Quantitative structure retention relationship modeling as potential tool in chromatographic determination of stability constants and thermodynamic parameters of β-cyclodextrin complexation process

•Chromatographic approach in complex stability constant assessment is time-consuming.•QSRR model was used to predict change in analyte retention time upon complexation.•Predicted change in retention time was used to calculate stability constants.•HPLC and QSRR approach were not applicable under all...

Full description

Saved in:
Bibliographic Details
Published inJournal of Chromatography A Vol. 1619; p. 460971
Main Authors Maljurić, Nevena, Otašević, Biljana, Malenović, Anđelija, Zečević, Mira, Protić, Ana
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 24.05.2020
Subjects
Online AccessGet full text
ISSN0021-9673
1873-3778
DOI10.1016/j.chroma.2020.460971

Cover

Abstract •Chromatographic approach in complex stability constant assessment is time-consuming.•QSRR model was used to predict change in analyte retention time upon complexation.•Predicted change in retention time was used to calculate stability constants.•HPLC and QSRR approach were not applicable under all experimental conditions.•β-CD concentration and acetonitrile content affected stability constant calculation. When cyclodextrins (CDs) are used in chromatography analytes’ retention time is decreased with an increase in concentration of CD in the mobile phase. Thus complex stability constants can be determined from the change in retention time of the ligand molecule upon complexation. Since the preceding approach implies extensive and time-consuming HPLC experiments, the goal of this research was to investigate the possibility of using in silico prediction tools instead. Quantitative structure–retention relationship (QSRR) model previously developed to explain the retention behavior of risperidone, olanzapine and their structurally related impurities in β-CD modified HPLC system was applied to predict retention factor under different chromatographic conditions within the examined domains. Predicted retention factors were further used for calculation of stability constants and important thermodynamic parameters, namely standard Gibbs free energy, standard molar enthalpy and entropy, contributing to inclusion phenomenon. Unexpected prolonged retention with an increase in β-CD concentration was observed, in contrast to the employed chromatographic theory used for the calculation of the stability constants. Consequently, it led to failure in stability constants and thermodynamic parameters calculation for almost all analytes when acetonitrile content was 20% (v/v) across the investigated pH range. Moreover, ionization of investigated analytes and free stationary phase silanol groups are pH dependent, leading to minimization of secondary interactions if free silanol groups are non-ionized at pH lower than 3. In order to prove accuracy of predicted retention factors, HPLC verification experiments were performed and good agreement between predicted and experimental values was obtained, confirming the applicability of proposed in-silico tool. However, the obtained results opened some novel questions and revealed that chromatographic method is not overall applicable in calculation of stability constants and thermodynamic parameters indicating the complexity of β-CD modified systems.
AbstractList When cyclodextrins (CDs) are used in chromatography analytes' retention time is decreased with an increase in concentration of CD in the mobile phase. Thus complex stability constants can be determined from the change in retention time of the ligand molecule upon complexation. Since the preceding approach implies extensive and time-consuming HPLC experiments, the goal of this research was to investigate the possibility of using in silico prediction tools instead. Quantitative structure-retention relationship (QSRR) model previously developed to explain the retention behavior of risperidone, olanzapine and their structurally related impurities in β-CD modified HPLC system was applied to predict retention factor under different chromatographic conditions within the examined domains. Predicted retention factors were further used for calculation of stability constants and important thermodynamic parameters, namely standard Gibbs free energy, standard molar enthalpy and entropy, contributing to inclusion phenomenon. Unexpected prolonged retention with an increase in β-CD concentration was observed, in contrast to the employed chromatographic theory used for the calculation of the stability constants. Consequently, it led to failure in stability constants and thermodynamic parameters calculation for almost all analytes when acetonitrile content was 20% (v/v) across the investigated pH range. Moreover, ionization of investigated analytes and free stationary phase silanol groups are pH dependent, leading to minimization of secondary interactions if free silanol groups are non-ionized at pH lower than 3. In order to prove accuracy of predicted retention factors, HPLC verification experiments were performed and good agreement between predicted and experimental values was obtained, confirming the applicability of proposed in-silico tool. However, the obtained results opened some novel questions and revealed that chromatographic method is not overall applicable in calculation of stability constants and thermodynamic parameters indicating the complexity of β-CD modified systems.
•Chromatographic approach in complex stability constant assessment is time-consuming.•QSRR model was used to predict change in analyte retention time upon complexation.•Predicted change in retention time was used to calculate stability constants.•HPLC and QSRR approach were not applicable under all experimental conditions.•β-CD concentration and acetonitrile content affected stability constant calculation. When cyclodextrins (CDs) are used in chromatography analytes’ retention time is decreased with an increase in concentration of CD in the mobile phase. Thus complex stability constants can be determined from the change in retention time of the ligand molecule upon complexation. Since the preceding approach implies extensive and time-consuming HPLC experiments, the goal of this research was to investigate the possibility of using in silico prediction tools instead. Quantitative structure–retention relationship (QSRR) model previously developed to explain the retention behavior of risperidone, olanzapine and their structurally related impurities in β-CD modified HPLC system was applied to predict retention factor under different chromatographic conditions within the examined domains. Predicted retention factors were further used for calculation of stability constants and important thermodynamic parameters, namely standard Gibbs free energy, standard molar enthalpy and entropy, contributing to inclusion phenomenon. Unexpected prolonged retention with an increase in β-CD concentration was observed, in contrast to the employed chromatographic theory used for the calculation of the stability constants. Consequently, it led to failure in stability constants and thermodynamic parameters calculation for almost all analytes when acetonitrile content was 20% (v/v) across the investigated pH range. Moreover, ionization of investigated analytes and free stationary phase silanol groups are pH dependent, leading to minimization of secondary interactions if free silanol groups are non-ionized at pH lower than 3. In order to prove accuracy of predicted retention factors, HPLC verification experiments were performed and good agreement between predicted and experimental values was obtained, confirming the applicability of proposed in-silico tool. However, the obtained results opened some novel questions and revealed that chromatographic method is not overall applicable in calculation of stability constants and thermodynamic parameters indicating the complexity of β-CD modified systems.
ArticleNumber 460971
Author Malenović, Anđelija
Zečević, Mira
Otašević, Biljana
Protić, Ana
Maljurić, Nevena
Author_xml – sequence: 1
  givenname: Nevena
  surname: Maljurić
  fullname: Maljurić, Nevena
– sequence: 2
  givenname: Biljana
  orcidid: 0000-0002-4747-927X
  surname: Otašević
  fullname: Otašević, Biljana
– sequence: 3
  givenname: Anđelija
  orcidid: 0000-0002-4102-3933
  surname: Malenović
  fullname: Malenović, Anđelija
– sequence: 4
  givenname: Mira
  surname: Zečević
  fullname: Zečević, Mira
– sequence: 5
  givenname: Ana
  orcidid: 0000-0002-6304-1913
  surname: Protić
  fullname: Protić, Ana
  email: anna@pharmacy.bg.ac.rs
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32089289$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URKeFN0DISzYZ7FzGMQskVHGTKiEkWFsnzknHI8cOtlN1XqvvwJZnwpkUFixgZcv6vv9Y578gZ847JOQ5Z1vO-O7VYav3wY-wLVnJtvWOScEfkQ1vRVVUQrRnZMNYyQu5E9U5uYjxwBgXTJRPyHlVslaWrdyQH19mcMkkSOYWaUxh1mkOSAMmzO_e5ZuF5RL3ZqKj79Ead0Mh0smfELA0eW-pcXT9UPI3Aaa90bTPIWE07uRTP-R86Iw16Uh1Dkx5cqTgepr2mfP90cGYtQkCjIsaF-fnfaGP2ubBdyksQ_w4WbxbM6fgNcb4lDwewEZ89nBekm_v3329-lhcf_7w6ertdaEr2aRCy06XUGG9GzrBQQ9101YNDLWUrOl401UapJDIeAmY2YaJTHYDb3esaQGrS_Jyzc1zv88YkxpN1GgtOPRzVGVdybrmUrCMvnhA527EXk3BjBCO6vfqM1CvgA4-xoDDH4QztTSsDmpdqFoaVmvDWXv9l6ZP7XmXAhj7P_nNKmNe0q3BoKI26DT2JqBOqvfm3wG_AF3qzP4
CitedBy_id crossref_primary_10_1007_s11356_021_17714_w
crossref_primary_10_1016_j_jcoa_2021_100023
crossref_primary_10_1016_j_jpba_2020_113711
crossref_primary_10_3390_molecules29133159
crossref_primary_10_1016_j_microc_2021_106693
crossref_primary_10_1016_j_chroma_2021_462120
Cites_doi 10.1016/j.talanta.2010.03.028
10.1016/S0021-9673(01)00810-X
10.1016/S1044-0305(00)00220-8
10.1021/jm0005151
10.1021/cr970022c
10.1016/S0021-9673(98)00107-1
10.1016/j.jasms.2005.08.011
10.1021/cr950202r
10.1016/S0032-9592(03)00258-9
10.1016/j.ijpharm.2006.09.054
10.1016/j.trac.2004.04.001
10.1021/ac000540e
10.1023/A:1014569532163
10.1016/S1387-3806(00)00298-0
10.1016/j.aca.2008.09.018
10.1016/j.trac.2013.04.010
10.1016/S1044-0305(03)00451-3
10.1590/S0103-50532009000400021
10.1039/C0GC00456A
10.1016/j.aca.2006.09.008
10.1021/jf990395+
10.1016/j.chroma.2008.10.094
10.1016/S0021-9673(04)01143-4
10.1021/ja00267a010
10.1016/S1044-0305(02)00416-6
10.1016/j.jpba.2004.09.044
10.1002/jps.2600660525
10.1021/cr960371r
10.1016/S0731-7085(02)00088-2
10.1016/j.chroma.2005.02.039
10.1002/jps.20047
10.1016/S0731-7085(97)00050-2
10.1002/jms.605
10.1007/s00216-017-0313-y
10.1016/S0734-9750(02)00020-4
10.1039/c1an15155j
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7S9
L.6
DOI 10.1016/j.chroma.2020.460971
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3778
ExternalDocumentID 32089289
10_1016_j_chroma_2020_460971
S0021967320301710
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
YK3
ZMT
~02
~G-
~KM
.GJ
29K
AAHBH
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
OHT
RIG
SCB
SEW
SSH
UQL
VH1
WUQ
ZGI
ZKB
ZXP
NPM
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c395t-c9bc2a3e46fb71acf45835af49905b15b3ca979e012ae9bc5076fbbf186058ae3
IEDL.DBID AIKHN
ISSN 0021-9673
IngestDate Fri Sep 05 13:35:20 EDT 2025
Thu Jan 02 22:59:35 EST 2025
Tue Jul 01 02:38:47 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Fri Feb 23 02:48:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermodynamic parameters
Cyclodextrin
Inclusion complexes
Stability constants
QSRR
HPLC
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-c9bc2a3e46fb71acf45835af49905b15b3ca979e012ae9bc5076fbbf186058ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4747-927X
0000-0002-4102-3933
0000-0002-6304-1913
PMID 32089289
PQID 2439441970
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2439441970
pubmed_primary_32089289
crossref_primary_10_1016_j_chroma_2020_460971
crossref_citationtrail_10_1016_j_chroma_2020_460971
elsevier_sciencedirect_doi_10_1016_j_chroma_2020_460971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-24
PublicationDateYYYYMMDD 2020-05-24
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-24
  day: 24
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of Chromatography A
PublicationTitleAlternate J Chromatogr A
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cui, Li, Lian, Yang, Meng (bib0002) 2011; 136
Fan, Shi, Kohn, Pommier, Weinstein (bib0014) 2001; 44
Loo (bib0021) 2000; 200
Aschi, D’Archivio, Maggi, Mazzeo, Ruggieri (bib0024) 2007; 582
Ahn, Ramirez, Grigorean, Lebrilla (bib0035) 2001; 12
D’Archivio, Maggi, Mazzeo, Ruggieri (bib0037) 2008; 628
Guo, Song, Liu, Liu (bib0020) 2004; 39
González-Ruiz, León, Olives, Martin, Menéndez (bib0012) 2011; 13
Maljurić, Golubović, Otašević, Zečević, Protić (bib0011) 2018
Ohta, Włodarczyk, Piaskowski, Kaleniecka, Lewandowska, Baran (bib0044) 2017; 409
Rozou, Michaleas, Antoniadou-Vyza (bib0016) 2005; 1087
Li, Zhou, Tang, Yuan (bib0023) 2006; 17
Kempen, Brodbelt (bib0022) 2000; 72
Gałuszka, Migaszewski, Namieśnik (bib0010) 2013; 50
Bordás, Kömíves, Szántó, Lopata (bib0029) 2000; 48
Shuang, Choi (bib0027) 2001; 919
Connors (bib0031) 1987
Cirri, Maestrelli, Orlandini, Furlanetto, Pinzauti, Mura (bib0017) 2005; 37
Karelson, Lobanov, Katritzky (bib0026) 1996; 96
Gabelica, Galic, De Pauw (bib0001) 2002; 13
Dotsikas, Loukas (bib0036) 2002; 29
Singh, Sharma, Banerjee (bib0007) 2002; 20
Yee, Wei (bib0008) 2012; 2
Bodzioch, Durand, Kaliszan, Bączek, Vander Heyden (bib0025) 2010; 81
Uekama, Hirayama, Ikeda, Inaba (bib0032) 1977; 66
Loukas (bib0043) 1997; 16
Dotsikas, Loukas (bib0042) 2003; 14
Claude, Morin, Lafosse, Andre (bib0040) 2004; 1049
Connors (bib0013) 1997; 97
Cserháti, Forgács (bib0003) 2003
Szejtli (bib0004) 1998; 98
Taverniers, De Loose, Van Bockstaele (bib0019) 2004; 23
Kiralj, Ferreira (bib0009) 2009; 20
Ravelet, Geze, Villet, Grosset, Ravel, Wouessidjewe (bib0015) 2002; 29
Armstrong, Nome, Spino, Golden (bib0033) 1986; 108
Zupan (bib0038) 1994; 41
Del Valle (bib0005) 2004; 39
Moraes, Abrami, de Paula, Braga, Fraceto (bib0018) 2007; 331
Danel, Azaroual, Brunel, Lannoy, Vermeersch, Odou (bib0034) 2008; 1215
Loftsson, Másson, Brewster (bib0041) 2004; 93
Morin, Guillaume, Peyrin, Rouland (bib0028) 1998; 808
Samala, Pawar, Manala, Chada, Nageshwar (bib0006) 2013; 6
Snyder, Kirkland, Glajch (bib0039) 2012
Liu, Jin, Zhang (bib0030) 2002; 42
Loukas (10.1016/j.chroma.2020.460971_bib0043) 1997; 16
Cserháti (10.1016/j.chroma.2020.460971_bib0003) 2003
Cirri (10.1016/j.chroma.2020.460971_bib0017) 2005; 37
Li (10.1016/j.chroma.2020.460971_bib0023) 2006; 17
Fan (10.1016/j.chroma.2020.460971_bib0014) 2001; 44
Ahn (10.1016/j.chroma.2020.460971_bib0035) 2001; 12
Kempen (10.1016/j.chroma.2020.460971_bib0022) 2000; 72
Connors (10.1016/j.chroma.2020.460971_bib0031) 1987
Ravelet (10.1016/j.chroma.2020.460971_bib0015) 2002; 29
Shuang (10.1016/j.chroma.2020.460971_bib0027) 2001; 919
Ohta (10.1016/j.chroma.2020.460971_bib0044) 2017; 409
Kiralj (10.1016/j.chroma.2020.460971_bib0009) 2009; 20
Gabelica (10.1016/j.chroma.2020.460971_bib0001) 2002; 13
Cui (10.1016/j.chroma.2020.460971_bib0002) 2011; 136
Szejtli (10.1016/j.chroma.2020.460971_bib0004) 1998; 98
Snyder (10.1016/j.chroma.2020.460971_bib0039) 2012
Moraes (10.1016/j.chroma.2020.460971_bib0018) 2007; 331
Claude (10.1016/j.chroma.2020.460971_bib0040) 2004; 1049
Bordás (10.1016/j.chroma.2020.460971_bib0029) 2000; 48
Liu (10.1016/j.chroma.2020.460971_bib0030) 2002; 42
Singh (10.1016/j.chroma.2020.460971_bib0007) 2002; 20
Rozou (10.1016/j.chroma.2020.460971_bib0016) 2005; 1087
Dotsikas (10.1016/j.chroma.2020.460971_bib0036) 2002; 29
D’Archivio (10.1016/j.chroma.2020.460971_bib0037) 2008; 628
Samala (10.1016/j.chroma.2020.460971_bib0006) 2013; 6
Uekama (10.1016/j.chroma.2020.460971_bib0032) 1977; 66
Maljurić (10.1016/j.chroma.2020.460971_bib0011) 2018
Loftsson (10.1016/j.chroma.2020.460971_bib0041) 2004; 93
Morin (10.1016/j.chroma.2020.460971_bib0028) 1998; 808
González-Ruiz (10.1016/j.chroma.2020.460971_bib0012) 2011; 13
Loo (10.1016/j.chroma.2020.460971_bib0021) 2000; 200
Del Valle (10.1016/j.chroma.2020.460971_bib0005) 2004; 39
Dotsikas (10.1016/j.chroma.2020.460971_bib0042) 2003; 14
Guo (10.1016/j.chroma.2020.460971_bib0020) 2004; 39
Bodzioch (10.1016/j.chroma.2020.460971_bib0025) 2010; 81
Gałuszka (10.1016/j.chroma.2020.460971_bib0010) 2013; 50
Connors (10.1016/j.chroma.2020.460971_bib0013) 1997; 97
Aschi (10.1016/j.chroma.2020.460971_bib0024) 2007; 582
Karelson (10.1016/j.chroma.2020.460971_bib0026) 1996; 96
Taverniers (10.1016/j.chroma.2020.460971_bib0019) 2004; 23
Danel (10.1016/j.chroma.2020.460971_bib0034) 2008; 1215
Zupan (10.1016/j.chroma.2020.460971_bib0038) 1994; 41
Yee (10.1016/j.chroma.2020.460971_bib0008) 2012; 2
Armstrong (10.1016/j.chroma.2020.460971_bib0033) 1986; 108
References_xml – volume: 582
  start-page: 235
  year: 2007
  end-page: 242
  ident: bib0024
  article-title: Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography
  publication-title: Anal. Chim. Acta
– volume: 1049
  start-page: 37
  year: 2004
  end-page: 42
  ident: bib0040
  article-title: Evaluation of apparent formation constants of pentacyclic triterpene acids complexes with derivatized β-and γ-cyclodextrins by reversed phase liquid chromatography
  publication-title: J. Chromatogr. A
– volume: 44
  start-page: 3254
  year: 2001
  end-page: 3263
  ident: bib0014
  article-title: Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm-based studies
  publication-title: J.Med. Chem.
– volume: 331
  start-page: 99
  year: 2007
  end-page: 106
  ident: bib0018
  article-title: Study of the interaction between S (−) bupivacaine and 2-hydroxypropyl-β-cyclodextrin
  publication-title: Int. J. Pharm.
– year: 2012
  ident: bib0039
  article-title: Practical HPLC Method Development
– volume: 48
  start-page: 926
  year: 2000
  end-page: 931
  ident: bib0029
  article-title: Comparative three-dimensional quantitative structure−activity relationship study of safeners and herbicides
  publication-title: J. Agric. Food Chem.
– year: 1987
  ident: bib0031
  article-title: Binding Constants: The Measurement of Molecular Complex Stability
– volume: 628
  start-page: 162
  year: 2008
  end-page: 172
  ident: bib0037
  article-title: Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors
  publication-title: Anal. Chim. Acta
– volume: 808
  start-page: 51
  year: 1998
  end-page: 60
  ident: bib0028
  article-title: Peculiarities of an imidazole derivative retention mechanism in reversed-phase liquid chromatography: β-cyclodextrin concentration and temperature considerations
  publication-title: J. Chromatogr. A
– volume: 108
  start-page: 1418
  year: 1986
  end-page: 1421
  ident: bib0033
  article-title: Efficient detection and evaluation of cyclodextrin multiple complex formation
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1123
  year: 2003
  end-page: 1129
  ident: bib0042
  article-title: Efficient determination and evaluation of model cyclodextrin complex binding constants by electrospray mass spectrometry
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 41
  start-page: 327
  year: 1994
  ident: bib0038
  article-title: Introduction to artificial neural network (ANN) methods: what they are and how to use them
  publication-title: Acta Chim. Slov.
– volume: 919
  start-page: 321
  year: 2001
  end-page: 329
  ident: bib0027
  article-title: Retention behaviour and fluorimetric detection of procaine hydrochloride using carboxymethyl-β-cyclodextrin as an additive in reversed-phase liquid chromatography
  publication-title: J. Chromatogr. A
– volume: 12
  start-page: 278
  year: 2001
  end-page: 287
  ident: bib0035
  article-title: Chiral recognition in gas-phase cyclodextrin: Amino acid complexes—is the three point interaction still valid in the gas phase?
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 50
  start-page: 78
  year: 2013
  end-page: 84
  ident: bib0010
  article-title: The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices
  publication-title: TrAC Trends  Anal. Chem.
– volume: 81
  start-page: 1711
  year: 2010
  end-page: 1718
  ident: bib0025
  article-title: Advanced QSRR modeling of peptides behavior in RPLC
  publication-title: Talanta
– volume: 17
  start-page: 9
  year: 2006
  end-page: 14
  ident: bib0023
  article-title: Investigation of noncovalent complexes between β-cyclodextrin and polyamide acids containing N-methylpyrrole and N-methylimidazole by electrospray ionization mass spectrometry
  publication-title: J.  Am. Soc. Mass Spectrom.
– volume: 97
  start-page: 1325
  year: 1997
  end-page: 1358
  ident: bib0013
  article-title: The stability of cyclodextrin complexes in solution
  publication-title: Chem. Rev.
– volume: 39
  start-page: 1033
  year: 2004
  end-page: 1046
  ident: bib0005
  article-title: Cyclodextrins and their uses: a review
  publication-title: Process Biochem.
– volume: 96
  start-page: 1027
  year: 1996
  end-page: 1044
  ident: bib0026
  article-title: Quantum-chemical descriptors in QSAR/QSPR studies
  publication-title: Chem. Rev.
– volume: 13
  start-page: 115
  year: 2011
  end-page: 126
  ident: bib0012
  article-title: Eco-friendly liquid chromatographic separations based on the use of cyclodextrins as mobile phase additives
  publication-title: Green Chem.
– volume: 93
  start-page: 1091
  year: 2004
  end-page: 1099
  ident: bib0041
  article-title: Self‐association of cyclodextrins and cyclodextrin complexes
  publication-title: J. Pharm. Sci.
– volume: 20
  start-page: 770
  year: 2009
  end-page: 787
  ident: bib0009
  article-title: Basic validation procedures for regression models in QSAR and QSPR studies: theory and application
  publication-title: J.  Braz. Chem. Soc.
– volume: 23
  start-page: 535
  year: 2004
  end-page: 552
  ident: bib0019
  article-title: Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance
  publication-title: TrAC Trends Anal. Chem.
– volume: 66
  start-page: 706
  year: 1977
  end-page: 710
  ident: bib0032
  article-title: Utilization of cyclodextrin complexation for separation of E, A, and B prostaglandins by ion‐exchange liquid chromatography
  publication-title: J. Pharm. Sci.
– start-page: 1
  year: 2018
  end-page: 18
  ident: bib0011
  article-title: Quantitative structure–retention relationship modeling of selected antipsychotics and their impurities in green liquid chromatography using cyclodextrin mobile phases
  publication-title: Anal. Bioanal. Chem
– volume: 29
  start-page: 425
  year: 2002
  end-page: 430
  ident: bib0015
  article-title: Chromatographic determination of the association constants between nimesulide and native and modified β-cyclodextrins
  publication-title: J. Pharm. Biomed. Anal.
– volume: 39
  start-page: 594
  year: 2004
  end-page: 599
  ident: bib0020
  article-title: Characterization of non‐covalent complexes of rutin with cyclodextrins by electrospray ionization tandem mass spectrometry
  publication-title: J. Mass Spectrom.
– volume: 200
  start-page: 175
  year: 2000
  end-page: 186
  ident: bib0021
  article-title: Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes
  publication-title: Int. J.  Mass Spectrom.
– volume: 409
  start-page: 3695
  year: 2017
  end-page: 3706
  ident: bib0044
  article-title: Unexpected differences between planar and column liquid chromatographic retention of 1-acenaphthenol enantiomers controlled by supramolecular interactions involving β-cyclodextrin at subambient temperatures
  publication-title: Anal. Bioanal. Chem.
– volume: 37
  start-page: 995
  year: 2005
  end-page: 1002
  ident: bib0017
  article-title: Determination of stability constant values of flurbiprofen–cyclodextrin complexes using different techniques
  publication-title: J.  Pharm.  Biomed. Anal.
– volume: 42
  start-page: 115
  year: 2002
  end-page: 120
  ident: bib0030
  article-title: Inclusion complexation thermodynamics of acridine red and rhodamine B by natural and novel oligo (ethylenediamine) tethered schiff base β-cyclodextrin
  publication-title: J. Inclusion Phenom. Macrocyclic Chem.
– volume: 136
  start-page: 3149
  year: 2011
  end-page: 3156
  ident: bib0002
  article-title: Development of a simple and stability-indicating RP-HPLC method for determining olanzapine and related impurities generated in the preparative process
  publication-title: Analyst
– volume: 98
  start-page: 1743
  year: 1998
  end-page: 1754
  ident: bib0004
  article-title: Introduction and general overview of cyclodextrin chemistry
  publication-title: Chem. Rev.
– volume: 6
  start-page: 659
  year: 2013
  end-page: 661
  ident: bib0006
  article-title: Development and Validation of RP-HPLC Method for Estimation of Risperidone in Tablet Dosage Form
  publication-title: Research J.  Pharm.  Technol.
– volume: 2
  start-page: 1
  year: 2012
  end-page: 31
  ident: bib0008
  article-title: Current modeling methods used in QSAR/QSPR
  publication-title: Statistical Modelling of Molecular Descriptors in QSAR/QSPR
– volume: 1087
  start-page: 86
  year: 2005
  end-page: 94
  ident: bib0016
  article-title: Study of structural features and thermodynamic parameters, determining the chromatographic behaviour of drug–cyclodextrin complexes
  publication-title: J. Chromatogr. A
– volume: 72
  start-page: 5411
  year: 2000
  end-page: 5416
  ident: bib0022
  article-title: A method for the determination of binding constants by electrospray ionization mass spectrometry
  publication-title: Anal. Chem.
– volume: 13
  start-page: 946
  year: 2002
  end-page: 953
  ident: bib0001
  article-title: On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 16
  start-page: 275
  year: 1997
  end-page: 280
  ident: bib0043
  article-title: Evaluation of the methods for the determination of the stability constant of cyclodextrin–chlorambucil inclusion complexes
  publication-title: J. Pharm. Biomed. Anal.
– volume: 29
  start-page: 487
  year: 2002
  end-page: 494
  ident: bib0036
  article-title: Kinetic degradation study of insulin complexed with methyl-beta cyclodextrin
  publication-title: Confirmation of complexation with electrospray mass spectrometry and 1 H NMR. Journal of pharmaceutical and biomedical analysis
– volume: 1215
  start-page: 185
  year: 2008
  end-page: 193
  ident: bib0034
  article-title: Study of the complexation of risperidone and 9-hydroxyrisperidone with cyclodextrin hosts using affinity capillary electrophoresis and 1 H NMR spectroscopy
  publication-title: J. Chromatogr. A
– volume: 20
  start-page: 341
  year: 2002
  end-page: 359
  ident: bib0007
  article-title: Biotechnological applications of cyclodextrins
  publication-title: Biotechnol. Adv.
– year: 2003
  ident: bib0003
  article-title: Cyclodextrins in Chromatography
– volume: 81
  start-page: 1711
  issue: 4
  year: 2010
  ident: 10.1016/j.chroma.2020.460971_bib0025
  article-title: Advanced QSRR modeling of peptides behavior in RPLC
  publication-title: Talanta
  doi: 10.1016/j.talanta.2010.03.028
– volume: 919
  start-page: 321
  issue: 2
  year: 2001
  ident: 10.1016/j.chroma.2020.460971_bib0027
  article-title: Retention behaviour and fluorimetric detection of procaine hydrochloride using carboxymethyl-β-cyclodextrin as an additive in reversed-phase liquid chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(01)00810-X
– volume: 12
  start-page: 278
  issue: 3
  year: 2001
  ident: 10.1016/j.chroma.2020.460971_bib0035
  article-title: Chiral recognition in gas-phase cyclodextrin: Amino acid complexes—is the three point interaction still valid in the gas phase?
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/S1044-0305(00)00220-8
– volume: 44
  start-page: 3254
  issue: 20
  year: 2001
  ident: 10.1016/j.chroma.2020.460971_bib0014
  article-title: Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm-based studies
  publication-title: J.Med. Chem.
  doi: 10.1021/jm0005151
– start-page: 1
  year: 2018
  ident: 10.1016/j.chroma.2020.460971_bib0011
  article-title: Quantitative structure–retention relationship modeling of selected antipsychotics and their impurities in green liquid chromatography using cyclodextrin mobile phases
  publication-title: Anal. Bioanal. Chem
– volume: 98
  start-page: 1743
  issue: 5
  year: 1998
  ident: 10.1016/j.chroma.2020.460971_bib0004
  article-title: Introduction and general overview of cyclodextrin chemistry
  publication-title: Chem. Rev.
  doi: 10.1021/cr970022c
– volume: 41
  start-page: 327
  year: 1994
  ident: 10.1016/j.chroma.2020.460971_bib0038
  article-title: Introduction to artificial neural network (ANN) methods: what they are and how to use them
  publication-title: Acta Chim. Slov.
– volume: 808
  start-page: 51
  issue: 1–2
  year: 1998
  ident: 10.1016/j.chroma.2020.460971_bib0028
  article-title: Peculiarities of an imidazole derivative retention mechanism in reversed-phase liquid chromatography: β-cyclodextrin concentration and temperature considerations
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(98)00107-1
– year: 1987
  ident: 10.1016/j.chroma.2020.460971_bib0031
– volume: 17
  start-page: 9
  issue: 1
  year: 2006
  ident: 10.1016/j.chroma.2020.460971_bib0023
  article-title: Investigation of noncovalent complexes between β-cyclodextrin and polyamide acids containing N-methylpyrrole and N-methylimidazole by electrospray ionization mass spectrometry
  publication-title: J.  Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2005.08.011
– volume: 96
  start-page: 1027
  issue: 3
  year: 1996
  ident: 10.1016/j.chroma.2020.460971_bib0026
  article-title: Quantum-chemical descriptors in QSAR/QSPR studies
  publication-title: Chem. Rev.
  doi: 10.1021/cr950202r
– year: 2003
  ident: 10.1016/j.chroma.2020.460971_bib0003
– volume: 39
  start-page: 1033
  issue: 9
  year: 2004
  ident: 10.1016/j.chroma.2020.460971_bib0005
  article-title: Cyclodextrins and their uses: a review
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(03)00258-9
– volume: 331
  start-page: 99
  issue: 1
  year: 2007
  ident: 10.1016/j.chroma.2020.460971_bib0018
  article-title: Study of the interaction between S (−) bupivacaine and 2-hydroxypropyl-β-cyclodextrin
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2006.09.054
– year: 2012
  ident: 10.1016/j.chroma.2020.460971_bib0039
– volume: 23
  start-page: 535
  issue: 8
  year: 2004
  ident: 10.1016/j.chroma.2020.460971_bib0019
  article-title: Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2004.04.001
– volume: 72
  start-page: 5411
  issue: 21
  year: 2000
  ident: 10.1016/j.chroma.2020.460971_bib0022
  article-title: A method for the determination of binding constants by electrospray ionization mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac000540e
– volume: 42
  start-page: 115
  issue: 1–2
  year: 2002
  ident: 10.1016/j.chroma.2020.460971_bib0030
  article-title: Inclusion complexation thermodynamics of acridine red and rhodamine B by natural and novel oligo (ethylenediamine) tethered schiff base β-cyclodextrin
  publication-title: J. Inclusion Phenom. Macrocyclic Chem.
  doi: 10.1023/A:1014569532163
– volume: 200
  start-page: 175
  issue: 1–3
  year: 2000
  ident: 10.1016/j.chroma.2020.460971_bib0021
  article-title: Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes
  publication-title: Int. J.  Mass Spectrom.
  doi: 10.1016/S1387-3806(00)00298-0
– volume: 29
  start-page: 487
  year: 2002
  ident: 10.1016/j.chroma.2020.460971_bib0036
  article-title: Kinetic degradation study of insulin complexed with methyl-beta cyclodextrin
– volume: 628
  start-page: 162
  issue: 2
  year: 2008
  ident: 10.1016/j.chroma.2020.460971_bib0037
  article-title: Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.09.018
– volume: 50
  start-page: 78
  year: 2013
  ident: 10.1016/j.chroma.2020.460971_bib0010
  article-title: The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices
  publication-title: TrAC Trends  Anal. Chem.
  doi: 10.1016/j.trac.2013.04.010
– volume: 14
  start-page: 1123
  issue: 10
  year: 2003
  ident: 10.1016/j.chroma.2020.460971_bib0042
  article-title: Efficient determination and evaluation of model cyclodextrin complex binding constants by electrospray mass spectrometry
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/S1044-0305(03)00451-3
– volume: 20
  start-page: 770
  issue: 4
  year: 2009
  ident: 10.1016/j.chroma.2020.460971_bib0009
  article-title: Basic validation procedures for regression models in QSAR and QSPR studies: theory and application
  publication-title: J.  Braz. Chem. Soc.
  doi: 10.1590/S0103-50532009000400021
– volume: 13
  start-page: 115
  issue: 1
  year: 2011
  ident: 10.1016/j.chroma.2020.460971_bib0012
  article-title: Eco-friendly liquid chromatographic separations based on the use of cyclodextrins as mobile phase additives
  publication-title: Green Chem.
  doi: 10.1039/C0GC00456A
– volume: 582
  start-page: 235
  issue: 2
  year: 2007
  ident: 10.1016/j.chroma.2020.460971_bib0024
  article-title: Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2006.09.008
– volume: 48
  start-page: 926
  issue: 3
  year: 2000
  ident: 10.1016/j.chroma.2020.460971_bib0029
  article-title: Comparative three-dimensional quantitative structure−activity relationship study of safeners and herbicides
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf990395+
– volume: 6
  start-page: 659
  issue: 6
  year: 2013
  ident: 10.1016/j.chroma.2020.460971_bib0006
  article-title: Development and Validation of RP-HPLC Method for Estimation of Risperidone in Tablet Dosage Form
  publication-title: Research J.  Pharm.  Technol.
– volume: 2
  start-page: 1
  year: 2012
  ident: 10.1016/j.chroma.2020.460971_bib0008
  article-title: Current modeling methods used in QSAR/QSPR
– volume: 1215
  start-page: 185
  issue: 1
  year: 2008
  ident: 10.1016/j.chroma.2020.460971_bib0034
  article-title: Study of the complexation of risperidone and 9-hydroxyrisperidone with cyclodextrin hosts using affinity capillary electrophoresis and 1 H NMR spectroscopy
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2008.10.094
– volume: 1049
  start-page: 37
  issue: 1–2
  year: 2004
  ident: 10.1016/j.chroma.2020.460971_bib0040
  article-title: Evaluation of apparent formation constants of pentacyclic triterpene acids complexes with derivatized β-and γ-cyclodextrins by reversed phase liquid chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(04)01143-4
– volume: 108
  start-page: 1418
  issue: 7
  year: 1986
  ident: 10.1016/j.chroma.2020.460971_bib0033
  article-title: Efficient detection and evaluation of cyclodextrin multiple complex formation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00267a010
– volume: 13
  start-page: 946
  issue: 8
  year: 2002
  ident: 10.1016/j.chroma.2020.460971_bib0001
  article-title: On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/S1044-0305(02)00416-6
– volume: 37
  start-page: 995
  issue: 5
  year: 2005
  ident: 10.1016/j.chroma.2020.460971_bib0017
  article-title: Determination of stability constant values of flurbiprofen–cyclodextrin complexes using different techniques
  publication-title: J.  Pharm.  Biomed. Anal.
  doi: 10.1016/j.jpba.2004.09.044
– volume: 66
  start-page: 706
  issue: 5
  year: 1977
  ident: 10.1016/j.chroma.2020.460971_bib0032
  article-title: Utilization of cyclodextrin complexation for separation of E, A, and B prostaglandins by ion‐exchange liquid chromatography
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600660525
– volume: 97
  start-page: 1325
  issue: 5
  year: 1997
  ident: 10.1016/j.chroma.2020.460971_bib0013
  article-title: The stability of cyclodextrin complexes in solution
  publication-title: Chem. Rev.
  doi: 10.1021/cr960371r
– volume: 29
  start-page: 425
  issue: 3
  year: 2002
  ident: 10.1016/j.chroma.2020.460971_bib0015
  article-title: Chromatographic determination of the association constants between nimesulide and native and modified β-cyclodextrins
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/S0731-7085(02)00088-2
– volume: 1087
  start-page: 86
  issue: 1
  year: 2005
  ident: 10.1016/j.chroma.2020.460971_bib0016
  article-title: Study of structural features and thermodynamic parameters, determining the chromatographic behaviour of drug–cyclodextrin complexes
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2005.02.039
– volume: 93
  start-page: 1091
  issue: 5
  year: 2004
  ident: 10.1016/j.chroma.2020.460971_bib0041
  article-title: Self‐association of cyclodextrins and cyclodextrin complexes
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20047
– volume: 16
  start-page: 275
  issue: 2
  year: 1997
  ident: 10.1016/j.chroma.2020.460971_bib0043
  article-title: Evaluation of the methods for the determination of the stability constant of cyclodextrin–chlorambucil inclusion complexes
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/S0731-7085(97)00050-2
– volume: 39
  start-page: 594
  issue: 6
  year: 2004
  ident: 10.1016/j.chroma.2020.460971_bib0020
  article-title: Characterization of non‐covalent complexes of rutin with cyclodextrins by electrospray ionization tandem mass spectrometry
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.605
– volume: 409
  start-page: 3695
  issue: 14
  year: 2017
  ident: 10.1016/j.chroma.2020.460971_bib0044
  article-title: Unexpected differences between planar and column liquid chromatographic retention of 1-acenaphthenol enantiomers controlled by supramolecular interactions involving β-cyclodextrin at subambient temperatures
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-017-0313-y
– volume: 20
  start-page: 341
  issue: 5–6
  year: 2002
  ident: 10.1016/j.chroma.2020.460971_bib0007
  article-title: Biotechnological applications of cyclodextrins
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(02)00020-4
– volume: 136
  start-page: 3149
  issue: 15
  year: 2011
  ident: 10.1016/j.chroma.2020.460971_bib0002
  article-title: Development of a simple and stability-indicating RP-HPLC method for determining olanzapine and related impurities generated in the preparative process
  publication-title: Analyst
  doi: 10.1039/c1an15155j
SSID ssj0017072
ssj0029838
Score 2.3648937
Snippet •Chromatographic approach in complex stability constant assessment is time-consuming.•QSRR model was used to predict change in analyte retention time upon...
When cyclodextrins (CDs) are used in chromatography analytes' retention time is decreased with an increase in concentration of CD in the mobile phase. Thus...
When cyclodextrins (CDs) are used in chromatography analytes’ retention time is decreased with an increase in concentration of CD in the mobile phase. Thus...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 460971
SubjectTerms acetonitrile
beta-cyclodextrin
chemical species
computer simulation
Cyclodextrin
enthalpy
entropy
Gibbs free energy
high performance liquid chromatography
HPLC
Inclusion complexes
ionization
ligands
prediction
QSRR
quantitative structure-activity relationships
Stability constants
Thermodynamic parameters
Title Quantitative structure retention relationship modeling as potential tool in chromatographic determination of stability constants and thermodynamic parameters of β-cyclodextrin complexation process
URI https://dx.doi.org/10.1016/j.chroma.2020.460971
https://www.ncbi.nlm.nih.gov/pubmed/32089289
https://www.proquest.com/docview/2439441970
Volume 1619
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBeStLn9hFU6NWJn7J1DEvDtkuWtjQ0NyPJEnHY2Mbrhe6lP6r_odf8ps5I1kIOIdDTskYzFp7RzGdr5hMhH5kSAiwrAw0JIUh5wgMeahkoFouUVYrn9oP--ZLNL9Ivl9nlHpn5Xhgsqxxjv4vpNlqPV07Gp3nS1TX2-MJqY3kSI6rPsc1qP044yyZk__TzYr7cbSbkYb6jlIp5kbjojKUJIO3b6WzNl7rqW8tGFIfHKUN6pfvS1X1w1KalswPydMST9NRN-ZDs6eYZeTzzx7g9J3-_bURjO8kgrlFHF7vpNe0RLaNVaO_r4a7qjtqTcSCdUbGmXWuHgPqhbVe0bqib-eBormtFK19MYxW1BvQ73u8tVQ54DmsqmooizATV20bcgBjyjd-g6Bplbv8EaqtW2Fs_9HgTrHLXv5zOzjUyvCAXZ59-zObBeHZDoBKeDYHiUsUi0SkzMo-EMrg_mwkDL1hhJqNMJkrwnGvIj0LDWIClMFKaqMB9WqGTl2TStI1-TWhkilACUDKmUGnFtOCZVhpphHJeVaaaksSbqFQjsTmer7EqfQXbdekeT4mGLZ1hpyTYSXWO2OOB8bm3fnnHQUvIPQ9IfvDOUoLtcUNGNLrdrMvYtiVHsB6m5JXzot1cwK0LDm_Db_77vm_JE_yHpQ5x-o5MwMH0e0BQgzwij45_R0fjOsHfxfefC7i6_Hr-D-3nJLY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhPaSX0vR3m7RVoVcntmVb1rEsDds2CRQSyE3IskRcNrbxeqF76UPlHXLNM3VGshZ6CIFebc1YeEYzY-ubT4R8LrRSYNkqMpAQokwwEYnYVJEuUpUVtRbc_dA_Oy8Wl9n3q_xqh8xDLwzCKqfY72O6i9bTlePpbR73TYM9vrDaCs5SrOo5tlk9yXLGEdd39GeL80h4zLeEUqkomY_NCEwA2dBM5xBf-nroHBdRGh9lBZIrPZSsHipGXVI6eU6eTdUk_eInvE92TPuC7M3DIW4vyd3PtWpdHxlENerJYteDoQPWymgTOgQ03HXTU3cuDiQzqla079wQUD923ZI2LfUzHz3JdaNpHaA0TlFnQb9n_d5Q7cvOcUVVW1MsMkH1plU3IIZs4zcoukKZ-9tIb_QSO-vHAR-CGHfz2-vsfRvDK3J58vVivoimkxsizUQ-RlpUOlXMZIWteKK0xd3ZXFn4vIrzKskrppXgwkB2VAbGQlEKIyublLhLqwx7TXbbrjVvCU1sGVdQJllb6qwujBK50QZJhLioa1vPCAsmknqiNcfTNZYy4Nd-Sf96JBpWesPOSLSV6j2txyPjebC-_Mc9JWSeRyQ_BWeRYHvcjlGt6dYrmbqm5ARWw4y88V60nQs4dSngW_jdfz_3I9lbXJydytNv5z8OyFO8g6CHNDsku-Bs5j3UUmP1wa2Vv4amItI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+structure+retention+relationship+modeling+as+potential+tool+in+chromatographic+determination+of+stability+constants+and+thermodynamic+parameters+of+%CE%B2-cyclodextrin+complexation+process&rft.jtitle=Journal+of+Chromatography+A&rft.au=Maljuri%C4%87%2C+Nevena&rft.au=Ota%C5%A1evi%C4%87%2C+Biljana&rft.au=Malenovi%C4%87%2C+An%C4%91elija&rft.au=Ze%C4%8Devi%C4%87%2C+Mira&rft.date=2020-05-24&rft.pub=Elsevier+B.V&rft.issn=0021-9673&rft.volume=1619&rft_id=info:doi/10.1016%2Fj.chroma.2020.460971&rft.externalDocID=S0021967320301710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon