Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment

Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model. CRC-TCS-NPs/5-FU-TCS-NPs were...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1840; no. 9; pp. 2730 - 2743
Main Authors Anitha, A., Deepa, N., Chennazhi, K.P., Lakshmanan, Vinoth-Kumar, Jayakumar, R.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model. CRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC. The 5-FU-TCS-NPs (size: 150±40nm, zeta potential: +48.2±5mV) and CRC-TCS-NPs (size: 150±20nm, zeta potential: +35.7±3mV) were proven to be compatible with blood. The in vitro drug release studies at pH4.5 and 7.4 showed a sustained release profile over a period of 4days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72h, unlike bare CRC and 5-FU. To conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo. The enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases. [Display omitted] •Developed a combinatorial nanomedicine of 5-FU and CRC against colon cancer•The nanomedicines produced synergistic in vitro anticancer effects.•The nanomedicine showed hemocompatible nature.•The nanomedicines showed enhanced bioavailability in a mouse model.
AbstractList Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model.BACKGROUNDEvaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model.CRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC.METHODSCRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC.The 5-FU-TCS-NPs (size: 150±40nm, zeta potential: +48.2±5mV) and CRC-TCS-NPs (size: 150±20nm, zeta potential: +35.7±3mV) were proven to be compatible with blood. The in vitro drug release studies at pH4.5 and 7.4 showed a sustained release profile over a period of 4 days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72h, unlike bare CRC and 5-FU.RESULTSThe 5-FU-TCS-NPs (size: 150±40nm, zeta potential: +48.2±5mV) and CRC-TCS-NPs (size: 150±20nm, zeta potential: +35.7±3mV) were proven to be compatible with blood. The in vitro drug release studies at pH4.5 and 7.4 showed a sustained release profile over a period of 4 days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72h, unlike bare CRC and 5-FU.To conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo.CONCLUSIONSTo conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo.The enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases.GENERAL SIGNIFICANCEThe enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases.
Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model. CRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC. The 5-FU-TCS-NPs (size: 150±40nm, zeta potential: +48.2±5mV) and CRC-TCS-NPs (size: 150±20nm, zeta potential: +35.7±3mV) were proven to be compatible with blood. The in vitro drug release studies at pH4.5 and 7.4 showed a sustained release profile over a period of 4days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72h, unlike bare CRC and 5-FU. To conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo. The enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases. [Display omitted] •Developed a combinatorial nanomedicine of 5-FU and CRC against colon cancer•The nanomedicines produced synergistic in vitro anticancer effects.•The nanomedicine showed hemocompatible nature.•The nanomedicines showed enhanced bioavailability in a mouse model.
Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model. CRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC. The 5-FU-TCS-NPs (size: 150±40nm, zeta potential: +48.2±5mV) and CRC-TCS-NPs (size: 150±20nm, zeta potential: +35.7±3mV) were proven to be compatible with blood. The in vitro drug release studies at pH4.5 and 7.4 showed a sustained release profile over a period of 4 days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72h, unlike bare CRC and 5-FU. To conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo. The enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases.
Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model.CRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC.The 5-FU-TCS-NPs (size: 150±40nm, zeta potential: +48.2±5mV) and CRC-TCS-NPs (size: 150±20nm, zeta potential: +35.7±3mV) were proven to be compatible with blood. The in vitro drug release studies at pH4.5 and 7.4 showed a sustained release profile over a period of 4days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72h, unlike bare CRC and 5-FU.To conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo.The enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases.
Author Lakshmanan, Vinoth-Kumar
Chennazhi, K.P.
Deepa, N.
Anitha, A.
Jayakumar, R.
Author_xml – sequence: 1
  givenname: A.
  surname: Anitha
  fullname: Anitha, A.
– sequence: 2
  givenname: N.
  surname: Deepa
  fullname: Deepa, N.
– sequence: 3
  givenname: K.P.
  surname: Chennazhi
  fullname: Chennazhi, K.P.
– sequence: 4
  givenname: Vinoth-Kumar
  surname: Lakshmanan
  fullname: Lakshmanan, Vinoth-Kumar
– sequence: 5
  givenname: R.
  surname: Jayakumar
  fullname: Jayakumar, R.
  email: rjayakumar@aims.amrita.edu, jayakumar77@yahoo.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24946270$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2OFCEUhYkZ4_SMvoExLN1UCxRQXS5MTMe_ZBI3uia34JZDh4IWKM28gM8tk25duHDYAOE754ZzrshFTBEJec7ZljOuXx220wTfMG4F43LL9JYx-Yhs-G4Q3Y4xfUE2rGeyk1yrS3JVyoG1pUb1hFwKOUotBrYhv_ZpmXyEmrKHQCFWbyFazBTnGW0tNM3Urtmui4_t2VHVzWFNOa0ZrA80JHDoaL31KUBtJ3vrayoQaYSYjpCbYcBCa_oJ2RVqU0iRnmfUjFAXjPUpeTxDKPjsvF-Tr-_ffdl_7G4-f_i0f3vT2X5UtbOjnUfUqHoxMuFGO3FofxwERzk45hjOFlA7oRGdhl27aWUdHwDsCBb7a_Ly5HvM6fuKpZrFF4shQMS0FiNaRIJLydWDKFdK9HpUO93QF2d0nRZ05pj9AvnO_Im5AfIE2JxKyTj_RTgz922agzm1ae7bNEyb1maTvf5HZn2F6lOsGXx4SPzmJMaW5w-P2RTrscXufG7FGpf8_w1-A7NLwOU
CitedBy_id crossref_primary_10_1016_j_carbpol_2017_08_112
crossref_primary_10_1016_j_envres_2023_116458
crossref_primary_10_1016_j_jddst_2025_106690
crossref_primary_10_1016_j_lfs_2019_117032
crossref_primary_10_3390_polym15132928
crossref_primary_10_1016_j_jss_2017_02_010
crossref_primary_10_1007_s12272_017_0979_x
crossref_primary_10_1016_j_sjbs_2019_03_007
crossref_primary_10_1557_s43578_022_00882_x
crossref_primary_10_3390_ma13214995
crossref_primary_10_1039_C8RA01898G
crossref_primary_10_1134_S0965545X17060025
crossref_primary_10_1016_j_jddst_2020_102018
crossref_primary_10_1021_acs_biomac_0c00663
crossref_primary_10_1049_iet_nbt_2018_5171
crossref_primary_10_2174_2210303108666181109120710
crossref_primary_10_1007_s11164_018_3340_1
crossref_primary_10_1016_j_msec_2017_03_058
crossref_primary_10_1016_j_procbio_2022_02_021
crossref_primary_10_3390_pharmaceutics12040300
crossref_primary_10_1007_s13726_022_01093_1
crossref_primary_10_1016_j_polymer_2025_128020
crossref_primary_10_1177_1010428317734691
crossref_primary_10_3390_biom9120758
crossref_primary_10_15171_apb_2020_001
crossref_primary_10_1016_j_colsurfb_2017_08_042
crossref_primary_10_1016_j_jddst_2023_104371
crossref_primary_10_4103_JCRP_JCRP_10_19
crossref_primary_10_1016_j_carbpol_2021_117907
crossref_primary_10_18632_oncotarget_6553
crossref_primary_10_1186_s40580_022_00343_5
crossref_primary_10_1016_j_lfs_2022_120922
crossref_primary_10_1055_a_1201_2602
crossref_primary_10_2174_1389201024666230202160504
crossref_primary_10_1016_j_jconrel_2017_06_001
crossref_primary_10_2217_nnm_2018_0227
crossref_primary_10_1007_s13277_015_4634_1
crossref_primary_10_3109_21691401_2016_1146736
crossref_primary_10_3389_fnano_2021_699266
crossref_primary_10_1177_1533033820962114
crossref_primary_10_1002_smll_202305336
crossref_primary_10_1016_j_colsurfb_2016_09_020
crossref_primary_10_1002_jcp_26538
crossref_primary_10_3109_02652048_2016_1169325
crossref_primary_10_1016_j_ijbiomac_2015_12_002
crossref_primary_10_1002_asia_201701227
crossref_primary_10_1016_j_sajb_2022_04_021
crossref_primary_10_2174_0113892010242028231002075512
crossref_primary_10_1016_j_lfs_2023_121504
crossref_primary_10_1016_j_carbpol_2016_01_059
crossref_primary_10_1016_j_jddst_2019_03_036
crossref_primary_10_3390_ijms19092791
crossref_primary_10_3390_ijms22147429
crossref_primary_10_1007_s12247_023_09770_1
crossref_primary_10_3390_molecules27165154
crossref_primary_10_1002_btpr_2876
crossref_primary_10_1007_s13346_019_00680_9
crossref_primary_10_3109_10837450_2015_1116565
crossref_primary_10_3390_md13042158
crossref_primary_10_3390_pharmaceutics15092216
crossref_primary_10_1007_s10924_018_1282_8
crossref_primary_10_1016_j_tifs_2018_06_011
crossref_primary_10_1007_s13738_020_02031_9
crossref_primary_10_1016_j_colsurfb_2016_05_023
crossref_primary_10_1016_S1875_5364_15_30061_3
crossref_primary_10_1002_iub_2252
crossref_primary_10_1080_00914037_2023_2230340
crossref_primary_10_2174_2212796814999201116211648
crossref_primary_10_1016_j_ejmcr_2024_100172
crossref_primary_10_1016_j_reactfunctpolym_2021_104849
crossref_primary_10_1016_j_jddst_2022_103151
crossref_primary_10_1002_wnan_1353
crossref_primary_10_1021_acsami_7b01087
crossref_primary_10_1002_ptr_7240
crossref_primary_10_1016_j_biopha_2021_111730
crossref_primary_10_1186_s12885_015_1291_0
crossref_primary_10_1016_j_jddst_2021_102323
crossref_primary_10_1007_s00289_019_02734_x
crossref_primary_10_1080_02652048_2019_1665117
crossref_primary_10_1177_1010428317695019
crossref_primary_10_1016_j_ijbiomac_2023_126581
crossref_primary_10_1021_acsabm_0c00835
crossref_primary_10_1002_pat_4759
crossref_primary_10_1098_rsos_181027
crossref_primary_10_3109_10717544_2015_1037970
crossref_primary_10_1016_j_inoche_2024_112430
crossref_primary_10_1615_OncoTherap_2022044940
crossref_primary_10_1016_j_carbpol_2019_115398
crossref_primary_10_1016_j_addr_2019_04_007
crossref_primary_10_1016_j_carbpol_2017_10_102
crossref_primary_10_1016_j_nano_2021_102369
crossref_primary_10_2147_IJN_S375229
crossref_primary_10_3390_metabo12070639
crossref_primary_10_1080_17425247_2017_1241230
crossref_primary_10_1016_j_ijbiomac_2025_140441
crossref_primary_10_1007_s11814_016_0243_y
crossref_primary_10_3109_1061186X_2015_1055570
crossref_primary_10_3390_nano12040696
crossref_primary_10_3390_jfb14080408
crossref_primary_10_1016_j_semcancer_2020_06_014
crossref_primary_10_1016_j_ijbiomac_2025_141150
crossref_primary_10_1002_adbi_201800241
crossref_primary_10_1002_jcp_27442
crossref_primary_10_1016_j_polymertesting_2017_11_020
crossref_primary_10_3892_mmr_2017_7250
crossref_primary_10_1016_j_ijpharm_2022_121940
crossref_primary_10_1002_ptr_8394
crossref_primary_10_1016_j_jconrel_2019_06_017
crossref_primary_10_1080_07391102_2021_1879270
crossref_primary_10_1002_ceat_201800478
crossref_primary_10_1080_01635581_2017_1285405
crossref_primary_10_1039_D4TB02354D
crossref_primary_10_2174_1574892817666221011094619
crossref_primary_10_1016_j_colsurfb_2015_02_048
crossref_primary_10_1016_j_ijbiomac_2022_09_196
crossref_primary_10_1177_0883911517710811
Cites_doi 10.1080/10837450701702842
10.1002/jor.20129
10.1002/mnfr.201000310
10.1016/j.carbpol.2010.07.028
10.1016/j.ejps.2009.02.019
10.1163/092050611X581534
10.1016/j.colsurfb.2012.06.024
10.1200/JCO.2000.18.16.2938
10.1159/000090238
10.1016/j.colsurfb.2010.03.039
10.1016/j.carbpol.2010.11.056
10.1016/j.carbpol.2010.08.052
10.1159/000028401
10.3748/wjg.v18.i47.6951
10.1248/yakushi.130.801
10.1016/S0304-8853(00)01256-7
10.1016/j.jconrel.2005.06.006
10.1158/1078-0432.CCR-04-2216
10.1016/j.canlet.2004.06.019
10.1002/bmc.795
10.1016/0142-9612(95)93575-X
10.1016/S0022-2143(97)90107-4
10.1016/j.colsurfb.2012.11.031
10.1111/j.1745-7254.2006.00421.x
10.1016/j.jconrel.2004.08.010
10.1158/1078-0432.CCR-08-0024
10.1016/j.jcis.2010.10.024
10.1002/jps.21916
10.1007/s00280-011-1749-y
10.3748/wjg.v18.i42.6076
10.1002/ijc.2910550604
10.1016/j.addr.2010.10.008
10.1016/S0378-5173(03)00271-0
10.1211/jpp.58.9.0003
10.1016/j.canlet.2007.03.005
10.1166/jbn.2012.1365
10.1016/S0031-6997(24)01494-7
10.1517/14728221003769903
10.1166/jnn.2010.1415
10.1016/j.bcp.2009.09.003
10.1186/1471-2407-8-103
10.1155/2010/641545
10.1016/j.addr.2009.09.004
10.1021/ic301050v
10.1016/j.carbpol.2009.05.028
10.2147/IJN.S33607
10.1016/j.ijpharm.2011.06.030
10.7150/ijms.7.398
10.1016/j.jcis.2010.10.054
10.1007/s11095-005-7547-7
10.1016/j.bbrc.2005.04.143
10.1016/j.jconrel.2010.11.018
10.1074/jbc.273.1.1
10.1158/1535-7163.MCT-07-2272
10.3748/wjg.v18.i19.2383
10.1186/1477-3155-5-3
10.1016/j.colsurfb.2013.06.032
10.1634/theoncologist.6-2-162
10.1016/j.drudis.2011.09.009
10.1016/S0021-9673(02)01536-4
10.1016/j.nano.2011.06.014
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright © 2014 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2014.06.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 2743
ExternalDocumentID 24946270
10_1016_j_bbagen_2014_06_004
S0304416514002244
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-c9cf9e6e532902d9cb1a304721e47d0d0efcae6d26eed6a8fca65cd17aac9ace3
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Fri Jul 11 13:27:57 EDT 2025
Fri Jul 11 16:25:05 EDT 2025
Thu Apr 03 07:01:14 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Tue Jul 01 05:07:47 EDT 2025
Fri Feb 23 02:32:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords DDA
H and E
PT
RNA
COX-2
5-Fluorouracil
TCS
EPR
CO2
FT-IR
DLS
Mw
MTT
AUC
RPM I
BSA
PPP
FdUMP
Colon cancer
TPP
OD
FBS
pH
IEC 6
Thiolated chitosan
Hb
Curcumin
HPLC
Rh 123
RNase
PBS
aPTT
ACD
5-FU-TCS-NPs
CRC-TCS-NPs
FUTP
EDTA
NPs
HT29
CRC
DNA
PI
SEM
FdUTP
Pharmacokinetics
5-FU
JC-1
Combinatorial nanomedicine
Language English
License Copyright © 2014 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-c9cf9e6e532902d9cb1a304721e47d0d0efcae6d26eed6a8fca65cd17aac9ace3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24946270
PQID 1552369586
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2000214415
proquest_miscellaneous_1552369586
pubmed_primary_24946270
crossref_primary_10_1016_j_bbagen_2014_06_004
crossref_citationtrail_10_1016_j_bbagen_2014_06_004
elsevier_sciencedirect_doi_10_1016_j_bbagen_2014_06_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Diasio, Johnson (bb0040) 2000; 61
Kakkar, Singh, Singla, Kaur (bb0120) 2011; 55
Jeremy, Hasan (bb0095) 2007; 255
Hwang, Ha, Park (bb0055) 2005; 332
Rejinold, Muthunarayanan, Muthuchelian, Chennazhi, Nair, Jayakumar (bb0225) 2011; 84
Sakamoto, Shin (bb0010) 2010; 14
Yassin, Anwer, Mowafy, Elbagory, Bayomi, Alsarra (bb0230) 2010; 7
Ho, Townsend, Luna, Bodey (bb0335) 1986; 6
Ma, Shayeganpour, Brocks, Lavasanifar, Samuel (bb0180) 2007; 21
Dhillon, Aggarwal, Newman, Wolff, Kunnumakkara, Abbruzzese, Ng, Badmaev, Kurzrock (bb0080) 2008; 14
Zhongfa, Chiu, Wang, Chen, Yen, Fan-Havard (bb0310) 2012; 69
Tsai, Chien, Lin, Tsai (bb0130) 2011; 416
Smitha, Anitha, Furuike, Tamura, Nair, Jayakumar (bb0195) 2013; 104
Viguier, Boige, Miquel, Pocard, Giraudeau, Sabourin, Ducreux, Sarasin, Praz (bb0045) 2005; 11
Srimuangwong, Tocharus, Chintana, Suksamrarn, Tocharus (bb0140) 2012; 18
Park (bb0345) 1995; 16
Ireson, Jones, Orr, Coughtrie, Boocock, Williams, Farmer, Steward, Gescher (bb0110) 2002; 11
Song, Feng, Sun, Guo, Gao, Li, Zhai (bb0185) 2011; 354
Anitha, Maya, Deepa, Chennazhi, Nair, Jayakumar (bb0155) 2012; 23
Yallapu, Jaggi, Chauhan (bb0250) 2010; 79
Aranaz, Mengíbar, Harris, Panos, Miralles, Acosta, Galed, Heras (bb0265) 2009; 3
Feng, Song, Zhai (bb0305) 2012; 7
Wu, Hang, Yang, Chen, Lin, Chiang, Lu, Yang, Lai, Ko, Chung (bb0090) 2010; 30
Ghahremankhani, Dorkoosh, Dinarvand (bb0320) 2008; 13
Cheng, Li, Wan, He, Han, Chen, Yang, Wang, Xu, Ye, Zha (bb0295) 2012; 18
Gutierrez, Thi, Silverman, de Oliveira, Svensson, Hoek, Sanchez, Reiner, Gaynor, Pryzdial, Conway, Orrantia, Ruiz, Av-Gay, Bach (bb0270) 2012; 8
Guo, Zhou, Fu, Verma, Tripathy, Frenkel, Becerra (bb0050) 2006; 27
Anitha, Divya Rani, Krishna, Sreeja, Selvamurugan, Nair, Tamura, Jayakumar (bb0215) 2009; 78
Devika, Varsha (bb0220) 2006; 7
Pisani, Parkin, Ferlay (bb0005) 1993; 55
Shabir (bb0190) 2003; 987
Khalil, do Nascimento, Casa, Dalmolin, deMattos, Hoss (bb0300) 2013; 101
King, Perry (bb0350) 2001; 6
Acharya, Sahoo (bb0125) 2011; 63
Anand, Nair, Sung, Kunnumakkara, Yadav, Tekmal, Aggarwal (bb0175) 2010; 79
Yu, Zhang, Zheng, Fan, Chen (bb0280) 2012; 51
Shaikh, Ankola, Beniwal, Singh, Kumar (bb0115) 2009; 37
Manjunath, Venkateswarlu (bb0200) 2005; 107
Bisht, Feldmann, Soni, Ravi, Karikar, Maitra, Maitra (bb0245) 2007; 5
Kubista, Trieb, Sevelda, Toma, Arrich, Heffeter, Elbling, Sutterluty, Scotlandi, Kotz, Micksche, Berger (bb0165) 2006; 24
Koziara, Oh, Akers, Ferraris, Mumper (bb0275) 2005; 22
Yan, Chen, Gu, Qin (bb0240) 2006; 58
Nakamura, Yasunaga, Segawa, Ko, Moul, Srivastava, Rhim (bb0085) 2002; 21
Li, Wang, Jiang, Guan (bb0015) 2008; 15
Sun, Estrov, Ji, Coombes, Harris, Kurzrock (bb0075) 2008; 7
Hanif, Qiao, Shiff, Rigas (bb0105) 1997; 130
Moghimi, Hunter, Murray (bb0340) 2001; 53
Su, Lin, Li, Chung, Yang, Ip, Lin, Chen (bb0100) 2006; 26
Zhang, Li, Lang, Tang, Li, Shen (bb0030) 2011; 354
Alexiou, Arnold, Hulin, Klein, Renz, Parak, Bergemann, Lubbe (bb0205) 2001; 225
Huang, Li, Hu, Cui (bb0210) 2010
Jiabei, Chao, Hok, Shaoping, Qingwen, Ying (bb0315) 2013; 111
Yan, Gu, Guo, Chen (bb0025) 2010; 130
Yallapu, Jaggi, Chauhan (bb0135) 2012; 17
de Gramont, Figer, Seymour, Homerin, Hmissi, Cassidy, Boni, Cortes-Funes, Cervantes, Freyer, Papamichael, Le Bail, Louvet, Hendler, de Braud, Wilson, Morvan, Bonetti (bb0035) 2000; 18
Srimuangwong, Tocharus, Tocharus, Suksamrarn, Chintana (bb0070) 2012; 18
Agarwal, Taylor, Chernov, Chernova, Stark (bb0285) 1998; 273
Du, Jiang, Xia, Zhong (bb0065) 2006; 52
Cheng, Chen, Wang, Xu, He, Han, Zhang (bb0290) 2014; 24
Anitha, Deepa, Chennazhi, Nair, Tamura, Jayakumar (bb0150) 2011; 83
Choi, Oh, Choy (bb0170) 2010; 10
Anitha, Chennazhi, Nair, Jayakumar (bb0160) 2012; 8
Bernkop-Schnurch, Hornof, Zoidl (bb0145) 2003; 260
Thomas, Kapanen, Hare, Ramsay, Edwards, Karlsson, Bally (bb0325) 2011; 150
Schmidt, Gonzalez, Derendorf (bb0330) 2010; 99
Agnihotri, Mallikarjuna, Aminabhavi (bb0260) 2004; 100
Rejinold, Chennazhi, Nair, Tamura, Jayakumar (bb0235) 2011; 83
Ortiz, Prados, Melguizo, Arias, Ruiz, Alvarez, Caba, Luque, Segura, Aranega (bb0020) 2012; 7
Carnesecchi, Bras-Goncalves, Bradaia, Zeisel, Gosse, Poupon, Raul (bb0060) 2004; 215
Kean, Thanou (bb0255) 2010; 62
Khalil (10.1016/j.bbagen.2014.06.004_bb0300) 2013; 101
Ghahremankhani (10.1016/j.bbagen.2014.06.004_bb0320) 2008; 13
Anand (10.1016/j.bbagen.2014.06.004_bb0175) 2010; 79
Sakamoto (10.1016/j.bbagen.2014.06.004_bb0010) 2010; 14
Yan (10.1016/j.bbagen.2014.06.004_bb0240) 2006; 58
Tsai (10.1016/j.bbagen.2014.06.004_bb0130) 2011; 416
Anitha (10.1016/j.bbagen.2014.06.004_bb0155) 2012; 23
Rejinold (10.1016/j.bbagen.2014.06.004_bb0225) 2011; 84
Huang (10.1016/j.bbagen.2014.06.004_bb0210) 2010
Cheng (10.1016/j.bbagen.2014.06.004_bb0290) 2014; 24
de Gramont (10.1016/j.bbagen.2014.06.004_bb0035) 2000; 18
Smitha (10.1016/j.bbagen.2014.06.004_bb0195) 2013; 104
Zhang (10.1016/j.bbagen.2014.06.004_bb0030) 2011; 354
Srimuangwong (10.1016/j.bbagen.2014.06.004_bb0140) 2012; 18
Carnesecchi (10.1016/j.bbagen.2014.06.004_bb0060) 2004; 215
Cheng (10.1016/j.bbagen.2014.06.004_bb0295) 2012; 18
Du (10.1016/j.bbagen.2014.06.004_bb0065) 2006; 52
Kakkar (10.1016/j.bbagen.2014.06.004_bb0120) 2011; 55
Anitha (10.1016/j.bbagen.2014.06.004_bb0215) 2009; 78
Aranaz (10.1016/j.bbagen.2014.06.004_bb0265) 2009; 3
Diasio (10.1016/j.bbagen.2014.06.004_bb0040) 2000; 61
Agnihotri (10.1016/j.bbagen.2014.06.004_bb0260) 2004; 100
King (10.1016/j.bbagen.2014.06.004_bb0350) 2001; 6
Choi (10.1016/j.bbagen.2014.06.004_bb0170) 2010; 10
Schmidt (10.1016/j.bbagen.2014.06.004_bb0330) 2010; 99
Wu (10.1016/j.bbagen.2014.06.004_bb0090) 2010; 30
Hwang (10.1016/j.bbagen.2014.06.004_bb0055) 2005; 332
Kean (10.1016/j.bbagen.2014.06.004_bb0255) 2010; 62
Dhillon (10.1016/j.bbagen.2014.06.004_bb0080) 2008; 14
Alexiou (10.1016/j.bbagen.2014.06.004_bb0205) 2001; 225
Koziara (10.1016/j.bbagen.2014.06.004_bb0275) 2005; 22
Ortiz (10.1016/j.bbagen.2014.06.004_bb0020) 2012; 7
Acharya (10.1016/j.bbagen.2014.06.004_bb0125) 2011; 63
Anitha (10.1016/j.bbagen.2014.06.004_bb0160) 2012; 8
Yan (10.1016/j.bbagen.2014.06.004_bb0025) 2010; 130
Hanif (10.1016/j.bbagen.2014.06.004_bb0105) 1997; 130
Guo (10.1016/j.bbagen.2014.06.004_bb0050) 2006; 27
Park (10.1016/j.bbagen.2014.06.004_bb0345) 1995; 16
Ho (10.1016/j.bbagen.2014.06.004_bb0335) 1986; 6
Anitha (10.1016/j.bbagen.2014.06.004_bb0150) 2011; 83
Yallapu (10.1016/j.bbagen.2014.06.004_bb0135) 2012; 17
Moghimi (10.1016/j.bbagen.2014.06.004_bb0340) 2001; 53
Jeremy (10.1016/j.bbagen.2014.06.004_bb0095) 2007; 255
Bernkop-Schnurch (10.1016/j.bbagen.2014.06.004_bb0145) 2003; 260
Ireson (10.1016/j.bbagen.2014.06.004_bb0110) 2002; 11
Kubista (10.1016/j.bbagen.2014.06.004_bb0165) 2006; 24
Devika (10.1016/j.bbagen.2014.06.004_bb0220) 2006; 7
Pisani (10.1016/j.bbagen.2014.06.004_bb0005) 1993; 55
Nakamura (10.1016/j.bbagen.2014.06.004_bb0085) 2002; 21
Shaikh (10.1016/j.bbagen.2014.06.004_bb0115) 2009; 37
Li (10.1016/j.bbagen.2014.06.004_bb0015) 2008; 15
Gutierrez (10.1016/j.bbagen.2014.06.004_bb0270) 2012; 8
Yu (10.1016/j.bbagen.2014.06.004_bb0280) 2012; 51
Sun (10.1016/j.bbagen.2014.06.004_bb0075) 2008; 7
Yassin (10.1016/j.bbagen.2014.06.004_bb0230) 2010; 7
Song (10.1016/j.bbagen.2014.06.004_bb0185) 2011; 354
Su (10.1016/j.bbagen.2014.06.004_bb0100) 2006; 26
Yallapu (10.1016/j.bbagen.2014.06.004_bb0250) 2010; 79
Zhongfa (10.1016/j.bbagen.2014.06.004_bb0310) 2012; 69
Feng (10.1016/j.bbagen.2014.06.004_bb0305) 2012; 7
Shabir (10.1016/j.bbagen.2014.06.004_bb0190) 2003; 987
Rejinold (10.1016/j.bbagen.2014.06.004_bb0235) 2011; 83
Bisht (10.1016/j.bbagen.2014.06.004_bb0245) 2007; 5
Ma (10.1016/j.bbagen.2014.06.004_bb0180) 2007; 21
Agarwal (10.1016/j.bbagen.2014.06.004_bb0285) 1998; 273
Srimuangwong (10.1016/j.bbagen.2014.06.004_bb0070) 2012; 18
Thomas (10.1016/j.bbagen.2014.06.004_bb0325) 2011; 150
Jiabei (10.1016/j.bbagen.2014.06.004_bb0315) 2013; 111
Manjunath (10.1016/j.bbagen.2014.06.004_bb0200) 2005; 107
Viguier (10.1016/j.bbagen.2014.06.004_bb0045) 2005; 11
30876689 - Biochim Biophys Acta Gen Subj. 2019 Mar 12
References_xml – volume: 62
  start-page: 3
  year: 2010
  end-page: 11
  ident: bb0255
  article-title: Biodegradation, biodistribution and toxicity of chitosan
  publication-title: Adv. Drug Deliv. Rev.
– volume: 14
  start-page: 593
  year: 2010
  end-page: 601
  ident: bb0010
  article-title: Targeting NF-κB for colorectal cancer
  publication-title: Expert Opin. Ther. Targets
– volume: 17
  start-page: 71
  year: 2012
  end-page: 80
  ident: bb0135
  article-title: Curcumin nanoformulations: a future nanomedicine for cancer
  publication-title: Drug Discov. Today
– volume: 6
  start-page: 781
  year: 1986
  end-page: 784
  ident: bb0335
  article-title: Distribution and inhibition of dihydrouracil dehydrogenase activities in human tissues using 5-fluorouracil as a substrate
  publication-title: Anticancer Res.
– volume: 5
  start-page: 3
  year: 2007
  ident: bb0245
  article-title: Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy
  publication-title: J. Nanobiotechnol.
– year: 2010
  ident: bb0210
  article-title: Synthesis and characterization of bovine serum albumin-conjugated copper sulfide nanocomposites
  publication-title: Journal of Nanomaterials
– volume: 260
  start-page: 229
  year: 2003
  end-page: 237
  ident: bb0145
  article-title: Thiolated polymers–thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates
  publication-title: Int. J. Pharm.
– volume: 273
  start-page: 1
  year: 1998
  end-page: 4
  ident: bb0285
  article-title: The p53 network
  publication-title: J. Biol. Chem.
– volume: 101
  start-page: 353
  year: 2013
  end-page: 360
  ident: bb0300
  article-title: Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats
  publication-title: Colloids Surf. B
– volume: 150
  start-page: 212
  year: 2011
  end-page: 219
  ident: bb0325
  article-title: Development of a liposomal nanoparticle formulation of 5-fluorouracil for parenteral administration: formulation design, pharmacokinetics and efficacy
  publication-title: J. Control. Release
– volume: 18
  start-page: 6951
  year: 2012
  end-page: 6959
  ident: bb0070
  article-title: Effects of hexahydrocurcumin in combination with 5-fluorouracil on dimethylhydrazine-induced colon cancer in rats
  publication-title: World J. Gastroenterol.
– volume: 63
  start-page: 170
  year: 2011
  end-page: 183
  ident: bb0125
  article-title: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect
  publication-title: Adv. Drug Deliv. Rev.
– volume: 354
  start-page: 116
  year: 2011
  end-page: 123
  ident: bb0185
  article-title: Curcumin-loaded PLGA–PEG–PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo
  publication-title: J. Colloid Interface Sci.
– volume: 107
  start-page: 215
  year: 2005
  end-page: 228
  ident: bb0200
  article-title: Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration
  publication-title: J. Control. Release
– volume: 18
  start-page: 2938
  year: 2000
  end-page: 2947
  ident: bb0035
  article-title: Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer
  publication-title: J. Clin. Oncol.
– volume: 79
  start-page: 330
  year: 2010
  end-page: 338
  ident: bb0175
  article-title: Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo
  publication-title: Biochem. Pharmacol.
– volume: 987
  start-page: 57
  year: 2003
  end-page: 66
  ident: bb0190
  article-title: Validation of high-performance liquid chromatography methods for pharmaceutical analysis: understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization
  publication-title: J. Chromatogr. A
– volume: 55
  start-page: 891
  year: 1993
  end-page: 903
  ident: bb0005
  article-title: Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden
  publication-title: Int. J. Cancer
– volume: 13
  start-page: 49
  year: 2008
  end-page: 55
  ident: bb0320
  article-title: PLGA–PEG–PLGA tri-block co-polymers as in situ gel-forming peptide delivery system: effect of formulation properties on peptide release
  publication-title: Pharm. Dev. Technol.
– volume: 16
  start-page: 1123
  year: 1995
  end-page: 1130
  ident: bb0345
  article-title: Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition
  publication-title: Biomaterials
– volume: 27
  start-page: 1375
  year: 2006
  end-page: 1381
  ident: bb0050
  article-title: Efficacy of sequential treatment of HCT116 colon cancer monolayers and xenografts with docetaxel, flavopiridol, and 5-fluorouracil
  publication-title: Acta Pharmacol. Sin.
– volume: 14
  start-page: 4491
  year: 2008
  end-page: 4499
  ident: bb0080
  article-title: Phase II trial of curcumin in patients with advanced pancreatic cancer
  publication-title: Clin. Cancer Res.
– volume: 83
  start-page: 66
  year: 2011
  end-page: 73
  ident: bb0150
  article-title: Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications
  publication-title: Carbohydr. Polym.
– volume: 18
  start-page: 6076
  year: 2012
  end-page: 6087
  ident: bb0295
  article-title: Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects
  publication-title: World J. Gastroenterol.
– volume: 37
  start-page: 223
  year: 2009
  end-page: 230
  ident: bb0115
  article-title: Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer
  publication-title: Eur. J. Pharm. Sci.
– volume: 61
  start-page: 199
  year: 2000
  end-page: 203
  ident: bb0040
  article-title: The role of pharmacogenetics and pharmacogenomics in cancer chemotherapy with 5-fluorouracil
  publication-title: Pharmacology
– volume: 84
  start-page: 407
  year: 2011
  end-page: 416
  ident: bb0225
  article-title: Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro
  publication-title: Carbohydr. Polym.
– volume: 10
  start-page: 2913
  year: 2010
  end-page: 2916
  ident: bb0170
  article-title: Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study
  publication-title: J. Nanosci. Nanotechnol.
– volume: 15
  start-page: 103
  year: 2008
  end-page: 111
  ident: bb0015
  article-title: Pharmacokinetic characteristics and anticancer effects of 5-fluorouracil loaded nanoparticles
  publication-title: BMC Cancer
– volume: 11
  start-page: 105
  year: 2002
  end-page: 111
  ident: bb0110
  article-title: Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– volume: 79
  start-page: 113
  year: 2010
  end-page: 125
  ident: bb0250
  article-title: beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells
  publication-title: Colloids Surf. B
– volume: 78
  start-page: 672
  year: 2009
  end-page: 677
  ident: bb0215
  article-title: Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan,
  publication-title: Carbohydr. Polym.
– volume: 354
  start-page: 202
  year: 2011
  end-page: 209
  ident: bb0030
  article-title: Folate-functionalized nanoparticles for controlled 5-fluorouracil delivery
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 398
  year: 2010
  end-page: 408
  ident: bb0230
  article-title: Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer
  publication-title: Int. J. Med. Sci.
– volume: 332
  start-page: 433
  year: 2005
  end-page: 440
  ident: bb0055
  article-title: Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 11
  start-page: 6212
  year: 2005
  end-page: 6217
  ident: bb0045
  article-title: ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer
  publication-title: Clin. Cancer Res.
– volume: 24
  start-page: 695
  year: 2014
  end-page: 710
  ident: bb0290
  article-title: Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics
  publication-title: Int. J. Nanomedicine
– volume: 21
  start-page: 546
  year: 2007
  end-page: 552
  ident: bb0180
  article-title: High-performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin
  publication-title: Biomed. Chromatogr.
– volume: 255
  start-page: 170
  year: 2007
  end-page: 181
  ident: bb0095
  article-title: Curcumin for chemoprevention of colon cancer
  publication-title: Cancer Lett.
– volume: 7
  start-page: 464
  year: 2008
  end-page: 473
  ident: bb0075
  article-title: Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells
  publication-title: Mol. Cancer Ther.
– volume: 18
  start-page: 2383
  year: 2012
  end-page: 2389
  ident: bb0140
  article-title: Hexahydrocurcumin enhances inhibitory effect of 5-fluorouracil on HT-29 human colon cancer cells
  publication-title: World J. Gastroenterol.
– volume: 8
  start-page: 328
  year: 2012
  end-page: 336
  ident: bb0270
  article-title: Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 22
  start-page: 1821
  year: 2005
  end-page: 1828
  ident: bb0275
  article-title: Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles
  publication-title: Pharm. Res.
– volume: 24
  start-page: 1145
  year: 2006
  end-page: 1152
  ident: bb0165
  article-title: Anticancer effects of zoledronic acid against human osteosarcoma cells
  publication-title: J. Orthop. Res.
– volume: 21
  start-page: 825
  year: 2002
  end-page: 830
  ident: bb0085
  article-title: Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines
  publication-title: Int. J. Oncol.
– volume: 6
  start-page: 162
  year: 2001
  end-page: 176
  ident: bb0350
  article-title: Hepatotoxicity of chemotherapy
  publication-title: Oncologist
– volume: 23
  start-page: 1381
  year: 2012
  end-page: 1400
  ident: bb0155
  article-title: Curcumin-loaded
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 130
  start-page: 576
  year: 1997
  end-page: 584
  ident: bb0105
  article-title: Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway
  publication-title: J. Lab. Clin. Med.
– volume: 225
  start-page: 187
  year: 2001
  end-page: 193
  ident: bb0205
  article-title: Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting
  publication-title: J. Magn. Magn. Mater.
– volume: 7
  start-page: 95
  year: 2012
  end-page: 107
  ident: bb0020
  article-title: 5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer
  publication-title: Int. J. Nanomedicine
– volume: 416
  start-page: 331
  year: 2011
  end-page: 338
  ident: bb0130
  article-title: Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration
  publication-title: Int. J. Pharm.
– volume: 104
  start-page: 245
  year: 2013
  end-page: 253
  ident: bb0195
  article-title: In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery
  publication-title: Colloids Surf. B
– volume: 3
  start-page: 203
  year: 2009
  end-page: 230
  ident: bb0265
  article-title: Functional characterization of chitin and chitosan
  publication-title: Curr. Chem. Biol.
– volume: 99
  start-page: 1107
  year: 2010
  end-page: 1122
  ident: bb0330
  article-title: Significance of protein binding in pharmacokinetics and pharmacodynamics
  publication-title: J. Pharm. Sci.
– volume: 8
  start-page: 29
  year: 2012
  end-page: 42
  ident: bb0160
  article-title: 5-Flourouracil loaded
  publication-title: J. Biomed. Nanotechnol.
– volume: 100
  start-page: 5
  year: 2004
  end-page: 28
  ident: bb0260
  article-title: Recent advances on chitosan-based micro- and nanoparticles in drug delivery
  publication-title: J. Control. Release
– volume: 215
  start-page: 53
  year: 2004
  end-page: 59
  ident: bb0060
  article-title: Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts
  publication-title: Cancer Lett.
– volume: 83
  start-page: 776
  year: 2011
  end-page: 786
  ident: bb0235
  article-title: Biodegradable and thermo-sensitive chitosan-
  publication-title: Carbohydr. Polym.
– volume: 26
  start-page: 4379
  year: 2006
  end-page: 4389
  ident: bb0100
  article-title: Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca
  publication-title: Anticancer Res.
– volume: 51
  start-page: 8956
  year: 2012
  end-page: 8963
  ident: bb0280
  article-title: Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles
  publication-title: Inorg. Chem.
– volume: 130
  start-page: 801
  year: 2010
  end-page: 804
  ident: bb0025
  article-title: In vivo biodistribution for tumor targeting of 5-fluorouracil loaded
  publication-title: Pharm. Soc. Jpn.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 6
  ident: bb0220
  article-title: Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note
  publication-title: AAPS Pharm. Sci. Technol.
– volume: 69
  start-page: 679
  year: 2012
  end-page: 689
  ident: bb0310
  article-title: Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice
  publication-title: Cancer Chemother. Pharmacol.
– volume: 7
  start-page: 4089
  year: 2012
  end-page: 4098
  ident: bb0305
  article-title: Preparation and in vivo pharmacokinetics of curcumin-loaded PCL–PEG–PCL triblock copolymeric nanoparticles
  publication-title: Int. J. Nanomedicine
– volume: 58
  start-page: 1177
  year: 2006
  end-page: 1186
  ident: bb0240
  article-title: Nanoparticles of 5-fluorouracil (5-FU) loaded N-succinyl–chitosan (Suc–Chi) for cancer chemotherapy: preparation, characterization — in vitro drug release and antitumour activity
  publication-title: J. Pharm. Pharmacol.
– volume: 111
  start-page: 367
  year: 2013
  end-page: 375
  ident: bb0315
  article-title: Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability
  publication-title: Colloids Surf. B
– volume: 30
  start-page: 2125
  year: 2010
  end-page: 2134
  ident: bb0090
  article-title: Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade- and mitochondria-dependent pathways
  publication-title: Anticancer Res.
– volume: 52
  start-page: 23
  year: 2006
  end-page: 28
  ident: bb0065
  article-title: Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29
  publication-title: Chemotherapy
– volume: 55
  start-page: 495
  year: 2011
  end-page: 503
  ident: bb0120
  article-title: Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin
  publication-title: Mol. Nutr. Food Res.
– volume: 53
  start-page: 283
  year: 2001
  end-page: 318
  ident: bb0340
  article-title: Long-circulating and target-specific nanoparticles: theory to practice
  publication-title: Pharmacol. Rev.
– volume: 13
  start-page: 49
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.004_bb0320
  article-title: PLGA–PEG–PLGA tri-block co-polymers as in situ gel-forming peptide delivery system: effect of formulation properties on peptide release
  publication-title: Pharm. Dev. Technol.
  doi: 10.1080/10837450701702842
– volume: 24
  start-page: 1145
  year: 2006
  ident: 10.1016/j.bbagen.2014.06.004_bb0165
  article-title: Anticancer effects of zoledronic acid against human osteosarcoma cells
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20129
– volume: 55
  start-page: 495
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.004_bb0120
  article-title: Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201000310
– volume: 3
  start-page: 203
  year: 2009
  ident: 10.1016/j.bbagen.2014.06.004_bb0265
  article-title: Functional characterization of chitin and chitosan
  publication-title: Curr. Chem. Biol.
– volume: 83
  start-page: 66
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.004_bb0150
  article-title: Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2010.07.028
– volume: 37
  start-page: 223
  year: 2009
  ident: 10.1016/j.bbagen.2014.06.004_bb0115
  article-title: Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2009.02.019
– volume: 23
  start-page: 1381
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0155
  article-title: Curcumin-loaded N,O-carboxymethyl chitosan nanoparticles for cancer drug delivery
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1163/092050611X581534
– volume: 21
  start-page: 825
  year: 2002
  ident: 10.1016/j.bbagen.2014.06.004_bb0085
  article-title: Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines
  publication-title: Int. J. Oncol.
– volume: 101
  start-page: 353
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.004_bb0300
  article-title: Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2012.06.024
– volume: 18
  start-page: 2938
  year: 2000
  ident: 10.1016/j.bbagen.2014.06.004_bb0035
  article-title: Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2000.18.16.2938
– volume: 52
  start-page: 23
  year: 2006
  ident: 10.1016/j.bbagen.2014.06.004_bb0065
  article-title: Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29
  publication-title: Chemotherapy
  doi: 10.1159/000090238
– volume: 79
  start-page: 113
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.004_bb0250
  article-title: beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2010.03.039
– volume: 84
  start-page: 407
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.004_bb0225
  article-title: Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2010.11.056
– volume: 83
  start-page: 776
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.004_bb0235
  article-title: Biodegradable and thermo-sensitive chitosan-g-poly (N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2010.08.052
– volume: 61
  start-page: 199
  year: 2000
  ident: 10.1016/j.bbagen.2014.06.004_bb0040
  article-title: The role of pharmacogenetics and pharmacogenomics in cancer chemotherapy with 5-fluorouracil
  publication-title: Pharmacology
  doi: 10.1159/000028401
– volume: 18
  start-page: 6951
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0070
  article-title: Effects of hexahydrocurcumin in combination with 5-fluorouracil on dimethylhydrazine-induced colon cancer in rats
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v18.i47.6951
– volume: 130
  start-page: 801
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.004_bb0025
  article-title: In vivo biodistribution for tumor targeting of 5-fluorouracil loaded N-succinyl chitosan nanoparticles
  publication-title: Pharm. Soc. Jpn.
  doi: 10.1248/yakushi.130.801
– volume: 225
  start-page: 187
  year: 2001
  ident: 10.1016/j.bbagen.2014.06.004_bb0205
  article-title: Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(00)01256-7
– volume: 107
  start-page: 215
  year: 2005
  ident: 10.1016/j.bbagen.2014.06.004_bb0200
  article-title: Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2005.06.006
– volume: 11
  start-page: 6212
  year: 2005
  ident: 10.1016/j.bbagen.2014.06.004_bb0045
  article-title: ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-04-2216
– volume: 215
  start-page: 53
  issue: 1
  year: 2004
  ident: 10.1016/j.bbagen.2014.06.004_bb0060
  article-title: Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2004.06.019
– volume: 21
  start-page: 546
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.004_bb0180
  article-title: High-performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin
  publication-title: Biomed. Chromatogr.
  doi: 10.1002/bmc.795
– volume: 16
  start-page: 1123
  year: 1995
  ident: 10.1016/j.bbagen.2014.06.004_bb0345
  article-title: Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(95)93575-X
– volume: 26
  start-page: 4379
  year: 2006
  ident: 10.1016/j.bbagen.2014.06.004_bb0100
  article-title: Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3
  publication-title: Anticancer Res.
– volume: 130
  start-page: 576
  year: 1997
  ident: 10.1016/j.bbagen.2014.06.004_bb0105
  article-title: Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway
  publication-title: J. Lab. Clin. Med.
  doi: 10.1016/S0022-2143(97)90107-4
– volume: 104
  start-page: 245
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.004_bb0195
  article-title: In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2012.11.031
– volume: 27
  start-page: 1375
  year: 2006
  ident: 10.1016/j.bbagen.2014.06.004_bb0050
  article-title: Efficacy of sequential treatment of HCT116 colon cancer monolayers and xenografts with docetaxel, flavopiridol, and 5-fluorouracil
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1111/j.1745-7254.2006.00421.x
– volume: 100
  start-page: 5
  year: 2004
  ident: 10.1016/j.bbagen.2014.06.004_bb0260
  article-title: Recent advances on chitosan-based micro- and nanoparticles in drug delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2004.08.010
– volume: 14
  start-page: 4491
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.004_bb0080
  article-title: Phase II trial of curcumin in patients with advanced pancreatic cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-0024
– volume: 354
  start-page: 116
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.004_bb0185
  article-title: Curcumin-loaded PLGA–PEG–PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2010.10.024
– volume: 24
  start-page: 695
  year: 2014
  ident: 10.1016/j.bbagen.2014.06.004_bb0290
  article-title: Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics
  publication-title: Int. J. Nanomedicine
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.bbagen.2014.06.004_bb0220
  article-title: Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note
  publication-title: AAPS Pharm. Sci. Technol.
– volume: 99
  start-page: 1107
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.004_bb0330
  article-title: Significance of protein binding in pharmacokinetics and pharmacodynamics
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.21916
– volume: 69
  start-page: 679
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0310
  article-title: Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-011-1749-y
– volume: 18
  start-page: 6076
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0295
  article-title: Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v18.i42.6076
– volume: 7
  start-page: 95
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0020
  article-title: 5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer
  publication-title: Int. J. Nanomedicine
– volume: 55
  start-page: 891
  year: 1993
  ident: 10.1016/j.bbagen.2014.06.004_bb0005
  article-title: Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910550604
– volume: 63
  start-page: 170
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.004_bb0125
  article-title: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2010.10.008
– volume: 260
  start-page: 229
  year: 2003
  ident: 10.1016/j.bbagen.2014.06.004_bb0145
  article-title: Thiolated polymers–thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(03)00271-0
– volume: 58
  start-page: 1177
  year: 2006
  ident: 10.1016/j.bbagen.2014.06.004_bb0240
  article-title: Nanoparticles of 5-fluorouracil (5-FU) loaded N-succinyl–chitosan (Suc–Chi) for cancer chemotherapy: preparation, characterization — in vitro drug release and antitumour activity
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/jpp.58.9.0003
– volume: 255
  start-page: 170
  issue: 2
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.004_bb0095
  article-title: Curcumin for chemoprevention of colon cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2007.03.005
– volume: 8
  start-page: 29
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0160
  article-title: 5-Flourouracil loaded N,O-carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2012.1365
– volume: 53
  start-page: 283
  year: 2001
  ident: 10.1016/j.bbagen.2014.06.004_bb0340
  article-title: Long-circulating and target-specific nanoparticles: theory to practice
  publication-title: Pharmacol. Rev.
  doi: 10.1016/S0031-6997(24)01494-7
– volume: 6
  start-page: 781
  year: 1986
  ident: 10.1016/j.bbagen.2014.06.004_bb0335
  article-title: Distribution and inhibition of dihydrouracil dehydrogenase activities in human tissues using 5-fluorouracil as a substrate
  publication-title: Anticancer Res.
– volume: 14
  start-page: 593
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.004_bb0010
  article-title: Targeting NF-κB for colorectal cancer
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1517/14728221003769903
– volume: 10
  start-page: 2913
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.004_bb0170
  article-title: Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2010.1415
– volume: 79
  start-page: 330
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.004_bb0175
  article-title: Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2009.09.003
– volume: 15
  start-page: 103
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.004_bb0015
  article-title: Pharmacokinetic characteristics and anticancer effects of 5-fluorouracil loaded nanoparticles
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-8-103
– year: 2010
  ident: 10.1016/j.bbagen.2014.06.004_bb0210
  article-title: Synthesis and characterization of bovine serum albumin-conjugated copper sulfide nanocomposites
  doi: 10.1155/2010/641545
– volume: 62
  start-page: 3
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.004_bb0255
  article-title: Biodegradation, biodistribution and toxicity of chitosan
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2009.09.004
– volume: 51
  start-page: 8956
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0280
  article-title: Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles
  publication-title: Inorg. Chem.
  doi: 10.1021/ic301050v
– volume: 78
  start-page: 672
  year: 2009
  ident: 10.1016/j.bbagen.2014.06.004_bb0215
  article-title: Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2009.05.028
– volume: 7
  start-page: 4089
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0305
  article-title: Preparation and in vivo pharmacokinetics of curcumin-loaded PCL–PEG–PCL triblock copolymeric nanoparticles
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S33607
– volume: 416
  start-page: 331
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.004_bb0130
  article-title: Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.06.030
– volume: 11
  start-page: 105
  year: 2002
  ident: 10.1016/j.bbagen.2014.06.004_bb0110
  article-title: Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– volume: 7
  start-page: 398
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.004_bb0230
  article-title: Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.7.398
– volume: 354
  start-page: 202
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.004_bb0030
  article-title: Folate-functionalized nanoparticles for controlled 5-fluorouracil delivery
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2010.10.054
– volume: 22
  start-page: 1821
  year: 2005
  ident: 10.1016/j.bbagen.2014.06.004_bb0275
  article-title: Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-005-7547-7
– volume: 332
  start-page: 433
  year: 2005
  ident: 10.1016/j.bbagen.2014.06.004_bb0055
  article-title: Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.04.143
– volume: 150
  start-page: 212
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.004_bb0325
  article-title: Development of a liposomal nanoparticle formulation of 5-fluorouracil for parenteral administration: formulation design, pharmacokinetics and efficacy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2010.11.018
– volume: 273
  start-page: 1
  year: 1998
  ident: 10.1016/j.bbagen.2014.06.004_bb0285
  article-title: The p53 network
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.1.1
– volume: 7
  start-page: 464
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.004_bb0075
  article-title: Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-07-2272
– volume: 18
  start-page: 2383
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0140
  article-title: Hexahydrocurcumin enhances inhibitory effect of 5-fluorouracil on HT-29 human colon cancer cells
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v18.i19.2383
– volume: 5
  start-page: 3
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.004_bb0245
  article-title: Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-5-3
– volume: 111
  start-page: 367
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.004_bb0315
  article-title: Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2013.06.032
– volume: 6
  start-page: 162
  year: 2001
  ident: 10.1016/j.bbagen.2014.06.004_bb0350
  article-title: Hepatotoxicity of chemotherapy
  publication-title: Oncologist
  doi: 10.1634/theoncologist.6-2-162
– volume: 30
  start-page: 2125
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.004_bb0090
  article-title: Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade- and mitochondria-dependent pathways
  publication-title: Anticancer Res.
– volume: 17
  start-page: 71
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0135
  article-title: Curcumin nanoformulations: a future nanomedicine for cancer
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2011.09.009
– volume: 987
  start-page: 57
  year: 2003
  ident: 10.1016/j.bbagen.2014.06.004_bb0190
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(02)01536-4
– volume: 8
  start-page: 328
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.004_bb0270
  article-title: Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2011.06.014
– reference: 30876689 - Biochim Biophys Acta Gen Subj. 2019 Mar 12;:
SSID ssj0000595
ssj0025309
Score 2.504384
Snippet Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2730
SubjectTerms 5-Fluorouracil
Animals
antineoplastic activity
bioavailability
Biological Availability
blood
cell cycle
Cell Cycle - drug effects
Cell Line, Tumor
chitosan
Chitosan - pharmacokinetics
Chitosan - pharmacology
Colon cancer
Colonic Neoplasms - drug therapy
Colonic Neoplasms - metabolism
Colonic Neoplasms - pathology
colorectal neoplasms
Combinatorial nanomedicine
crosslinking
Curcumin
Curcumin - pharmacokinetics
Curcumin - pharmacology
Delayed-Action Preparations - pharmacokinetics
Delayed-Action Preparations - pharmacology
drug therapy
fluorouracil
Fluorouracil - pharmacokinetics
Fluorouracil - pharmacology
Humans
membrane potential
Membrane Potential, Mitochondrial - drug effects
Mice
mitochondrial membrane
nanomedicine
Nanoparticles
neoplasm cells
patient compliance
Pharmacokinetics
Thiolated chitosan
zeta potential
Title Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment
URI https://dx.doi.org/10.1016/j.bbagen.2014.06.004
https://www.ncbi.nlm.nih.gov/pubmed/24946270
https://www.proquest.com/docview/1552369586
https://www.proquest.com/docview/2000214415
Volume 1840
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-lInoRrV9btUTwGncmySSbY1ksqws9qMXehmySwZVtpuzOHLx47N_te5nMimApeBoyk0xC3sv74P3yHiHvmlAEKaxmOnDFpNOcGR4kM6DNtRUCVG5CW5yrxYX8dFldHpD5eBcGYZVZ9g8yPUnr_Gaad3N6vV5Pv2BQD8wJ0PhJEWFOUCk1cvn7X39gHmA-VEMkQTLsPV6fSxiv1QoOLWZBLWXK4pnLtf1DPd1mfiY1dPaYPMr2Iz0dlviEHIR4RO4PFSV_HpEH87GA21NyA2cd_F70qoHJKGwhijwXtjSDOGjbUNdvXX-1jvDZ04o1m77dwhzWrTd001ofPO2-w9_BJPUUYw7tzkYabQRnO2PqaJegtzuKCbAjzXPsEezPyMXZh6_zBctlF5gTpuqYM64xQYVKcFNwb9yqtBic42WQ2he-CI2zQXmuQL8qO4OWqpwH0lpnrAviOTmMbQwvCZVCay8duL5NKX3TmFmyBxU3pVBB2QkR427XLuckx9IYm3oEn_2oBxrVSKM6YfDkhLD9qOshJ8cd_fVIyPov3qpBbdwx8u1I9xqIh7EUG0Pb72rMXCeUqWbq9j54C4onh3VCXgxMs18veL1ScV0c__faXpGH2Brwbq_JYbftwxswkLrVSToBJ-Te6cfl4hyfy8_flr8BXIETcw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66lNG9jK77la3bNNiriC3JcvRYQku6dnlZC30TiiSzlMwuif2wf2B_906ynDFoKezRlmQLnXTfHffpDuBL5TMvuClp6ZmkwpaMKuYFVYjmpeEcITeyLRZyfi2-3hQ3ezAb7sIEWmXS_b1Oj9o6vZmk1ZzcrVaT7yGoh-YEIn4EIvEE9kN2qmIE-yfnF_PFX4VcxOIroT8NA4YbdJHmtVziuQ2JUHMRE3mmim33INRDFmhEorNDeJ5MSHLSz_IF7Pn6CJ72RSV_HcHBbKjh9hJ-43FH1zc41rjPCK5i0HrWb0jicZCmIrbb2O7nqsZmRwparbtmg_8wdrUm68Y470j7A7-OVqkjIezQbE1NalOjv51odaSN7NstCTmwa5L-sSOxv4Lrs9Or2ZymygvUclW01CpbKS99wZnKmFN2mZsQn2O5F6XLXOYra7x0TCLESjPFJ1lYh9I1Vhnr-WsY1U3t3wIRvCydsOj9VrlwVaWm0SSUTOVcemnGwIfV1jalJQ_VMdZ64J_d6l5GOshIRxqeGAPdjbrr03I80r8cBKn_2V4akeORkZ8HuWsUXginmNo33VaH5HVcqmIqH-4TLkKx6LOO4U2_aXbzRcdXSFZm7_57bp_gYH717VJfni8u3sOz0NLT345h1G46_wHtpXb5MZ2HPxXHFIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+anticancer+effects+of+curcumin+and+5-fluorouracil+loaded+thiolated+chitosan+nanoparticles+towards+colon+cancer+treatment&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Anitha%2C+A.&rft.au=Deepa%2C+N.&rft.au=Chennazhi%2C+K.P.&rft.au=Lakshmanan%2C+Vinoth-Kumar&rft.date=2014-09-01&rft.issn=0304-4165&rft.volume=1840&rft.issue=9&rft.spage=2730&rft.epage=2743&rft_id=info:doi/10.1016%2Fj.bbagen.2014.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2014_06_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon