Monte Carlo simulation of gold nanoparticles for X-ray enhancement application
Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carl...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1867; no. 4; p. 130318 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies.
This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations.
In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation.
Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.
•Comprehensive overview of recent advancements in MC simulation on Au NPs.•Exploring the recent advances in MC simulation on Au NPs radiosensitization.•Limitations of MC simulation of Au NPs for theranostic application are discussed. |
---|---|
AbstractList | Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies. Scope of Review: This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations. In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs. Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies. This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations. In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs. Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies.BACKGROUNDGold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies.This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations.SCOPE OF REVIEWThis review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations.In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation.MAJOR CONCLUSIONSIn this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation.Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.GENERAL SIGNIFICANCEUsing advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs. Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies. This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations. In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs. •Comprehensive overview of recent advancements in MC simulation on Au NPs.•Exploring the recent advances in MC simulation on Au NPs radiosensitization.•Limitations of MC simulation of Au NPs for theranostic application are discussed. |
ArticleNumber | 130318 |
Author | Aziz, Azlan Abdul Rahman, Azhar Abdul Dheyab, Mohammed Ali Ashour, Nabeel Ibrahim Musa, Ahmed Sadeq Braim, Farhank Saber Jameel, Mahmood S. |
Author_xml | – sequence: 1 givenname: Mohammed Ali surname: Dheyab fullname: Dheyab, Mohammed Ali email: mdali@usm.my organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia – sequence: 2 givenname: Azlan Abdul surname: Aziz fullname: Aziz, Azlan Abdul email: lan@usm.my organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia – sequence: 3 givenname: Azhar Abdul surname: Rahman fullname: Rahman, Azhar Abdul organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia – sequence: 4 givenname: Nabeel Ibrahim surname: Ashour fullname: Ashour, Nabeel Ibrahim organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia – sequence: 5 givenname: Ahmed Sadeq surname: Musa fullname: Musa, Ahmed Sadeq organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia – sequence: 6 givenname: Farhank Saber surname: Braim fullname: Braim, Farhank Saber organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia – sequence: 7 givenname: Mahmood S. surname: Jameel fullname: Jameel, Mahmood S. organization: School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36740000$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAUha0KVAboG6DKy24y9U_sOF0gVSP6I1HYgNSd5Tg31CPHDrYHibcnQ6CLLoo311f6vrs45xgdhBgAoTNK1pRQ-Xm77jpzB2HNCONrygmn6h1aUdWwShEiD9CKcFJXNZXiCB3nvCXzE614j464bOr9tkJXv2IogDcm-YizG3feFBcDjgO-i77HwYQ4mVSc9ZDxEBP-XSXziCH8McHCCKFgM03e2WfvFB0Oxmf48DJP0O23i5vNj-ry-vvPzdfLyvJWlMqyeTDLiGId7Ya25T1nsmlADcTOf0kIVdbYerBdY1XPGJVdbYTgA1GGSn6CPi13pxTvd5CLHl224L0JEHdZM8VrxoRsxdto0_CGCtKSGf34gu66EXo9JTea9Khf45qBegFsijknGP4ilOh9K3qrl1b0vhW9tDJrX_7RrCvPeZVknH9LPl9kmPN8cJB0tg7m7HuXwBbdR_f_A09386ha |
CitedBy_id | crossref_primary_10_1016_j_inoche_2023_111961 crossref_primary_10_1186_s41181_024_00266_y crossref_primary_10_1002_smll_202400954 crossref_primary_10_1007_s10967_024_09517_3 crossref_primary_10_1007_s11468_023_01981_z |
Cites_doi | 10.1088/1361-6560/ab23a3 10.1088/1361-6560/ab314c 10.1038/s41598-017-11851-4 10.1016/j.pdpdt.2021.102177 10.1021/cr030698+ 10.1088/0031-9155/58/22/7961 10.1120/jacmp.v16i5.5568 10.3390/pharmaceutics13030416 10.1140/epjd/e2018-90050-x 10.4103/0973-1482.153668 10.1109/TMI.2004.826953 10.1007/s11468-019-01007-7 10.1016/j.jcp.2014.06.011 10.3390/app10207020 10.1371/journal.pone.0062425 10.1002/mp.12827 10.1021/jp306543q 10.1088/0031-9155/61/21/7522 10.1088/0031-9155/60/16/6195 10.1016/j.ijrobp.2010.08.044 10.1016/j.ejmp.2019.04.010 10.1021/acs.chemrev.5b00100 10.1088/1361-6560/ab31d4 10.1120/jacmp.v17i3.5945 10.1088/0031-9155/60/13/4951 10.1118/1.4758060 10.2147/IJN.S205814 10.1088/1361-6560/aa5bc7 10.1186/s12645-017-0026-0 10.2147/IJN.S114025 10.1088/1361-6560/aac04c 10.2217/nnm.14.171 10.1667/RR1984.1 10.1186/s12645-021-00099-3 10.2478/pjmpe-2020-0026 10.3390/cancers13215370 10.1016/j.radonc.2011.08.026 10.1016/j.ijrobp.2010.10.022 10.1088/1361-6560/ab9502 10.1039/C5RA04013B 10.1088/0031-9155/55/21/013 10.1016/j.ejmp.2018.02.011 10.1016/j.radmeas.2006.07.013 10.1088/1361-6560/ab7a6b 10.3390/nano11082147 10.1016/j.rpor.2010.09.001 10.3390/ijms23137400 10.1080/09553002.2017.1361556 10.1016/j.ejmp.2019.12.011 10.1504/IJNT.2013.058563 10.1088/0031-9155/54/20/008 10.1016/j.ijrobp.2016.06.427 10.1088/0031-9155/56/15/001 10.2217/nnm.12.165 10.3938/jkps.56.1754 10.1021/ja210239k 10.1007/s10544-009-9309-5 10.1088/0957-4484/22/46/465101 10.1118/1.3531973 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2023.130318 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 36740000 10_1016_j_bbagen_2023_130318 S0304416523000168 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABWVN ABXDB ACDAQ ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AFJKZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-c23952c2082b1bf993d32677e8f0c3d360018cac4fcb7c8d2216b4a553f08a163 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Thu Jul 10 18:35:46 EDT 2025 Fri Jul 11 00:30:05 EDT 2025 Wed Feb 19 02:25:03 EST 2025 Thu Apr 24 23:09:07 EDT 2025 Tue Jul 01 00:22:17 EDT 2025 Sat Jan 18 16:10:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Radiosensitization Radiation therapy Dose enhancement factor (DEF) Au NPs Monte Carlo simulation Geant4 |
Language | English |
License | Copyright © 2023 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-c23952c2082b1bf993d32677e8f0c3d360018cac4fcb7c8d2216b4a553f08a163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 36740000 |
PQID | 2773715090 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2834225695 proquest_miscellaneous_2773715090 pubmed_primary_36740000 crossref_primary_10_1016_j_bbagen_2023_130318 crossref_citationtrail_10_1016_j_bbagen_2023_130318 elsevier_sciencedirect_doi_10_1016_j_bbagen_2023_130318 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Haume (bb0125) 2018; 72 Amato, Italiano, Pergolizzi (bb0160) 2013; 10 Niita (bb0170) 2006; 41 Sung, Jung, Ye (bb0115) 2016; 61 Joh (bb0095) 2013; 8 Hossain, Su (bb0055) 2012; 116 Asadi (bb0235) 2016; 17 Hainfeld (bb0090) 2013; 8 Salvat, Fernández-Varea, Sempau (bb0140) 2008 Rabus (bb0120) 2019; 64 Jain (bb0085) 2011; 79 Mohammadzadeh, Ghiasi (bb0050) 2020; 26 Cho (bb0200) 2010; 56 Li (bb0130) 2020; 69 Ngwa, Makrigiorgos, Berbeco (bb0135) 2010; 55 Zygmanski (bb0255) 2013; 58 Perl (bb0295) 2012; 39 Yang (bb0245) 2016; 96 Archambault, Mainegra-Hing (bb0150) 2015; 60 Zabihzadeh, Arefian (bb0220) 2015; 11 Oelze (bb0260) 2004; 23 Cheng (bb0315) 2012; 134 Chithrani (bb0080) 2010; 173 Garth (bb0145) 2005 Zhang (bb0195) 2009; 11 Ramos-Méndez (bb0305) 2018; 63 Brivio (bb0230) 2017; 62 Sakata (bb0330) 2018; 45 McMahon (bb0070) 2011; 100 Meylan (bb0280) 2017; 7 Dheyab (bb0015) 2021; 33 Xie (bb0175) 2015; 60 Rosa (bb0180) 2017; 8 Paro (bb0190) 2016; 11 Lampe (bb0275) 2018; 48 Seo (bb0320) 2017; 93 Jasim, Abdelghany, Greish (bb0030) 2017 Gray (bb0065) 2020; 65 Dheyab (bb0010) 2022; 23 Zhu (bb0265) 2020; 65 Rudek (bb0270) 2019; 64 Berbeco, Ngwa, Makrigiorgos (bb0060) 2011; 81 Granero (bb0290) 2011; 38 Li (bb0105) 2021; 13 Amato (bb0225) 2013; 21 Daniel, Astruc (bb0005) 2004; 104 Zhou (bb0075) 2015; 115 Gual (bb0205) 2009 Xiao (bb0325) 2011; 22 Caro (bb0020) 2021; 13 Ali Dheyab (bb0025) 2020; 10 Asadi (bb0240) 2015; 16 Sakata (bb0285) 2019; 62 Klapproth (bb0185) 2021; 12 Hashemi (bb0250) 2019; 14 Mesbahi (bb0110) 2010; 15 Mehrdel (bb0035) 2020; 15 Ghorbani (bb0210) 2012; 57 Zhu (bb0310) 2019; 64 Lechtman (bb0155) 2011; 56 Ali Dheyab (bb0040) 2021; 11 Cole (bb0045) 2015; 10 Chen (bb0100) 2015; 5 Khosravi (bb0215) 2015; 5 Karamitros (bb0300) 2014; 274 Faddegon (bb0165) 2009; 54 Asadi (10.1016/j.bbagen.2023.130318_bb0240) 2015; 16 Meylan (10.1016/j.bbagen.2023.130318_bb0280) 2017; 7 Berbeco (10.1016/j.bbagen.2023.130318_bb0060) 2011; 81 Brivio (10.1016/j.bbagen.2023.130318_bb0230) 2017; 62 Mesbahi (10.1016/j.bbagen.2023.130318_bb0110) 2010; 15 Oelze (10.1016/j.bbagen.2023.130318_bb0260) 2004; 23 Haume (10.1016/j.bbagen.2023.130318_bb0125) 2018; 72 Karamitros (10.1016/j.bbagen.2023.130318_bb0300) 2014; 274 Caro (10.1016/j.bbagen.2023.130318_bb0020) 2021; 13 Ramos-Méndez (10.1016/j.bbagen.2023.130318_bb0305) 2018; 63 Rosa (10.1016/j.bbagen.2023.130318_bb0180) 2017; 8 Sung (10.1016/j.bbagen.2023.130318_bb0115) 2016; 61 Sakata (10.1016/j.bbagen.2023.130318_bb0285) 2019; 62 Mohammadzadeh (10.1016/j.bbagen.2023.130318_bb0050) 2020; 26 Daniel (10.1016/j.bbagen.2023.130318_bb0005) 2004; 104 Rabus (10.1016/j.bbagen.2023.130318_bb0120) 2019; 64 Dheyab (10.1016/j.bbagen.2023.130318_bb0010) 2022; 23 Joh (10.1016/j.bbagen.2023.130318_bb0095) 2013; 8 Asadi (10.1016/j.bbagen.2023.130318_bb0235) 2016; 17 Li (10.1016/j.bbagen.2023.130318_bb0130) 2020; 69 Niita (10.1016/j.bbagen.2023.130318_bb0170) 2006; 41 Ali Dheyab (10.1016/j.bbagen.2023.130318_bb0025) 2020; 10 Jain (10.1016/j.bbagen.2023.130318_bb0085) 2011; 79 Ali Dheyab (10.1016/j.bbagen.2023.130318_bb0040) 2021; 11 Chithrani (10.1016/j.bbagen.2023.130318_bb0080) 2010; 173 Seo (10.1016/j.bbagen.2023.130318_bb0320) 2017; 93 Li (10.1016/j.bbagen.2023.130318_bb0105) 2021; 13 Khosravi (10.1016/j.bbagen.2023.130318_bb0215) 2015; 5 Xie (10.1016/j.bbagen.2023.130318_bb0175) 2015; 60 Zhang (10.1016/j.bbagen.2023.130318_bb0195) 2009; 11 Ghorbani (10.1016/j.bbagen.2023.130318_bb0210) 2012; 57 Archambault (10.1016/j.bbagen.2023.130318_bb0150) 2015; 60 Sakata (10.1016/j.bbagen.2023.130318_bb0330) 2018; 45 Rudek (10.1016/j.bbagen.2023.130318_bb0270) 2019; 64 Zhou (10.1016/j.bbagen.2023.130318_bb0075) 2015; 115 Cho (10.1016/j.bbagen.2023.130318_bb0200) 2010; 56 Faddegon (10.1016/j.bbagen.2023.130318_bb0165) 2009; 54 Klapproth (10.1016/j.bbagen.2023.130318_bb0185) 2021; 12 Gual (10.1016/j.bbagen.2023.130318_bb0205) 2009 Hossain (10.1016/j.bbagen.2023.130318_bb0055) 2012; 116 Chen (10.1016/j.bbagen.2023.130318_bb0100) 2015; 5 Perl (10.1016/j.bbagen.2023.130318_bb0295) 2012; 39 Jasim (10.1016/j.bbagen.2023.130318_bb0030) 2017 Garth (10.1016/j.bbagen.2023.130318_bb0145) 2005 Zhu (10.1016/j.bbagen.2023.130318_bb0265) 2020; 65 Lampe (10.1016/j.bbagen.2023.130318_bb0275) 2018; 48 Gray (10.1016/j.bbagen.2023.130318_bb0065) 2020; 65 Zygmanski (10.1016/j.bbagen.2023.130318_bb0255) 2013; 58 McMahon (10.1016/j.bbagen.2023.130318_bb0070) 2011; 100 Hainfeld (10.1016/j.bbagen.2023.130318_bb0090) 2013; 8 Granero (10.1016/j.bbagen.2023.130318_bb0290) 2011; 38 Dheyab (10.1016/j.bbagen.2023.130318_bb0015) 2021; 33 Zhu (10.1016/j.bbagen.2023.130318_bb0310) 2019; 64 Yang (10.1016/j.bbagen.2023.130318_bb0245) 2016; 96 Amato (10.1016/j.bbagen.2023.130318_bb0160) 2013; 10 Cole (10.1016/j.bbagen.2023.130318_bb0045) 2015; 10 Cheng (10.1016/j.bbagen.2023.130318_bb0315) 2012; 134 Zabihzadeh (10.1016/j.bbagen.2023.130318_bb0220) 2015; 11 Mehrdel (10.1016/j.bbagen.2023.130318_bb0035) 2020; 15 Amato (10.1016/j.bbagen.2023.130318_bb0225) 2013; 21 Xiao (10.1016/j.bbagen.2023.130318_bb0325) 2011; 22 Paro (10.1016/j.bbagen.2023.130318_bb0190) 2016; 11 Hashemi (10.1016/j.bbagen.2023.130318_bb0250) 2019; 14 Lechtman (10.1016/j.bbagen.2023.130318_bb0155) 2011; 56 Ngwa (10.1016/j.bbagen.2023.130318_bb0135) 2010; 55 Salvat (10.1016/j.bbagen.2023.130318_bb0140) 2008 |
References_xml | – volume: 274 start-page: 841 year: 2014 end-page: 882 ident: bb0300 article-title: Diffusion-controlled reactions modeling in Geant4-DNA publication-title: J. Comput. Phys. – volume: 56 start-page: 1754 year: 2010 end-page: 1758 ident: bb0200 article-title: Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy publication-title: J. Korean Phys. Soc. – volume: 115 start-page: 10575 year: 2015 end-page: 10636 ident: bb0075 article-title: Gold nanoparticles for in vitro diagnostics publication-title: Chem. Rev. – volume: 11 start-page: 2147 year: 2021 ident: bb0040 article-title: Recent advances in synthesis, medical applications and challenges for gold-coated iron oxide: comprehensive study publication-title: Nanomaterials – volume: 64 start-page: 155016 year: 2019 ident: bb0120 article-title: Determining dose enhancement factors of high-Z nanoparticles from simulations where lateral secondary particle disequilibrium exists publication-title: Phys. Med. Biol. – volume: 60 start-page: 4951 year: 2015 ident: bb0150 article-title: Comparison between EGSnrc, Geant4, MCNP5 and Penelope for mono-energetic electron beams publication-title: Phys. Med. Biol. – volume: 65 year: 2020 ident: bb0265 article-title: A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio publication-title: Phys. Med. Biol. – volume: 8 start-page: 1 year: 2017 end-page: 25 ident: bb0180 article-title: Biological mechanisms of gold nanoparticle radiosensitization publication-title: Cancer Nanotechnol. – volume: 10 start-page: 7020 year: 2020 ident: bb0025 article-title: Rapid sonochemically-assisted synthesis of highly stable gold nanoparticles as computed tomography contrast agents publication-title: Appl. Sci. – volume: 62 start-page: 1935 year: 2017 ident: bb0230 article-title: A Monte Carlo study of I-125 prostate brachytherapy with gold nanoparticles: dose enhancement with simultaneous rectal dose sparing via radiation shielding publication-title: Phys. Med. Biol. – volume: 104 start-page: 293 year: 2004 end-page: 346 ident: bb0005 article-title: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology publication-title: Chem. Rev. – volume: 45 start-page: 2230 year: 2018 end-page: 2242 ident: bb0330 article-title: Geant4-DNA track-structure simulations for gold nanoparticles: the importance of electron discrete models in nanometer volumes publication-title: Med. Phys. – volume: 63 start-page: 105014 year: 2018 ident: bb0305 article-title: Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio publication-title: Phys. Med. Biol. – volume: 14 start-page: 4157 year: 2019 ident: bb0250 article-title: Investigation of gold nanoparticle effects in brachytherapy by an electron emitter ophthalmic plaque publication-title: Int. J. Nanomedicine – volume: 11 start-page: 925 year: 2009 end-page: 933 ident: bb0195 article-title: Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study publication-title: Biomed. Microdevices – volume: 134 start-page: 1950 year: 2012 end-page: 1953 ident: bb0315 article-title: Chemical enhancement by nanomaterials under X-ray irradiation publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 6818 year: 2012 end-page: 6837 ident: bb0295 article-title: TOPAS: an innovative proton Monte Carlo platform for research and clinical applications publication-title: Med. Phys. – volume: 41 start-page: 1080 year: 2006 end-page: 1090 ident: bb0170 article-title: PHITS—a particle and heavy ion transport code system publication-title: Radiat. Meas. – volume: 72 start-page: 1 year: 2018 end-page: 22 ident: bb0125 article-title: Transport of secondary electrons through coatings of ion-irradiated metallic nanoparticles publication-title: Eur. Phys. J. D – volume: 173 start-page: 719 year: 2010 end-page: 728 ident: bb0080 article-title: Gold nanoparticles as radiation sensitizers in cancer therapy publication-title: Radiat. Res. – volume: 58 start-page: 7961 year: 2013 ident: bb0255 article-title: Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles publication-title: Phys. Med. Biol. – volume: 11 start-page: 752 year: 2015 ident: bb0220 article-title: Tumor dose enhancement by nanoparticles during high dose rate 192 Ir brachytherapy publication-title: J. Cancer Res. Ther. – volume: 33 start-page: 102177 year: 2021 ident: bb0015 article-title: Potential of a sonochemical approach to generate MRI-PPT theranostic agents for breast cancer publication-title: Photodiagn. Photodyn. Ther. – volume: 8 start-page: 1601 year: 2013 end-page: 1609 ident: bb0090 article-title: Gold nanoparticle imaging and radiotherapy of brain tumors in mice publication-title: Nanomedicine – start-page: 62 year: 2017 end-page: 109 ident: bb0030 article-title: Current update on the role of enhanced permeability and retention effect in cancer nanomedicine publication-title: Nanotechnology-based Approaches for Targeting and Delivery of Drugs and Genes – volume: 8 year: 2013 ident: bb0095 article-title: Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization publication-title: PLoS One – volume: 5 start-page: 40514 year: 2015 end-page: 40520 ident: bb0100 article-title: BSA capped au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy publication-title: RSC Adv. – volume: 64 start-page: 175005 year: 2019 ident: bb0270 article-title: Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams publication-title: Phys. Med. Biol. – volume: 64 start-page: 145004 year: 2019 ident: bb0310 article-title: The microdosimetric extension in TOPAS: development and comparison with published data publication-title: Phys. Med. Biol. – volume: 100 start-page: 412 year: 2011 end-page: 416 ident: bb0070 article-title: Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy publication-title: Radiother. Oncol. – volume: 23 start-page: 764 year: 2004 end-page: 771 ident: bb0260 article-title: Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging publication-title: IEEE Trans. Med. Imaging – volume: 116 start-page: 23047 year: 2012 end-page: 23052 ident: bb0055 article-title: Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy publication-title: J. Phys. Chem. C – volume: 26 start-page: 217 year: 2020 end-page: 223 ident: bb0050 article-title: Monte Carlo characterization of the gold nanoparticles dose enhancement and estimation of the physical interactions weight in dose enhancement mechanism publication-title: Polish J. Med. Phys. Eng. – volume: 60 start-page: 6195 year: 2015 ident: bb0175 article-title: Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays publication-title: Phys. Med. Biol. – volume: 65 start-page: 135007 year: 2020 ident: bb0065 article-title: A detailed Monte Carlo evaluation of 192Ir dose enhancement for gold nanoparticles and comparison with experimentally measured dose enhancements publication-title: Phys. Med. Biol. – start-page: 17 year: 2005 end-page: 21 ident: bb0145 article-title: Electron/photon transport and its applications. The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World, Chattanooga, Tennessee – volume: 62 start-page: 152 year: 2019 end-page: 157 ident: bb0285 article-title: Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA publication-title: Phys. Med. – volume: 15 start-page: 176 year: 2010 end-page: 180 ident: bb0110 article-title: A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer publication-title: Reports Pract. Oncol. Radiother. – volume: 96 start-page: S170 year: 2016 ident: bb0245 article-title: Monte Carlo simulation of microscopic dose enhancement of glucose conjugated gold nanoparticles for the I-125 radioactive seeds brachytherapy publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 69 start-page: 147 year: 2020 end-page: 163 ident: bb0130 article-title: Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes publication-title: Phys. Med. – volume: 93 start-page: 1239 year: 2017 end-page: 1247 ident: bb0320 article-title: Reactive oxygen species-based measurement of the dependence of the coulomb nanoradiator effect on proton energy and atomic Z value publication-title: Int. J. Radiat. Biol. – volume: 55 start-page: 6533 year: 2010 ident: bb0135 article-title: Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement publication-title: Phys. Med. Biol. – volume: 79 start-page: 531 year: 2011 end-page: 539 ident: bb0085 article-title: Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 22 start-page: 465101 year: 2011 ident: bb0325 article-title: On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles publication-title: Nanotechnology – volume: 7 start-page: 1 year: 2017 end-page: 15 ident: bb0280 article-title: Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA publication-title: Sci. Rep. – volume: 13 start-page: 416 year: 2021 ident: bb0020 article-title: Fe3O4-au core-shell nanoparticles as a multimodal platform for in vivo imaging and focused photothermal therapy publication-title: Pharmaceutics – volume: 10 start-page: 321 year: 2015 end-page: 341 ident: bb0045 article-title: Gold nanoparticles as contrast agents in x-ray imaging and computed tomography publication-title: Nanomedicine – volume: 11 start-page: 4735 year: 2016 ident: bb0190 article-title: Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy publication-title: Int. J. Nanomedicine – volume: 23 start-page: 7400 year: 2022 ident: bb0010 article-title: Monodisperse gold nanoparticles: a review on synthesis and their application in modern medicine publication-title: Int. J. Mol. Sci. – year: 2009 ident: bb0205 article-title: Use of nanoparticles in brachytherapy–an alternative for enhancing doses in cancer treatment publication-title: World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany – volume: 16 start-page: 344 year: 2015 end-page: 357 ident: bb0240 article-title: Gold nanoparticle-based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye publication-title: J. Appl. Clin. Med. Phys. – volume: 15 start-page: 123 year: 2020 end-page: 133 ident: bb0035 article-title: Identifying metal nanoparticle size effect on sensing common human plasma protein by counting the sensitivity of optical absorption spectra damping publication-title: Plasmonics – volume: 21 start-page: 237 year: 2013 end-page: 247 ident: bb0225 article-title: Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels publication-title: J. X-ray Sci. Technol. – volume: 12 start-page: 1 year: 2021 end-page: 18 ident: bb0185 article-title: Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio publication-title: Cancer Nanotechnol. – volume: 81 start-page: 270 year: 2011 end-page: 276 ident: bb0060 article-title: Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy publication-title: Int. J. Radiat. Oncol. Biol. Phys. – year: 2008 ident: bb0140 article-title: PENELOPE-2008: A code system for Monte Carlo simulation of electron and photon transport publication-title: Workshop Proceedings, Barcelona, Spain – volume: 38 start-page: 487 year: 2011 end-page: 494 ident: bb0290 article-title: Dosimetry revisited for the HDR brachytherapy source model mHDR-v2 publication-title: Med. Phys. – volume: 13 start-page: 5370 year: 2021 ident: bb0105 article-title: Application of high-Z gold nanoparticles in targeted cancer radiotherapy—pharmacokinetic modeling, Monte Carlo simulation and radiobiological effect modeling publication-title: Cancers – volume: 5 start-page: 3 year: 2015 ident: bb0215 article-title: Effect of gold nanoparticles on prostate dose distribution under Ir-192 internal and 18 MV external radiotherapy procedures using gel dosimetry and Monte Carlo method publication-title: J. Biomed. Phys. Eng. – volume: 10 start-page: 1045 year: 2013 end-page: 1054 ident: bb0160 article-title: Gold nanoparticles as a sensitising agent in external beam radiotherapy and brachytherapy: a feasibility study through Monte Carlo simulation publication-title: Int. J. Nanotechnol. – volume: 48 start-page: 135 year: 2018 end-page: 145 ident: bb0275 article-title: Mechanistic DNA damage simulations in Geant4-DNA part 1: a parameter study in a simplified geometry publication-title: Phys. Med. – volume: 57 start-page: 401 year: 2012 end-page: 406 ident: bb0210 article-title: Dose enhancement in brachytherapy in the presence of gold nanoparticles: a Monte Carlo study on the size of gold nanoparticles and method of modelling publication-title: Nukleonika – volume: 54 start-page: 6151 year: 2009 ident: bb0165 article-title: The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy publication-title: Phys. Med. Biol. – volume: 17 start-page: 90 year: 2016 end-page: 99 ident: bb0235 article-title: Ocular brachytherapy dosimetry for and in the presence of gold nanoparticles: a Monte Carlo study publication-title: J. Appl. Clin. Med. Phys. – volume: 56 start-page: 4631 year: 2011 ident: bb0155 article-title: Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location publication-title: Phys. Med. Biol. – volume: 61 start-page: 7522 year: 2016 ident: bb0115 article-title: Evaluation of the microscopic dose enhancement for nanoparticle-enhanced auger therapy publication-title: Phys. Med. Biol. – volume: 64 start-page: 145004 issue: 14 year: 2019 ident: 10.1016/j.bbagen.2023.130318_bb0310 article-title: The microdosimetric extension in TOPAS: development and comparison with published data publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab23a3 – year: 2008 ident: 10.1016/j.bbagen.2023.130318_bb0140 article-title: PENELOPE-2008: A code system for Monte Carlo simulation of electron and photon transport – volume: 5 start-page: 3 issue: 1 year: 2015 ident: 10.1016/j.bbagen.2023.130318_bb0215 article-title: Effect of gold nanoparticles on prostate dose distribution under Ir-192 internal and 18 MV external radiotherapy procedures using gel dosimetry and Monte Carlo method publication-title: J. Biomed. Phys. Eng. – volume: 64 start-page: 175005 issue: 17 year: 2019 ident: 10.1016/j.bbagen.2023.130318_bb0270 article-title: Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab314c – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.bbagen.2023.130318_bb0280 article-title: Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA publication-title: Sci. Rep. doi: 10.1038/s41598-017-11851-4 – volume: 33 start-page: 102177 year: 2021 ident: 10.1016/j.bbagen.2023.130318_bb0015 article-title: Potential of a sonochemical approach to generate MRI-PPT theranostic agents for breast cancer publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/j.pdpdt.2021.102177 – volume: 104 start-page: 293 issue: 1 year: 2004 ident: 10.1016/j.bbagen.2023.130318_bb0005 article-title: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology publication-title: Chem. Rev. doi: 10.1021/cr030698+ – volume: 58 start-page: 7961 issue: 22 year: 2013 ident: 10.1016/j.bbagen.2023.130318_bb0255 article-title: Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/22/7961 – volume: 16 start-page: 344 issue: 5 year: 2015 ident: 10.1016/j.bbagen.2023.130318_bb0240 article-title: Gold nanoparticle-based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye publication-title: J. Appl. Clin. Med. Phys. doi: 10.1120/jacmp.v16i5.5568 – volume: 13 start-page: 416 issue: 3 year: 2021 ident: 10.1016/j.bbagen.2023.130318_bb0020 article-title: Fe3O4-au core-shell nanoparticles as a multimodal platform for in vivo imaging and focused photothermal therapy publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13030416 – volume: 72 start-page: 1 issue: 6 year: 2018 ident: 10.1016/j.bbagen.2023.130318_bb0125 article-title: Transport of secondary electrons through coatings of ion-irradiated metallic nanoparticles publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2018-90050-x – volume: 11 start-page: 752 issue: 4 year: 2015 ident: 10.1016/j.bbagen.2023.130318_bb0220 article-title: Tumor dose enhancement by nanoparticles during high dose rate 192 Ir brachytherapy publication-title: J. Cancer Res. Ther. doi: 10.4103/0973-1482.153668 – volume: 23 start-page: 764 issue: 6 year: 2004 ident: 10.1016/j.bbagen.2023.130318_bb0260 article-title: Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.826953 – volume: 15 start-page: 123 year: 2020 ident: 10.1016/j.bbagen.2023.130318_bb0035 article-title: Identifying metal nanoparticle size effect on sensing common human plasma protein by counting the sensitivity of optical absorption spectra damping publication-title: Plasmonics doi: 10.1007/s11468-019-01007-7 – volume: 274 start-page: 841 year: 2014 ident: 10.1016/j.bbagen.2023.130318_bb0300 article-title: Diffusion-controlled reactions modeling in Geant4-DNA publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.06.011 – volume: 10 start-page: 7020 issue: 20 year: 2020 ident: 10.1016/j.bbagen.2023.130318_bb0025 article-title: Rapid sonochemically-assisted synthesis of highly stable gold nanoparticles as computed tomography contrast agents publication-title: Appl. Sci. doi: 10.3390/app10207020 – volume: 8 issue: 4 year: 2013 ident: 10.1016/j.bbagen.2023.130318_bb0095 article-title: Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization publication-title: PLoS One doi: 10.1371/journal.pone.0062425 – volume: 45 start-page: 2230 issue: 5 year: 2018 ident: 10.1016/j.bbagen.2023.130318_bb0330 article-title: Geant4-DNA track-structure simulations for gold nanoparticles: the importance of electron discrete models in nanometer volumes publication-title: Med. Phys. doi: 10.1002/mp.12827 – volume: 116 start-page: 23047 issue: 43 year: 2012 ident: 10.1016/j.bbagen.2023.130318_bb0055 article-title: Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy publication-title: J. Phys. Chem. C doi: 10.1021/jp306543q – volume: 61 start-page: 7522 issue: 21 year: 2016 ident: 10.1016/j.bbagen.2023.130318_bb0115 article-title: Evaluation of the microscopic dose enhancement for nanoparticle-enhanced auger therapy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/21/7522 – volume: 60 start-page: 6195 issue: 16 year: 2015 ident: 10.1016/j.bbagen.2023.130318_bb0175 article-title: Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/16/6195 – volume: 79 start-page: 531 issue: 2 year: 2011 ident: 10.1016/j.bbagen.2023.130318_bb0085 article-title: Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2010.08.044 – volume: 62 start-page: 152 year: 2019 ident: 10.1016/j.bbagen.2023.130318_bb0285 article-title: Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA publication-title: Phys. Med. doi: 10.1016/j.ejmp.2019.04.010 – volume: 115 start-page: 10575 issue: 19 year: 2015 ident: 10.1016/j.bbagen.2023.130318_bb0075 article-title: Gold nanoparticles for in vitro diagnostics publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00100 – volume: 64 start-page: 155016 issue: 15 year: 2019 ident: 10.1016/j.bbagen.2023.130318_bb0120 article-title: Determining dose enhancement factors of high-Z nanoparticles from simulations where lateral secondary particle disequilibrium exists publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab31d4 – volume: 17 start-page: 90 issue: 3 year: 2016 ident: 10.1016/j.bbagen.2023.130318_bb0235 article-title: Ocular brachytherapy dosimetry for and in the presence of gold nanoparticles: a Monte Carlo study publication-title: J. Appl. Clin. Med. Phys. doi: 10.1120/jacmp.v17i3.5945 – volume: 60 start-page: 4951 issue: 13 year: 2015 ident: 10.1016/j.bbagen.2023.130318_bb0150 article-title: Comparison between EGSnrc, Geant4, MCNP5 and Penelope for mono-energetic electron beams publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/13/4951 – volume: 39 start-page: 6818 issue: 11 year: 2012 ident: 10.1016/j.bbagen.2023.130318_bb0295 article-title: TOPAS: an innovative proton Monte Carlo platform for research and clinical applications publication-title: Med. Phys. doi: 10.1118/1.4758060 – volume: 14 start-page: 4157 year: 2019 ident: 10.1016/j.bbagen.2023.130318_bb0250 article-title: Investigation of gold nanoparticle effects in brachytherapy by an electron emitter ophthalmic plaque publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S205814 – volume: 62 start-page: 1935 issue: 5 year: 2017 ident: 10.1016/j.bbagen.2023.130318_bb0230 article-title: A Monte Carlo study of I-125 prostate brachytherapy with gold nanoparticles: dose enhancement with simultaneous rectal dose sparing via radiation shielding publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa5bc7 – start-page: 17 year: 2005 ident: 10.1016/j.bbagen.2023.130318_bb0145 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.bbagen.2023.130318_bb0180 article-title: Biological mechanisms of gold nanoparticle radiosensitization publication-title: Cancer Nanotechnol. doi: 10.1186/s12645-017-0026-0 – volume: 11 start-page: 4735 year: 2016 ident: 10.1016/j.bbagen.2023.130318_bb0190 article-title: Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S114025 – volume: 63 start-page: 105014 issue: 10 year: 2018 ident: 10.1016/j.bbagen.2023.130318_bb0305 article-title: Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aac04c – volume: 10 start-page: 321 issue: 2 year: 2015 ident: 10.1016/j.bbagen.2023.130318_bb0045 article-title: Gold nanoparticles as contrast agents in x-ray imaging and computed tomography publication-title: Nanomedicine doi: 10.2217/nnm.14.171 – volume: 173 start-page: 719 issue: 6 year: 2010 ident: 10.1016/j.bbagen.2023.130318_bb0080 article-title: Gold nanoparticles as radiation sensitizers in cancer therapy publication-title: Radiat. Res. doi: 10.1667/RR1984.1 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.bbagen.2023.130318_bb0185 article-title: Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio publication-title: Cancer Nanotechnol. doi: 10.1186/s12645-021-00099-3 – volume: 26 start-page: 217 issue: 4 year: 2020 ident: 10.1016/j.bbagen.2023.130318_bb0050 article-title: Monte Carlo characterization of the gold nanoparticles dose enhancement and estimation of the physical interactions weight in dose enhancement mechanism publication-title: Polish J. Med. Phys. Eng. doi: 10.2478/pjmpe-2020-0026 – volume: 13 start-page: 5370 issue: 21 year: 2021 ident: 10.1016/j.bbagen.2023.130318_bb0105 article-title: Application of high-Z gold nanoparticles in targeted cancer radiotherapy—pharmacokinetic modeling, Monte Carlo simulation and radiobiological effect modeling publication-title: Cancers doi: 10.3390/cancers13215370 – volume: 21 start-page: 237 issue: 2 year: 2013 ident: 10.1016/j.bbagen.2023.130318_bb0225 article-title: Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels publication-title: J. X-ray Sci. Technol. – volume: 100 start-page: 412 issue: 3 year: 2011 ident: 10.1016/j.bbagen.2023.130318_bb0070 article-title: Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2011.08.026 – start-page: 62 year: 2017 ident: 10.1016/j.bbagen.2023.130318_bb0030 article-title: Current update on the role of enhanced permeability and retention effect in cancer nanomedicine – volume: 81 start-page: 270 issue: 1 year: 2011 ident: 10.1016/j.bbagen.2023.130318_bb0060 article-title: Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2010.10.022 – volume: 65 start-page: 135007 issue: 13 year: 2020 ident: 10.1016/j.bbagen.2023.130318_bb0065 article-title: A detailed Monte Carlo evaluation of 192Ir dose enhancement for gold nanoparticles and comparison with experimentally measured dose enhancements publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab9502 – volume: 5 start-page: 40514 issue: 51 year: 2015 ident: 10.1016/j.bbagen.2023.130318_bb0100 article-title: BSA capped au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy publication-title: RSC Adv. doi: 10.1039/C5RA04013B – volume: 55 start-page: 6533 issue: 21 year: 2010 ident: 10.1016/j.bbagen.2023.130318_bb0135 article-title: Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/55/21/013 – volume: 48 start-page: 135 year: 2018 ident: 10.1016/j.bbagen.2023.130318_bb0275 article-title: Mechanistic DNA damage simulations in Geant4-DNA part 1: a parameter study in a simplified geometry publication-title: Phys. Med. doi: 10.1016/j.ejmp.2018.02.011 – year: 2009 ident: 10.1016/j.bbagen.2023.130318_bb0205 article-title: Use of nanoparticles in brachytherapy–an alternative for enhancing doses in cancer treatment – volume: 41 start-page: 1080 issue: 9–10 year: 2006 ident: 10.1016/j.bbagen.2023.130318_bb0170 article-title: PHITS—a particle and heavy ion transport code system publication-title: Radiat. Meas. doi: 10.1016/j.radmeas.2006.07.013 – volume: 65 issue: 8 year: 2020 ident: 10.1016/j.bbagen.2023.130318_bb0265 article-title: A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab7a6b – volume: 57 start-page: 401 year: 2012 ident: 10.1016/j.bbagen.2023.130318_bb0210 article-title: Dose enhancement in brachytherapy in the presence of gold nanoparticles: a Monte Carlo study on the size of gold nanoparticles and method of modelling publication-title: Nukleonika – volume: 11 start-page: 2147 issue: 8 year: 2021 ident: 10.1016/j.bbagen.2023.130318_bb0040 article-title: Recent advances in synthesis, medical applications and challenges for gold-coated iron oxide: comprehensive study publication-title: Nanomaterials doi: 10.3390/nano11082147 – volume: 15 start-page: 176 issue: 6 year: 2010 ident: 10.1016/j.bbagen.2023.130318_bb0110 article-title: A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer publication-title: Reports Pract. Oncol. Radiother. doi: 10.1016/j.rpor.2010.09.001 – volume: 23 start-page: 7400 issue: 13 year: 2022 ident: 10.1016/j.bbagen.2023.130318_bb0010 article-title: Monodisperse gold nanoparticles: a review on synthesis and their application in modern medicine publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23137400 – volume: 93 start-page: 1239 issue: 11 year: 2017 ident: 10.1016/j.bbagen.2023.130318_bb0320 article-title: Reactive oxygen species-based measurement of the dependence of the coulomb nanoradiator effect on proton energy and atomic Z value publication-title: Int. J. Radiat. Biol. doi: 10.1080/09553002.2017.1361556 – volume: 69 start-page: 147 year: 2020 ident: 10.1016/j.bbagen.2023.130318_bb0130 article-title: Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes publication-title: Phys. Med. doi: 10.1016/j.ejmp.2019.12.011 – volume: 10 start-page: 1045 issue: 12 year: 2013 ident: 10.1016/j.bbagen.2023.130318_bb0160 article-title: Gold nanoparticles as a sensitising agent in external beam radiotherapy and brachytherapy: a feasibility study through Monte Carlo simulation publication-title: Int. J. Nanotechnol. doi: 10.1504/IJNT.2013.058563 – volume: 54 start-page: 6151 issue: 20 year: 2009 ident: 10.1016/j.bbagen.2023.130318_bb0165 article-title: The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/20/008 – volume: 96 start-page: S170 issue: 2 year: 2016 ident: 10.1016/j.bbagen.2023.130318_bb0245 article-title: Monte Carlo simulation of microscopic dose enhancement of glucose conjugated gold nanoparticles for the I-125 radioactive seeds brachytherapy publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2016.06.427 – volume: 56 start-page: 4631 issue: 15 year: 2011 ident: 10.1016/j.bbagen.2023.130318_bb0155 article-title: Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/15/001 – volume: 8 start-page: 1601 issue: 10 year: 2013 ident: 10.1016/j.bbagen.2023.130318_bb0090 article-title: Gold nanoparticle imaging and radiotherapy of brain tumors in mice publication-title: Nanomedicine doi: 10.2217/nnm.12.165 – volume: 56 start-page: 1754 issue: 6 year: 2010 ident: 10.1016/j.bbagen.2023.130318_bb0200 article-title: Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.56.1754 – volume: 134 start-page: 1950 issue: 4 year: 2012 ident: 10.1016/j.bbagen.2023.130318_bb0315 article-title: Chemical enhancement by nanomaterials under X-ray irradiation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210239k – volume: 11 start-page: 925 issue: 4 year: 2009 ident: 10.1016/j.bbagen.2023.130318_bb0195 article-title: Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study publication-title: Biomed. Microdevices doi: 10.1007/s10544-009-9309-5 – volume: 22 start-page: 465101 issue: 46 year: 2011 ident: 10.1016/j.bbagen.2023.130318_bb0325 article-title: On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/22/46/465101 – volume: 38 start-page: 487 issue: 1 year: 2011 ident: 10.1016/j.bbagen.2023.130318_bb0290 article-title: Dosimetry revisited for the HDR brachytherapy source model mHDR-v2 publication-title: Med. Phys. doi: 10.1118/1.3531973 |
SSID | ssj0000595 |
Score | 2.431912 |
SecondaryResourceType | review_article |
Snippet | Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130318 |
SubjectTerms | Au NPs Computer Simulation DNA DNA damage Dose enhancement factor (DEF) Geant4 Gold irradiation Metal Nanoparticles Monte Carlo Method Monte Carlo simulation nanogold neoplasms prediction Radiation therapy Radiosensitization X-radiation X-Rays |
Title | Monte Carlo simulation of gold nanoparticles for X-ray enhancement application |
URI | https://dx.doi.org/10.1016/j.bbagen.2023.130318 https://www.ncbi.nlm.nih.gov/pubmed/36740000 https://www.proquest.com/docview/2773715090 https://www.proquest.com/docview/2834225695 |
Volume | 1867 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4hUFUuCCiFAEWuxNVNYnvXu0cUgQIVubRIuVm2Y7epwi4K4cCF385MvEtBokXitA95JWtmdvzZ8_gAjvs6Oum15CrPC66CUNwGW3DX8yIqpwrZp0Lhy1E-vFIX42y8AoO2FobSKhvfn3z60ls3b7qNNLs302n3BwX1EE7QsSYBFyr4VUqTlX97-JvmgfAhS5EExWl0Wz63zPFyDn9a6oIqJNEiS6L-eH15-hf8XC5DZ5uw0eBHdpKmuAUrodqGD4lR8n4bPg5aArdPMLqkzlNsYOezmt1OrxuiLlZH9queTVhlK9wxN4lxDMErG_O5vWeh-k2mQMeG7Fl8eweuzk5_Doa8oU_gXpbZgnuBF-EFLvKu7yICkQliNa1DEXse7wnqFN56Fb3TvpgI0c-dslkmY6-wiNM-w2pVV2EPWGZL66WI0gXczk1UGQRtDPMyeESUPnZAtlIzvuktThQXM9Mmkf0xSdaGZG2SrDvAn766Sb013hivW4WYFzZi0P2_8eXXVn8GlUAxEVuF-u7WCK2lRlBc9v4zppAK3V5eZh3YTcp_mq_MtSIr23_33A5gnZ5SNtAhrC7md-ELAp2FO1pa8hGsnZx_H44eAfjk-oE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVqhcKiivtDyMxNUksb1r77GKqNJHcqGVcrNsx4agsFul6aEXfjsz8W4BCajEaVe7tmTNjMefPeP5AN4PdfIyaMlVWRquolDcRWe4HwSRlFdGDumi8GRaji_V6ayYbcGouwtDaZWt788-feOt2y_9Vpr9q8Wi_4mCeggn6FiTgIt5ADsKpy_RGHz4_jPPA_FDkUMJilPz7v7cJsnLe5y1VAZVSOJFlsT98ef16W_4c7MOHT-GvRZAsqM8xiewFet9eJgpJW_3YXfUMbg9hemESk-xkVstG3a9-NYydbEmsc_Ncs5qV-OWuc2MY4he2Yyv3C2L9ReyBTo3ZL8EuJ_B5fHHi9GYt_wJPMiqWPMg8CGCwFXeD31CJDJHsKZ1NGkQ8J2wjgkuqBS8DmYuxLD0yhWFTAPjEKg9h-26qeNLYIWrXJAiSR9xPzdXVRS0MyyrGBBShtQD2UnNhra4OHFcLG2XRfbVZllbkrXNsu4Bv-t1lYtr3NNedwqxvxmJRf9_T893nf4sKoGCIq6Ozc21FVpLjai4GvyjjZEK_V5ZFT14kZV_N15ZakVWdvDfY3sLu-OLybk9P5meHcIj-pNTg17B9np1E18j6ln7Nxur_gGr1fwP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monte+Carlo+simulation+of+gold+nanoparticles+for+X-ray+enhancement+application&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Dheyab%2C+Mohammed+Ali&rft.au=Aziz%2C+Azlan+Abdul&rft.au=Rahman%2C+Azhar+Abdul&rft.au=Ashour%2C+Nabeel+Ibrahim&rft.date=2023-04-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1867&rft.issue=4&rft.spage=130318&rft_id=info:doi/10.1016%2Fj.bbagen.2023.130318&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |