Multiple assay systems to analyze the dynamics of mitochondrial nucleoids in living mammalian cells
Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria stil...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1865; no. 7; p. 129874 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2021.129874 |
Cover
Loading…
Abstract | Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed.
To solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology.
The factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation.
The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics.
•Under fluorescent microscopy, mtDNA is observed as dot-like structures, nucleoids.•Nucleoids dynamically move along mitochondria in living cells.•We constructed a sensitive and photoconvertible probe for live imaging of nucleoids.•siRNA screening revealed a subset of the MARCH family proteins concerned in mitochondrial nucleoid dynamics. |
---|---|
AbstractList | Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed.
To solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology.
The factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation.
The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics. Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed. To solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology. The factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation. The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics. •Under fluorescent microscopy, mtDNA is observed as dot-like structures, nucleoids.•Nucleoids dynamically move along mitochondria in living cells.•We constructed a sensitive and photoconvertible probe for live imaging of nucleoids.•siRNA screening revealed a subset of the MARCH family proteins concerned in mitochondrial nucleoid dynamics. Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed.To solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology.The factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation.The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics. Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed.BACKGROUNDMitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent events of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Several copies of mtDNA form mitochondrial nucleoid with DNA-binding proteins. Recently, the morphology and distribution of the mitochondrial membrane and nucleoid were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoid have not been fully developed.To solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology.RESULTSTo solve these issues, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of mitochondrial transcriptional factor A (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period using the new probe. Second, we searched for nucleoid regulatory factors by small interfering RNA screening using HeLa cells and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology.The factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation.CONCLUSIONThe factors and probe, reported in this study, would be useful to reveal novel mechanisms of mitochondrial regulation.The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics.GENERAL SIGNIFICANCEThe mtDNA dynamics should be concerned in the regulation of mitochondrial activity and its quality control, associated with mitochondrial membrane dynamics. |
ArticleNumber | 129874 |
Author | Kanon, Hirotaka Ishihara, Naotada Ban-Ishihara, Reiko Ishihara, Takaya |
Author_xml | – sequence: 1 givenname: Takaya surname: Ishihara fullname: Ishihara, Takaya email: takaya@bio.sci.osaka-u.ac.jp organization: Department of Biological Sciences, Graduate School of Science, Osaka University, Japan – sequence: 2 givenname: Hirotaka surname: Kanon fullname: Kanon, Hirotaka organization: Department of Biological Sciences, Graduate School of Science, Osaka University, Japan – sequence: 3 givenname: Reiko surname: Ban-Ishihara fullname: Ban-Ishihara, Reiko organization: Department of Protein Biochemistry, Institute of Life Science, Kurume University, Japan – sequence: 4 givenname: Naotada surname: Ishihara fullname: Ishihara, Naotada email: naotada@bio.sci.osaka-u.ac.jp organization: Department of Biological Sciences, Graduate School of Science, Osaka University, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33607223$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi3Uim4L_wAhH7lksR07iTkgoYp-SK24wNmatSetV469xE6l8OvJKu2FA53LXJ7n1Wjec3ISU0RCPnC25Yw3n_fb3Q4eMG4FE3zLhe5a-YZseNeKqmOsOSEbVjNZSd6oM3Ke854to7R6S87qumGtEPWG2PspFH8ISCFnmGmec8Eh05IoRAjzH6TlEambIwzeZpp6OviS7GOKbvQQaJxswORdpj7S4J98fKADDAMED5FaDCG_I6c9hIzvn_cF-XX1_eflTXX34_r28ttdZWutSmUd75XoFJOohICWSblDQA6uFrKzDiVTfas1ExqxwVa2tpbMNX0LvNadqy_IpzX3MKbfE-ZiBp-PF0DENGUjlOJaNrpTr6NSL6hkgi3ox2d02g3ozGH0A4yzefnhAnxZATumnEfsjfUFik-xjOCD4cwcCzN7sxZmjoWZtbBFlv_IL_mvaF9XDZd_PnkcTbYeo0XnR7TFuOT_H_AXtsCxOg |
CitedBy_id | crossref_primary_10_1155_2022_4759963 crossref_primary_10_1073_pnas_2210730119 crossref_primary_10_1093_jb_mvaf008 |
Cites_doi | 10.1038/79944 10.1038/nrm3013 10.1091/mbc.e07-12-1287 10.1016/j.nbt.2016.12.002 10.1038/ncomms4077 10.1089/ars.2012.4830 10.1161/CIRCULATIONAHA.104.524835 10.1016/j.cub.2014.08.060 10.1093/hmg/ddq163 10.1038/ng1341 10.1074/jbc.RA118.005069 10.1093/jb/mvg150 10.1158/0008-5472.CAN-10-3482 10.1161/CIRCRESAHA.117.306859 10.1073/pnas.1301951110 10.1007/s00125-015-3704-7 10.1038/embor.2011.54 10.1056/NEJMoa064436 10.1093/hmg/ddy287 10.3389/fgene.2018.00625 10.1128/MCB.01140-13 10.1111/nyas.12848 10.1016/j.semcancer.2008.09.002 10.1038/ng0398-231 10.1016/j.cell.2017.10.036 10.1038/nature07534 10.1091/mbc.e04-03-0216 10.1093/jb/mvz112 10.1038/ncb1907 10.1083/jcb.200903065 10.1146/annurev.genet.38.072902.093019 10.1126/science.1219855 10.1083/jcb.201110034 10.1016/j.molcel.2013.04.023 10.1128/MCB.01054-14 10.1038/sj.emboj.7601184 10.1128/MCB.24.22.9823-9834.2004 10.1083/jcb.143.2.351 10.1038/79936 10.1038/ncb3560 10.1038/s41598-019-45939-w 10.1523/JNEUROSCI.1957-08.2008 10.1126/science.2035027 10.1074/jbc.M116.726877 10.1242/jcs.111211 10.1016/j.yexcr.2010.10.008 10.1093/jb/mvj012 10.1038/sj.emboj.7601249 10.1038/nature12985 10.1083/jcb.201007152 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2021.129874 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 33607223 10_1016_j_bbagen_2021_129874 S0304416521000337 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-cd1f528504e522a7044beae1ad3248cde405f799029ee6e747c340d6f7a1398d3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Tue Aug 05 09:51:28 EDT 2025 Tue Aug 05 10:51:59 EDT 2025 Mon Jul 21 06:02:49 EDT 2025 Tue Jul 01 00:22:15 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri Feb 23 02:45:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Mitochondrial fusion mtDNA probe mtDNA dynamics RNAi HMG IM KO mtDNA KikGR siRNA Mff Mitochondrial fission COX Drp1 MiD51/MIEF1 Mfn OPA1 MiD49/MIEF2 TFAM Live imaging Mitochondrial nucleoids RFP OM |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-cd1f528504e522a7044beae1ad3248cde405f799029ee6e747c340d6f7a1398d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33607223 |
PQID | 2491944020 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551946985 proquest_miscellaneous_2491944020 pubmed_primary_33607223 crossref_citationtrail_10_1016_j_bbagen_2021_129874 crossref_primary_10_1016_j_bbagen_2021_129874 elsevier_sciencedirect_doi_10_1016_j_bbagen_2021_129874 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 2021-Jul 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yonashiro, Ishido, Kyo (bb0240) 2006; 25 Ishihara, Ban-Ishihara, Maeda (bb0095) 2015; 35 Hillen, Morozov, Sarfallah, Temiakov, Cramer (bb0225) 2017; 171 Delettre, Lenaers, Griffoin (bb0130) 2000; 26 Zattas, Berk, Kreft, Hochstrasser (bb0260) 2016; 291 Ban, Ishihara, Kohno (bb0050) 2017; 19 Wang, Herr, Hansen (bb0235) 2008; 18 Sugiura, Nagashima, Tokuyama (bb0245) 2013; 51 Alexander, Votruba, Pesch (bb0125) 2000; 26 Udagawa, Ishihara, Maeda (bb0115) 2014; 24 Eura, Ishihara, Yokota, Mihara (bb0030) 2003; 134 Wakabayashi, Zhang, Wakabayashi (bb0085) 2009; 186 Onoue, Jofuku, Ban-Ishihara (bb0075) 2013; 126 Youle, van der Bliek (bb0045) 2012; 337 Otera, Wang, Cleland (bb0065) 2010; 191 Bauer, Bakke, Morth (bb0230) 2017; 38 Ngo, Lovely, Phillips, Chan (bb0175) 2014; 5 Wang, Ishihara, Ibayashi (bb0110) 2015; 58 Ishihara, Otera, Oka, Mihara (bb0015) 2013; 19 Ota, Ishihara, Ishihara (bb0210) 2020; 167 Guo, Zheng, Liu (bb0195) 2011; 71 Nasca, Nardecchia, Commone (bb0150) 2018; 9 Gandre-Babbe, van der Bliek (bb0060) 2008; 19 Zuchner, Mersiyanova, Muglia (bb0135) 2004; 36 Larsson, Wang, Wilhelmsson (bb0165) 1998; 18 Friedman, Nunnari (bb0005) 2014; 505 Kanki, Ohgaki, Gaspari (bb0180) 2004; 24 Udagawa, Ishihara (bb0120) 2019 de Brito, Scorrano (bb0035) 2008; 456 Murata, Arai, Iijima, Sesaki (bb0105) 2019 Ishihara, Fujita, Oka, Mihara (bb0040) 2006; 25 Parisi, Clayton (bb0160) 1991; 252 Nakamura, Fukuda, Kato, Hirose (bb0255) 2005; 16 Whitley, Lam, Cui (bb0145) 2018; 27 Fisher, Clayton (bb0155) 1988; 8 Ylikallio (bb0200) 2010; 13 Ozawa, Sasaki (bb0220) 2009; 74 Waterham, Koster, van Roermund, Mooyer, Wanders, Leonard (bb0140) 2007; 356 Hayashi, Yoshida, Yamato (bb0190) 2008; 28 Ramos, Motori, Bruser (bb0215) 2019; 15 Lenk, Park, Lemons (bib271) 2019 Jul 3; 9 Palmer, Osellame, Laine, Koutsopoulos, Frazier, Ryan (bb0070) 2011; 12 Ban-Ishihara, Ishihara, Sasaki, Mihara, Ishihara (bb0205) 2013; 110 Ishihara, Nomura, Jofuku (bb0080) 2009; 11 Kageyama, Zhang, Roda (bb0090) 2012; 197 Fukuda (bb0250) 2006; 139 Sharpe, Howe, Scott (bb0270) 2019; 294 Westermann (bb0025) 2010; 11 Song, Gong, Burelle (bb0100) 2015; 117 Kasashima, Sumitani, Endo (bb0170) 2011; 317 Ikeuchi, Matsusaka, Kang (bb0185) 2005; 112 Ishihara, Kohno, Ishihara (bb0010) 2015; 1350 Zelcer, Sharpe, Loregger (bb0265) 2014; 34 Smirnova, Shurland, Ryazantsev, van der Bliek (bb0055) 1998; 143 Okamoto, Shaw (bb0020) 2005; 39 Ban (10.1016/j.bbagen.2021.129874_bb0050) 2017; 19 Udagawa (10.1016/j.bbagen.2021.129874_bb0115) 2014; 24 Zuchner (10.1016/j.bbagen.2021.129874_bb0135) 2004; 36 Bauer (10.1016/j.bbagen.2021.129874_bb0230) 2017; 38 Ngo (10.1016/j.bbagen.2021.129874_bb0175) 2014; 5 Ikeuchi (10.1016/j.bbagen.2021.129874_bb0185) 2005; 112 Hillen (10.1016/j.bbagen.2021.129874_bb0225) 2017; 171 Sugiura (10.1016/j.bbagen.2021.129874_bb0245) 2013; 51 Wang (10.1016/j.bbagen.2021.129874_bb0235) 2008; 18 Youle (10.1016/j.bbagen.2021.129874_bb0045) 2012; 337 Ishihara (10.1016/j.bbagen.2021.129874_bb0015) 2013; 19 Ylikallio (10.1016/j.bbagen.2021.129874_bb0200) 2010; 13 Nasca (10.1016/j.bbagen.2021.129874_bb0150) 2018; 9 Ramos (10.1016/j.bbagen.2021.129874_bb0215) 2019; 15 Murata (10.1016/j.bbagen.2021.129874_bb0105) 2019 Gandre-Babbe (10.1016/j.bbagen.2021.129874_bb0060) 2008; 19 Fukuda (10.1016/j.bbagen.2021.129874_bb0250) 2006; 139 Whitley (10.1016/j.bbagen.2021.129874_bb0145) 2018; 27 Friedman (10.1016/j.bbagen.2021.129874_bb0005) 2014; 505 Lenk (10.1016/j.bbagen.2021.129874_bib271) 2019; 9 Westermann (10.1016/j.bbagen.2021.129874_bb0025) 2010; 11 Wang (10.1016/j.bbagen.2021.129874_bb0110) 2015; 58 Sharpe (10.1016/j.bbagen.2021.129874_bb0270) 2019; 294 Zattas (10.1016/j.bbagen.2021.129874_bb0260) 2016; 291 Ishihara (10.1016/j.bbagen.2021.129874_bb0095) 2015; 35 de Brito (10.1016/j.bbagen.2021.129874_bb0035) 2008; 456 Okamoto (10.1016/j.bbagen.2021.129874_bb0020) 2005; 39 Udagawa (10.1016/j.bbagen.2021.129874_bb0120) 2019 Guo (10.1016/j.bbagen.2021.129874_bb0195) 2011; 71 Hayashi (10.1016/j.bbagen.2021.129874_bb0190) 2008; 28 Kasashima (10.1016/j.bbagen.2021.129874_bb0170) 2011; 317 Ozawa (10.1016/j.bbagen.2021.129874_bb0220) 2009; 74 Ishihara (10.1016/j.bbagen.2021.129874_bb0080) 2009; 11 Kageyama (10.1016/j.bbagen.2021.129874_bb0090) 2012; 197 Otera (10.1016/j.bbagen.2021.129874_bb0065) 2010; 191 Waterham (10.1016/j.bbagen.2021.129874_bb0140) 2007; 356 Ishihara (10.1016/j.bbagen.2021.129874_bb0040) 2006; 25 Smirnova (10.1016/j.bbagen.2021.129874_bb0055) 1998; 143 Ishihara (10.1016/j.bbagen.2021.129874_bb0010) 2015; 1350 Alexander (10.1016/j.bbagen.2021.129874_bb0125) 2000; 26 Wakabayashi (10.1016/j.bbagen.2021.129874_bb0085) 2009; 186 Ban-Ishihara (10.1016/j.bbagen.2021.129874_bb0205) 2013; 110 Zelcer (10.1016/j.bbagen.2021.129874_bb0265) 2014; 34 Onoue (10.1016/j.bbagen.2021.129874_bb0075) 2013; 126 Song (10.1016/j.bbagen.2021.129874_bb0100) 2015; 117 Parisi (10.1016/j.bbagen.2021.129874_bb0160) 1991; 252 Yonashiro (10.1016/j.bbagen.2021.129874_bb0240) 2006; 25 Palmer (10.1016/j.bbagen.2021.129874_bb0070) 2011; 12 Ota (10.1016/j.bbagen.2021.129874_bb0210) 2020; 167 Nakamura (10.1016/j.bbagen.2021.129874_bb0255) 2005; 16 Fisher (10.1016/j.bbagen.2021.129874_bb0155) 1988; 8 Eura (10.1016/j.bbagen.2021.129874_bb0030) 2003; 134 Larsson (10.1016/j.bbagen.2021.129874_bb0165) 1998; 18 Delettre (10.1016/j.bbagen.2021.129874_bb0130) 2000; 26 Kanki (10.1016/j.bbagen.2021.129874_bb0180) 2004; 24 |
References_xml | – volume: 26 start-page: 211 year: 2000 end-page: 215 ident: bb0125 article-title: OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 publication-title: Nat. Genet. – volume: 356 start-page: 1736 year: 2007 end-page: 1741 ident: bb0140 article-title: A lethal defect of mitochondrial and peroxisomal fission publication-title: New Engl. J. Med. – volume: 112 start-page: 683 year: 2005 end-page: 690 ident: bb0185 article-title: Overexpression of mitochondrial transcription factor A ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction publication-title: Circulation – volume: 167 start-page: 287 year: 2020 end-page: 294 ident: bb0210 article-title: Mitochondrial nucleoid morphology and respiratory function are altered in Drp1-deficient HeLa cells publication-title: J. Biochem. – volume: 25 start-page: 3618 year: 2006 end-page: 3626 ident: bb0240 article-title: A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics publication-title: EMBO J. – volume: 291 start-page: 12105 year: 2016 end-page: 12118 ident: bb0260 article-title: A conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation publication-title: J. Biol. Chem. – year: 2019 ident: bb0120 article-title: Mitochondrial dynamics and interorganellar communication in the development and dysmorphism of mammalian oocytes publication-title: J. Biochem. – volume: 34 start-page: 1262 year: 2014 end-page: 1270 ident: bb0265 article-title: The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-Hydroxy-3-Methyl-Glutaryl coenzyme A reductase and the cholesterol synthesis pathway publication-title: Mol. Cell. Biol. – volume: 117 start-page: 346 year: 2015 end-page: 351 ident: bb0100 article-title: Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts publication-title: Circ. Res. – volume: 58 start-page: 2371 year: 2015 end-page: 2380 ident: bb0110 article-title: Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration publication-title: Diabetologia – volume: 5 year: 2014 ident: bb0175 article-title: Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation publication-title: Nat. Commun. – volume: 18 start-page: 441 year: 2008 end-page: 450 ident: bb0235 article-title: Viral and cellular MARCH ubiquitin ligases and cancer publication-title: Semin. Cancer Biol. – volume: 456 start-page: 605 year: 2008 end-page: U647 ident: bb0035 article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria publication-title: Nature – volume: 197 start-page: 535 year: 2012 end-page: 551 ident: bb0090 article-title: Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage publication-title: J. Cell Biol. – volume: 15 year: 2019 ident: bb0215 article-title: Mitochondrial fusion is required for regulation of mitochondrial DNA replication publication-title: PLoS Genet. – volume: 191 start-page: 1141 year: 2010 end-page: 1158 ident: bb0065 article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells publication-title: J. Cell Biol. – volume: 38 start-page: 7 year: 2017 end-page: 15 ident: bb0230 article-title: Overview of the membrane-associated RING-CH (MARCH) E3 ligase family publication-title: New Biotechnol. – volume: 16 start-page: 1696 year: 2005 end-page: 1710 ident: bb0255 article-title: MARCH-II is a syntaxin-6-binding protein involved in endosomal trafficking publication-title: Mol. Biol. Cell – volume: 71 start-page: 2978 year: 2011 end-page: 2987 ident: bb0195 article-title: Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer publication-title: Cancer Res. – volume: 9 start-page: 9609 year: 2019 Jul 3 ident: bib271 article-title: CRISPR knockout screen implicates three genes in lysosome function publication-title: Sci. Rep. – volume: 337 start-page: 1062 year: 2012 end-page: 1065 ident: bb0045 article-title: Mitochondrial fission, fusion, and stress publication-title: Science – volume: 74 start-page: 366 year: 2009 ident: bb0220 article-title: Technical note Visualization of mitochondrial nucleoids in living human cells using SYBR Green I publication-title: Cytologia – volume: 11 start-page: 872 year: 2010 end-page: 884 ident: bb0025 article-title: Mitochondrial fusion and fission in cell life and death publication-title: Nat. Rev. Mol. Cell Biol. – volume: 19 start-page: 856 year: 2017 end-page: 863 ident: bb0050 article-title: Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin publication-title: Nat. Cell Biol. – volume: 19 start-page: 2402 year: 2008 end-page: 2412 ident: bb0060 article-title: The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells publication-title: Mol. Biol. Cell – volume: 28 start-page: 8624 year: 2008 end-page: 8634 ident: bb0190 article-title: Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor A in mice publication-title: J. Neurosci. – volume: 1350 start-page: 77 year: 2015 end-page: 81 ident: bb0010 article-title: Physiological roles of mitochondrial fission in cultured cells and mouse development publication-title: Ann. N. Y. Acad. Sci. – volume: 24 start-page: 2451 year: 2014 end-page: 2458 ident: bb0115 article-title: Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles publication-title: Curr. Biol. – volume: 9 year: 2018 ident: bb0150 article-title: Clinical and biochemical features in a patient with mitochondrial fission factor gene alteration publication-title: Front. Genet. – volume: 134 start-page: 333 year: 2003 end-page: 344 ident: bb0030 article-title: Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion publication-title: J. Biochem. – volume: 36 start-page: 449 year: 2004 end-page: 451 ident: bb0135 article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A publication-title: Nat. Genet. – volume: 13 start-page: 2695 year: 2010 end-page: 2705 ident: bb0200 article-title: High mitochondrial DNA copy number has detrimental effects in mice publication-title: Hum Mol Genet. – volume: 51 start-page: 20 year: 2013 end-page: 34 ident: bb0245 article-title: MITOL Regulates Endoplasmic Reticulum-Mitochondria Contacts via Mitofusin2 publication-title: Mol. Cell – volume: 19 start-page: 389 year: 2013 end-page: 399 ident: bb0015 article-title: Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals publication-title: Antioxid. Redox Signal. – volume: 139 start-page: 137 year: 2006 end-page: 145 ident: bb0250 article-title: MARCH-III Is a novel component of endosomes with properties similar to those of MARCH-II publication-title: J Biochem. – volume: 39 start-page: 503 year: 2005 end-page: 536 ident: bb0020 article-title: Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes publication-title: Annu. Rev. Genet. – volume: 110 start-page: 11863 year: 2013 end-page: 11868 ident: bb0205 article-title: Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 317 start-page: 210 year: 2011 end-page: 220 ident: bb0170 article-title: Human mitochondrial transcription factor A is required for the segregation of mitochondrial DNA in cultured cells publication-title: Exp. Cell Res. – volume: 252 start-page: 965 year: 1991 end-page: 969 ident: bb0160 article-title: Similarity of human mitochondrial transcription factor 1 to high mobility group proteins publication-title: Science – volume: 186 start-page: 805 year: 2009 end-page: 816 ident: bb0085 article-title: The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice publication-title: J. Cell Biol. – volume: 12 start-page: 565 year: 2011 end-page: 573 ident: bb0070 article-title: MiD49 and MiD51, new components of the mitochondrial fission machinery publication-title: EMBO Rep. – year: 2019 ident: bb0105 article-title: Mitochondrial division, fusion and degradation publication-title: J. Biochem. – volume: 18 start-page: 231 year: 1998 end-page: 236 ident: bb0165 article-title: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice publication-title: Nat. Genet. – volume: 26 start-page: 207 year: 2000 end-page: 210 ident: bb0130 article-title: Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy publication-title: Nat. Genet. – volume: 143 start-page: 351 year: 1998 end-page: 358 ident: bb0055 article-title: A human dynamin-related protein controls the distribution of mitochondria publication-title: J. Cell Biol. – volume: 27 start-page: 3710 year: 2018 end-page: 3719 ident: bb0145 article-title: Aberrant Drp1-mediated mitochondrial division presents in humans with variable outcomes publication-title: Hum. Mol. Genet. – volume: 505 start-page: 335 year: 2014 end-page: 343 ident: bb0005 article-title: Mitochondrial form and function publication-title: Nature – volume: 25 start-page: 2966 year: 2006 end-page: 2977 ident: bb0040 article-title: Regulation of mitochondrial morphology through proteolytic cleavage of OPA1 publication-title: EMBO J. – volume: 8 start-page: 3496 year: 1988 end-page: 3509 ident: bb0155 article-title: Purification and characterization of human mitochondrial transcription factor 1 publication-title: Mol. Cell. Biol. – volume: 171 start-page: 1072 year: 2017 ident: bb0225 article-title: Structural basis of mitochondrial transcription initiation publication-title: Cell – volume: 126 start-page: 176 year: 2013 end-page: 185 ident: bb0075 article-title: Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology publication-title: J. Cell Sci. – volume: 24 start-page: 9823 year: 2004 end-page: 9834 ident: bb0180 article-title: Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA publication-title: Mol. Cell. Biol. – volume: 11 start-page: 958 year: 2009 end-page: U114 ident: bb0080 article-title: Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice publication-title: Nat. Cell Biol. – volume: 35 start-page: 211 year: 2015 end-page: 223 ident: bb0095 article-title: Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development publication-title: Mol. Cell. Biol. – volume: 294 start-page: 2436 year: 2019 end-page: 2448 ident: bb0270 article-title: Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation publication-title: J. Biol. Chem. – volume: 26 start-page: 211 year: 2000 ident: 10.1016/j.bbagen.2021.129874_bb0125 article-title: OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 publication-title: Nat. Genet. doi: 10.1038/79944 – volume: 11 start-page: 872 year: 2010 ident: 10.1016/j.bbagen.2021.129874_bb0025 article-title: Mitochondrial fusion and fission in cell life and death publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3013 – volume: 19 start-page: 2402 year: 2008 ident: 10.1016/j.bbagen.2021.129874_bb0060 article-title: The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-12-1287 – volume: 38 start-page: 7 year: 2017 ident: 10.1016/j.bbagen.2021.129874_bb0230 article-title: Overview of the membrane-associated RING-CH (MARCH) E3 ligase family publication-title: New Biotechnol. doi: 10.1016/j.nbt.2016.12.002 – volume: 5 year: 2014 ident: 10.1016/j.bbagen.2021.129874_bb0175 article-title: Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation publication-title: Nat. Commun. doi: 10.1038/ncomms4077 – volume: 19 start-page: 389 year: 2013 ident: 10.1016/j.bbagen.2021.129874_bb0015 article-title: Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4830 – volume: 112 start-page: 683 year: 2005 ident: 10.1016/j.bbagen.2021.129874_bb0185 article-title: Overexpression of mitochondrial transcription factor A ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.104.524835 – volume: 24 start-page: 2451 year: 2014 ident: 10.1016/j.bbagen.2021.129874_bb0115 article-title: Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.08.060 – year: 2019 ident: 10.1016/j.bbagen.2021.129874_bb0105 article-title: Mitochondrial division, fusion and degradation publication-title: J. Biochem. – volume: 13 start-page: 2695 issue: 19 year: 2010 ident: 10.1016/j.bbagen.2021.129874_bb0200 article-title: High mitochondrial DNA copy number has detrimental effects in mice publication-title: Hum Mol Genet. doi: 10.1093/hmg/ddq163 – volume: 36 start-page: 449 year: 2004 ident: 10.1016/j.bbagen.2021.129874_bb0135 article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A publication-title: Nat. Genet. doi: 10.1038/ng1341 – volume: 294 start-page: 2436 year: 2019 ident: 10.1016/j.bbagen.2021.129874_bb0270 article-title: Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.005069 – volume: 134 start-page: 333 year: 2003 ident: 10.1016/j.bbagen.2021.129874_bb0030 article-title: Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion publication-title: J. Biochem. doi: 10.1093/jb/mvg150 – volume: 71 start-page: 2978 year: 2011 ident: 10.1016/j.bbagen.2021.129874_bb0195 article-title: Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-3482 – volume: 8 start-page: 3496 year: 1988 ident: 10.1016/j.bbagen.2021.129874_bb0155 article-title: Purification and characterization of human mitochondrial transcription factor 1 publication-title: Mol. Cell. Biol. – volume: 117 start-page: 346 year: 2015 ident: 10.1016/j.bbagen.2021.129874_bb0100 article-title: Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.306859 – volume: 110 start-page: 11863 year: 2013 ident: 10.1016/j.bbagen.2021.129874_bb0205 article-title: Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1301951110 – volume: 58 start-page: 2371 year: 2015 ident: 10.1016/j.bbagen.2021.129874_bb0110 article-title: Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration publication-title: Diabetologia doi: 10.1007/s00125-015-3704-7 – volume: 12 start-page: 565 year: 2011 ident: 10.1016/j.bbagen.2021.129874_bb0070 article-title: MiD49 and MiD51, new components of the mitochondrial fission machinery publication-title: EMBO Rep. doi: 10.1038/embor.2011.54 – volume: 356 start-page: 1736 year: 2007 ident: 10.1016/j.bbagen.2021.129874_bb0140 article-title: A lethal defect of mitochondrial and peroxisomal fission publication-title: New Engl. J. Med. doi: 10.1056/NEJMoa064436 – volume: 27 start-page: 3710 year: 2018 ident: 10.1016/j.bbagen.2021.129874_bb0145 article-title: Aberrant Drp1-mediated mitochondrial division presents in humans with variable outcomes publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy287 – volume: 9 year: 2018 ident: 10.1016/j.bbagen.2021.129874_bb0150 article-title: Clinical and biochemical features in a patient with mitochondrial fission factor gene alteration publication-title: Front. Genet. doi: 10.3389/fgene.2018.00625 – volume: 34 start-page: 1262 year: 2014 ident: 10.1016/j.bbagen.2021.129874_bb0265 article-title: The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-Hydroxy-3-Methyl-Glutaryl coenzyme A reductase and the cholesterol synthesis pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01140-13 – volume: 1350 start-page: 77 year: 2015 ident: 10.1016/j.bbagen.2021.129874_bb0010 article-title: Physiological roles of mitochondrial fission in cultured cells and mouse development publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12848 – volume: 18 start-page: 441 year: 2008 ident: 10.1016/j.bbagen.2021.129874_bb0235 article-title: Viral and cellular MARCH ubiquitin ligases and cancer publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2008.09.002 – volume: 18 start-page: 231 year: 1998 ident: 10.1016/j.bbagen.2021.129874_bb0165 article-title: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice publication-title: Nat. Genet. doi: 10.1038/ng0398-231 – volume: 171 start-page: 1072 year: 2017 ident: 10.1016/j.bbagen.2021.129874_bb0225 article-title: Structural basis of mitochondrial transcription initiation publication-title: Cell doi: 10.1016/j.cell.2017.10.036 – volume: 456 start-page: 605 year: 2008 ident: 10.1016/j.bbagen.2021.129874_bb0035 article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria publication-title: Nature doi: 10.1038/nature07534 – volume: 16 start-page: 1696 year: 2005 ident: 10.1016/j.bbagen.2021.129874_bb0255 article-title: MARCH-II is a syntaxin-6-binding protein involved in endosomal trafficking publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-03-0216 – volume: 167 start-page: 287 year: 2020 ident: 10.1016/j.bbagen.2021.129874_bb0210 article-title: Mitochondrial nucleoid morphology and respiratory function are altered in Drp1-deficient HeLa cells publication-title: J. Biochem. doi: 10.1093/jb/mvz112 – volume: 11 start-page: 958 year: 2009 ident: 10.1016/j.bbagen.2021.129874_bb0080 article-title: Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice publication-title: Nat. Cell Biol. doi: 10.1038/ncb1907 – volume: 186 start-page: 805 year: 2009 ident: 10.1016/j.bbagen.2021.129874_bb0085 article-title: The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice publication-title: J. Cell Biol. doi: 10.1083/jcb.200903065 – volume: 39 start-page: 503 year: 2005 ident: 10.1016/j.bbagen.2021.129874_bb0020 article-title: Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.38.072902.093019 – volume: 337 start-page: 1062 year: 2012 ident: 10.1016/j.bbagen.2021.129874_bb0045 article-title: Mitochondrial fission, fusion, and stress publication-title: Science doi: 10.1126/science.1219855 – volume: 197 start-page: 535 year: 2012 ident: 10.1016/j.bbagen.2021.129874_bb0090 article-title: Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage publication-title: J. Cell Biol. doi: 10.1083/jcb.201110034 – volume: 51 start-page: 20 year: 2013 ident: 10.1016/j.bbagen.2021.129874_bb0245 article-title: MITOL Regulates Endoplasmic Reticulum-Mitochondria Contacts via Mitofusin2 publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.04.023 – volume: 15 year: 2019 ident: 10.1016/j.bbagen.2021.129874_bb0215 article-title: Mitochondrial fusion is required for regulation of mitochondrial DNA replication publication-title: PLoS Genet. – volume: 35 start-page: 211 year: 2015 ident: 10.1016/j.bbagen.2021.129874_bb0095 article-title: Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01054-14 – volume: 25 start-page: 2966 year: 2006 ident: 10.1016/j.bbagen.2021.129874_bb0040 article-title: Regulation of mitochondrial morphology through proteolytic cleavage of OPA1 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601184 – volume: 24 start-page: 9823 year: 2004 ident: 10.1016/j.bbagen.2021.129874_bb0180 article-title: Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.22.9823-9834.2004 – volume: 74 start-page: 366 year: 2009 ident: 10.1016/j.bbagen.2021.129874_bb0220 article-title: Technical note Visualization of mitochondrial nucleoids in living human cells using SYBR Green I publication-title: Cytologia – year: 2019 ident: 10.1016/j.bbagen.2021.129874_bb0120 article-title: Mitochondrial dynamics and interorganellar communication in the development and dysmorphism of mammalian oocytes publication-title: J. Biochem. – volume: 143 start-page: 351 year: 1998 ident: 10.1016/j.bbagen.2021.129874_bb0055 article-title: A human dynamin-related protein controls the distribution of mitochondria publication-title: J. Cell Biol. doi: 10.1083/jcb.143.2.351 – volume: 26 start-page: 207 year: 2000 ident: 10.1016/j.bbagen.2021.129874_bb0130 article-title: Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy publication-title: Nat. Genet. doi: 10.1038/79936 – volume: 19 start-page: 856 year: 2017 ident: 10.1016/j.bbagen.2021.129874_bb0050 article-title: Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin publication-title: Nat. Cell Biol. doi: 10.1038/ncb3560 – volume: 9 start-page: 9609 issue: 1 year: 2019 ident: 10.1016/j.bbagen.2021.129874_bib271 article-title: CRISPR knockout screen implicates three genes in lysosome function publication-title: Sci. Rep. doi: 10.1038/s41598-019-45939-w – volume: 28 start-page: 8624 year: 2008 ident: 10.1016/j.bbagen.2021.129874_bb0190 article-title: Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor A in mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1957-08.2008 – volume: 252 start-page: 965 year: 1991 ident: 10.1016/j.bbagen.2021.129874_bb0160 article-title: Similarity of human mitochondrial transcription factor 1 to high mobility group proteins publication-title: Science doi: 10.1126/science.2035027 – volume: 291 start-page: 12105 year: 2016 ident: 10.1016/j.bbagen.2021.129874_bb0260 article-title: A conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.726877 – volume: 126 start-page: 176 year: 2013 ident: 10.1016/j.bbagen.2021.129874_bb0075 article-title: Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology publication-title: J. Cell Sci. doi: 10.1242/jcs.111211 – volume: 317 start-page: 210 year: 2011 ident: 10.1016/j.bbagen.2021.129874_bb0170 article-title: Human mitochondrial transcription factor A is required for the segregation of mitochondrial DNA in cultured cells publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2010.10.008 – volume: 139 start-page: 137 issue: 1 year: 2006 ident: 10.1016/j.bbagen.2021.129874_bb0250 article-title: MARCH-III Is a novel component of endosomes with properties similar to those of MARCH-II publication-title: J Biochem. doi: 10.1093/jb/mvj012 – volume: 25 start-page: 3618 year: 2006 ident: 10.1016/j.bbagen.2021.129874_bb0240 article-title: A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics publication-title: EMBO J. doi: 10.1038/sj.emboj.7601249 – volume: 505 start-page: 335 year: 2014 ident: 10.1016/j.bbagen.2021.129874_bb0005 article-title: Mitochondrial form and function publication-title: Nature doi: 10.1038/nature12985 – volume: 191 start-page: 1141 year: 2010 ident: 10.1016/j.bbagen.2021.129874_bb0065 article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201007152 |
SSID | ssj0000595 |
Score | 2.3605623 |
Snippet | Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129874 |
SubjectTerms | DNA-binding domains energy fluorescent proteins Live imaging mammals mitochondria mitochondrial DNA Mitochondrial fission Mitochondrial fusion mitochondrial membrane Mitochondrial nucleoids mtDNA dynamics mtDNA probe quality control symbiosis transcription factors ubiquitin-protein ligase |
Title | Multiple assay systems to analyze the dynamics of mitochondrial nucleoids in living mammalian cells |
URI | https://dx.doi.org/10.1016/j.bbagen.2021.129874 https://www.ncbi.nlm.nih.gov/pubmed/33607223 https://www.proquest.com/docview/2491944020 https://www.proquest.com/docview/2551946985 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEB_EUtpLsfbrqZUt9Lq-l-xHkqM8Kq8temkFb8t-BVJ8iZjnwR76tzuTTSw9qNBjwm4YdiYzv5mdD4DPaDQXKsiSu0xbLoXNuXPa8RrhaaZV7pyj2uHTM706l98u1MUWLKdaGEqrHHV_0umDth7fzMfTnF81zfwHXepJ-h6FqIWginLqXocyffTnb5oHwgeVbhIkp9VT-dyQ44WEIJvQS8yzIzR8ZSEfMk8Pwc_BDJ3swKsRP7LjROJr2IrtLjxPEyVvd-HFchrg9gb86ZgsyBAg21uWmjb3bNMxS61IfkeG6I-FNJO-Z13N1vh_oz5sA4kla6nXcdeEnjUtu2wo9MDWdr0eQiOMQv79Wzg_-fJzueLjTAXuRaU23IesVnmpFjIi8rIFHqGLNmY2ILIqfYgI4OoCTVRexagjOhteyEXQdWERK5ZBvIPttmvjB2Be0vgqHWvpPNp5X1bKaRk9-lwyy-o4AzEdpfFjw3Gae3FppsyyXyYxwBADTGLADPj9rqvUcOOJ9cXEJfOP4Bi0CU_s_DQx1SBn6NRsG7ub3qBLmlWSPOtH1iDUrGj8pprB-yQR9_QKoRcF4q69_6ZtH17SU8oLPoDtzfVN_IjoZ-MOB_E-hGfHX7-vzu4ACB0DIg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FEN3GbbulT01YFctsSX5cSyCFena5LIW6E3Qy4CLxi7m9ND--pKW3WGHrsCuthQQIkN-pCl-AN8waM6VlwW3SWa4FCbl1maWVwhPk0yl1lq6O7xaZ8sz-fNcne_AYrwLQ22Vg--PPr331sOT2XCas6u6nv2ij3qSfo9K1ELkT2CXplPJCeweHB0v138csurJV2g9pw3jDbq-zQtlQU1hopgm3zH2Fbl8KEI9hED7SHT4Ap4PEJIdRClfwk5o9uFpJJW82Ye9xcjh9grcaugXZIiRzQ2Lc5s7tm2ZoWkkt4EhAGQ-0tJ3rK3YBv_i6BIbT5bJGhp33Na-Y3XDLmuqPrCN2Wz66gijqn_3Gs4Of5wulnygVeBOlGrLnU8qlRZqLgOCL5PjKdpgQmI8gqvC-YAYrsoxSqVlCFnAfMMJOfdZlRuEi4UXb2DStE14B8xJYrDKQiWtw1DvilLZTAaHaZdMkipMQYxHqd0wc5yoLy712Fx2oaMCNClARwVMgd_vuoozNx5Zn49a0n_Zjsaw8MjOr6NSNWqGTs00ob3uNGalSSkpuf7HGkSbJTFwqim8jRZxL68Q2TxH6PX-v2X7AnvL09WJPjlaH3-AZ_Qmtgl_hMn293X4hGBoaz8Pxn4H5DIF0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+assay+systems+to+analyze+the+dynamics+of+mitochondrial+nucleoids+in+living+mammalian+cells&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Ishihara%2C+Takaya&rft.au=Kanon%2C+Hirotaka&rft.au=Ban-Ishihara%2C+Reiko&rft.au=Ishihara%2C+Naotada&rft.date=2021-07-01&rft.eissn=1872-8006&rft.volume=1865&rft.issue=7&rft.spage=129874&rft_id=info:doi/10.1016%2Fj.bbagen.2021.129874&rft_id=info%3Apmid%2F33607223&rft.externalDocID=33607223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |