.spage=4886&rft_id=info:doi/10.1364%2FOE.22.004886&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon