Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis
Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone provides limited information for predicting an individual patient's disability progression. In part, this is because magnetic resonance...
Saved in:
Published in | Brain (London, England : 1878) Vol. 140; no. 11; pp. 2927 - 2938 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone provides limited information for predicting an individual patient's disability progression. In part, this is because magnetic resonance imaging lacks sensitivity and specificity for detecting chronic diffuse and multi-focal inflammation mediated by activated microglia/macrophages. The aim of this study was to test for an association between 18 kDa translocator protein brain positron emission tomography signal, which arises largely from microglial activation, and measures of subsequent disease progression in multiple sclerosis patients. Twenty-one patients with multiple sclerosis (seven with secondary progressive disease and 14 with a relapsing remitting disease course) underwent T1- and T2-weighted and magnetization transfer magnetic resonance imaging at baseline and after 1 year. Positron emission tomography scanning with the translocator protein radioligand 11C-PBR28 was performed at baseline. Brain tissue and lesion volumes were segmented from the T1- and T2-weighted magnetic resonance imaging and relative 11C-PBR28 uptake in the normal-appearing white matter was estimated as a distribution volume ratio with respect to a caudate pseudo-reference region. Normal-appearing white matter distribution volume ratio at baseline was correlated with enlarging T2-hyperintense lesion volumes over the subsequent year (ρ = 0.59, P = 0.01). A post hoc analysis showed that this association reflected behaviour in the subgroup of relapsing remitting patients (ρ = 0.74, P = 0.008). By contrast, in the subgroup of secondary progressive patients, microglial activation at baseline was correlated with later progression of brain atrophy (ρ = 0.86, P = 0.04). A regression model including the baseline normal-appearing white matter distribution volume ratio, T2 lesion volume and normal-appearing white matter magnetization transfer ratio for all of the patients combined explained over 90% of the variance in enlarging lesion volume over the subsequent 1 year. Glial activation in white matter assessed by translocator protein PET significantly improves predictions of white matter lesion enlargement in relapsing remitting patients and is associated with greater brain atrophy in secondary progressive disease over a period of short term follow-up. |
---|---|
AbstractList | Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone provides limited information for predicting an individual patient's disability progression. In part, this is because magnetic resonance imaging lacks sensitivity and specificity for detecting chronic diffuse and multi-focal inflammation mediated by activated microglia/macrophages. The aim of this study was to test for an association between 18 kDa translocator protein brain positron emission tomography signal, which arises largely from microglial activation, and measures of subsequent disease progression in multiple sclerosis patients. Twenty-one patients with multiple sclerosis (seven with secondary progressive disease and 14 with a relapsing remitting disease course) underwent T1- and T2-weighted and magnetization transfer magnetic resonance imaging at baseline and after 1 year. Positron emission tomography scanning with the translocator protein radioligand 11C-PBR28 was performed at baseline. Brain tissue and lesion volumes were segmented from the T1- and T2-weighted magnetic resonance imaging and relative 11C-PBR28 uptake in the normal-appearing white matter was estimated as a distribution volume ratio with respect to a caudate pseudo-reference region. Normal-appearing white matter distribution volume ratio at baseline was correlated with enlarging T2-hyperintense lesion volumes over the subsequent year (ρ = 0.59, P = 0.01). A post hoc analysis showed that this association reflected behaviour in the subgroup of relapsing remitting patients (ρ = 0.74, P = 0.008). By contrast, in the subgroup of secondary progressive patients, microglial activation at baseline was correlated with later progression of brain atrophy (ρ = 0.86, P = 0.04). A regression model including the baseline normal-appearing white matter distribution volume ratio, T2 lesion volume and normal-appearing white matter magnetization transfer ratio for all of the patients combined explained over 90% of the variance in enlarging lesion volume over the subsequent 1 year. Glial activation in white matter assessed by translocator protein PET significantly improves predictions of white matter lesion enlargement in relapsing remitting patients and is associated with greater brain atrophy in secondary progressive disease over a period of short term follow-up. Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone provides limited information for predicting an individual patient's disability progression. In part, this is because magnetic resonance imaging lacks sensitivity and specificity for detecting chronic diffuse and multi-focal inflammation mediated by activated microglia/macrophages. The aim of this study was to test for an association between 18 kDa translocator protein brain positron emission tomography signal, which arises largely from microglial activation, and measures of subsequent disease progression in multiple sclerosis patients. Twenty-one patients with multiple sclerosis (seven with secondary progressive disease and 14 with a relapsing remitting disease course) underwent T1- and T2-weighted and magnetization transfer magnetic resonance imaging at baseline and after 1 year. Positron emission tomography scanning with the translocator protein radioligand 11C-PBR28 was performed at baseline. Brain tissue and lesion volumes were segmented from the T1- and T2-weighted magnetic resonance imaging and relative 11C-PBR28 uptake in the normal-appearing white matter was estimated as a distribution volume ratio with respect to a caudate pseudo-reference region. Normal-appearing white matter distribution volume ratio at baseline was correlated with enlarging T2-hyperintense lesion volumes over the subsequent year (ρ = 0.59, P = 0.01). A post hoc analysis showed that this association reflected behaviour in the subgroup of relapsing remitting patients (ρ = 0.74, P = 0.008). By contrast, in the subgroup of secondary progressive patients, microglial activation at baseline was correlated with later progression of brain atrophy (ρ = 0.86, P = 0.04). A regression model including the baseline normal-appearing white matter distribution volume ratio, T2 lesion volume and normal-appearing white matter magnetization transfer ratio for all of the patients combined explained over 90% of the variance in enlarging lesion volume over the subsequent 1 year. Glial activation in white matter assessed by translocator protein PET significantly improves predictions of white matter lesion enlargement in relapsing remitting patients and is associated with greater brain atrophy in secondary progressive disease over a period of short term follow-up.Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone provides limited information for predicting an individual patient's disability progression. In part, this is because magnetic resonance imaging lacks sensitivity and specificity for detecting chronic diffuse and multi-focal inflammation mediated by activated microglia/macrophages. The aim of this study was to test for an association between 18 kDa translocator protein brain positron emission tomography signal, which arises largely from microglial activation, and measures of subsequent disease progression in multiple sclerosis patients. Twenty-one patients with multiple sclerosis (seven with secondary progressive disease and 14 with a relapsing remitting disease course) underwent T1- and T2-weighted and magnetization transfer magnetic resonance imaging at baseline and after 1 year. Positron emission tomography scanning with the translocator protein radioligand 11C-PBR28 was performed at baseline. Brain tissue and lesion volumes were segmented from the T1- and T2-weighted magnetic resonance imaging and relative 11C-PBR28 uptake in the normal-appearing white matter was estimated as a distribution volume ratio with respect to a caudate pseudo-reference region. Normal-appearing white matter distribution volume ratio at baseline was correlated with enlarging T2-hyperintense lesion volumes over the subsequent year (ρ = 0.59, P = 0.01). A post hoc analysis showed that this association reflected behaviour in the subgroup of relapsing remitting patients (ρ = 0.74, P = 0.008). By contrast, in the subgroup of secondary progressive patients, microglial activation at baseline was correlated with later progression of brain atrophy (ρ = 0.86, P = 0.04). A regression model including the baseline normal-appearing white matter distribution volume ratio, T2 lesion volume and normal-appearing white matter magnetization transfer ratio for all of the patients combined explained over 90% of the variance in enlarging lesion volume over the subsequent 1 year. Glial activation in white matter assessed by translocator protein PET significantly improves predictions of white matter lesion enlargement in relapsing remitting patients and is associated with greater brain atrophy in secondary progressive disease over a period of short term follow-up. |
Author | Colasanti, Alessandro Ciccarelli, Olga Rabiner, Eugenii A Santos-Ribeiro, Andre Van Vlierberghe, Eline Matthews, Paul M Gunn, Roger N Datta, Gourab Van Hecke, Wim Searle, Graham Malik, Omar Nicholas, Richard |
Author_xml | – sequence: 1 givenname: Gourab surname: Datta fullname: Datta, Gourab – sequence: 2 givenname: Alessandro surname: Colasanti fullname: Colasanti, Alessandro – sequence: 3 givenname: Eugenii A surname: Rabiner fullname: Rabiner, Eugenii A – sequence: 4 givenname: Roger N surname: Gunn fullname: Gunn, Roger N – sequence: 5 givenname: Omar surname: Malik fullname: Malik, Omar – sequence: 6 givenname: Olga surname: Ciccarelli fullname: Ciccarelli, Olga – sequence: 7 givenname: Richard surname: Nicholas fullname: Nicholas, Richard – sequence: 8 givenname: Eline surname: Van Vlierberghe fullname: Van Vlierberghe, Eline – sequence: 9 givenname: Wim surname: Van Hecke fullname: Van Hecke, Wim – sequence: 10 givenname: Graham surname: Searle fullname: Searle, Graham – sequence: 11 givenname: Andre surname: Santos-Ribeiro fullname: Santos-Ribeiro, Andre – sequence: 12 givenname: Paul M surname: Matthews fullname: Matthews, Paul M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29053775$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0T1PwzAQBmALFdEP2JiRRwZC7ThxnBFVfEkVLDBHjnOhRo4TbIfCvydNgQExWTo9dye_N0cT21pA6JSSS0pytiyd1HYptx9xLA7QjCacRDFN-QTNCCE8EnlKpmju_SshNGExP0LTOCcpy7J0hroH6F2rbW1k08igW4ulrbAOHjswY8FvdIdDi9VG2hfwWFs87sTvrekbGP12owPgYUAAhw34XdsONr0JujOAvTLgWq_9MTqspfFw8v0u0PPN9dPqLlo_3t6vrtaRYnkaIgWVUJwlVVaJjPOU5blUIDhjGScVyFKUkmcZyVLOeRkLwXJOCYhakYTSpGILdL6f27n2rQcfikZ7BcZIC23vC5qnCRki4HSgZ9-0Lxuois7pRrrP4ielAVzsgRq-4B3Uv4SSYneEYgyk2B9h4PEfrnQYowwDM_83fQH0OI7I |
CitedBy_id | crossref_primary_10_1016_j_eclinm_2021_100982 crossref_primary_10_1007_s00415_021_10605_7 crossref_primary_10_17116_jnevro20231230728 crossref_primary_10_4103_1673_5374_266906 crossref_primary_10_3390_ijms22020934 crossref_primary_10_1016_j_apsb_2020_08_006 crossref_primary_10_3390_brainsci8090177 crossref_primary_10_1016_S1474_4422_21_00237_4 crossref_primary_10_1186_s41181_019_0058_3 crossref_primary_10_1016_j_jneuroim_2020_577466 crossref_primary_10_1016_S1474_4422_20_30346_X crossref_primary_10_1093_braincomms_fcac088 crossref_primary_10_1007_s00415_024_12517_8 crossref_primary_10_1016_j_msard_2025_106350 crossref_primary_10_1016_j_pharmthera_2021_108017 crossref_primary_10_1038_s41582_019_0240_y crossref_primary_10_3390_ijms23010474 crossref_primary_10_1038_s41582_021_00537_1 crossref_primary_10_1016_j_ajpath_2021_02_007 crossref_primary_10_3389_fnagi_2021_632374 crossref_primary_10_1002_ana_26913 crossref_primary_10_1016_j_msard_2021_103331 crossref_primary_10_3389_fimmu_2021_638381 crossref_primary_10_3389_fnagi_2020_582904 crossref_primary_10_1177_1352458519828298 crossref_primary_10_1016_j_jad_2018_11_086 crossref_primary_10_1016_j_euroneuro_2021_02_001 crossref_primary_10_1515_nipt_2024_0017 crossref_primary_10_52711_0974_360X_2023_00248 crossref_primary_10_1016_j_breast_2022_02_001 crossref_primary_10_1097_WCO_0000000000000572 crossref_primary_10_1186_s12974_022_02408_y crossref_primary_10_1016_j_neuron_2022_06_023 crossref_primary_10_3389_fnagi_2021_713201 crossref_primary_10_1007_s00259_021_05425_w crossref_primary_10_3389_fneur_2020_00552 crossref_primary_10_3389_fnins_2023_1092537 crossref_primary_10_1177_1352458518814117 crossref_primary_10_1016_j_biopsych_2021_05_025 crossref_primary_10_1002_acn3_51644 crossref_primary_10_1007_s11307_019_01368_9 crossref_primary_10_1007_s00429_018_1777_z crossref_primary_10_1177_17562864211066751 crossref_primary_10_1016_j_neuroimage_2022_119423 crossref_primary_10_1016_j_bbi_2018_09_018 crossref_primary_10_1016_j_msard_2023_104714 crossref_primary_10_1016_j_bbr_2023_114444 crossref_primary_10_1002_ana_25808 crossref_primary_10_1016_j_ynpai_2022_100094 crossref_primary_10_1002_ana_26154 crossref_primary_10_1093_brain_awab127 crossref_primary_10_3389_fphar_2019_00286 crossref_primary_10_3389_fneur_2018_00181 crossref_primary_10_1007_s00213_019_05406_w crossref_primary_10_1177_13524585241280842 crossref_primary_10_2174_1874196702008010006 crossref_primary_10_3389_fnins_2021_827329 crossref_primary_10_1080_08923973_2019_1666406 crossref_primary_10_3389_fimmu_2020_00374 crossref_primary_10_1186_s40035_019_0178_4 crossref_primary_10_1155_2021_6426225 crossref_primary_10_1097_WCO_0000000000001045 crossref_primary_10_1186_s10194_023_01645_7 crossref_primary_10_1038_s41398_022_01990_2 crossref_primary_10_1007_s00702_022_02480_x crossref_primary_10_1016_j_jneuroim_2018_03_016 crossref_primary_10_1021_acschemneuro_0c00362 crossref_primary_10_1080_14737175_2024_2304116 crossref_primary_10_1016_j_jneuroim_2022_577879 |
Cites_doi | 10.1002/ana.24791 10.1016/S1474-4422(12)70003-0 10.1002/jmri.21049 10.1136/jnnp-2012-304094 10.1517/17460441.2015.1032240 10.1177/1352458510393770 10.1002/brb3.518 10.2967/jnumed.113.131698 10.1111/j.1365-2990.2008.01006.x 10.1212/WNL.45.2.255 10.1038/jcbfm.2011.147 10.1191/1352458505ms1140oa 10.1007/s100720170012 10.1038/nrn3900 10.1002/ana.22521 10.1212/WNL.0b013e3182635645 10.1002/hbm.21344 10.1002/ana.1255 10.1006/nimg.2002.1040 10.1056/NEJMoa1100648 10.4161/pri.23499 10.1007/s00401-013-1082-0 10.1177/1756285610374117 10.2967/jnumed.113.135129 10.1186/1471-2377-12-11 10.1212/WNL.0000000000001587 10.1212/WNL.0b013e3181b2a706 10.1097/00004647-199609000-00008 10.1002/ana.20202 10.1001/archneur.64.1.76 10.1016/j.nicl.2015.05.003 10.1002/ana.24018 10.1002/ana.20182 10.1021/jm0707370 10.1016/j.neuroimage.2010.06.044 10.1002/ana.22366 10.1002/ana.23591 10.1038/nrneurol.2009.41 |
ContentType | Journal Article |
Copyright | The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/brain/awx228 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2938 |
ExternalDocumentID | 29053775 10_1093_brain_awx228 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/N026934/1 – fundername: Medical Research Council grantid: MR/K501013/1 – fundername: Medical Research Council grantid: MC_PC_17114 |
GroupedDBID | --- -E4 -~X .2P .I3 .XZ .ZR 0R~ 1TH 23N 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM C45 CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN ENERS F5P F9B FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MHKGH ML0 N9A NGC NLBLG NOMLY NOYVH NU- NVLIB O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TCURE TEORI TJX TLC TR2 VVN W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c395t-ced8c634d7d87665399ace8633760deab8ba677075666b28839610e8fc04114d3 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Fri Jul 11 16:40:09 EDT 2025 Mon Jul 21 06:04:06 EDT 2025 Thu Apr 24 23:06:38 EDT 2025 Tue Jul 01 00:46:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | atrophy translocator protein positron emission tomography microglia multiple sclerosis |
Language | English |
License | The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-ced8c634d7d87665399ace8633760deab8ba677075666b28839610e8fc04114d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/140/11/2927/23032177/awx228.pdf |
PMID | 29053775 |
PQID | 1954077561 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1954077561 pubmed_primary_29053775 crossref_primary_10_1093_brain_awx228 crossref_citationtrail_10_1093_brain_awx228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2017 |
References | ( key 20171222084449_awx228-B17) 2015; 138 ( key 20171222084449_awx228-B44) 2011; 17 ( key 20171222084449_awx228-B22) 2015; 8 ( key 20171222084449_awx228-B2) 2006; 129 ( key 20171222084449_awx228-B13) 2014; 2014 ( key 20171222084449_awx228-B10) 2009; 35 ( key 20171222084449_awx228-B47) 2005; 11 ( key 20171222084449_awx228-B33) 2011; 69 ( key 20171222084449_awx228-B36) 2001; 50 ( key 20171222084449_awx228-B30) 2012; 72 ( key 20171222084449_awx228-B19) 2013; 136 ( key 20171222084449_awx228-B21) 2008; 27 ( key 20171222084449_awx228-B23) 2013; 7 ( key 20171222084449_awx228-B6) 2007; 64 ( key 20171222084449_awx228-B39) 2009; 66 ( key 20171222084449_awx228-B4) 2009; 5 ( key 20171222084449_awx228-B5) 2012; 33 ( key 20171222084449_awx228-B35) 2013; 84 ( key 20171222084449_awx228-B27) 2011; 365 ( key 20171222084449_awx228-B26) 2004; 56 ( key 20171222084449_awx228-B9) 2014; 55 ( key 20171222084449_awx228-B12) 2016 ( key 20171222084449_awx228-B15) 2012; 11 ( key 20171222084449_awx228-B37) 2014; 55 ( key 20171222084449_awx228-B34) 2012; 12 ( key 20171222084449_awx228-B41) 2016; 6 ( key 20171222084449_awx228-B32) 2012; 79 ( key 20171222084449_awx228-B40) 2013; 125 ( key 20171222084449_awx228-B25) 1996; 16 ( key 20171222084449_awx228-B8) 2015; 16 ( key 20171222084449_awx228-B16) 2005; 26 ( key 20171222084449_awx228-B42) 2002; 17 ( key 20171222084449_awx228-B7) 2008; 51 ( key 20171222084449_awx228-B49) 2009; 73 ( key 20171222084449_awx228-B38) 2004; 56 ( key 20171222084449_awx228-B18) 2010; 3 ( key 20171222084449_awx228-B20) 2016; 80 ( key 20171222084449_awx228-B45) 2011; 54 ( key 20171222084449_awx228-B14) 1995; 45 ( key 20171222084449_awx228-B3) 2001; 22 ( key 20171222084449_awx228-B28) 2015; 10 ( key 20171222084449_awx228-B11) 2017 ( key 20171222084449_awx228-B29) 2011; 70 ( key 20171222084449_awx228-B48) 2006; 27 ( key 20171222084449_awx228-B24) 1998; 121 ( key 20171222084449_awx228-B46) 2012; 9 ( key 20171222084449_awx228-B31) 2012; 32 ( key 20171222084449_awx228-B43) 2014; 75 ( key 20171222084449_awx228-B1) 2015; 85 |
References_xml | – start-page: 1 year: 2016 ident: key 20171222084449_awx228-B12 article-title: Translocator positron-emission tomography and magnetic resonance spectroscopic imaging of brain glial cell activation in multiple sclerosis publication-title: Mult Scler – volume: 80 start-page: 776 year: 2016 ident: key 20171222084449_awx228-B20 article-title: Neuroinflammatory component of gray matter pathology in multiple sclerosis publication-title: Ann Neurol doi: 10.1002/ana.24791 – volume: 11 start-page: 349 year: 2012 ident: key 20171222084449_awx228-B15 article-title: Association between pathological and MRI findings in multiple sclerosis publication-title: Lancet Neurol doi: 10.1016/S1474-4422(12)70003-0 – volume: 27 start-page: 685 year: 2008 ident: key 20171222084449_awx228-B21 article-title: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21049 – volume: 84 start-page: 1082 year: 2013 ident: key 20171222084449_awx228-B35 article-title: Brain atrophy and lesion load predict long term disability in multiple sclerosis publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp-2012-304094 – volume: 10 start-page: 557 year: 2015 ident: key 20171222084449_awx228-B28 article-title: Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2015.1032240 – year: 2017 ident: key 20171222084449_awx228-B11 article-title: [11C]PBR28 or [18F]PBR111 detect white matter inflammatory heterogeneity in multiple sclerosis publication-title: J Nucl Med – volume: 121 start-page: 2095 issue: Pt 11 year: 1998 ident: key 20171222084449_awx228-B24 article-title: Defining multiple sclerosis disease activity using MRI T2-weighted difference imaging publication-title: Brain – volume: 17 start-page: 630 year: 2011 ident: key 20171222084449_awx228-B44 article-title: Magnetic resonance imaging as surrogate for clinical endpoints in multiple sclerosis: data on novel oral drugs publication-title: Mult Scler doi: 10.1177/1352458510393770 – volume: 6 start-page: e00518 year: 2016 ident: key 20171222084449_awx228-B41 article-title: Reliable measurements of brain atrophy in individual patients with multiple sclerosis publication-title: Brain Behav doi: 10.1002/brb3.518 – volume: 55 start-page: 939 year: 2014 ident: key 20171222084449_awx228-B37 article-title: In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand (1)(1)C-PK11195 publication-title: J Nucl Med doi: 10.2967/jnumed.113.131698 – volume: 35 start-page: 306 year: 2009 ident: key 20171222084449_awx228-B10 article-title: Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain publication-title: Neuropathol Appl Neurobiol doi: 10.1111/j.1365-2990.2008.01006.x – volume: 45 start-page: 255 year: 1995 ident: key 20171222084449_awx228-B14 article-title: Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study publication-title: Neurology doi: 10.1212/WNL.45.2.255 – volume: 32 start-page: 1 year: 2012 ident: key 20171222084449_awx228-B31 article-title: An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28 publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2011.147 – volume: 2014 start-page: 285245 year: 2014 ident: key 20171222084449_awx228-B13 article-title: The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis publication-title: Mult Scler Int – volume: 11 start-page: 127 year: 2005 ident: key 20171222084449_awx228-B47 article-title: Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study publication-title: Mult Scler doi: 10.1191/1352458505ms1140oa – volume: 22 start-page: 141 year: 2001 ident: key 20171222084449_awx228-B3 article-title: Pathological abnormalities in the normal-appearing white matter in multiple sclerosis publication-title: Neurol Sci doi: 10.1007/s100720170012 – volume: 16 start-page: 147 year: 2015 ident: key 20171222084449_awx228-B8 article-title: Exploring the origins of grey matter damage in multiple sclerosis publication-title: Nat Rev Neurosci doi: 10.1038/nrn3900 – volume: 70 start-page: 764 year: 2011 ident: key 20171222084449_awx228-B29 article-title: Multiple sclerosis normal-appearing white matter: pathology-imaging correlations publication-title: Ann Neurol doi: 10.1002/ana.22521 – volume: 79 start-page: 523 year: 2012 ident: key 20171222084449_awx228-B32 article-title: Increased PK11195 PET binding in the cortex of patients with MS correlates with disability publication-title: Neurology doi: 10.1212/WNL.0b013e3182635645 – volume: 33 start-page: 2062 year: 2012 ident: key 20171222084449_awx228-B5 article-title: Evaluating and reducing the impact of white matter lesions on brain volume measurements publication-title: Hum Brain Mapp doi: 10.1002/hbm.21344 – volume: 50 start-page: 646 year: 2001 ident: key 20171222084449_awx228-B36 article-title: Immunopathology of secondary-progressive multiple sclerosis publication-title: Ann Neurol doi: 10.1002/ana.1255 – volume: 17 start-page: 479 year: 2002 ident: key 20171222084449_awx228-B42 article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis publication-title: Neuroimage doi: 10.1006/nimg.2002.1040 – volume: 365 start-page: 2188 year: 2011 ident: key 20171222084449_awx228-B27 article-title: Inflammatory cortical demyelination in early multiple sclerosis publication-title: N Engl J Med doi: 10.1056/NEJMoa1100648 – volume: 7 start-page: 66 year: 2013 ident: key 20171222084449_awx228-B23 article-title: Grey matter damage in multiple sclerosis: a pathology perspective publication-title: Prion doi: 10.4161/pri.23499 – volume: 125 start-page: 595 year: 2013 ident: key 20171222084449_awx228-B40 article-title: Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons publication-title: Acta Neuropathol doi: 10.1007/s00401-013-1082-0 – volume: 3 start-page: 229 year: 2010 ident: key 20171222084449_awx228-B18 article-title: Possible clinical outcome measures for clinical trials in patients with multiple sclerosis publication-title: Ther Adv Neurol Disord doi: 10.1177/1756285610374117 – volume: 55 start-page: 1112 year: 2014 ident: key 20171222084449_awx228-B9 article-title: In vivo assessment of brain white matter inflammation in multiple sclerosis with (18)F-PBR111 PET publication-title: J Nucl Med doi: 10.2967/jnumed.113.135129 – volume: 12 start-page: 11 year: 2012 ident: key 20171222084449_awx228-B34 article-title: Meningeal and cortical grey matter pathology in multiple sclerosis publication-title: BMC Neurol doi: 10.1186/1471-2377-12-11 – volume: 85 start-page: 18 year: 2015 ident: key 20171222084449_awx228-B1 article-title: Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis publication-title: Neurology doi: 10.1212/WNL.0000000000001587 – volume: 73 start-page: 504 year: 2009 ident: key 20171222084449_awx228-B49 article-title: Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis publication-title: Neurology doi: 10.1212/WNL.0b013e3181b2a706 – volume: 16 start-page: 834 year: 1996 ident: key 20171222084449_awx228-B25 article-title: Distribution volume ratios without blood sampling from graphical analysis of PET data publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-199609000-00008 – volume: 56 start-page: 407 year: 2004 ident: key 20171222084449_awx228-B38 article-title: Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain publication-title: Ann Neurol doi: 10.1002/ana.20202 – volume: 27 start-page: 2005 year: 2006 ident: key 20171222084449_awx228-B48 article-title: Normal-appearing white matter changes vary with distance to lesions in multiple sclerosis publication-title: AJNR Am J Neuroradiol – volume: 64 start-page: 76 year: 2007 ident: key 20171222084449_awx228-B6 article-title: Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis publication-title: Arch Neurol doi: 10.1001/archneur.64.1.76 – volume: 26 start-page: 572 year: 2005 ident: key 20171222084449_awx228-B16 article-title: Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology publication-title: AJNR Am J Neuroradiol – volume: 136 start-page: 1012 issue: Pt 4 year: 2013 ident: key 20171222084449_awx228-B19 article-title: A genome-wide association study of brain lesion distribution in multiple sclerosis publication-title: Brain – volume: 8 start-page: 367 year: 2015 ident: key 20171222084449_awx228-B22 article-title: Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2015.05.003 – volume: 75 start-page: 43 year: 2014 ident: key 20171222084449_awx228-B43 article-title: Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis publication-title: Ann Neurol doi: 10.1002/ana.24018 – volume: 9 start-page: 156 year: 2012 ident: key 20171222084449_awx228-B46 article-title: Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation publication-title: J Neuroinflammation – volume: 56 start-page: 308 year: 2004 ident: key 20171222084449_awx228-B26 article-title: Evidence for pathogenic heterogeneity in multiple sclerosis publication-title: Ann Neurol doi: 10.1002/ana.20182 – volume: 51 start-page: 17 year: 2008 ident: key 20171222084449_awx228-B7 article-title: Synthesis and evaluation in monkey of two sensitive 11 C-labeled aryloxyanilide ligands for imaging brain peripheral benzodiazepine receptors in vivo publication-title: J Med Chem doi: 10.1021/jm0707370 – volume: 54 start-page: 264 year: 2011 ident: key 20171222084449_awx228-B45 article-title: Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.044 – volume: 129 start-page: 2620 issue: Pt 10 year: 2006 ident: key 20171222084449_awx228-B2 article-title: Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis publication-title: Brain – volume: 66 start-page: 601 year: 2009 ident: key 20171222084449_awx228-B39 article-title: Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis publication-title: Arch Neurol – volume: 69 start-page: 292 year: 2011 ident: key 20171222084449_awx228-B33 article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria publication-title: Ann Neurol doi: 10.1002/ana.22366 – volume: 72 start-page: 234 year: 2012 ident: key 20171222084449_awx228-B30 article-title: Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis publication-title: Ann Neurol doi: 10.1002/ana.23591 – volume: 138 start-page: 110 issue: Pt 1 year: 2015 ident: key 20171222084449_awx228-B17 article-title: Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome publication-title: Brain – volume: 5 start-page: 256 year: 2009 ident: key 20171222084449_awx228-B4 article-title: Imaging outcomes for neuroprotection and repair in multiple sclerosis trials publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.41 |
SSID | ssj0014326 |
Score | 2.51194 |
Snippet | Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2927 |
SubjectTerms | Acetamides Adult Atrophy Brain - diagnostic imaging Brain - pathology Carbon Radioisotopes Female Humans Image Processing, Computer-Assisted Inflammation - diagnostic imaging Magnetic Resonance Imaging Male Microglia Middle Aged Multiple Sclerosis, Chronic Progressive - diagnostic imaging Multiple Sclerosis, Relapsing-Remitting - diagnostic imaging Organ Size Positron-Emission Tomography Pyridines Receptors, GABA White Matter - diagnostic imaging White Matter - pathology Young Adult |
Title | Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29053775 https://www.proquest.com/docview/1954077561 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDfLS0aC0yptXus4R0ShBVQOqJV6ixzHkSK1SdVkVcQP4_fx-RFvFrZS4RLtRraz8czOwzPzDSFvY6VqDjsoEFEogjSOZADPVmMRlmEiVFWrUFcjH31jhyfpl9Pl6Wz2a5K1tBrKXflza13J_1AV90BXXSX7D5T1i-IGPoO-uILCuN6IxgZZAwuBqrYCcRIKcDluOhcL5qWt7zW5r6VuCrGwUsmMv9KRhMW5AdpcnKl-TC73uYY9Hgtl2vQbEWCzzLaGIPaUgWd8csqwj9WNmXqA9xKlj3zAse5B28bV2vT4Ul126-BT2fiCHOxC06yPXg-c5f29M3XL09MLaMTIn16MEpkFPLfgs7vKCuGUhQFMEbYhpS2q08iO0VTo5hZewClwGDB8q3KwwFlml7UGvPoRu7r0DRTuP7Sjz1m00fqkMPMLO_sWuR3DPdGdM_Y_f_XRqzQxbf78u7mCC8zeM7P37OxNU-ga_8bYOcf3yT3noND3ltsekJlqH5I7Ry4F4xG5-IvpKGhGwXR0ynR06KhjOtq01PwgajfZjDdMRy3TUcd0euDIdNQz3WNy8unj8YfDwLXtCGSSL4dAqopLlqRVVkHVGuhjIRVnic6_qpQoeSlYlsFWhetc6m7XOWx4xWsZpvDOq-QJ2Wm7Vj0jNK8iXjOeSq4UmCITdV7FkRIZ3GK-TNmcLMYdLKTDtNetVc6KbdSak3d-9IXFcrlm3JuRGAWErY6giVZ1q77Q8IgaM5JFc_LUUsmvFOcaGilbPr_hU16Qu-s_xEuyM1yu1CsYuEP52nDTbzBDrNs |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroinflammation+and+its+relationship+to+changes+in+brain+volume+and+white+matter+lesions+in+multiple+sclerosis&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Datta%2C+Gourab&rft.au=Colasanti%2C+Alessandro&rft.au=Rabiner%2C+Eugenii+A&rft.au=Gunn%2C+Roger+N&rft.date=2017-11-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=140&rft.issue=11&rft.spage=2927&rft.epage=2938&rft_id=info:doi/10.1093%2Fbrain%2Fawx228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_awx228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |