Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis

Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone provides limited information for predicting an individual patient's disability progression. In part, this is because magnetic resonance...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 140; no. 11; pp. 2927 - 2938
Main Authors Datta, Gourab, Colasanti, Alessandro, Rabiner, Eugenii A, Gunn, Roger N, Malik, Omar, Ciccarelli, Olga, Nicholas, Richard, Van Vlierberghe, Eline, Van Hecke, Wim, Searle, Graham, Santos-Ribeiro, Andre, Matthews, Paul M
Format Journal Article
LanguageEnglish
Published England 01.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone provides limited information for predicting an individual patient's disability progression. In part, this is because magnetic resonance imaging lacks sensitivity and specificity for detecting chronic diffuse and multi-focal inflammation mediated by activated microglia/macrophages. The aim of this study was to test for an association between 18 kDa translocator protein brain positron emission tomography signal, which arises largely from microglial activation, and measures of subsequent disease progression in multiple sclerosis patients. Twenty-one patients with multiple sclerosis (seven with secondary progressive disease and 14 with a relapsing remitting disease course) underwent T1- and T2-weighted and magnetization transfer magnetic resonance imaging at baseline and after 1 year. Positron emission tomography scanning with the translocator protein radioligand 11C-PBR28 was performed at baseline. Brain tissue and lesion volumes were segmented from the T1- and T2-weighted magnetic resonance imaging and relative 11C-PBR28 uptake in the normal-appearing white matter was estimated as a distribution volume ratio with respect to a caudate pseudo-reference region. Normal-appearing white matter distribution volume ratio at baseline was correlated with enlarging T2-hyperintense lesion volumes over the subsequent year (ρ = 0.59, P = 0.01). A post hoc analysis showed that this association reflected behaviour in the subgroup of relapsing remitting patients (ρ = 0.74, P = 0.008). By contrast, in the subgroup of secondary progressive patients, microglial activation at baseline was correlated with later progression of brain atrophy (ρ = 0.86, P = 0.04). A regression model including the baseline normal-appearing white matter distribution volume ratio, T2 lesion volume and normal-appearing white matter magnetization transfer ratio for all of the patients combined explained over 90% of the variance in enlarging lesion volume over the subsequent 1 year. Glial activation in white matter assessed by translocator protein PET significantly improves predictions of white matter lesion enlargement in relapsing remitting patients and is associated with greater brain atrophy in secondary progressive disease over a period of short term follow-up.
AbstractList Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone provides limited information for predicting an individual patient's disability progression. In part, this is because magnetic resonance imaging lacks sensitivity and specificity for detecting chronic diffuse and multi-focal inflammation mediated by activated microglia/macrophages. The aim of this study was to test for an association between 18 kDa translocator protein brain positron emission tomography signal, which arises largely from microglial activation, and measures of subsequent disease progression in multiple sclerosis patients. Twenty-one patients with multiple sclerosis (seven with secondary progressive disease and 14 with a relapsing remitting disease course) underwent T1- and T2-weighted and magnetization transfer magnetic resonance imaging at baseline and after 1 year. Positron emission tomography scanning with the translocator protein radioligand 11C-PBR28 was performed at baseline. Brain tissue and lesion volumes were segmented from the T1- and T2-weighted magnetic resonance imaging and relative 11C-PBR28 uptake in the normal-appearing white matter was estimated as a distribution volume ratio with respect to a caudate pseudo-reference region. Normal-appearing white matter distribution volume ratio at baseline was correlated with enlarging T2-hyperintense lesion volumes over the subsequent year (ρ = 0.59, P = 0.01). A post hoc analysis showed that this association reflected behaviour in the subgroup of relapsing remitting patients (ρ = 0.74, P = 0.008). By contrast, in the subgroup of secondary progressive patients, microglial activation at baseline was correlated with later progression of brain atrophy (ρ = 0.86, P = 0.04). A regression model including the baseline normal-appearing white matter distribution volume ratio, T2 lesion volume and normal-appearing white matter magnetization transfer ratio for all of the patients combined explained over 90% of the variance in enlarging lesion volume over the subsequent 1 year. Glial activation in white matter assessed by translocator protein PET significantly improves predictions of white matter lesion enlargement in relapsing remitting patients and is associated with greater brain atrophy in secondary progressive disease over a period of short term follow-up.
Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone provides limited information for predicting an individual patient's disability progression. In part, this is because magnetic resonance imaging lacks sensitivity and specificity for detecting chronic diffuse and multi-focal inflammation mediated by activated microglia/macrophages. The aim of this study was to test for an association between 18 kDa translocator protein brain positron emission tomography signal, which arises largely from microglial activation, and measures of subsequent disease progression in multiple sclerosis patients. Twenty-one patients with multiple sclerosis (seven with secondary progressive disease and 14 with a relapsing remitting disease course) underwent T1- and T2-weighted and magnetization transfer magnetic resonance imaging at baseline and after 1 year. Positron emission tomography scanning with the translocator protein radioligand 11C-PBR28 was performed at baseline. Brain tissue and lesion volumes were segmented from the T1- and T2-weighted magnetic resonance imaging and relative 11C-PBR28 uptake in the normal-appearing white matter was estimated as a distribution volume ratio with respect to a caudate pseudo-reference region. Normal-appearing white matter distribution volume ratio at baseline was correlated with enlarging T2-hyperintense lesion volumes over the subsequent year (ρ = 0.59, P = 0.01). A post hoc analysis showed that this association reflected behaviour in the subgroup of relapsing remitting patients (ρ = 0.74, P = 0.008). By contrast, in the subgroup of secondary progressive patients, microglial activation at baseline was correlated with later progression of brain atrophy (ρ = 0.86, P = 0.04). A regression model including the baseline normal-appearing white matter distribution volume ratio, T2 lesion volume and normal-appearing white matter magnetization transfer ratio for all of the patients combined explained over 90% of the variance in enlarging lesion volume over the subsequent 1 year. Glial activation in white matter assessed by translocator protein PET significantly improves predictions of white matter lesion enlargement in relapsing remitting patients and is associated with greater brain atrophy in secondary progressive disease over a period of short term follow-up.Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone provides limited information for predicting an individual patient's disability progression. In part, this is because magnetic resonance imaging lacks sensitivity and specificity for detecting chronic diffuse and multi-focal inflammation mediated by activated microglia/macrophages. The aim of this study was to test for an association between 18 kDa translocator protein brain positron emission tomography signal, which arises largely from microglial activation, and measures of subsequent disease progression in multiple sclerosis patients. Twenty-one patients with multiple sclerosis (seven with secondary progressive disease and 14 with a relapsing remitting disease course) underwent T1- and T2-weighted and magnetization transfer magnetic resonance imaging at baseline and after 1 year. Positron emission tomography scanning with the translocator protein radioligand 11C-PBR28 was performed at baseline. Brain tissue and lesion volumes were segmented from the T1- and T2-weighted magnetic resonance imaging and relative 11C-PBR28 uptake in the normal-appearing white matter was estimated as a distribution volume ratio with respect to a caudate pseudo-reference region. Normal-appearing white matter distribution volume ratio at baseline was correlated with enlarging T2-hyperintense lesion volumes over the subsequent year (ρ = 0.59, P = 0.01). A post hoc analysis showed that this association reflected behaviour in the subgroup of relapsing remitting patients (ρ = 0.74, P = 0.008). By contrast, in the subgroup of secondary progressive patients, microglial activation at baseline was correlated with later progression of brain atrophy (ρ = 0.86, P = 0.04). A regression model including the baseline normal-appearing white matter distribution volume ratio, T2 lesion volume and normal-appearing white matter magnetization transfer ratio for all of the patients combined explained over 90% of the variance in enlarging lesion volume over the subsequent 1 year. Glial activation in white matter assessed by translocator protein PET significantly improves predictions of white matter lesion enlargement in relapsing remitting patients and is associated with greater brain atrophy in secondary progressive disease over a period of short term follow-up.
Author Colasanti, Alessandro
Ciccarelli, Olga
Rabiner, Eugenii A
Santos-Ribeiro, Andre
Van Vlierberghe, Eline
Matthews, Paul M
Gunn, Roger N
Datta, Gourab
Van Hecke, Wim
Searle, Graham
Malik, Omar
Nicholas, Richard
Author_xml – sequence: 1
  givenname: Gourab
  surname: Datta
  fullname: Datta, Gourab
– sequence: 2
  givenname: Alessandro
  surname: Colasanti
  fullname: Colasanti, Alessandro
– sequence: 3
  givenname: Eugenii A
  surname: Rabiner
  fullname: Rabiner, Eugenii A
– sequence: 4
  givenname: Roger N
  surname: Gunn
  fullname: Gunn, Roger N
– sequence: 5
  givenname: Omar
  surname: Malik
  fullname: Malik, Omar
– sequence: 6
  givenname: Olga
  surname: Ciccarelli
  fullname: Ciccarelli, Olga
– sequence: 7
  givenname: Richard
  surname: Nicholas
  fullname: Nicholas, Richard
– sequence: 8
  givenname: Eline
  surname: Van Vlierberghe
  fullname: Van Vlierberghe, Eline
– sequence: 9
  givenname: Wim
  surname: Van Hecke
  fullname: Van Hecke, Wim
– sequence: 10
  givenname: Graham
  surname: Searle
  fullname: Searle, Graham
– sequence: 11
  givenname: Andre
  surname: Santos-Ribeiro
  fullname: Santos-Ribeiro, Andre
– sequence: 12
  givenname: Paul M
  surname: Matthews
  fullname: Matthews, Paul M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29053775$$D View this record in MEDLINE/PubMed
BookMark eNpt0T1PwzAQBmALFdEP2JiRRwZC7ThxnBFVfEkVLDBHjnOhRo4TbIfCvydNgQExWTo9dye_N0cT21pA6JSSS0pytiyd1HYptx9xLA7QjCacRDFN-QTNCCE8EnlKpmju_SshNGExP0LTOCcpy7J0hroH6F2rbW1k08igW4ulrbAOHjswY8FvdIdDi9VG2hfwWFs87sTvrekbGP12owPgYUAAhw34XdsONr0JujOAvTLgWq_9MTqspfFw8v0u0PPN9dPqLlo_3t6vrtaRYnkaIgWVUJwlVVaJjPOU5blUIDhjGScVyFKUkmcZyVLOeRkLwXJOCYhakYTSpGILdL6f27n2rQcfikZ7BcZIC23vC5qnCRki4HSgZ9-0Lxuois7pRrrP4ielAVzsgRq-4B3Uv4SSYneEYgyk2B9h4PEfrnQYowwDM_83fQH0OI7I
CitedBy_id crossref_primary_10_1016_j_eclinm_2021_100982
crossref_primary_10_1007_s00415_021_10605_7
crossref_primary_10_17116_jnevro20231230728
crossref_primary_10_4103_1673_5374_266906
crossref_primary_10_3390_ijms22020934
crossref_primary_10_1016_j_apsb_2020_08_006
crossref_primary_10_3390_brainsci8090177
crossref_primary_10_1016_S1474_4422_21_00237_4
crossref_primary_10_1186_s41181_019_0058_3
crossref_primary_10_1016_j_jneuroim_2020_577466
crossref_primary_10_1016_S1474_4422_20_30346_X
crossref_primary_10_1093_braincomms_fcac088
crossref_primary_10_1007_s00415_024_12517_8
crossref_primary_10_1016_j_msard_2025_106350
crossref_primary_10_1016_j_pharmthera_2021_108017
crossref_primary_10_1038_s41582_019_0240_y
crossref_primary_10_3390_ijms23010474
crossref_primary_10_1038_s41582_021_00537_1
crossref_primary_10_1016_j_ajpath_2021_02_007
crossref_primary_10_3389_fnagi_2021_632374
crossref_primary_10_1002_ana_26913
crossref_primary_10_1016_j_msard_2021_103331
crossref_primary_10_3389_fimmu_2021_638381
crossref_primary_10_3389_fnagi_2020_582904
crossref_primary_10_1177_1352458519828298
crossref_primary_10_1016_j_jad_2018_11_086
crossref_primary_10_1016_j_euroneuro_2021_02_001
crossref_primary_10_1515_nipt_2024_0017
crossref_primary_10_52711_0974_360X_2023_00248
crossref_primary_10_1016_j_breast_2022_02_001
crossref_primary_10_1097_WCO_0000000000000572
crossref_primary_10_1186_s12974_022_02408_y
crossref_primary_10_1016_j_neuron_2022_06_023
crossref_primary_10_3389_fnagi_2021_713201
crossref_primary_10_1007_s00259_021_05425_w
crossref_primary_10_3389_fneur_2020_00552
crossref_primary_10_3389_fnins_2023_1092537
crossref_primary_10_1177_1352458518814117
crossref_primary_10_1016_j_biopsych_2021_05_025
crossref_primary_10_1002_acn3_51644
crossref_primary_10_1007_s11307_019_01368_9
crossref_primary_10_1007_s00429_018_1777_z
crossref_primary_10_1177_17562864211066751
crossref_primary_10_1016_j_neuroimage_2022_119423
crossref_primary_10_1016_j_bbi_2018_09_018
crossref_primary_10_1016_j_msard_2023_104714
crossref_primary_10_1016_j_bbr_2023_114444
crossref_primary_10_1002_ana_25808
crossref_primary_10_1016_j_ynpai_2022_100094
crossref_primary_10_1002_ana_26154
crossref_primary_10_1093_brain_awab127
crossref_primary_10_3389_fphar_2019_00286
crossref_primary_10_3389_fneur_2018_00181
crossref_primary_10_1007_s00213_019_05406_w
crossref_primary_10_1177_13524585241280842
crossref_primary_10_2174_1874196702008010006
crossref_primary_10_3389_fnins_2021_827329
crossref_primary_10_1080_08923973_2019_1666406
crossref_primary_10_3389_fimmu_2020_00374
crossref_primary_10_1186_s40035_019_0178_4
crossref_primary_10_1155_2021_6426225
crossref_primary_10_1097_WCO_0000000000001045
crossref_primary_10_1186_s10194_023_01645_7
crossref_primary_10_1038_s41398_022_01990_2
crossref_primary_10_1007_s00702_022_02480_x
crossref_primary_10_1016_j_jneuroim_2018_03_016
crossref_primary_10_1021_acschemneuro_0c00362
crossref_primary_10_1080_14737175_2024_2304116
crossref_primary_10_1016_j_jneuroim_2022_577879
Cites_doi 10.1002/ana.24791
10.1016/S1474-4422(12)70003-0
10.1002/jmri.21049
10.1136/jnnp-2012-304094
10.1517/17460441.2015.1032240
10.1177/1352458510393770
10.1002/brb3.518
10.2967/jnumed.113.131698
10.1111/j.1365-2990.2008.01006.x
10.1212/WNL.45.2.255
10.1038/jcbfm.2011.147
10.1191/1352458505ms1140oa
10.1007/s100720170012
10.1038/nrn3900
10.1002/ana.22521
10.1212/WNL.0b013e3182635645
10.1002/hbm.21344
10.1002/ana.1255
10.1006/nimg.2002.1040
10.1056/NEJMoa1100648
10.4161/pri.23499
10.1007/s00401-013-1082-0
10.1177/1756285610374117
10.2967/jnumed.113.135129
10.1186/1471-2377-12-11
10.1212/WNL.0000000000001587
10.1212/WNL.0b013e3181b2a706
10.1097/00004647-199609000-00008
10.1002/ana.20202
10.1001/archneur.64.1.76
10.1016/j.nicl.2015.05.003
10.1002/ana.24018
10.1002/ana.20182
10.1021/jm0707370
10.1016/j.neuroimage.2010.06.044
10.1002/ana.22366
10.1002/ana.23591
10.1038/nrneurol.2009.41
ContentType Journal Article
Copyright The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/brain/awx228
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 2938
ExternalDocumentID 29053775
10_1093_brain_awx228
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/N026934/1
– fundername: Medical Research Council
  grantid: MR/K501013/1
– fundername: Medical Research Council
  grantid: MC_PC_17114
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWTL
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
NVLIB
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TLC
TR2
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c395t-ced8c634d7d87665399ace8633760deab8ba677075666b28839610e8fc04114d3
ISSN 0006-8950
1460-2156
IngestDate Fri Jul 11 16:40:09 EDT 2025
Mon Jul 21 06:04:06 EDT 2025
Thu Apr 24 23:06:38 EDT 2025
Tue Jul 01 00:46:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords atrophy
translocator protein
positron emission tomography
microglia
multiple sclerosis
Language English
License The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-ced8c634d7d87665399ace8633760deab8ba677075666b28839610e8fc04114d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/brain/article-pdf/140/11/2927/23032177/awx228.pdf
PMID 29053775
PQID 1954077561
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1954077561
pubmed_primary_29053775
crossref_primary_10_1093_brain_awx228
crossref_citationtrail_10_1093_brain_awx228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2017
References ( key 20171222084449_awx228-B17) 2015; 138
( key 20171222084449_awx228-B44) 2011; 17
( key 20171222084449_awx228-B22) 2015; 8
( key 20171222084449_awx228-B2) 2006; 129
( key 20171222084449_awx228-B13) 2014; 2014
( key 20171222084449_awx228-B10) 2009; 35
( key 20171222084449_awx228-B47) 2005; 11
( key 20171222084449_awx228-B33) 2011; 69
( key 20171222084449_awx228-B36) 2001; 50
( key 20171222084449_awx228-B30) 2012; 72
( key 20171222084449_awx228-B19) 2013; 136
( key 20171222084449_awx228-B21) 2008; 27
( key 20171222084449_awx228-B23) 2013; 7
( key 20171222084449_awx228-B6) 2007; 64
( key 20171222084449_awx228-B39) 2009; 66
( key 20171222084449_awx228-B4) 2009; 5
( key 20171222084449_awx228-B5) 2012; 33
( key 20171222084449_awx228-B35) 2013; 84
( key 20171222084449_awx228-B27) 2011; 365
( key 20171222084449_awx228-B26) 2004; 56
( key 20171222084449_awx228-B9) 2014; 55
( key 20171222084449_awx228-B12) 2016
( key 20171222084449_awx228-B15) 2012; 11
( key 20171222084449_awx228-B37) 2014; 55
( key 20171222084449_awx228-B34) 2012; 12
( key 20171222084449_awx228-B41) 2016; 6
( key 20171222084449_awx228-B32) 2012; 79
( key 20171222084449_awx228-B40) 2013; 125
( key 20171222084449_awx228-B25) 1996; 16
( key 20171222084449_awx228-B8) 2015; 16
( key 20171222084449_awx228-B16) 2005; 26
( key 20171222084449_awx228-B42) 2002; 17
( key 20171222084449_awx228-B7) 2008; 51
( key 20171222084449_awx228-B49) 2009; 73
( key 20171222084449_awx228-B38) 2004; 56
( key 20171222084449_awx228-B18) 2010; 3
( key 20171222084449_awx228-B20) 2016; 80
( key 20171222084449_awx228-B45) 2011; 54
( key 20171222084449_awx228-B14) 1995; 45
( key 20171222084449_awx228-B3) 2001; 22
( key 20171222084449_awx228-B28) 2015; 10
( key 20171222084449_awx228-B11) 2017
( key 20171222084449_awx228-B29) 2011; 70
( key 20171222084449_awx228-B48) 2006; 27
( key 20171222084449_awx228-B24) 1998; 121
( key 20171222084449_awx228-B46) 2012; 9
( key 20171222084449_awx228-B31) 2012; 32
( key 20171222084449_awx228-B43) 2014; 75
( key 20171222084449_awx228-B1) 2015; 85
References_xml – start-page: 1
  year: 2016
  ident: key 20171222084449_awx228-B12
  article-title: Translocator positron-emission tomography and magnetic resonance spectroscopic imaging of brain glial cell activation in multiple sclerosis
  publication-title: Mult Scler
– volume: 80
  start-page: 776
  year: 2016
  ident: key 20171222084449_awx228-B20
  article-title: Neuroinflammatory component of gray matter pathology in multiple sclerosis
  publication-title: Ann Neurol
  doi: 10.1002/ana.24791
– volume: 11
  start-page: 349
  year: 2012
  ident: key 20171222084449_awx228-B15
  article-title: Association between pathological and MRI findings in multiple sclerosis
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(12)70003-0
– volume: 27
  start-page: 685
  year: 2008
  ident: key 20171222084449_awx228-B21
  article-title: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21049
– volume: 84
  start-page: 1082
  year: 2013
  ident: key 20171222084449_awx228-B35
  article-title: Brain atrophy and lesion load predict long term disability in multiple sclerosis
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp-2012-304094
– volume: 10
  start-page: 557
  year: 2015
  ident: key 20171222084449_awx228-B28
  article-title: Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis
  publication-title: Expert Opin Drug Discov
  doi: 10.1517/17460441.2015.1032240
– year: 2017
  ident: key 20171222084449_awx228-B11
  article-title: [11C]PBR28 or [18F]PBR111 detect white matter inflammatory heterogeneity in multiple sclerosis
  publication-title: J Nucl Med
– volume: 121
  start-page: 2095
  issue: Pt 11
  year: 1998
  ident: key 20171222084449_awx228-B24
  article-title: Defining multiple sclerosis disease activity using MRI T2-weighted difference imaging
  publication-title: Brain
– volume: 17
  start-page: 630
  year: 2011
  ident: key 20171222084449_awx228-B44
  article-title: Magnetic resonance imaging as surrogate for clinical endpoints in multiple sclerosis: data on novel oral drugs
  publication-title: Mult Scler
  doi: 10.1177/1352458510393770
– volume: 6
  start-page: e00518
  year: 2016
  ident: key 20171222084449_awx228-B41
  article-title: Reliable measurements of brain atrophy in individual patients with multiple sclerosis
  publication-title: Brain Behav
  doi: 10.1002/brb3.518
– volume: 55
  start-page: 939
  year: 2014
  ident: key 20171222084449_awx228-B37
  article-title: In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand (1)(1)C-PK11195
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.113.131698
– volume: 35
  start-page: 306
  year: 2009
  ident: key 20171222084449_awx228-B10
  article-title: Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain
  publication-title: Neuropathol Appl Neurobiol
  doi: 10.1111/j.1365-2990.2008.01006.x
– volume: 45
  start-page: 255
  year: 1995
  ident: key 20171222084449_awx228-B14
  article-title: Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study
  publication-title: Neurology
  doi: 10.1212/WNL.45.2.255
– volume: 32
  start-page: 1
  year: 2012
  ident: key 20171222084449_awx228-B31
  article-title: An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2011.147
– volume: 2014
  start-page: 285245
  year: 2014
  ident: key 20171222084449_awx228-B13
  article-title: The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis
  publication-title: Mult Scler Int
– volume: 11
  start-page: 127
  year: 2005
  ident: key 20171222084449_awx228-B47
  article-title: Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study
  publication-title: Mult Scler
  doi: 10.1191/1352458505ms1140oa
– volume: 22
  start-page: 141
  year: 2001
  ident: key 20171222084449_awx228-B3
  article-title: Pathological abnormalities in the normal-appearing white matter in multiple sclerosis
  publication-title: Neurol Sci
  doi: 10.1007/s100720170012
– volume: 16
  start-page: 147
  year: 2015
  ident: key 20171222084449_awx228-B8
  article-title: Exploring the origins of grey matter damage in multiple sclerosis
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3900
– volume: 70
  start-page: 764
  year: 2011
  ident: key 20171222084449_awx228-B29
  article-title: Multiple sclerosis normal-appearing white matter: pathology-imaging correlations
  publication-title: Ann Neurol
  doi: 10.1002/ana.22521
– volume: 79
  start-page: 523
  year: 2012
  ident: key 20171222084449_awx228-B32
  article-title: Increased PK11195 PET binding in the cortex of patients with MS correlates with disability
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182635645
– volume: 33
  start-page: 2062
  year: 2012
  ident: key 20171222084449_awx228-B5
  article-title: Evaluating and reducing the impact of white matter lesions on brain volume measurements
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21344
– volume: 50
  start-page: 646
  year: 2001
  ident: key 20171222084449_awx228-B36
  article-title: Immunopathology of secondary-progressive multiple sclerosis
  publication-title: Ann Neurol
  doi: 10.1002/ana.1255
– volume: 17
  start-page: 479
  year: 2002
  ident: key 20171222084449_awx228-B42
  article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1040
– volume: 365
  start-page: 2188
  year: 2011
  ident: key 20171222084449_awx228-B27
  article-title: Inflammatory cortical demyelination in early multiple sclerosis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1100648
– volume: 7
  start-page: 66
  year: 2013
  ident: key 20171222084449_awx228-B23
  article-title: Grey matter damage in multiple sclerosis: a pathology perspective
  publication-title: Prion
  doi: 10.4161/pri.23499
– volume: 125
  start-page: 595
  year: 2013
  ident: key 20171222084449_awx228-B40
  article-title: Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-013-1082-0
– volume: 3
  start-page: 229
  year: 2010
  ident: key 20171222084449_awx228-B18
  article-title: Possible clinical outcome measures for clinical trials in patients with multiple sclerosis
  publication-title: Ther Adv Neurol Disord
  doi: 10.1177/1756285610374117
– volume: 55
  start-page: 1112
  year: 2014
  ident: key 20171222084449_awx228-B9
  article-title: In vivo assessment of brain white matter inflammation in multiple sclerosis with (18)F-PBR111 PET
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.113.135129
– volume: 12
  start-page: 11
  year: 2012
  ident: key 20171222084449_awx228-B34
  article-title: Meningeal and cortical grey matter pathology in multiple sclerosis
  publication-title: BMC Neurol
  doi: 10.1186/1471-2377-12-11
– volume: 85
  start-page: 18
  year: 2015
  ident: key 20171222084449_awx228-B1
  article-title: Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001587
– volume: 73
  start-page: 504
  year: 2009
  ident: key 20171222084449_awx228-B49
  article-title: Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181b2a706
– volume: 16
  start-page: 834
  year: 1996
  ident: key 20171222084449_awx228-B25
  article-title: Distribution volume ratios without blood sampling from graphical analysis of PET data
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-199609000-00008
– volume: 56
  start-page: 407
  year: 2004
  ident: key 20171222084449_awx228-B38
  article-title: Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain
  publication-title: Ann Neurol
  doi: 10.1002/ana.20202
– volume: 27
  start-page: 2005
  year: 2006
  ident: key 20171222084449_awx228-B48
  article-title: Normal-appearing white matter changes vary with distance to lesions in multiple sclerosis
  publication-title: AJNR Am J Neuroradiol
– volume: 64
  start-page: 76
  year: 2007
  ident: key 20171222084449_awx228-B6
  article-title: Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis
  publication-title: Arch Neurol
  doi: 10.1001/archneur.64.1.76
– volume: 26
  start-page: 572
  year: 2005
  ident: key 20171222084449_awx228-B16
  article-title: Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology
  publication-title: AJNR Am J Neuroradiol
– volume: 136
  start-page: 1012
  issue: Pt 4
  year: 2013
  ident: key 20171222084449_awx228-B19
  article-title: A genome-wide association study of brain lesion distribution in multiple sclerosis
  publication-title: Brain
– volume: 8
  start-page: 367
  year: 2015
  ident: key 20171222084449_awx228-B22
  article-title: Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2015.05.003
– volume: 75
  start-page: 43
  year: 2014
  ident: key 20171222084449_awx228-B43
  article-title: Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis
  publication-title: Ann Neurol
  doi: 10.1002/ana.24018
– volume: 9
  start-page: 156
  year: 2012
  ident: key 20171222084449_awx228-B46
  article-title: Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation
  publication-title: J Neuroinflammation
– volume: 56
  start-page: 308
  year: 2004
  ident: key 20171222084449_awx228-B26
  article-title: Evidence for pathogenic heterogeneity in multiple sclerosis
  publication-title: Ann Neurol
  doi: 10.1002/ana.20182
– volume: 51
  start-page: 17
  year: 2008
  ident: key 20171222084449_awx228-B7
  article-title: Synthesis and evaluation in monkey of two sensitive 11 C-labeled aryloxyanilide ligands for imaging brain peripheral benzodiazepine receptors in vivo
  publication-title: J Med Chem
  doi: 10.1021/jm0707370
– volume: 54
  start-page: 264
  year: 2011
  ident: key 20171222084449_awx228-B45
  article-title: Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.044
– volume: 129
  start-page: 2620
  issue: Pt 10
  year: 2006
  ident: key 20171222084449_awx228-B2
  article-title: Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis
  publication-title: Brain
– volume: 66
  start-page: 601
  year: 2009
  ident: key 20171222084449_awx228-B39
  article-title: Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis
  publication-title: Arch Neurol
– volume: 69
  start-page: 292
  year: 2011
  ident: key 20171222084449_awx228-B33
  article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria
  publication-title: Ann Neurol
  doi: 10.1002/ana.22366
– volume: 72
  start-page: 234
  year: 2012
  ident: key 20171222084449_awx228-B30
  article-title: Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis
  publication-title: Ann Neurol
  doi: 10.1002/ana.23591
– volume: 138
  start-page: 110
  issue: Pt 1
  year: 2015
  ident: key 20171222084449_awx228-B17
  article-title: Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome
  publication-title: Brain
– volume: 5
  start-page: 256
  year: 2009
  ident: key 20171222084449_awx228-B4
  article-title: Imaging outcomes for neuroprotection and repair in multiple sclerosis trials
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.41
SSID ssj0014326
Score 2.51194
Snippet Brain magnetic resonance imaging is an important tool in the diagnosis and monitoring of multiple sclerosis patients. However, magnetic resonance imaging alone...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2927
SubjectTerms Acetamides
Adult
Atrophy
Brain - diagnostic imaging
Brain - pathology
Carbon Radioisotopes
Female
Humans
Image Processing, Computer-Assisted
Inflammation - diagnostic imaging
Magnetic Resonance Imaging
Male
Microglia
Middle Aged
Multiple Sclerosis, Chronic Progressive - diagnostic imaging
Multiple Sclerosis, Relapsing-Remitting - diagnostic imaging
Organ Size
Positron-Emission Tomography
Pyridines
Receptors, GABA
White Matter - diagnostic imaging
White Matter - pathology
Young Adult
Title Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis
URI https://www.ncbi.nlm.nih.gov/pubmed/29053775
https://www.proquest.com/docview/1954077561
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDfLS0aC0yptXus4R0ShBVQOqJV6ixzHkSK1SdVkVcQP4_fx-RFvFrZS4RLtRraz8czOwzPzDSFvY6VqDjsoEFEogjSOZADPVmMRlmEiVFWrUFcjH31jhyfpl9Pl6Wz2a5K1tBrKXflza13J_1AV90BXXSX7D5T1i-IGPoO-uILCuN6IxgZZAwuBqrYCcRIKcDluOhcL5qWt7zW5r6VuCrGwUsmMv9KRhMW5AdpcnKl-TC73uYY9Hgtl2vQbEWCzzLaGIPaUgWd8csqwj9WNmXqA9xKlj3zAse5B28bV2vT4Ul126-BT2fiCHOxC06yPXg-c5f29M3XL09MLaMTIn16MEpkFPLfgs7vKCuGUhQFMEbYhpS2q08iO0VTo5hZewClwGDB8q3KwwFlml7UGvPoRu7r0DRTuP7Sjz1m00fqkMPMLO_sWuR3DPdGdM_Y_f_XRqzQxbf78u7mCC8zeM7P37OxNU-ga_8bYOcf3yT3noND3ltsekJlqH5I7Ry4F4xG5-IvpKGhGwXR0ynR06KhjOtq01PwgajfZjDdMRy3TUcd0euDIdNQz3WNy8unj8YfDwLXtCGSSL4dAqopLlqRVVkHVGuhjIRVnic6_qpQoeSlYlsFWhetc6m7XOWx4xWsZpvDOq-QJ2Wm7Vj0jNK8iXjOeSq4UmCITdV7FkRIZ3GK-TNmcLMYdLKTDtNetVc6KbdSak3d-9IXFcrlm3JuRGAWErY6giVZ1q77Q8IgaM5JFc_LUUsmvFOcaGilbPr_hU16Qu-s_xEuyM1yu1CsYuEP52nDTbzBDrNs
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroinflammation+and+its+relationship+to+changes+in+brain+volume+and+white+matter+lesions+in+multiple+sclerosis&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Datta%2C+Gourab&rft.au=Colasanti%2C+Alessandro&rft.au=Rabiner%2C+Eugenii+A&rft.au=Gunn%2C+Roger+N&rft.date=2017-11-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=140&rft.issue=11&rft.spage=2927&rft.epage=2938&rft_id=info:doi/10.1093%2Fbrain%2Fawx228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_awx228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon