Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system
We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial transmission. This optomechanical system is driven from both fixed end mirrors in a symmetric scheme by two strong coupling fields and two weak probe fi...
Saved in:
Published in | Optics express Vol. 22; no. 5; p. 4886 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
10.03.2014
|
Online Access | Get full text |
Cover
Loading…
Abstract | We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial transmission. This optomechanical system is driven from both fixed end mirrors in a symmetric scheme by two strong coupling fields and two weak probe fields. We find that three interesting phenomena: coherent perfect absorption (CPA), coherent perfect transmission (CPT), and coherent perfect synthesis (CPS) can be attained within different parameter regimes. That is, we can make two input probe fields totally absorbed by the movable mirror without yielding any energy output from either end mirror (CPA); make an input probe field transmitted from one end mirror to the other end mirror without suffering any energy loss in the two cavities (CPT); make two input probe fields synthesized into one output probe field after undergoing either a perfect transmission or a perfect reflection (CPS). These interesting phenomena originate from the efficient hybrid coupling of optical and mechanical modes and may be all-optically controlled to realize novel photonic devices in quantum information networks. |
---|---|
AbstractList | We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial transmission. This optomechanical system is driven from both fixed end mirrors in a symmetric scheme by two strong coupling fields and two weak probe fields. We find that three interesting phenomena: coherent perfect absorption (CPA), coherent perfect transmission (CPT), and coherent perfect synthesis (CPS) can be attained within different parameter regimes. That is, we can make two input probe fields totally absorbed by the movable mirror without yielding any energy output from either end mirror (CPA); make an input probe field transmitted from one end mirror to the other end mirror without suffering any energy loss in the two cavities (CPT); make two input probe fields synthesized into one output probe field after undergoing either a perfect transmission or a perfect reflection (CPS). These interesting phenomena originate from the efficient hybrid coupling of optical and mechanical modes and may be all-optically controlled to realize novel photonic devices in quantum information networks.We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial transmission. This optomechanical system is driven from both fixed end mirrors in a symmetric scheme by two strong coupling fields and two weak probe fields. We find that three interesting phenomena: coherent perfect absorption (CPA), coherent perfect transmission (CPT), and coherent perfect synthesis (CPS) can be attained within different parameter regimes. That is, we can make two input probe fields totally absorbed by the movable mirror without yielding any energy output from either end mirror (CPA); make an input probe field transmitted from one end mirror to the other end mirror without suffering any energy loss in the two cavities (CPT); make two input probe fields synthesized into one output probe field after undergoing either a perfect transmission or a perfect reflection (CPS). These interesting phenomena originate from the efficient hybrid coupling of optical and mechanical modes and may be all-optically controlled to realize novel photonic devices in quantum information networks. We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial transmission. This optomechanical system is driven from both fixed end mirrors in a symmetric scheme by two strong coupling fields and two weak probe fields. We find that three interesting phenomena: coherent perfect absorption (CPA), coherent perfect transmission (CPT), and coherent perfect synthesis (CPS) can be attained within different parameter regimes. That is, we can make two input probe fields totally absorbed by the movable mirror without yielding any energy output from either end mirror (CPA); make an input probe field transmitted from one end mirror to the other end mirror without suffering any energy loss in the two cavities (CPT); make two input probe fields synthesized into one output probe field after undergoing either a perfect transmission or a perfect reflection (CPS). These interesting phenomena originate from the efficient hybrid coupling of optical and mechanical modes and may be all-optically controlled to realize novel photonic devices in quantum information networks. |
Author | Cui, Cui-Li Fu, Chang-Bao Wu, Jin-Hui Tian, Xue-Dong Yan, Xiao-Bo Gu, Kai-Hui |
Author_xml | – sequence: 1 givenname: Xiao-Bo surname: Yan fullname: Yan, Xiao-Bo – sequence: 2 givenname: Cui-Li surname: Cui fullname: Cui, Cui-Li – sequence: 3 givenname: Kai-Hui surname: Gu fullname: Gu, Kai-Hui – sequence: 4 givenname: Xue-Dong surname: Tian fullname: Tian, Xue-Dong – sequence: 5 givenname: Chang-Bao surname: Fu fullname: Fu, Chang-Bao – sequence: 6 givenname: Jin-Hui surname: Wu fullname: Wu, Jin-Hui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24663828$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1LxDAQhoMoft88S48e7JpkmzQ9yrJ-gLAXPYdJOmUjbVKTrLD_3uoqiHiaGXjel-E5Ifs-eCTkgtEZm8vqZrWccT6jtFJK7pFjRpuqrKiq93_tR-QkpVdKWVU39SE54pWUc8XVMYFFWGNEn4sRY4c2F2BSiGN2wV8XOYJPg0vp6wLfFmnr8xqTS4XzBRRt2JgeSwvvLm-LMOYwoF2Ddxb6iU0ZhzNy0EGf8Px7npKXu-Xz4qF8Wt0_Lm6fSjtvRC5bapEq6JpOQodGCNUII4xhUnJhoFYMaNtiwyuOtqmpEaiU5QJraRtQ3fyUXO16xxjeNpiynh632PfgMWySZoLRalIg-YRefqMbM2Crx-gGiFv9o2UC-A6wMaQUsdPWZfh0MhlxvWZUf7rXq6XmXO_cT6HrP6Gf3n_xD80Vhjw |
CitedBy_id | crossref_primary_10_12677_APP_2015_512024 crossref_primary_10_7498_aps_69_20200184 crossref_primary_10_1088_0253_6102_71_8_1011 crossref_primary_10_1088_1674_1056_26_5_054210 crossref_primary_10_1103_PhysRevA_101_043820 crossref_primary_10_1021_acsphotonics_7b00921 crossref_primary_10_1007_s10773_021_04761_9 crossref_primary_10_1364_OE_23_018534 crossref_primary_10_1088_1555_6611_aada3f crossref_primary_10_1007_s11467_015_0456_2 crossref_primary_10_1103_PhysRevA_101_063822 crossref_primary_10_1038_srep22920 crossref_primary_10_1364_JOSAB_35_001649 crossref_primary_10_1140_epjp_s13360_022_03364_5 crossref_primary_10_1016_j_ijleo_2018_02_053 crossref_primary_10_1364_OE_379990 crossref_primary_10_3390_photonics8090384 crossref_primary_10_1088_1674_1056_abd7d9 crossref_primary_10_1109_JPHOT_2020_2992100 crossref_primary_10_1007_s11467_019_0922_3 crossref_primary_10_1007_s10773_016_3237_y crossref_primary_10_1063_5_0150194 crossref_primary_10_7498_aps_68_20190205 crossref_primary_10_1016_j_spmi_2017_11_006 crossref_primary_10_1103_PhysRevA_96_053831 crossref_primary_10_7498_aps_71_20220191 crossref_primary_10_1063_1_5027122 crossref_primary_10_1142_S0218863522500059 crossref_primary_10_1088_1555_6611_abb1be crossref_primary_10_1088_1612_202X_aafcb0 crossref_primary_10_1364_JOSAB_32_001712 crossref_primary_10_1088_1674_1056_ac1924 crossref_primary_10_3788_CJL220630 crossref_primary_10_1364_OE_27_021843 crossref_primary_10_7498_aps_68_20181424 crossref_primary_10_1007_s11128_020_02940_x crossref_primary_10_1364_OE_26_012330 crossref_primary_10_1364_OE_385049 crossref_primary_10_3788_LOP221165 crossref_primary_10_1007_s11128_018_1980_0 crossref_primary_10_1016_j_physe_2021_114759 crossref_primary_10_1088_1674_1056_23_11_114201 crossref_primary_10_1002_andp_202200484 crossref_primary_10_1103_PhysRevB_110_205431 crossref_primary_10_1088_2040_8986_abb9c3 crossref_primary_10_1007_s11467_023_1279_1 crossref_primary_10_1007_s11128_021_03166_1 crossref_primary_10_1103_PhysRevB_110_035431 crossref_primary_10_1038_srep09663 crossref_primary_10_1364_JOSAB_35_002550 crossref_primary_10_3788_AOS230998 crossref_primary_10_1088_1361_6455_aaf0bd crossref_primary_10_1209_0295_5075_122_24001 crossref_primary_10_3390_photonics10040407 crossref_primary_10_1016_j_optcom_2014_11_036 crossref_primary_10_1364_OL_41_004472 crossref_primary_10_1364_OE_480597 crossref_primary_10_7498_aps_66_107101 crossref_primary_10_1038_srep35356 crossref_primary_10_1016_j_optcom_2019_06_059 crossref_primary_10_1140_epjd_e2019_100404_1 crossref_primary_10_1209_0295_5075_ad12a2 crossref_primary_10_1002_andp_202200231 crossref_primary_10_1088_1674_1056_ab6836 crossref_primary_10_1016_j_physe_2020_114394 crossref_primary_10_1088_2040_8986_aa7a85 crossref_primary_10_1364_OE_449275 crossref_primary_10_1007_s11082_024_07900_8 crossref_primary_10_1103_PhysRevA_91_043843 crossref_primary_10_1016_j_ijleo_2018_04_058 |
Cites_doi | 10.1103/PhysRevLett.99.250401 10.1103/PhysRevA.84.023834 10.1103/PhysRevA.81.041803 10.1038/nphys939 10.1103/PhysRevA.87.013417 10.1103/PhysRevLett.110.253601 10.1103/PhysRevA.80.033807 10.1103/PhysRevA.88.013804 10.1038/nature05231 10.1103/PhysRevLett.99.073601 10.1103/Physics.2.40 10.1103/PhysRevLett.110.223603 10.1103/PhysRevLett.107.133601 10.1103/PhysRevA.87.013621 10.1038/nature09933 10.1103/PhysRevLett.108.120602 10.1103/RevModPhys.77.633 10.1103/PhysRevLett.104.243602 10.1103/PhysRevA.87.013839 10.1038/nature08171 10.1103/PhysRevA.83.052324 10.1364/OE.15.017172 10.1103/PhysRevA.86.021801 10.1126/science.1156032 10.1103/PhysRevLett.104.133602 10.1088/1367-2630/13/2/023003 10.1103/PhysRevA.86.042323 10.1126/science.1195596 10.1103/PhysRevA.84.013808 10.1038/nature05273 10.1038/nature01371 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1364/OE.22.004886 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 24663828 10_1364_OE_22_004886 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM 7X8 |
ID | FETCH-LOGICAL-c395t-d0ce08af9f6afeb55895b5bb16625ba781a0dde9242ec970b5e88c25e76c9a8f3 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 09:40:58 EDT 2025 Thu Apr 03 07:09:16 EDT 2025 Thu Apr 24 22:55:22 EDT 2025 Tue Jul 01 03:08:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://opg.optica.org/policies/opg-tdm-policy.json https://doi.org/10.1364/OA_License_v1#VOR-OA |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-d0ce08af9f6afeb55895b5bb16625ba781a0dde9242ec970b5e88c25e76c9a8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1364/oe.22.004886 |
PMID | 24663828 |
PQID | 1510400162 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1510400162 pubmed_primary_24663828 crossref_citationtrail_10_1364_OE_22_004886 crossref_primary_10_1364_OE_22_004886 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-10 |
PublicationDateYYYYMMDD | 2014-03-10 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2014 |
References | Fiore (oe-22-5-4886-R29) 2011; 107 Kippenberg (oe-22-5-4886-R1) 2008; 321 De Chiara (oe-22-5-4886-R13) 2011; 83 Wang (oe-22-5-4886-R18) 2013; 110 Safavi-Naeini (oe-22-5-4886-R25) 2011; 472 Fleischhauer (oe-22-5-4886-R27) 2005; 77 Paternostro (oe-22-5-4886-R12) 2010; 104 Schmid (oe-22-5-4886-R11) 2011; 84 Huang (oe-22-5-4886-R23) 2009; 80 Weis (oe-22-5-4886-R24) 2010; 330 Chang (oe-22-5-4886-R28) 2011; 13 Mahajan (oe-22-5-4886-R4) 2013; 87 Kleckner (oe-22-5-4886-R6) 2006; 444 Marquardt (oe-22-5-4886-R2) 2009; 2 Agarwal (oe-22-5-4886-R7) 2010; 81 Verlot (oe-22-5-4886-R3) 2010; 104 Kómár (oe-22-5-4886-R20) 2013; 87 Liu (oe-22-5-4886-R26) 2013; 110 Armani (oe-22-5-4886-R9) 2003; 421 Gröblacher (oe-22-5-4886-R31) 2009; 460 Steinke (oe-22-5-4886-R14) 2011; 84 Rogers (oe-22-5-4886-R16) 2012; 86 Bhattacharya (oe-22-5-4886-R21) 2007; 99 Schliesser (oe-22-5-4886-R10) 2008; 4 Gigan (oe-22-5-4886-R5) 2006; 444 Mari (oe-22-5-4886-R22) 2012; 108 Dalafi (oe-22-5-4886-R17) 2013; 87 Karuza (oe-22-5-4886-R19) 2013; 88 Singh (oe-22-5-4886-R15) 2012; 86 Kippenberg (oe-22-5-4886-R8) 2007; 15 Paternostro (oe-22-5-4886-R30) 2007; 99 |
References_xml | – volume: 99 start-page: 250401 year: 2007 ident: oe-22-5-4886-R30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.250401 – volume: 84 start-page: 023834 year: 2011 ident: oe-22-5-4886-R14 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.023834 – volume: 81 start-page: 041803(R year: 2010 ident: oe-22-5-4886-R7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.041803 – volume: 4 start-page: 415 year: 2008 ident: oe-22-5-4886-R10 publication-title: Nature Phys. doi: 10.1038/nphys939 – volume: 87 start-page: 013417 year: 2013 ident: oe-22-5-4886-R17 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.013417 – volume: 110 start-page: 253601 year: 2013 ident: oe-22-5-4886-R18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.253601 – volume: 80 start-page: 033807 year: 2009 ident: oe-22-5-4886-R23 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.80.033807 – volume: 88 start-page: 013804 year: 2013 ident: oe-22-5-4886-R19 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.013804 – volume: 444 start-page: 75 year: 2006 ident: oe-22-5-4886-R6 publication-title: Nature (London) doi: 10.1038/nature05231 – volume: 99 start-page: 073601 year: 2007 ident: oe-22-5-4886-R21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.073601 – volume: 2 start-page: 40 year: 2009 ident: oe-22-5-4886-R2 publication-title: Physics doi: 10.1103/Physics.2.40 – volume: 110 start-page: 223603 year: 2013 ident: oe-22-5-4886-R26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.223603 – volume: 107 start-page: 133601 year: 2011 ident: oe-22-5-4886-R29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.133601 – volume: 87 start-page: 013621 year: 2013 ident: oe-22-5-4886-R4 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.013621 – volume: 472 start-page: 69 year: 2011 ident: oe-22-5-4886-R25 publication-title: Nature (London) doi: 10.1038/nature09933 – volume: 108 start-page: 120602 year: 2012 ident: oe-22-5-4886-R22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.120602 – volume: 77 start-page: 633 year: 2005 ident: oe-22-5-4886-R27 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.633 – volume: 104 start-page: 243602 year: 2010 ident: oe-22-5-4886-R12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.243602 – volume: 87 start-page: 013839 year: 2013 ident: oe-22-5-4886-R20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.013839 – volume: 460 start-page: 724 year: 2009 ident: oe-22-5-4886-R31 publication-title: Nature (London) doi: 10.1038/nature08171 – volume: 83 start-page: 052324 year: 2011 ident: oe-22-5-4886-R13 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.052324 – volume: 15 start-page: 17172 year: 2007 ident: oe-22-5-4886-R8 publication-title: Opt. Express doi: 10.1364/OE.15.017172 – volume: 86 start-page: 021801(R year: 2012 ident: oe-22-5-4886-R15 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.021801 – volume: 321 start-page: 1172 year: 2008 ident: oe-22-5-4886-R1 publication-title: Science doi: 10.1126/science.1156032 – volume: 104 start-page: 133602 year: 2010 ident: oe-22-5-4886-R3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.133602 – volume: 13 start-page: 023003 year: 2011 ident: oe-22-5-4886-R28 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/2/023003 – volume: 86 start-page: 042323 year: 2012 ident: oe-22-5-4886-R16 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.042323 – volume: 330 start-page: 1520 year: 2010 ident: oe-22-5-4886-R24 publication-title: Science doi: 10.1126/science.1195596 – volume: 84 start-page: 013808 year: 2011 ident: oe-22-5-4886-R11 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.013808 – volume: 444 start-page: 67 year: 2006 ident: oe-22-5-4886-R5 publication-title: Nature (London) doi: 10.1038/nature05273 – volume: 421 start-page: 925 year: 2003 ident: oe-22-5-4886-R9 publication-title: Nature (London) doi: 10.1038/nature01371 |
SSID | ssj0014797 |
Score | 2.4139464 |
Snippet | We study a double-cavity optomechanical system in which a movable mirror with perfect reflection is inserted between two fixed mirrors with partial... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 4886 |
Title | Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24663828 https://www.proquest.com/docview/1510400162 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbtlkIvpe9m2y4qtKestrYi2fKxjyyhpJuLA7kZyZbBsLVNYkO3h_72jmTZcSAL215MIpQhzHyehzQPhD6IzAtkbip6IqYJAxNGFGcSHLmMcqq4p5TNtrgKFmv2fcM3-6motrqkURfp76N1Jf8jVVgDuZoq2X-Q7EAUFuAzyBeeIGF43knGprbCdleq9dY2IZZqV22tEjCsa4wdAjnu3Hd7Rn5TgstnupAU5VROs6pV15qk0o6QqOqm-qlNLXBXLGm7PI_d11VtuzrrX_WQuWE0RneIuilkRb5Uw61GW3Q9OwuyLIY0n7ZL4SjIoh0W48IRaDX5VjlT6k4ifEZsWttIeUKoCPGoM6D6yJrTuJSOkMVH6hO0SXBUr88CBsJYzS-o6a_abztsn321Si7Xy2USzzfxffSAQtxgFN-PP_PhWomF3bSd_k-5Sgig_mlM-9BHuSXwsA5I_AQ9dpED_tzB4Cm6p8tn6KHN4E13z5HswYAdGPAeDOd4DIVzDEDAAxBwUWKJD4CAD4GAOyC8QOvLefx1Qdz8DJLOIt6QzEu1J2Qe5fA6asW5iLjiSvkBBL1KhsKXHlg3iMCpTqPQU1wLkVKuwyCNpMhnL9FJWZX6NcK5H-Z5kGeMZoLRkEfwjouZpgFlGXhZ6QRNe44lqWsub2acXCf2xjRgyWqeUJp0_J2gj8Puumuqcsu-9z3zE2CRucqSpa7aXQJ-qrE-fkAn6FUnlYESZeBFCypO7_DrN-jRHslv0UmzbfU78DIbdWZPZ84sfv4CU5F_cw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+perfect+absorption%2C+transmission%2C+and+synthesis+in+a+double-cavity+optomechanical+system&rft.jtitle=Optics+express&rft.au=Yan%2C+Xiao-Bo&rft.au=Cui%2C+Cui-Li&rft.au=Gu%2C+Kai-Hui&rft.au=Tian%2C+Xue-Dong&rft.date=2014-03-10&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=22&rft.issue=5&rft.spage=4886&rft_id=info:doi/10.1364%2FOE.22.004886&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |