Quantitative structure retention relationship modeling as potential tool in chromatographic determination of stability constants and thermodynamic parameters of β-cyclodextrin complexation process
•Chromatographic approach in complex stability constant assessment is time-consuming.•QSRR model was used to predict change in analyte retention time upon complexation.•Predicted change in retention time was used to calculate stability constants.•HPLC and QSRR approach were not applicable under all...
Saved in:
Published in | Journal of Chromatography A Vol. 1619; p. 460971 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
24.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9673 1873-3778 |
DOI | 10.1016/j.chroma.2020.460971 |
Cover
Abstract | •Chromatographic approach in complex stability constant assessment is time-consuming.•QSRR model was used to predict change in analyte retention time upon complexation.•Predicted change in retention time was used to calculate stability constants.•HPLC and QSRR approach were not applicable under all experimental conditions.•β-CD concentration and acetonitrile content affected stability constant calculation.
When cyclodextrins (CDs) are used in chromatography analytes’ retention time is decreased with an increase in concentration of CD in the mobile phase. Thus complex stability constants can be determined from the change in retention time of the ligand molecule upon complexation. Since the preceding approach implies extensive and time-consuming HPLC experiments, the goal of this research was to investigate the possibility of using in silico prediction tools instead. Quantitative structure–retention relationship (QSRR) model previously developed to explain the retention behavior of risperidone, olanzapine and their structurally related impurities in β-CD modified HPLC system was applied to predict retention factor under different chromatographic conditions within the examined domains. Predicted retention factors were further used for calculation of stability constants and important thermodynamic parameters, namely standard Gibbs free energy, standard molar enthalpy and entropy, contributing to inclusion phenomenon. Unexpected prolonged retention with an increase in β-CD concentration was observed, in contrast to the employed chromatographic theory used for the calculation of the stability constants. Consequently, it led to failure in stability constants and thermodynamic parameters calculation for almost all analytes when acetonitrile content was 20% (v/v) across the investigated pH range. Moreover, ionization of investigated analytes and free stationary phase silanol groups are pH dependent, leading to minimization of secondary interactions if free silanol groups are non-ionized at pH lower than 3. In order to prove accuracy of predicted retention factors, HPLC verification experiments were performed and good agreement between predicted and experimental values was obtained, confirming the applicability of proposed in-silico tool. However, the obtained results opened some novel questions and revealed that chromatographic method is not overall applicable in calculation of stability constants and thermodynamic parameters indicating the complexity of β-CD modified systems. |
---|---|
AbstractList | When cyclodextrins (CDs) are used in chromatography analytes' retention time is decreased with an increase in concentration of CD in the mobile phase. Thus complex stability constants can be determined from the change in retention time of the ligand molecule upon complexation. Since the preceding approach implies extensive and time-consuming HPLC experiments, the goal of this research was to investigate the possibility of using in silico prediction tools instead. Quantitative structure-retention relationship (QSRR) model previously developed to explain the retention behavior of risperidone, olanzapine and their structurally related impurities in β-CD modified HPLC system was applied to predict retention factor under different chromatographic conditions within the examined domains. Predicted retention factors were further used for calculation of stability constants and important thermodynamic parameters, namely standard Gibbs free energy, standard molar enthalpy and entropy, contributing to inclusion phenomenon. Unexpected prolonged retention with an increase in β-CD concentration was observed, in contrast to the employed chromatographic theory used for the calculation of the stability constants. Consequently, it led to failure in stability constants and thermodynamic parameters calculation for almost all analytes when acetonitrile content was 20% (v/v) across the investigated pH range. Moreover, ionization of investigated analytes and free stationary phase silanol groups are pH dependent, leading to minimization of secondary interactions if free silanol groups are non-ionized at pH lower than 3. In order to prove accuracy of predicted retention factors, HPLC verification experiments were performed and good agreement between predicted and experimental values was obtained, confirming the applicability of proposed in-silico tool. However, the obtained results opened some novel questions and revealed that chromatographic method is not overall applicable in calculation of stability constants and thermodynamic parameters indicating the complexity of β-CD modified systems. •Chromatographic approach in complex stability constant assessment is time-consuming.•QSRR model was used to predict change in analyte retention time upon complexation.•Predicted change in retention time was used to calculate stability constants.•HPLC and QSRR approach were not applicable under all experimental conditions.•β-CD concentration and acetonitrile content affected stability constant calculation. When cyclodextrins (CDs) are used in chromatography analytes’ retention time is decreased with an increase in concentration of CD in the mobile phase. Thus complex stability constants can be determined from the change in retention time of the ligand molecule upon complexation. Since the preceding approach implies extensive and time-consuming HPLC experiments, the goal of this research was to investigate the possibility of using in silico prediction tools instead. Quantitative structure–retention relationship (QSRR) model previously developed to explain the retention behavior of risperidone, olanzapine and their structurally related impurities in β-CD modified HPLC system was applied to predict retention factor under different chromatographic conditions within the examined domains. Predicted retention factors were further used for calculation of stability constants and important thermodynamic parameters, namely standard Gibbs free energy, standard molar enthalpy and entropy, contributing to inclusion phenomenon. Unexpected prolonged retention with an increase in β-CD concentration was observed, in contrast to the employed chromatographic theory used for the calculation of the stability constants. Consequently, it led to failure in stability constants and thermodynamic parameters calculation for almost all analytes when acetonitrile content was 20% (v/v) across the investigated pH range. Moreover, ionization of investigated analytes and free stationary phase silanol groups are pH dependent, leading to minimization of secondary interactions if free silanol groups are non-ionized at pH lower than 3. In order to prove accuracy of predicted retention factors, HPLC verification experiments were performed and good agreement between predicted and experimental values was obtained, confirming the applicability of proposed in-silico tool. However, the obtained results opened some novel questions and revealed that chromatographic method is not overall applicable in calculation of stability constants and thermodynamic parameters indicating the complexity of β-CD modified systems. |
ArticleNumber | 460971 |
Author | Malenović, Anđelija Zečević, Mira Otašević, Biljana Protić, Ana Maljurić, Nevena |
Author_xml | – sequence: 1 givenname: Nevena surname: Maljurić fullname: Maljurić, Nevena – sequence: 2 givenname: Biljana orcidid: 0000-0002-4747-927X surname: Otašević fullname: Otašević, Biljana – sequence: 3 givenname: Anđelija orcidid: 0000-0002-4102-3933 surname: Malenović fullname: Malenović, Anđelija – sequence: 4 givenname: Mira surname: Zečević fullname: Zečević, Mira – sequence: 5 givenname: Ana orcidid: 0000-0002-6304-1913 surname: Protić fullname: Protić, Ana email: anna@pharmacy.bg.ac.rs |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32089289$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URKeFN0DISzYZ7FzGMQskVHGTKiEkWFsnzknHI8cOtlN1XqvvwJZnwpkUFixgZcv6vv9Y578gZ847JOQ5Z1vO-O7VYav3wY-wLVnJtvWOScEfkQ1vRVVUQrRnZMNYyQu5E9U5uYjxwBgXTJRPyHlVslaWrdyQH19mcMkkSOYWaUxh1mkOSAMmzO_e5ZuF5RL3ZqKj79Ead0Mh0smfELA0eW-pcXT9UPI3Aaa90bTPIWE07uRTP-R86Iw16Uh1Dkx5cqTgepr2mfP90cGYtQkCjIsaF-fnfaGP2ubBdyksQ_w4WbxbM6fgNcb4lDwewEZ89nBekm_v3329-lhcf_7w6ertdaEr2aRCy06XUGG9GzrBQQ9101YNDLWUrOl401UapJDIeAmY2YaJTHYDb3esaQGrS_Jyzc1zv88YkxpN1GgtOPRzVGVdybrmUrCMvnhA527EXk3BjBCO6vfqM1CvgA4-xoDDH4QztTSsDmpdqFoaVmvDWXv9l6ZP7XmXAhj7P_nNKmNe0q3BoKI26DT2JqBOqvfm3wG_AF3qzP4 |
CitedBy_id | crossref_primary_10_1007_s11356_021_17714_w crossref_primary_10_1016_j_jcoa_2021_100023 crossref_primary_10_1016_j_jpba_2020_113711 crossref_primary_10_3390_molecules29133159 crossref_primary_10_1016_j_microc_2021_106693 crossref_primary_10_1016_j_chroma_2021_462120 |
Cites_doi | 10.1016/j.talanta.2010.03.028 10.1016/S0021-9673(01)00810-X 10.1016/S1044-0305(00)00220-8 10.1021/jm0005151 10.1021/cr970022c 10.1016/S0021-9673(98)00107-1 10.1016/j.jasms.2005.08.011 10.1021/cr950202r 10.1016/S0032-9592(03)00258-9 10.1016/j.ijpharm.2006.09.054 10.1016/j.trac.2004.04.001 10.1021/ac000540e 10.1023/A:1014569532163 10.1016/S1387-3806(00)00298-0 10.1016/j.aca.2008.09.018 10.1016/j.trac.2013.04.010 10.1016/S1044-0305(03)00451-3 10.1590/S0103-50532009000400021 10.1039/C0GC00456A 10.1016/j.aca.2006.09.008 10.1021/jf990395+ 10.1016/j.chroma.2008.10.094 10.1016/S0021-9673(04)01143-4 10.1021/ja00267a010 10.1016/S1044-0305(02)00416-6 10.1016/j.jpba.2004.09.044 10.1002/jps.2600660525 10.1021/cr960371r 10.1016/S0731-7085(02)00088-2 10.1016/j.chroma.2005.02.039 10.1002/jps.20047 10.1016/S0731-7085(97)00050-2 10.1002/jms.605 10.1007/s00216-017-0313-y 10.1016/S0734-9750(02)00020-4 10.1039/c1an15155j |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7S9 L.6 |
DOI | 10.1016/j.chroma.2020.460971 |
DatabaseName | CrossRef PubMed AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3778 |
ExternalDocumentID | 32089289 10_1016_j_chroma_2020_460971 S0021967320301710 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FLBIZ FNPLU FYGXN G-Q GBLVA IH2 IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSK SSZ T5K WH7 XPP YK3 ZMT ~02 ~G- ~KM .GJ 29K AAHBH AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABXDB ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AI. AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 OHT RIG SCB SEW SSH UQL VH1 WUQ ZGI ZKB ZXP NPM 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c395t-c9bc2a3e46fb71acf45835af49905b15b3ca979e012ae9bc5076fbbf186058ae3 |
IEDL.DBID | AIKHN |
ISSN | 0021-9673 |
IngestDate | Fri Sep 05 13:35:20 EDT 2025 Thu Jan 02 22:59:35 EST 2025 Tue Jul 01 02:38:47 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Fri Feb 23 02:48:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermodynamic parameters Cyclodextrin Inclusion complexes Stability constants QSRR HPLC |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-c9bc2a3e46fb71acf45835af49905b15b3ca979e012ae9bc5076fbbf186058ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4747-927X 0000-0002-4102-3933 0000-0002-6304-1913 |
PMID | 32089289 |
PQID | 2439441970 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2439441970 pubmed_primary_32089289 crossref_primary_10_1016_j_chroma_2020_460971 crossref_citationtrail_10_1016_j_chroma_2020_460971 elsevier_sciencedirect_doi_10_1016_j_chroma_2020_460971 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-24 |
PublicationDateYYYYMMDD | 2020-05-24 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of Chromatography A |
PublicationTitleAlternate | J Chromatogr A |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cui, Li, Lian, Yang, Meng (bib0002) 2011; 136 Fan, Shi, Kohn, Pommier, Weinstein (bib0014) 2001; 44 Loo (bib0021) 2000; 200 Aschi, D’Archivio, Maggi, Mazzeo, Ruggieri (bib0024) 2007; 582 Ahn, Ramirez, Grigorean, Lebrilla (bib0035) 2001; 12 D’Archivio, Maggi, Mazzeo, Ruggieri (bib0037) 2008; 628 Guo, Song, Liu, Liu (bib0020) 2004; 39 González-Ruiz, León, Olives, Martin, Menéndez (bib0012) 2011; 13 Maljurić, Golubović, Otašević, Zečević, Protić (bib0011) 2018 Ohta, Włodarczyk, Piaskowski, Kaleniecka, Lewandowska, Baran (bib0044) 2017; 409 Rozou, Michaleas, Antoniadou-Vyza (bib0016) 2005; 1087 Li, Zhou, Tang, Yuan (bib0023) 2006; 17 Kempen, Brodbelt (bib0022) 2000; 72 Gałuszka, Migaszewski, Namieśnik (bib0010) 2013; 50 Bordás, Kömíves, Szántó, Lopata (bib0029) 2000; 48 Shuang, Choi (bib0027) 2001; 919 Connors (bib0031) 1987 Cirri, Maestrelli, Orlandini, Furlanetto, Pinzauti, Mura (bib0017) 2005; 37 Karelson, Lobanov, Katritzky (bib0026) 1996; 96 Gabelica, Galic, De Pauw (bib0001) 2002; 13 Dotsikas, Loukas (bib0036) 2002; 29 Singh, Sharma, Banerjee (bib0007) 2002; 20 Yee, Wei (bib0008) 2012; 2 Bodzioch, Durand, Kaliszan, Bączek, Vander Heyden (bib0025) 2010; 81 Uekama, Hirayama, Ikeda, Inaba (bib0032) 1977; 66 Loukas (bib0043) 1997; 16 Dotsikas, Loukas (bib0042) 2003; 14 Claude, Morin, Lafosse, Andre (bib0040) 2004; 1049 Connors (bib0013) 1997; 97 Cserháti, Forgács (bib0003) 2003 Szejtli (bib0004) 1998; 98 Taverniers, De Loose, Van Bockstaele (bib0019) 2004; 23 Kiralj, Ferreira (bib0009) 2009; 20 Ravelet, Geze, Villet, Grosset, Ravel, Wouessidjewe (bib0015) 2002; 29 Armstrong, Nome, Spino, Golden (bib0033) 1986; 108 Zupan (bib0038) 1994; 41 Del Valle (bib0005) 2004; 39 Moraes, Abrami, de Paula, Braga, Fraceto (bib0018) 2007; 331 Danel, Azaroual, Brunel, Lannoy, Vermeersch, Odou (bib0034) 2008; 1215 Loftsson, Másson, Brewster (bib0041) 2004; 93 Morin, Guillaume, Peyrin, Rouland (bib0028) 1998; 808 Samala, Pawar, Manala, Chada, Nageshwar (bib0006) 2013; 6 Snyder, Kirkland, Glajch (bib0039) 2012 Liu, Jin, Zhang (bib0030) 2002; 42 Loukas (10.1016/j.chroma.2020.460971_bib0043) 1997; 16 Cserháti (10.1016/j.chroma.2020.460971_bib0003) 2003 Cirri (10.1016/j.chroma.2020.460971_bib0017) 2005; 37 Li (10.1016/j.chroma.2020.460971_bib0023) 2006; 17 Fan (10.1016/j.chroma.2020.460971_bib0014) 2001; 44 Ahn (10.1016/j.chroma.2020.460971_bib0035) 2001; 12 Kempen (10.1016/j.chroma.2020.460971_bib0022) 2000; 72 Connors (10.1016/j.chroma.2020.460971_bib0031) 1987 Ravelet (10.1016/j.chroma.2020.460971_bib0015) 2002; 29 Shuang (10.1016/j.chroma.2020.460971_bib0027) 2001; 919 Ohta (10.1016/j.chroma.2020.460971_bib0044) 2017; 409 Kiralj (10.1016/j.chroma.2020.460971_bib0009) 2009; 20 Gabelica (10.1016/j.chroma.2020.460971_bib0001) 2002; 13 Cui (10.1016/j.chroma.2020.460971_bib0002) 2011; 136 Szejtli (10.1016/j.chroma.2020.460971_bib0004) 1998; 98 Snyder (10.1016/j.chroma.2020.460971_bib0039) 2012 Moraes (10.1016/j.chroma.2020.460971_bib0018) 2007; 331 Claude (10.1016/j.chroma.2020.460971_bib0040) 2004; 1049 Bordás (10.1016/j.chroma.2020.460971_bib0029) 2000; 48 Liu (10.1016/j.chroma.2020.460971_bib0030) 2002; 42 Singh (10.1016/j.chroma.2020.460971_bib0007) 2002; 20 Rozou (10.1016/j.chroma.2020.460971_bib0016) 2005; 1087 Dotsikas (10.1016/j.chroma.2020.460971_bib0036) 2002; 29 D’Archivio (10.1016/j.chroma.2020.460971_bib0037) 2008; 628 Samala (10.1016/j.chroma.2020.460971_bib0006) 2013; 6 Uekama (10.1016/j.chroma.2020.460971_bib0032) 1977; 66 Maljurić (10.1016/j.chroma.2020.460971_bib0011) 2018 Loftsson (10.1016/j.chroma.2020.460971_bib0041) 2004; 93 Morin (10.1016/j.chroma.2020.460971_bib0028) 1998; 808 González-Ruiz (10.1016/j.chroma.2020.460971_bib0012) 2011; 13 Loo (10.1016/j.chroma.2020.460971_bib0021) 2000; 200 Del Valle (10.1016/j.chroma.2020.460971_bib0005) 2004; 39 Dotsikas (10.1016/j.chroma.2020.460971_bib0042) 2003; 14 Guo (10.1016/j.chroma.2020.460971_bib0020) 2004; 39 Bodzioch (10.1016/j.chroma.2020.460971_bib0025) 2010; 81 Gałuszka (10.1016/j.chroma.2020.460971_bib0010) 2013; 50 Connors (10.1016/j.chroma.2020.460971_bib0013) 1997; 97 Aschi (10.1016/j.chroma.2020.460971_bib0024) 2007; 582 Karelson (10.1016/j.chroma.2020.460971_bib0026) 1996; 96 Taverniers (10.1016/j.chroma.2020.460971_bib0019) 2004; 23 Danel (10.1016/j.chroma.2020.460971_bib0034) 2008; 1215 Zupan (10.1016/j.chroma.2020.460971_bib0038) 1994; 41 Yee (10.1016/j.chroma.2020.460971_bib0008) 2012; 2 Armstrong (10.1016/j.chroma.2020.460971_bib0033) 1986; 108 |
References_xml | – volume: 582 start-page: 235 year: 2007 end-page: 242 ident: bib0024 article-title: Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography publication-title: Anal. Chim. Acta – volume: 1049 start-page: 37 year: 2004 end-page: 42 ident: bib0040 article-title: Evaluation of apparent formation constants of pentacyclic triterpene acids complexes with derivatized β-and γ-cyclodextrins by reversed phase liquid chromatography publication-title: J. Chromatogr. A – volume: 44 start-page: 3254 year: 2001 end-page: 3263 ident: bib0014 article-title: Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm-based studies publication-title: J.Med. Chem. – volume: 331 start-page: 99 year: 2007 end-page: 106 ident: bib0018 article-title: Study of the interaction between S (−) bupivacaine and 2-hydroxypropyl-β-cyclodextrin publication-title: Int. J. Pharm. – year: 2012 ident: bib0039 article-title: Practical HPLC Method Development – volume: 48 start-page: 926 year: 2000 end-page: 931 ident: bib0029 article-title: Comparative three-dimensional quantitative structure−activity relationship study of safeners and herbicides publication-title: J. Agric. Food Chem. – year: 1987 ident: bib0031 article-title: Binding Constants: The Measurement of Molecular Complex Stability – volume: 628 start-page: 162 year: 2008 end-page: 172 ident: bib0037 article-title: Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors publication-title: Anal. Chim. Acta – volume: 808 start-page: 51 year: 1998 end-page: 60 ident: bib0028 article-title: Peculiarities of an imidazole derivative retention mechanism in reversed-phase liquid chromatography: β-cyclodextrin concentration and temperature considerations publication-title: J. Chromatogr. A – volume: 108 start-page: 1418 year: 1986 end-page: 1421 ident: bib0033 article-title: Efficient detection and evaluation of cyclodextrin multiple complex formation publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1123 year: 2003 end-page: 1129 ident: bib0042 article-title: Efficient determination and evaluation of model cyclodextrin complex binding constants by electrospray mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. – volume: 41 start-page: 327 year: 1994 ident: bib0038 article-title: Introduction to artificial neural network (ANN) methods: what they are and how to use them publication-title: Acta Chim. Slov. – volume: 919 start-page: 321 year: 2001 end-page: 329 ident: bib0027 article-title: Retention behaviour and fluorimetric detection of procaine hydrochloride using carboxymethyl-β-cyclodextrin as an additive in reversed-phase liquid chromatography publication-title: J. Chromatogr. A – volume: 12 start-page: 278 year: 2001 end-page: 287 ident: bib0035 article-title: Chiral recognition in gas-phase cyclodextrin: Amino acid complexes—is the three point interaction still valid in the gas phase? publication-title: J. Am. Soc. Mass Spectrom. – volume: 50 start-page: 78 year: 2013 end-page: 84 ident: bib0010 article-title: The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices publication-title: TrAC Trends Anal. Chem. – volume: 81 start-page: 1711 year: 2010 end-page: 1718 ident: bib0025 article-title: Advanced QSRR modeling of peptides behavior in RPLC publication-title: Talanta – volume: 17 start-page: 9 year: 2006 end-page: 14 ident: bib0023 article-title: Investigation of noncovalent complexes between β-cyclodextrin and polyamide acids containing N-methylpyrrole and N-methylimidazole by electrospray ionization mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. – volume: 97 start-page: 1325 year: 1997 end-page: 1358 ident: bib0013 article-title: The stability of cyclodextrin complexes in solution publication-title: Chem. Rev. – volume: 39 start-page: 1033 year: 2004 end-page: 1046 ident: bib0005 article-title: Cyclodextrins and their uses: a review publication-title: Process Biochem. – volume: 96 start-page: 1027 year: 1996 end-page: 1044 ident: bib0026 article-title: Quantum-chemical descriptors in QSAR/QSPR studies publication-title: Chem. Rev. – volume: 13 start-page: 115 year: 2011 end-page: 126 ident: bib0012 article-title: Eco-friendly liquid chromatographic separations based on the use of cyclodextrins as mobile phase additives publication-title: Green Chem. – volume: 93 start-page: 1091 year: 2004 end-page: 1099 ident: bib0041 article-title: Self‐association of cyclodextrins and cyclodextrin complexes publication-title: J. Pharm. Sci. – volume: 20 start-page: 770 year: 2009 end-page: 787 ident: bib0009 article-title: Basic validation procedures for regression models in QSAR and QSPR studies: theory and application publication-title: J. Braz. Chem. Soc. – volume: 23 start-page: 535 year: 2004 end-page: 552 ident: bib0019 article-title: Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance publication-title: TrAC Trends Anal. Chem. – volume: 66 start-page: 706 year: 1977 end-page: 710 ident: bib0032 article-title: Utilization of cyclodextrin complexation for separation of E, A, and B prostaglandins by ion‐exchange liquid chromatography publication-title: J. Pharm. Sci. – start-page: 1 year: 2018 end-page: 18 ident: bib0011 article-title: Quantitative structure–retention relationship modeling of selected antipsychotics and their impurities in green liquid chromatography using cyclodextrin mobile phases publication-title: Anal. Bioanal. Chem – volume: 29 start-page: 425 year: 2002 end-page: 430 ident: bib0015 article-title: Chromatographic determination of the association constants between nimesulide and native and modified β-cyclodextrins publication-title: J. Pharm. Biomed. Anal. – volume: 39 start-page: 594 year: 2004 end-page: 599 ident: bib0020 article-title: Characterization of non‐covalent complexes of rutin with cyclodextrins by electrospray ionization tandem mass spectrometry publication-title: J. Mass Spectrom. – volume: 200 start-page: 175 year: 2000 end-page: 186 ident: bib0021 article-title: Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes publication-title: Int. J. Mass Spectrom. – volume: 409 start-page: 3695 year: 2017 end-page: 3706 ident: bib0044 article-title: Unexpected differences between planar and column liquid chromatographic retention of 1-acenaphthenol enantiomers controlled by supramolecular interactions involving β-cyclodextrin at subambient temperatures publication-title: Anal. Bioanal. Chem. – volume: 37 start-page: 995 year: 2005 end-page: 1002 ident: bib0017 article-title: Determination of stability constant values of flurbiprofen–cyclodextrin complexes using different techniques publication-title: J. Pharm. Biomed. Anal. – volume: 42 start-page: 115 year: 2002 end-page: 120 ident: bib0030 article-title: Inclusion complexation thermodynamics of acridine red and rhodamine B by natural and novel oligo (ethylenediamine) tethered schiff base β-cyclodextrin publication-title: J. Inclusion Phenom. Macrocyclic Chem. – volume: 136 start-page: 3149 year: 2011 end-page: 3156 ident: bib0002 article-title: Development of a simple and stability-indicating RP-HPLC method for determining olanzapine and related impurities generated in the preparative process publication-title: Analyst – volume: 98 start-page: 1743 year: 1998 end-page: 1754 ident: bib0004 article-title: Introduction and general overview of cyclodextrin chemistry publication-title: Chem. Rev. – volume: 6 start-page: 659 year: 2013 end-page: 661 ident: bib0006 article-title: Development and Validation of RP-HPLC Method for Estimation of Risperidone in Tablet Dosage Form publication-title: Research J. Pharm. Technol. – volume: 2 start-page: 1 year: 2012 end-page: 31 ident: bib0008 article-title: Current modeling methods used in QSAR/QSPR publication-title: Statistical Modelling of Molecular Descriptors in QSAR/QSPR – volume: 1087 start-page: 86 year: 2005 end-page: 94 ident: bib0016 article-title: Study of structural features and thermodynamic parameters, determining the chromatographic behaviour of drug–cyclodextrin complexes publication-title: J. Chromatogr. A – volume: 72 start-page: 5411 year: 2000 end-page: 5416 ident: bib0022 article-title: A method for the determination of binding constants by electrospray ionization mass spectrometry publication-title: Anal. Chem. – volume: 13 start-page: 946 year: 2002 end-page: 953 ident: bib0001 article-title: On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. – volume: 16 start-page: 275 year: 1997 end-page: 280 ident: bib0043 article-title: Evaluation of the methods for the determination of the stability constant of cyclodextrin–chlorambucil inclusion complexes publication-title: J. Pharm. Biomed. Anal. – volume: 29 start-page: 487 year: 2002 end-page: 494 ident: bib0036 article-title: Kinetic degradation study of insulin complexed with methyl-beta cyclodextrin publication-title: Confirmation of complexation with electrospray mass spectrometry and 1 H NMR. Journal of pharmaceutical and biomedical analysis – volume: 1215 start-page: 185 year: 2008 end-page: 193 ident: bib0034 article-title: Study of the complexation of risperidone and 9-hydroxyrisperidone with cyclodextrin hosts using affinity capillary electrophoresis and 1 H NMR spectroscopy publication-title: J. Chromatogr. A – volume: 20 start-page: 341 year: 2002 end-page: 359 ident: bib0007 article-title: Biotechnological applications of cyclodextrins publication-title: Biotechnol. Adv. – year: 2003 ident: bib0003 article-title: Cyclodextrins in Chromatography – volume: 81 start-page: 1711 issue: 4 year: 2010 ident: 10.1016/j.chroma.2020.460971_bib0025 article-title: Advanced QSRR modeling of peptides behavior in RPLC publication-title: Talanta doi: 10.1016/j.talanta.2010.03.028 – volume: 919 start-page: 321 issue: 2 year: 2001 ident: 10.1016/j.chroma.2020.460971_bib0027 article-title: Retention behaviour and fluorimetric detection of procaine hydrochloride using carboxymethyl-β-cyclodextrin as an additive in reversed-phase liquid chromatography publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(01)00810-X – volume: 12 start-page: 278 issue: 3 year: 2001 ident: 10.1016/j.chroma.2020.460971_bib0035 article-title: Chiral recognition in gas-phase cyclodextrin: Amino acid complexes—is the three point interaction still valid in the gas phase? publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/S1044-0305(00)00220-8 – volume: 44 start-page: 3254 issue: 20 year: 2001 ident: 10.1016/j.chroma.2020.460971_bib0014 article-title: Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm-based studies publication-title: J.Med. Chem. doi: 10.1021/jm0005151 – start-page: 1 year: 2018 ident: 10.1016/j.chroma.2020.460971_bib0011 article-title: Quantitative structure–retention relationship modeling of selected antipsychotics and their impurities in green liquid chromatography using cyclodextrin mobile phases publication-title: Anal. Bioanal. Chem – volume: 98 start-page: 1743 issue: 5 year: 1998 ident: 10.1016/j.chroma.2020.460971_bib0004 article-title: Introduction and general overview of cyclodextrin chemistry publication-title: Chem. Rev. doi: 10.1021/cr970022c – volume: 41 start-page: 327 year: 1994 ident: 10.1016/j.chroma.2020.460971_bib0038 article-title: Introduction to artificial neural network (ANN) methods: what they are and how to use them publication-title: Acta Chim. Slov. – volume: 808 start-page: 51 issue: 1–2 year: 1998 ident: 10.1016/j.chroma.2020.460971_bib0028 article-title: Peculiarities of an imidazole derivative retention mechanism in reversed-phase liquid chromatography: β-cyclodextrin concentration and temperature considerations publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(98)00107-1 – year: 1987 ident: 10.1016/j.chroma.2020.460971_bib0031 – volume: 17 start-page: 9 issue: 1 year: 2006 ident: 10.1016/j.chroma.2020.460971_bib0023 article-title: Investigation of noncovalent complexes between β-cyclodextrin and polyamide acids containing N-methylpyrrole and N-methylimidazole by electrospray ionization mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2005.08.011 – volume: 96 start-page: 1027 issue: 3 year: 1996 ident: 10.1016/j.chroma.2020.460971_bib0026 article-title: Quantum-chemical descriptors in QSAR/QSPR studies publication-title: Chem. Rev. doi: 10.1021/cr950202r – year: 2003 ident: 10.1016/j.chroma.2020.460971_bib0003 – volume: 39 start-page: 1033 issue: 9 year: 2004 ident: 10.1016/j.chroma.2020.460971_bib0005 article-title: Cyclodextrins and their uses: a review publication-title: Process Biochem. doi: 10.1016/S0032-9592(03)00258-9 – volume: 331 start-page: 99 issue: 1 year: 2007 ident: 10.1016/j.chroma.2020.460971_bib0018 article-title: Study of the interaction between S (−) bupivacaine and 2-hydroxypropyl-β-cyclodextrin publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2006.09.054 – year: 2012 ident: 10.1016/j.chroma.2020.460971_bib0039 – volume: 23 start-page: 535 issue: 8 year: 2004 ident: 10.1016/j.chroma.2020.460971_bib0019 article-title: Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2004.04.001 – volume: 72 start-page: 5411 issue: 21 year: 2000 ident: 10.1016/j.chroma.2020.460971_bib0022 article-title: A method for the determination of binding constants by electrospray ionization mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac000540e – volume: 42 start-page: 115 issue: 1–2 year: 2002 ident: 10.1016/j.chroma.2020.460971_bib0030 article-title: Inclusion complexation thermodynamics of acridine red and rhodamine B by natural and novel oligo (ethylenediamine) tethered schiff base β-cyclodextrin publication-title: J. Inclusion Phenom. Macrocyclic Chem. doi: 10.1023/A:1014569532163 – volume: 200 start-page: 175 issue: 1–3 year: 2000 ident: 10.1016/j.chroma.2020.460971_bib0021 article-title: Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes publication-title: Int. J. Mass Spectrom. doi: 10.1016/S1387-3806(00)00298-0 – volume: 29 start-page: 487 year: 2002 ident: 10.1016/j.chroma.2020.460971_bib0036 article-title: Kinetic degradation study of insulin complexed with methyl-beta cyclodextrin – volume: 628 start-page: 162 issue: 2 year: 2008 ident: 10.1016/j.chroma.2020.460971_bib0037 article-title: Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.09.018 – volume: 50 start-page: 78 year: 2013 ident: 10.1016/j.chroma.2020.460971_bib0010 article-title: The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2013.04.010 – volume: 14 start-page: 1123 issue: 10 year: 2003 ident: 10.1016/j.chroma.2020.460971_bib0042 article-title: Efficient determination and evaluation of model cyclodextrin complex binding constants by electrospray mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/S1044-0305(03)00451-3 – volume: 20 start-page: 770 issue: 4 year: 2009 ident: 10.1016/j.chroma.2020.460971_bib0009 article-title: Basic validation procedures for regression models in QSAR and QSPR studies: theory and application publication-title: J. Braz. Chem. Soc. doi: 10.1590/S0103-50532009000400021 – volume: 13 start-page: 115 issue: 1 year: 2011 ident: 10.1016/j.chroma.2020.460971_bib0012 article-title: Eco-friendly liquid chromatographic separations based on the use of cyclodextrins as mobile phase additives publication-title: Green Chem. doi: 10.1039/C0GC00456A – volume: 582 start-page: 235 issue: 2 year: 2007 ident: 10.1016/j.chroma.2020.460971_bib0024 article-title: Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2006.09.008 – volume: 48 start-page: 926 issue: 3 year: 2000 ident: 10.1016/j.chroma.2020.460971_bib0029 article-title: Comparative three-dimensional quantitative structure−activity relationship study of safeners and herbicides publication-title: J. Agric. Food Chem. doi: 10.1021/jf990395+ – volume: 6 start-page: 659 issue: 6 year: 2013 ident: 10.1016/j.chroma.2020.460971_bib0006 article-title: Development and Validation of RP-HPLC Method for Estimation of Risperidone in Tablet Dosage Form publication-title: Research J. Pharm. Technol. – volume: 2 start-page: 1 year: 2012 ident: 10.1016/j.chroma.2020.460971_bib0008 article-title: Current modeling methods used in QSAR/QSPR – volume: 1215 start-page: 185 issue: 1 year: 2008 ident: 10.1016/j.chroma.2020.460971_bib0034 article-title: Study of the complexation of risperidone and 9-hydroxyrisperidone with cyclodextrin hosts using affinity capillary electrophoresis and 1 H NMR spectroscopy publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2008.10.094 – volume: 1049 start-page: 37 issue: 1–2 year: 2004 ident: 10.1016/j.chroma.2020.460971_bib0040 article-title: Evaluation of apparent formation constants of pentacyclic triterpene acids complexes with derivatized β-and γ-cyclodextrins by reversed phase liquid chromatography publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(04)01143-4 – volume: 108 start-page: 1418 issue: 7 year: 1986 ident: 10.1016/j.chroma.2020.460971_bib0033 article-title: Efficient detection and evaluation of cyclodextrin multiple complex formation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00267a010 – volume: 13 start-page: 946 issue: 8 year: 2002 ident: 10.1016/j.chroma.2020.460971_bib0001 article-title: On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/S1044-0305(02)00416-6 – volume: 37 start-page: 995 issue: 5 year: 2005 ident: 10.1016/j.chroma.2020.460971_bib0017 article-title: Determination of stability constant values of flurbiprofen–cyclodextrin complexes using different techniques publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2004.09.044 – volume: 66 start-page: 706 issue: 5 year: 1977 ident: 10.1016/j.chroma.2020.460971_bib0032 article-title: Utilization of cyclodextrin complexation for separation of E, A, and B prostaglandins by ion‐exchange liquid chromatography publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600660525 – volume: 97 start-page: 1325 issue: 5 year: 1997 ident: 10.1016/j.chroma.2020.460971_bib0013 article-title: The stability of cyclodextrin complexes in solution publication-title: Chem. Rev. doi: 10.1021/cr960371r – volume: 29 start-page: 425 issue: 3 year: 2002 ident: 10.1016/j.chroma.2020.460971_bib0015 article-title: Chromatographic determination of the association constants between nimesulide and native and modified β-cyclodextrins publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(02)00088-2 – volume: 1087 start-page: 86 issue: 1 year: 2005 ident: 10.1016/j.chroma.2020.460971_bib0016 article-title: Study of structural features and thermodynamic parameters, determining the chromatographic behaviour of drug–cyclodextrin complexes publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2005.02.039 – volume: 93 start-page: 1091 issue: 5 year: 2004 ident: 10.1016/j.chroma.2020.460971_bib0041 article-title: Self‐association of cyclodextrins and cyclodextrin complexes publication-title: J. Pharm. Sci. doi: 10.1002/jps.20047 – volume: 16 start-page: 275 issue: 2 year: 1997 ident: 10.1016/j.chroma.2020.460971_bib0043 article-title: Evaluation of the methods for the determination of the stability constant of cyclodextrin–chlorambucil inclusion complexes publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(97)00050-2 – volume: 39 start-page: 594 issue: 6 year: 2004 ident: 10.1016/j.chroma.2020.460971_bib0020 article-title: Characterization of non‐covalent complexes of rutin with cyclodextrins by electrospray ionization tandem mass spectrometry publication-title: J. Mass Spectrom. doi: 10.1002/jms.605 – volume: 409 start-page: 3695 issue: 14 year: 2017 ident: 10.1016/j.chroma.2020.460971_bib0044 article-title: Unexpected differences between planar and column liquid chromatographic retention of 1-acenaphthenol enantiomers controlled by supramolecular interactions involving β-cyclodextrin at subambient temperatures publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-017-0313-y – volume: 20 start-page: 341 issue: 5–6 year: 2002 ident: 10.1016/j.chroma.2020.460971_bib0007 article-title: Biotechnological applications of cyclodextrins publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(02)00020-4 – volume: 136 start-page: 3149 issue: 15 year: 2011 ident: 10.1016/j.chroma.2020.460971_bib0002 article-title: Development of a simple and stability-indicating RP-HPLC method for determining olanzapine and related impurities generated in the preparative process publication-title: Analyst doi: 10.1039/c1an15155j |
SSID | ssj0017072 ssj0029838 |
Score | 2.3648937 |
Snippet | •Chromatographic approach in complex stability constant assessment is time-consuming.•QSRR model was used to predict change in analyte retention time upon... When cyclodextrins (CDs) are used in chromatography analytes' retention time is decreased with an increase in concentration of CD in the mobile phase. Thus... When cyclodextrins (CDs) are used in chromatography analytes’ retention time is decreased with an increase in concentration of CD in the mobile phase. Thus... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 460971 |
SubjectTerms | acetonitrile beta-cyclodextrin chemical species computer simulation Cyclodextrin enthalpy entropy Gibbs free energy high performance liquid chromatography HPLC Inclusion complexes ionization ligands prediction QSRR quantitative structure-activity relationships Stability constants Thermodynamic parameters |
Title | Quantitative structure retention relationship modeling as potential tool in chromatographic determination of stability constants and thermodynamic parameters of β-cyclodextrin complexation process |
URI | https://dx.doi.org/10.1016/j.chroma.2020.460971 https://www.ncbi.nlm.nih.gov/pubmed/32089289 https://www.proquest.com/docview/2439441970 |
Volume | 1619 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBeStLn9hFU6NWJn7J1DEvDtkuWtjQ0NyPJEnHY2Mbrhe6lP6r_odf8ps5I1kIOIdDTskYzFp7RzGdr5hMhH5kSAiwrAw0JIUh5wgMeahkoFouUVYrn9oP--ZLNL9Ivl9nlHpn5Xhgsqxxjv4vpNlqPV07Gp3nS1TX2-MJqY3kSI6rPsc1qP044yyZk__TzYr7cbSbkYb6jlIp5kbjojKUJIO3b6WzNl7rqW8tGFIfHKUN6pfvS1X1w1KalswPydMST9NRN-ZDs6eYZeTzzx7g9J3-_bURjO8kgrlFHF7vpNe0RLaNVaO_r4a7qjtqTcSCdUbGmXWuHgPqhbVe0bqib-eBormtFK19MYxW1BvQ73u8tVQ54DmsqmooizATV20bcgBjyjd-g6Bplbv8EaqtW2Fs_9HgTrHLXv5zOzjUyvCAXZ59-zObBeHZDoBKeDYHiUsUi0SkzMo-EMrg_mwkDL1hhJqNMJkrwnGvIj0LDWIClMFKaqMB9WqGTl2TStI1-TWhkilACUDKmUGnFtOCZVhpphHJeVaaaksSbqFQjsTmer7EqfQXbdekeT4mGLZ1hpyTYSXWO2OOB8bm3fnnHQUvIPQ9IfvDOUoLtcUNGNLrdrMvYtiVHsB6m5JXzot1cwK0LDm_Db_77vm_JE_yHpQ5x-o5MwMH0e0BQgzwij45_R0fjOsHfxfefC7i6_Hr-D-3nJLY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhPaSX0vR3m7RVoVcntmVb1rEsDds2CRQSyE3IskRcNrbxeqF76UPlHXLNM3VGshZ6CIFebc1YeEYzY-ubT4R8LrRSYNkqMpAQokwwEYnYVJEuUpUVtRbc_dA_Oy8Wl9n3q_xqh8xDLwzCKqfY72O6i9bTlePpbR73TYM9vrDaCs5SrOo5tlk9yXLGEdd39GeL80h4zLeEUqkomY_NCEwA2dBM5xBf-nroHBdRGh9lBZIrPZSsHipGXVI6eU6eTdUk_eInvE92TPuC7M3DIW4vyd3PtWpdHxlENerJYteDoQPWymgTOgQ03HXTU3cuDiQzqla079wQUD923ZI2LfUzHz3JdaNpHaA0TlFnQb9n_d5Q7cvOcUVVW1MsMkH1plU3IIZs4zcoukKZ-9tIb_QSO-vHAR-CGHfz2-vsfRvDK3J58vVivoimkxsizUQ-RlpUOlXMZIWteKK0xd3ZXFn4vIrzKskrppXgwkB2VAbGQlEKIyublLhLqwx7TXbbrjVvCU1sGVdQJllb6qwujBK50QZJhLioa1vPCAsmknqiNcfTNZYy4Nd-Sf96JBpWesPOSLSV6j2txyPjebC-_Mc9JWSeRyQ_BWeRYHvcjlGt6dYrmbqm5ARWw4y88V60nQs4dSngW_jdfz_3I9lbXJydytNv5z8OyFO8g6CHNDsku-Bs5j3UUmP1wa2Vv4amItI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+structure+retention+relationship+modeling+as+potential+tool+in+chromatographic+determination+of+stability+constants+and+thermodynamic+parameters+of+%CE%B2-cyclodextrin+complexation+process&rft.jtitle=Journal+of+Chromatography+A&rft.au=Maljuri%C4%87%2C+Nevena&rft.au=Ota%C5%A1evi%C4%87%2C+Biljana&rft.au=Malenovi%C4%87%2C+An%C4%91elija&rft.au=Ze%C4%8Devi%C4%87%2C+Mira&rft.date=2020-05-24&rft.pub=Elsevier+B.V&rft.issn=0021-9673&rft.volume=1619&rft_id=info:doi/10.1016%2Fj.chroma.2020.460971&rft.externalDocID=S0021967320301710 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon |