Multiple assay systems to analyze the dynamics of mitochondrial nucleoids in living mammalian cells

Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria stil...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1865; no. 7; p. 129874
Main Authors Ishihara, Takaya, Kanon, Hirotaka, Ban-Ishihara, Reiko, Ishihara, Naotada
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2021.129874

Cover

Loading…
Abstract Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed. To solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology. The factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation. The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics. •Under fluorescent microscopy, mtDNA is observed as dot-like structures, nucleoids.•Nucleoids dynamically move along mitochondria in living cells.•We constructed a sensitive and photoconvertible probe for live imaging of nucleoids.•siRNA screening revealed a subset of the MARCH family proteins concerned in mitochondrial nucleoid dynamics.
AbstractList Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed. To solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology. The factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation. The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics.
Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed. To solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology. The factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation. The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics. •Under fluorescent microscopy, mtDNA is observed as dot-like structures, nucleoids.•Nucleoids dynamically move along mitochondria in living cells.•We constructed a sensitive and photoconvertible probe for live imaging of nucleoids.•siRNA screening revealed a subset of the MARCH family proteins concerned in mitochondrial nucleoid dynamics.
Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed.To solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology.The factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation.The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics.
Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed.BACKGROUNDMitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed.To solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology.RESULTSTo solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology.The factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation.CONCLUSIONThe factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation.The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics.GENERAL SIGNIFICANCEThe mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics.
ArticleNumber 129874
Author Kanon, Hirotaka
Ishihara, Naotada
Ban-Ishihara, Reiko
Ishihara, Takaya
Author_xml – sequence: 1
  givenname: Takaya
  surname: Ishihara
  fullname: Ishihara, Takaya
  email: takaya@bio.sci.osaka-u.ac.jp
  organization: Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
– sequence: 2
  givenname: Hirotaka
  surname: Kanon
  fullname: Kanon, Hirotaka
  organization: Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
– sequence: 3
  givenname: Reiko
  surname: Ban-Ishihara
  fullname: Ban-Ishihara, Reiko
  organization: Department of Protein Biochemistry, Institute of Life Science, Kurume University, Japan
– sequence: 4
  givenname: Naotada
  surname: Ishihara
  fullname: Ishihara, Naotada
  email: naotada@bio.sci.osaka-u.ac.jp
  organization: Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33607223$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi3Uim4L_wAhH7lksR07iTkgoYp-SK24wNmatSetV469xE6l8OvJKu2FA53LXJ7n1Wjec3ISU0RCPnC25Yw3n_fb3Q4eMG4FE3zLhe5a-YZseNeKqmOsOSEbVjNZSd6oM3Ke854to7R6S87qumGtEPWG2PspFH8ISCFnmGmec8Eh05IoRAjzH6TlEambIwzeZpp6OviS7GOKbvQQaJxswORdpj7S4J98fKADDAMED5FaDCG_I6c9hIzvn_cF-XX1_eflTXX34_r28ttdZWutSmUd75XoFJOohICWSblDQA6uFrKzDiVTfas1ExqxwVa2tpbMNX0LvNadqy_IpzX3MKbfE-ZiBp-PF0DENGUjlOJaNrpTr6NSL6hkgi3ox2d02g3ozGH0A4yzefnhAnxZATumnEfsjfUFik-xjOCD4cwcCzN7sxZmjoWZtbBFlv_IL_mvaF9XDZd_PnkcTbYeo0XnR7TFuOT_H_AXtsCxOg
CitedBy_id crossref_primary_10_1155_2022_4759963
crossref_primary_10_1073_pnas_2210730119
crossref_primary_10_1093_jb_mvaf008
Cites_doi 10.1038/79944
10.1038/nrm3013
10.1091/mbc.e07-12-1287
10.1016/j.nbt.2016.12.002
10.1038/ncomms4077
10.1089/ars.2012.4830
10.1161/CIRCULATIONAHA.104.524835
10.1016/j.cub.2014.08.060
10.1093/hmg/ddq163
10.1038/ng1341
10.1074/jbc.RA118.005069
10.1093/jb/mvg150
10.1158/0008-5472.CAN-10-3482
10.1161/CIRCRESAHA.117.306859
10.1073/pnas.1301951110
10.1007/s00125-015-3704-7
10.1038/embor.2011.54
10.1056/NEJMoa064436
10.1093/hmg/ddy287
10.3389/fgene.2018.00625
10.1128/MCB.01140-13
10.1111/nyas.12848
10.1016/j.semcancer.2008.09.002
10.1038/ng0398-231
10.1016/j.cell.2017.10.036
10.1038/nature07534
10.1091/mbc.e04-03-0216
10.1093/jb/mvz112
10.1038/ncb1907
10.1083/jcb.200903065
10.1146/annurev.genet.38.072902.093019
10.1126/science.1219855
10.1083/jcb.201110034
10.1016/j.molcel.2013.04.023
10.1128/MCB.01054-14
10.1038/sj.emboj.7601184
10.1128/MCB.24.22.9823-9834.2004
10.1083/jcb.143.2.351
10.1038/79936
10.1038/ncb3560
10.1038/s41598-019-45939-w
10.1523/JNEUROSCI.1957-08.2008
10.1126/science.2035027
10.1074/jbc.M116.726877
10.1242/jcs.111211
10.1016/j.yexcr.2010.10.008
10.1093/jb/mvj012
10.1038/sj.emboj.7601249
10.1038/nature12985
10.1083/jcb.201007152
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2021.129874
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 33607223
10_1016_j_bbagen_2021_129874
S0304416521000337
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-cd1f528504e522a7044beae1ad3248cde405f799029ee6e747c340d6f7a1398d3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Tue Aug 05 09:51:28 EDT 2025
Tue Aug 05 10:51:59 EDT 2025
Mon Jul 21 06:02:49 EDT 2025
Tue Jul 01 00:22:15 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Fri Feb 23 02:45:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Mitochondrial fusion
mtDNA probe
mtDNA dynamics
RNAi
HMG
IM
KO
mtDNA
KikGR
siRNA
Mff
Mitochondrial fission
COX
Drp1
MiD51/MIEF1
Mfn
OPA1
MiD49/MIEF2
TFAM
Live imaging
Mitochondrial nucleoids
RFP
OM
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-cd1f528504e522a7044beae1ad3248cde405f799029ee6e747c340d6f7a1398d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33607223
PQID 2491944020
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551946985
proquest_miscellaneous_2491944020
pubmed_primary_33607223
crossref_citationtrail_10_1016_j_bbagen_2021_129874
crossref_primary_10_1016_j_bbagen_2021_129874
elsevier_sciencedirect_doi_10_1016_j_bbagen_2021_129874
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
2021-Jul
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yonashiro, Ishido, Kyo (bb0240) 2006; 25
Ishihara, Ban-Ishihara, Maeda (bb0095) 2015; 35
Hillen, Morozov, Sarfallah, Temiakov, Cramer (bb0225) 2017; 171
Delettre, Lenaers, Griffoin (bb0130) 2000; 26
Zattas, Berk, Kreft, Hochstrasser (bb0260) 2016; 291
Ban, Ishihara, Kohno (bb0050) 2017; 19
Wang, Herr, Hansen (bb0235) 2008; 18
Sugiura, Nagashima, Tokuyama (bb0245) 2013; 51
Alexander, Votruba, Pesch (bb0125) 2000; 26
Udagawa, Ishihara, Maeda (bb0115) 2014; 24
Eura, Ishihara, Yokota, Mihara (bb0030) 2003; 134
Wakabayashi, Zhang, Wakabayashi (bb0085) 2009; 186
Onoue, Jofuku, Ban-Ishihara (bb0075) 2013; 126
Youle, van der Bliek (bb0045) 2012; 337
Otera, Wang, Cleland (bb0065) 2010; 191
Bauer, Bakke, Morth (bb0230) 2017; 38
Ngo, Lovely, Phillips, Chan (bb0175) 2014; 5
Wang, Ishihara, Ibayashi (bb0110) 2015; 58
Ishihara, Otera, Oka, Mihara (bb0015) 2013; 19
Ota, Ishihara, Ishihara (bb0210) 2020; 167
Guo, Zheng, Liu (bb0195) 2011; 71
Nasca, Nardecchia, Commone (bb0150) 2018; 9
Gandre-Babbe, van der Bliek (bb0060) 2008; 19
Zuchner, Mersiyanova, Muglia (bb0135) 2004; 36
Larsson, Wang, Wilhelmsson (bb0165) 1998; 18
Friedman, Nunnari (bb0005) 2014; 505
Kanki, Ohgaki, Gaspari (bb0180) 2004; 24
Udagawa, Ishihara (bb0120) 2019
de Brito, Scorrano (bb0035) 2008; 456
Murata, Arai, Iijima, Sesaki (bb0105) 2019
Ishihara, Fujita, Oka, Mihara (bb0040) 2006; 25
Parisi, Clayton (bb0160) 1991; 252
Nakamura, Fukuda, Kato, Hirose (bb0255) 2005; 16
Whitley, Lam, Cui (bb0145) 2018; 27
Fisher, Clayton (bb0155) 1988; 8
Ylikallio (bb0200) 2010; 13
Ozawa, Sasaki (bb0220) 2009; 74
Waterham, Koster, van Roermund, Mooyer, Wanders, Leonard (bb0140) 2007; 356
Hayashi, Yoshida, Yamato (bb0190) 2008; 28
Ramos, Motori, Bruser (bb0215) 2019; 15
Lenk, Park, Lemons (bib271) 2019 Jul 3; 9
Palmer, Osellame, Laine, Koutsopoulos, Frazier, Ryan (bb0070) 2011; 12
Ban-Ishihara, Ishihara, Sasaki, Mihara, Ishihara (bb0205) 2013; 110
Ishihara, Nomura, Jofuku (bb0080) 2009; 11
Kageyama, Zhang, Roda (bb0090) 2012; 197
Fukuda (bb0250) 2006; 139
Sharpe, Howe, Scott (bb0270) 2019; 294
Westermann (bb0025) 2010; 11
Song, Gong, Burelle (bb0100) 2015; 117
Kasashima, Sumitani, Endo (bb0170) 2011; 317
Ikeuchi, Matsusaka, Kang (bb0185) 2005; 112
Ishihara, Kohno, Ishihara (bb0010) 2015; 1350
Zelcer, Sharpe, Loregger (bb0265) 2014; 34
Smirnova, Shurland, Ryazantsev, van der Bliek (bb0055) 1998; 143
Okamoto, Shaw (bb0020) 2005; 39
Ban (10.1016/j.bbagen.2021.129874_bb0050) 2017; 19
Udagawa (10.1016/j.bbagen.2021.129874_bb0115) 2014; 24
Zuchner (10.1016/j.bbagen.2021.129874_bb0135) 2004; 36
Bauer (10.1016/j.bbagen.2021.129874_bb0230) 2017; 38
Ngo (10.1016/j.bbagen.2021.129874_bb0175) 2014; 5
Ikeuchi (10.1016/j.bbagen.2021.129874_bb0185) 2005; 112
Hillen (10.1016/j.bbagen.2021.129874_bb0225) 2017; 171
Sugiura (10.1016/j.bbagen.2021.129874_bb0245) 2013; 51
Wang (10.1016/j.bbagen.2021.129874_bb0235) 2008; 18
Youle (10.1016/j.bbagen.2021.129874_bb0045) 2012; 337
Ishihara (10.1016/j.bbagen.2021.129874_bb0015) 2013; 19
Ylikallio (10.1016/j.bbagen.2021.129874_bb0200) 2010; 13
Nasca (10.1016/j.bbagen.2021.129874_bb0150) 2018; 9
Ramos (10.1016/j.bbagen.2021.129874_bb0215) 2019; 15
Murata (10.1016/j.bbagen.2021.129874_bb0105) 2019
Gandre-Babbe (10.1016/j.bbagen.2021.129874_bb0060) 2008; 19
Fukuda (10.1016/j.bbagen.2021.129874_bb0250) 2006; 139
Whitley (10.1016/j.bbagen.2021.129874_bb0145) 2018; 27
Friedman (10.1016/j.bbagen.2021.129874_bb0005) 2014; 505
Lenk (10.1016/j.bbagen.2021.129874_bib271) 2019; 9
Westermann (10.1016/j.bbagen.2021.129874_bb0025) 2010; 11
Wang (10.1016/j.bbagen.2021.129874_bb0110) 2015; 58
Sharpe (10.1016/j.bbagen.2021.129874_bb0270) 2019; 294
Zattas (10.1016/j.bbagen.2021.129874_bb0260) 2016; 291
Ishihara (10.1016/j.bbagen.2021.129874_bb0095) 2015; 35
de Brito (10.1016/j.bbagen.2021.129874_bb0035) 2008; 456
Okamoto (10.1016/j.bbagen.2021.129874_bb0020) 2005; 39
Udagawa (10.1016/j.bbagen.2021.129874_bb0120) 2019
Guo (10.1016/j.bbagen.2021.129874_bb0195) 2011; 71
Hayashi (10.1016/j.bbagen.2021.129874_bb0190) 2008; 28
Kasashima (10.1016/j.bbagen.2021.129874_bb0170) 2011; 317
Ozawa (10.1016/j.bbagen.2021.129874_bb0220) 2009; 74
Ishihara (10.1016/j.bbagen.2021.129874_bb0080) 2009; 11
Kageyama (10.1016/j.bbagen.2021.129874_bb0090) 2012; 197
Otera (10.1016/j.bbagen.2021.129874_bb0065) 2010; 191
Waterham (10.1016/j.bbagen.2021.129874_bb0140) 2007; 356
Ishihara (10.1016/j.bbagen.2021.129874_bb0040) 2006; 25
Smirnova (10.1016/j.bbagen.2021.129874_bb0055) 1998; 143
Ishihara (10.1016/j.bbagen.2021.129874_bb0010) 2015; 1350
Alexander (10.1016/j.bbagen.2021.129874_bb0125) 2000; 26
Wakabayashi (10.1016/j.bbagen.2021.129874_bb0085) 2009; 186
Ban-Ishihara (10.1016/j.bbagen.2021.129874_bb0205) 2013; 110
Zelcer (10.1016/j.bbagen.2021.129874_bb0265) 2014; 34
Onoue (10.1016/j.bbagen.2021.129874_bb0075) 2013; 126
Song (10.1016/j.bbagen.2021.129874_bb0100) 2015; 117
Parisi (10.1016/j.bbagen.2021.129874_bb0160) 1991; 252
Yonashiro (10.1016/j.bbagen.2021.129874_bb0240) 2006; 25
Palmer (10.1016/j.bbagen.2021.129874_bb0070) 2011; 12
Ota (10.1016/j.bbagen.2021.129874_bb0210) 2020; 167
Nakamura (10.1016/j.bbagen.2021.129874_bb0255) 2005; 16
Fisher (10.1016/j.bbagen.2021.129874_bb0155) 1988; 8
Eura (10.1016/j.bbagen.2021.129874_bb0030) 2003; 134
Larsson (10.1016/j.bbagen.2021.129874_bb0165) 1998; 18
Delettre (10.1016/j.bbagen.2021.129874_bb0130) 2000; 26
Kanki (10.1016/j.bbagen.2021.129874_bb0180) 2004; 24
References_xml – volume: 26
  start-page: 211
  year: 2000
  end-page: 215
  ident: bb0125
  article-title: OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
  publication-title: Nat. Genet.
– volume: 356
  start-page: 1736
  year: 2007
  end-page: 1741
  ident: bb0140
  article-title: A lethal defect of mitochondrial and peroxisomal fission
  publication-title: New Engl. J. Med.
– volume: 112
  start-page: 683
  year: 2005
  end-page: 690
  ident: bb0185
  article-title: Overexpression of mitochondrial transcription factor A ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction
  publication-title: Circulation
– volume: 167
  start-page: 287
  year: 2020
  end-page: 294
  ident: bb0210
  article-title: Mitochondrial nucleoid morphology and respiratory function are altered in Drp1-deficient HeLa cells
  publication-title: J. Biochem.
– volume: 25
  start-page: 3618
  year: 2006
  end-page: 3626
  ident: bb0240
  article-title: A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics
  publication-title: EMBO J.
– volume: 291
  start-page: 12105
  year: 2016
  end-page: 12118
  ident: bb0260
  article-title: A conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation
  publication-title: J. Biol. Chem.
– year: 2019
  ident: bb0120
  article-title: Mitochondrial dynamics and interorganellar communication in the development and dysmorphism of mammalian oocytes
  publication-title: J. Biochem.
– volume: 34
  start-page: 1262
  year: 2014
  end-page: 1270
  ident: bb0265
  article-title: The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-Hydroxy-3-Methyl-Glutaryl coenzyme A reductase and the cholesterol synthesis pathway
  publication-title: Mol. Cell. Biol.
– volume: 117
  start-page: 346
  year: 2015
  end-page: 351
  ident: bb0100
  article-title: Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts
  publication-title: Circ. Res.
– volume: 58
  start-page: 2371
  year: 2015
  end-page: 2380
  ident: bb0110
  article-title: Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration
  publication-title: Diabetologia
– volume: 5
  year: 2014
  ident: bb0175
  article-title: Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation
  publication-title: Nat. Commun.
– volume: 18
  start-page: 441
  year: 2008
  end-page: 450
  ident: bb0235
  article-title: Viral and cellular MARCH ubiquitin ligases and cancer
  publication-title: Semin. Cancer Biol.
– volume: 456
  start-page: 605
  year: 2008
  end-page: U647
  ident: bb0035
  article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria
  publication-title: Nature
– volume: 197
  start-page: 535
  year: 2012
  end-page: 551
  ident: bb0090
  article-title: Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage
  publication-title: J. Cell Biol.
– volume: 15
  year: 2019
  ident: bb0215
  article-title: Mitochondrial fusion is required for regulation of mitochondrial DNA replication
  publication-title: PLoS Genet.
– volume: 191
  start-page: 1141
  year: 2010
  end-page: 1158
  ident: bb0065
  article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
  publication-title: J. Cell Biol.
– volume: 38
  start-page: 7
  year: 2017
  end-page: 15
  ident: bb0230
  article-title: Overview of the membrane-associated RING-CH (MARCH) E3 ligase family
  publication-title: New Biotechnol.
– volume: 16
  start-page: 1696
  year: 2005
  end-page: 1710
  ident: bb0255
  article-title: MARCH-II is a syntaxin-6-binding protein involved in endosomal trafficking
  publication-title: Mol. Biol. Cell
– volume: 71
  start-page: 2978
  year: 2011
  end-page: 2987
  ident: bb0195
  article-title: Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer
  publication-title: Cancer Res.
– volume: 9
  start-page: 9609
  year: 2019 Jul 3
  ident: bib271
  article-title: CRISPR knockout screen implicates three genes in lysosome function
  publication-title: Sci. Rep.
– volume: 337
  start-page: 1062
  year: 2012
  end-page: 1065
  ident: bb0045
  article-title: Mitochondrial fission, fusion, and stress
  publication-title: Science
– volume: 74
  start-page: 366
  year: 2009
  ident: bb0220
  article-title: Technical note Visualization of mitochondrial nucleoids in living human cells using SYBR Green I
  publication-title: Cytologia
– volume: 11
  start-page: 872
  year: 2010
  end-page: 884
  ident: bb0025
  article-title: Mitochondrial fusion and fission in cell life and death
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 19
  start-page: 856
  year: 2017
  end-page: 863
  ident: bb0050
  article-title: Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin
  publication-title: Nat. Cell Biol.
– volume: 19
  start-page: 2402
  year: 2008
  end-page: 2412
  ident: bb0060
  article-title: The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells
  publication-title: Mol. Biol. Cell
– volume: 28
  start-page: 8624
  year: 2008
  end-page: 8634
  ident: bb0190
  article-title: Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor A in mice
  publication-title: J. Neurosci.
– volume: 1350
  start-page: 77
  year: 2015
  end-page: 81
  ident: bb0010
  article-title: Physiological roles of mitochondrial fission in cultured cells and mouse development
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 24
  start-page: 2451
  year: 2014
  end-page: 2458
  ident: bb0115
  article-title: Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles
  publication-title: Curr. Biol.
– volume: 9
  year: 2018
  ident: bb0150
  article-title: Clinical and biochemical features in a patient with mitochondrial fission factor gene alteration
  publication-title: Front. Genet.
– volume: 134
  start-page: 333
  year: 2003
  end-page: 344
  ident: bb0030
  article-title: Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion
  publication-title: J. Biochem.
– volume: 36
  start-page: 449
  year: 2004
  end-page: 451
  ident: bb0135
  article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
  publication-title: Nat. Genet.
– volume: 13
  start-page: 2695
  year: 2010
  end-page: 2705
  ident: bb0200
  article-title: High mitochondrial DNA copy number has detrimental effects in mice
  publication-title: Hum Mol Genet.
– volume: 51
  start-page: 20
  year: 2013
  end-page: 34
  ident: bb0245
  article-title: MITOL Regulates Endoplasmic Reticulum-Mitochondria Contacts via Mitofusin2
  publication-title: Mol. Cell
– volume: 19
  start-page: 389
  year: 2013
  end-page: 399
  ident: bb0015
  article-title: Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals
  publication-title: Antioxid. Redox Signal.
– volume: 139
  start-page: 137
  year: 2006
  end-page: 145
  ident: bb0250
  article-title: MARCH-III Is a novel component of endosomes with properties similar to those of MARCH-II
  publication-title: J Biochem.
– volume: 39
  start-page: 503
  year: 2005
  end-page: 536
  ident: bb0020
  article-title: Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes
  publication-title: Annu. Rev. Genet.
– volume: 110
  start-page: 11863
  year: 2013
  end-page: 11868
  ident: bb0205
  article-title: Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 317
  start-page: 210
  year: 2011
  end-page: 220
  ident: bb0170
  article-title: Human mitochondrial transcription factor A is required for the segregation of mitochondrial DNA in cultured cells
  publication-title: Exp. Cell Res.
– volume: 252
  start-page: 965
  year: 1991
  end-page: 969
  ident: bb0160
  article-title: Similarity of human mitochondrial transcription factor 1 to high mobility group proteins
  publication-title: Science
– volume: 186
  start-page: 805
  year: 2009
  end-page: 816
  ident: bb0085
  article-title: The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice
  publication-title: J. Cell Biol.
– volume: 12
  start-page: 565
  year: 2011
  end-page: 573
  ident: bb0070
  article-title: MiD49 and MiD51, new components of the mitochondrial fission machinery
  publication-title: EMBO Rep.
– year: 2019
  ident: bb0105
  article-title: Mitochondrial division, fusion and degradation
  publication-title: J. Biochem.
– volume: 18
  start-page: 231
  year: 1998
  end-page: 236
  ident: bb0165
  article-title: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice
  publication-title: Nat. Genet.
– volume: 26
  start-page: 207
  year: 2000
  end-page: 210
  ident: bb0130
  article-title: Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
  publication-title: Nat. Genet.
– volume: 143
  start-page: 351
  year: 1998
  end-page: 358
  ident: bb0055
  article-title: A human dynamin-related protein controls the distribution of mitochondria
  publication-title: J. Cell Biol.
– volume: 27
  start-page: 3710
  year: 2018
  end-page: 3719
  ident: bb0145
  article-title: Aberrant Drp1-mediated mitochondrial division presents in humans with variable outcomes
  publication-title: Hum. Mol. Genet.
– volume: 505
  start-page: 335
  year: 2014
  end-page: 343
  ident: bb0005
  article-title: Mitochondrial form and function
  publication-title: Nature
– volume: 25
  start-page: 2966
  year: 2006
  end-page: 2977
  ident: bb0040
  article-title: Regulation of mitochondrial morphology through proteolytic cleavage of OPA1
  publication-title: EMBO J.
– volume: 8
  start-page: 3496
  year: 1988
  end-page: 3509
  ident: bb0155
  article-title: Purification and characterization of human mitochondrial transcription factor 1
  publication-title: Mol. Cell. Biol.
– volume: 171
  start-page: 1072
  year: 2017
  ident: bb0225
  article-title: Structural basis of mitochondrial transcription initiation
  publication-title: Cell
– volume: 126
  start-page: 176
  year: 2013
  end-page: 185
  ident: bb0075
  article-title: Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology
  publication-title: J. Cell Sci.
– volume: 24
  start-page: 9823
  year: 2004
  end-page: 9834
  ident: bb0180
  article-title: Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA
  publication-title: Mol. Cell. Biol.
– volume: 11
  start-page: 958
  year: 2009
  end-page: U114
  ident: bb0080
  article-title: Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice
  publication-title: Nat. Cell Biol.
– volume: 35
  start-page: 211
  year: 2015
  end-page: 223
  ident: bb0095
  article-title: Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development
  publication-title: Mol. Cell. Biol.
– volume: 294
  start-page: 2436
  year: 2019
  end-page: 2448
  ident: bb0270
  article-title: Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation
  publication-title: J. Biol. Chem.
– volume: 26
  start-page: 211
  year: 2000
  ident: 10.1016/j.bbagen.2021.129874_bb0125
  article-title: OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
  publication-title: Nat. Genet.
  doi: 10.1038/79944
– volume: 11
  start-page: 872
  year: 2010
  ident: 10.1016/j.bbagen.2021.129874_bb0025
  article-title: Mitochondrial fusion and fission in cell life and death
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3013
– volume: 19
  start-page: 2402
  year: 2008
  ident: 10.1016/j.bbagen.2021.129874_bb0060
  article-title: The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-12-1287
– volume: 38
  start-page: 7
  year: 2017
  ident: 10.1016/j.bbagen.2021.129874_bb0230
  article-title: Overview of the membrane-associated RING-CH (MARCH) E3 ligase family
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2016.12.002
– volume: 5
  year: 2014
  ident: 10.1016/j.bbagen.2021.129874_bb0175
  article-title: Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4077
– volume: 19
  start-page: 389
  year: 2013
  ident: 10.1016/j.bbagen.2021.129874_bb0015
  article-title: Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.4830
– volume: 112
  start-page: 683
  year: 2005
  ident: 10.1016/j.bbagen.2021.129874_bb0185
  article-title: Overexpression of mitochondrial transcription factor A ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.104.524835
– volume: 24
  start-page: 2451
  year: 2014
  ident: 10.1016/j.bbagen.2021.129874_bb0115
  article-title: Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.08.060
– year: 2019
  ident: 10.1016/j.bbagen.2021.129874_bb0105
  article-title: Mitochondrial division, fusion and degradation
  publication-title: J. Biochem.
– volume: 13
  start-page: 2695
  issue: 19
  year: 2010
  ident: 10.1016/j.bbagen.2021.129874_bb0200
  article-title: High mitochondrial DNA copy number has detrimental effects in mice
  publication-title: Hum Mol Genet.
  doi: 10.1093/hmg/ddq163
– volume: 36
  start-page: 449
  year: 2004
  ident: 10.1016/j.bbagen.2021.129874_bb0135
  article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
  publication-title: Nat. Genet.
  doi: 10.1038/ng1341
– volume: 294
  start-page: 2436
  year: 2019
  ident: 10.1016/j.bbagen.2021.129874_bb0270
  article-title: Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.005069
– volume: 134
  start-page: 333
  year: 2003
  ident: 10.1016/j.bbagen.2021.129874_bb0030
  article-title: Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvg150
– volume: 71
  start-page: 2978
  year: 2011
  ident: 10.1016/j.bbagen.2021.129874_bb0195
  article-title: Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-3482
– volume: 8
  start-page: 3496
  year: 1988
  ident: 10.1016/j.bbagen.2021.129874_bb0155
  article-title: Purification and characterization of human mitochondrial transcription factor 1
  publication-title: Mol. Cell. Biol.
– volume: 117
  start-page: 346
  year: 2015
  ident: 10.1016/j.bbagen.2021.129874_bb0100
  article-title: Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.306859
– volume: 110
  start-page: 11863
  year: 2013
  ident: 10.1016/j.bbagen.2021.129874_bb0205
  article-title: Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1301951110
– volume: 58
  start-page: 2371
  year: 2015
  ident: 10.1016/j.bbagen.2021.129874_bb0110
  article-title: Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3704-7
– volume: 12
  start-page: 565
  year: 2011
  ident: 10.1016/j.bbagen.2021.129874_bb0070
  article-title: MiD49 and MiD51, new components of the mitochondrial fission machinery
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.54
– volume: 356
  start-page: 1736
  year: 2007
  ident: 10.1016/j.bbagen.2021.129874_bb0140
  article-title: A lethal defect of mitochondrial and peroxisomal fission
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa064436
– volume: 27
  start-page: 3710
  year: 2018
  ident: 10.1016/j.bbagen.2021.129874_bb0145
  article-title: Aberrant Drp1-mediated mitochondrial division presents in humans with variable outcomes
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddy287
– volume: 9
  year: 2018
  ident: 10.1016/j.bbagen.2021.129874_bb0150
  article-title: Clinical and biochemical features in a patient with mitochondrial fission factor gene alteration
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00625
– volume: 34
  start-page: 1262
  year: 2014
  ident: 10.1016/j.bbagen.2021.129874_bb0265
  article-title: The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-Hydroxy-3-Methyl-Glutaryl coenzyme A reductase and the cholesterol synthesis pathway
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01140-13
– volume: 1350
  start-page: 77
  year: 2015
  ident: 10.1016/j.bbagen.2021.129874_bb0010
  article-title: Physiological roles of mitochondrial fission in cultured cells and mouse development
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.12848
– volume: 18
  start-page: 441
  year: 2008
  ident: 10.1016/j.bbagen.2021.129874_bb0235
  article-title: Viral and cellular MARCH ubiquitin ligases and cancer
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2008.09.002
– volume: 18
  start-page: 231
  year: 1998
  ident: 10.1016/j.bbagen.2021.129874_bb0165
  article-title: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice
  publication-title: Nat. Genet.
  doi: 10.1038/ng0398-231
– volume: 171
  start-page: 1072
  year: 2017
  ident: 10.1016/j.bbagen.2021.129874_bb0225
  article-title: Structural basis of mitochondrial transcription initiation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.036
– volume: 456
  start-page: 605
  year: 2008
  ident: 10.1016/j.bbagen.2021.129874_bb0035
  article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria
  publication-title: Nature
  doi: 10.1038/nature07534
– volume: 16
  start-page: 1696
  year: 2005
  ident: 10.1016/j.bbagen.2021.129874_bb0255
  article-title: MARCH-II is a syntaxin-6-binding protein involved in endosomal trafficking
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-03-0216
– volume: 167
  start-page: 287
  year: 2020
  ident: 10.1016/j.bbagen.2021.129874_bb0210
  article-title: Mitochondrial nucleoid morphology and respiratory function are altered in Drp1-deficient HeLa cells
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvz112
– volume: 11
  start-page: 958
  year: 2009
  ident: 10.1016/j.bbagen.2021.129874_bb0080
  article-title: Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1907
– volume: 186
  start-page: 805
  year: 2009
  ident: 10.1016/j.bbagen.2021.129874_bb0085
  article-title: The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200903065
– volume: 39
  start-page: 503
  year: 2005
  ident: 10.1016/j.bbagen.2021.129874_bb0020
  article-title: Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.38.072902.093019
– volume: 337
  start-page: 1062
  year: 2012
  ident: 10.1016/j.bbagen.2021.129874_bb0045
  article-title: Mitochondrial fission, fusion, and stress
  publication-title: Science
  doi: 10.1126/science.1219855
– volume: 197
  start-page: 535
  year: 2012
  ident: 10.1016/j.bbagen.2021.129874_bb0090
  article-title: Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201110034
– volume: 51
  start-page: 20
  year: 2013
  ident: 10.1016/j.bbagen.2021.129874_bb0245
  article-title: MITOL Regulates Endoplasmic Reticulum-Mitochondria Contacts via Mitofusin2
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.04.023
– volume: 15
  year: 2019
  ident: 10.1016/j.bbagen.2021.129874_bb0215
  article-title: Mitochondrial fusion is required for regulation of mitochondrial DNA replication
  publication-title: PLoS Genet.
– volume: 35
  start-page: 211
  year: 2015
  ident: 10.1016/j.bbagen.2021.129874_bb0095
  article-title: Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01054-14
– volume: 25
  start-page: 2966
  year: 2006
  ident: 10.1016/j.bbagen.2021.129874_bb0040
  article-title: Regulation of mitochondrial morphology through proteolytic cleavage of OPA1
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601184
– volume: 24
  start-page: 9823
  year: 2004
  ident: 10.1016/j.bbagen.2021.129874_bb0180
  article-title: Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.22.9823-9834.2004
– volume: 74
  start-page: 366
  year: 2009
  ident: 10.1016/j.bbagen.2021.129874_bb0220
  article-title: Technical note Visualization of mitochondrial nucleoids in living human cells using SYBR Green I
  publication-title: Cytologia
– year: 2019
  ident: 10.1016/j.bbagen.2021.129874_bb0120
  article-title: Mitochondrial dynamics and interorganellar communication in the development and dysmorphism of mammalian oocytes
  publication-title: J. Biochem.
– volume: 143
  start-page: 351
  year: 1998
  ident: 10.1016/j.bbagen.2021.129874_bb0055
  article-title: A human dynamin-related protein controls the distribution of mitochondria
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.143.2.351
– volume: 26
  start-page: 207
  year: 2000
  ident: 10.1016/j.bbagen.2021.129874_bb0130
  article-title: Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
  publication-title: Nat. Genet.
  doi: 10.1038/79936
– volume: 19
  start-page: 856
  year: 2017
  ident: 10.1016/j.bbagen.2021.129874_bb0050
  article-title: Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3560
– volume: 9
  start-page: 9609
  issue: 1
  year: 2019
  ident: 10.1016/j.bbagen.2021.129874_bib271
  article-title: CRISPR knockout screen implicates three genes in lysosome function
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45939-w
– volume: 28
  start-page: 8624
  year: 2008
  ident: 10.1016/j.bbagen.2021.129874_bb0190
  article-title: Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor A in mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1957-08.2008
– volume: 252
  start-page: 965
  year: 1991
  ident: 10.1016/j.bbagen.2021.129874_bb0160
  article-title: Similarity of human mitochondrial transcription factor 1 to high mobility group proteins
  publication-title: Science
  doi: 10.1126/science.2035027
– volume: 291
  start-page: 12105
  year: 2016
  ident: 10.1016/j.bbagen.2021.129874_bb0260
  article-title: A conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.726877
– volume: 126
  start-page: 176
  year: 2013
  ident: 10.1016/j.bbagen.2021.129874_bb0075
  article-title: Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.111211
– volume: 317
  start-page: 210
  year: 2011
  ident: 10.1016/j.bbagen.2021.129874_bb0170
  article-title: Human mitochondrial transcription factor A is required for the segregation of mitochondrial DNA in cultured cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2010.10.008
– volume: 139
  start-page: 137
  issue: 1
  year: 2006
  ident: 10.1016/j.bbagen.2021.129874_bb0250
  article-title: MARCH-III Is a novel component of endosomes with properties similar to those of MARCH-II
  publication-title: J Biochem.
  doi: 10.1093/jb/mvj012
– volume: 25
  start-page: 3618
  year: 2006
  ident: 10.1016/j.bbagen.2021.129874_bb0240
  article-title: A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601249
– volume: 505
  start-page: 335
  year: 2014
  ident: 10.1016/j.bbagen.2021.129874_bb0005
  article-title: Mitochondrial form and function
  publication-title: Nature
  doi: 10.1038/nature12985
– volume: 191
  start-page: 1141
  year: 2010
  ident: 10.1016/j.bbagen.2021.129874_bb0065
  article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201007152
SSID ssj0000595
Score 2.3605623
Snippet Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129874
SubjectTerms DNA-binding domains
energy
fluorescent proteins
Live imaging
mammals
mitochondria
mitochondrial DNA
Mitochondrial fission
Mitochondrial fusion
mitochondrial membrane
Mitochondrial nucleoids
mtDNA dynamics
mtDNA probe
quality control
symbiosis
transcription factors
ubiquitin-protein ligase
Title Multiple assay systems to analyze the dynamics of mitochondrial nucleoids in living mammalian cells
URI https://dx.doi.org/10.1016/j.bbagen.2021.129874
https://www.ncbi.nlm.nih.gov/pubmed/33607223
https://www.proquest.com/docview/2491944020
https://www.proquest.com/docview/2551946985
Volume 1865
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEB_EUtpLsfbrqZUt9Lq-l-xHkqM8Kq8temkFb8t-BVJ8iZjnwR76tzuTTSw9qNBjwm4YdiYzv5mdD4DPaDQXKsiSu0xbLoXNuXPa8RrhaaZV7pyj2uHTM706l98u1MUWLKdaGEqrHHV_0umDth7fzMfTnF81zfwHXepJ-h6FqIWginLqXocyffTnb5oHwgeVbhIkp9VT-dyQ44WEIJvQS8yzIzR8ZSEfMk8Pwc_BDJ3swKsRP7LjROJr2IrtLjxPEyVvd-HFchrg9gb86ZgsyBAg21uWmjb3bNMxS61IfkeG6I-FNJO-Z13N1vh_oz5sA4kla6nXcdeEnjUtu2wo9MDWdr0eQiOMQv79Wzg_-fJzueLjTAXuRaU23IesVnmpFjIi8rIFHqGLNmY2ILIqfYgI4OoCTVRexagjOhteyEXQdWERK5ZBvIPttmvjB2Be0vgqHWvpPNp5X1bKaRk9-lwyy-o4AzEdpfFjw3Gae3FppsyyXyYxwBADTGLADPj9rqvUcOOJ9cXEJfOP4Bi0CU_s_DQx1SBn6NRsG7ub3qBLmlWSPOtH1iDUrGj8pprB-yQR9_QKoRcF4q69_6ZtH17SU8oLPoDtzfVN_IjoZ-MOB_E-hGfHX7-vzu4ACB0DIg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FEN3GbbulT01YFctsSX5cSyCFena5LIW6E3Qy4CLxi7m9ND--pKW3WGHrsCuthQQIkN-pCl-AN8waM6VlwW3SWa4FCbl1maWVwhPk0yl1lq6O7xaZ8sz-fNcne_AYrwLQ22Vg--PPr331sOT2XCas6u6nv2ij3qSfo9K1ELkT2CXplPJCeweHB0v138csurJV2g9pw3jDbq-zQtlQU1hopgm3zH2Fbl8KEI9hED7SHT4Ap4PEJIdRClfwk5o9uFpJJW82Ye9xcjh9grcaugXZIiRzQ2Lc5s7tm2ZoWkkt4EhAGQ-0tJ3rK3YBv_i6BIbT5bJGhp33Na-Y3XDLmuqPrCN2Wz66gijqn_3Gs4Of5wulnygVeBOlGrLnU8qlRZqLgOCL5PjKdpgQmI8gqvC-YAYrsoxSqVlCFnAfMMJOfdZlRuEi4UXb2DStE14B8xJYrDKQiWtw1DvilLZTAaHaZdMkipMQYxHqd0wc5yoLy712Fx2oaMCNClARwVMgd_vuoozNx5Zn49a0n_Zjsaw8MjOr6NSNWqGTs00ob3uNGalSSkpuf7HGkSbJTFwqim8jRZxL68Q2TxH6PX-v2X7AnvL09WJPjlaH3-AZ_Qmtgl_hMn293X4hGBoaz8Pxn4H5DIF0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+assay+systems+to+analyze+the+dynamics+of+mitochondrial+nucleoids+in+living+mammalian+cells&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Ishihara%2C+Takaya&rft.au=Kanon%2C+Hirotaka&rft.au=Ban-Ishihara%2C+Reiko&rft.au=Ishihara%2C+Naotada&rft.date=2021-07-01&rft.eissn=1872-8006&rft.volume=1865&rft.issue=7&rft.spage=129874&rft_id=info:doi/10.1016%2Fj.bbagen.2021.129874&rft_id=info%3Apmid%2F33607223&rft.externalDocID=33607223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon