Monte Carlo simulation of gold nanoparticles for X-ray enhancement application

Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carl...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1867; no. 4; p. 130318
Main Authors Dheyab, Mohammed Ali, Aziz, Azlan Abdul, Rahman, Azhar Abdul, Ashour, Nabeel Ibrahim, Musa, Ahmed Sadeq, Braim, Farhank Saber, Jameel, Mahmood S.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies. This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations. In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs. •Comprehensive overview of recent advancements in MC simulation on Au NPs.•Exploring the recent advances in MC simulation on Au NPs radiosensitization.•Limitations of MC simulation of Au NPs for theranostic application are discussed.
AbstractList Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies. Scope of Review: This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations. In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.
Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies. This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations. In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.
Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies.BACKGROUNDGold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies.This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations.SCOPE OF REVIEWThis review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations.In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation.MAJOR CONCLUSIONSIn this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation.Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.GENERAL SIGNIFICANCEUsing advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.
Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies. This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations. In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs. •Comprehensive overview of recent advancements in MC simulation on Au NPs.•Exploring the recent advances in MC simulation on Au NPs radiosensitization.•Limitations of MC simulation of Au NPs for theranostic application are discussed.
ArticleNumber 130318
Author Aziz, Azlan Abdul
Rahman, Azhar Abdul
Dheyab, Mohammed Ali
Ashour, Nabeel Ibrahim
Musa, Ahmed Sadeq
Braim, Farhank Saber
Jameel, Mahmood S.
Author_xml – sequence: 1
  givenname: Mohammed Ali
  surname: Dheyab
  fullname: Dheyab, Mohammed Ali
  email: mdali@usm.my
  organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
– sequence: 2
  givenname: Azlan Abdul
  surname: Aziz
  fullname: Aziz, Azlan Abdul
  email: lan@usm.my
  organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
– sequence: 3
  givenname: Azhar Abdul
  surname: Rahman
  fullname: Rahman, Azhar Abdul
  organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
– sequence: 4
  givenname: Nabeel Ibrahim
  surname: Ashour
  fullname: Ashour, Nabeel Ibrahim
  organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
– sequence: 5
  givenname: Ahmed Sadeq
  surname: Musa
  fullname: Musa, Ahmed Sadeq
  organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
– sequence: 6
  givenname: Farhank Saber
  surname: Braim
  fullname: Braim, Farhank Saber
  organization: School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
– sequence: 7
  givenname: Mahmood S.
  surname: Jameel
  fullname: Jameel, Mahmood S.
  organization: School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36740000$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha0KVAboG6DKy24y9U_sOF0gVSP6I1HYgNSd5Tg31CPHDrYHibcnQ6CLLoo311f6vrs45xgdhBgAoTNK1pRQ-Xm77jpzB2HNCONrygmn6h1aUdWwShEiD9CKcFJXNZXiCB3nvCXzE614j464bOr9tkJXv2IogDcm-YizG3feFBcDjgO-i77HwYQ4mVSc9ZDxEBP-XSXziCH8McHCCKFgM03e2WfvFB0Oxmf48DJP0O23i5vNj-ry-vvPzdfLyvJWlMqyeTDLiGId7Ya25T1nsmlADcTOf0kIVdbYerBdY1XPGJVdbYTgA1GGSn6CPi13pxTvd5CLHl224L0JEHdZM8VrxoRsxdto0_CGCtKSGf34gu66EXo9JTea9Khf45qBegFsijknGP4ilOh9K3qrl1b0vhW9tDJrX_7RrCvPeZVknH9LPl9kmPN8cJB0tg7m7HuXwBbdR_f_A09386ha
CitedBy_id crossref_primary_10_1016_j_inoche_2023_111961
crossref_primary_10_1186_s41181_024_00266_y
crossref_primary_10_1002_smll_202400954
crossref_primary_10_1007_s10967_024_09517_3
crossref_primary_10_1007_s11468_023_01981_z
Cites_doi 10.1088/1361-6560/ab23a3
10.1088/1361-6560/ab314c
10.1038/s41598-017-11851-4
10.1016/j.pdpdt.2021.102177
10.1021/cr030698+
10.1088/0031-9155/58/22/7961
10.1120/jacmp.v16i5.5568
10.3390/pharmaceutics13030416
10.1140/epjd/e2018-90050-x
10.4103/0973-1482.153668
10.1109/TMI.2004.826953
10.1007/s11468-019-01007-7
10.1016/j.jcp.2014.06.011
10.3390/app10207020
10.1371/journal.pone.0062425
10.1002/mp.12827
10.1021/jp306543q
10.1088/0031-9155/61/21/7522
10.1088/0031-9155/60/16/6195
10.1016/j.ijrobp.2010.08.044
10.1016/j.ejmp.2019.04.010
10.1021/acs.chemrev.5b00100
10.1088/1361-6560/ab31d4
10.1120/jacmp.v17i3.5945
10.1088/0031-9155/60/13/4951
10.1118/1.4758060
10.2147/IJN.S205814
10.1088/1361-6560/aa5bc7
10.1186/s12645-017-0026-0
10.2147/IJN.S114025
10.1088/1361-6560/aac04c
10.2217/nnm.14.171
10.1667/RR1984.1
10.1186/s12645-021-00099-3
10.2478/pjmpe-2020-0026
10.3390/cancers13215370
10.1016/j.radonc.2011.08.026
10.1016/j.ijrobp.2010.10.022
10.1088/1361-6560/ab9502
10.1039/C5RA04013B
10.1088/0031-9155/55/21/013
10.1016/j.ejmp.2018.02.011
10.1016/j.radmeas.2006.07.013
10.1088/1361-6560/ab7a6b
10.3390/nano11082147
10.1016/j.rpor.2010.09.001
10.3390/ijms23137400
10.1080/09553002.2017.1361556
10.1016/j.ejmp.2019.12.011
10.1504/IJNT.2013.058563
10.1088/0031-9155/54/20/008
10.1016/j.ijrobp.2016.06.427
10.1088/0031-9155/56/15/001
10.2217/nnm.12.165
10.3938/jkps.56.1754
10.1021/ja210239k
10.1007/s10544-009-9309-5
10.1088/0957-4484/22/46/465101
10.1118/1.3531973
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2023.130318
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 36740000
10_1016_j_bbagen_2023_130318
S0304416523000168
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-c23952c2082b1bf993d32677e8f0c3d360018cac4fcb7c8d2216b4a553f08a163
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Thu Jul 10 18:35:46 EDT 2025
Fri Jul 11 00:30:05 EDT 2025
Wed Feb 19 02:25:03 EST 2025
Thu Apr 24 23:09:07 EDT 2025
Tue Jul 01 00:22:17 EDT 2025
Sat Jan 18 16:10:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Radiosensitization
Radiation therapy
Dose enhancement factor (DEF)
Au NPs
Monte Carlo simulation
Geant4
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-c23952c2082b1bf993d32677e8f0c3d360018cac4fcb7c8d2216b4a553f08a163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 36740000
PQID 2773715090
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834225695
proquest_miscellaneous_2773715090
pubmed_primary_36740000
crossref_primary_10_1016_j_bbagen_2023_130318
crossref_citationtrail_10_1016_j_bbagen_2023_130318
elsevier_sciencedirect_doi_10_1016_j_bbagen_2023_130318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Haume (bb0125) 2018; 72
Amato, Italiano, Pergolizzi (bb0160) 2013; 10
Niita (bb0170) 2006; 41
Sung, Jung, Ye (bb0115) 2016; 61
Joh (bb0095) 2013; 8
Hossain, Su (bb0055) 2012; 116
Asadi (bb0235) 2016; 17
Hainfeld (bb0090) 2013; 8
Salvat, Fernández-Varea, Sempau (bb0140) 2008
Rabus (bb0120) 2019; 64
Jain (bb0085) 2011; 79
Mohammadzadeh, Ghiasi (bb0050) 2020; 26
Cho (bb0200) 2010; 56
Li (bb0130) 2020; 69
Ngwa, Makrigiorgos, Berbeco (bb0135) 2010; 55
Zygmanski (bb0255) 2013; 58
Perl (bb0295) 2012; 39
Yang (bb0245) 2016; 96
Archambault, Mainegra-Hing (bb0150) 2015; 60
Zabihzadeh, Arefian (bb0220) 2015; 11
Oelze (bb0260) 2004; 23
Cheng (bb0315) 2012; 134
Chithrani (bb0080) 2010; 173
Garth (bb0145) 2005
Zhang (bb0195) 2009; 11
Ramos-Méndez (bb0305) 2018; 63
Brivio (bb0230) 2017; 62
Sakata (bb0330) 2018; 45
McMahon (bb0070) 2011; 100
Meylan (bb0280) 2017; 7
Dheyab (bb0015) 2021; 33
Xie (bb0175) 2015; 60
Rosa (bb0180) 2017; 8
Paro (bb0190) 2016; 11
Lampe (bb0275) 2018; 48
Seo (bb0320) 2017; 93
Jasim, Abdelghany, Greish (bb0030) 2017
Gray (bb0065) 2020; 65
Dheyab (bb0010) 2022; 23
Zhu (bb0265) 2020; 65
Rudek (bb0270) 2019; 64
Berbeco, Ngwa, Makrigiorgos (bb0060) 2011; 81
Granero (bb0290) 2011; 38
Li (bb0105) 2021; 13
Amato (bb0225) 2013; 21
Daniel, Astruc (bb0005) 2004; 104
Zhou (bb0075) 2015; 115
Gual (bb0205) 2009
Xiao (bb0325) 2011; 22
Caro (bb0020) 2021; 13
Ali Dheyab (bb0025) 2020; 10
Asadi (bb0240) 2015; 16
Sakata (bb0285) 2019; 62
Klapproth (bb0185) 2021; 12
Hashemi (bb0250) 2019; 14
Mesbahi (bb0110) 2010; 15
Mehrdel (bb0035) 2020; 15
Ghorbani (bb0210) 2012; 57
Zhu (bb0310) 2019; 64
Lechtman (bb0155) 2011; 56
Ali Dheyab (bb0040) 2021; 11
Cole (bb0045) 2015; 10
Chen (bb0100) 2015; 5
Khosravi (bb0215) 2015; 5
Karamitros (bb0300) 2014; 274
Faddegon (bb0165) 2009; 54
Asadi (10.1016/j.bbagen.2023.130318_bb0240) 2015; 16
Meylan (10.1016/j.bbagen.2023.130318_bb0280) 2017; 7
Berbeco (10.1016/j.bbagen.2023.130318_bb0060) 2011; 81
Brivio (10.1016/j.bbagen.2023.130318_bb0230) 2017; 62
Mesbahi (10.1016/j.bbagen.2023.130318_bb0110) 2010; 15
Oelze (10.1016/j.bbagen.2023.130318_bb0260) 2004; 23
Haume (10.1016/j.bbagen.2023.130318_bb0125) 2018; 72
Karamitros (10.1016/j.bbagen.2023.130318_bb0300) 2014; 274
Caro (10.1016/j.bbagen.2023.130318_bb0020) 2021; 13
Ramos-Méndez (10.1016/j.bbagen.2023.130318_bb0305) 2018; 63
Rosa (10.1016/j.bbagen.2023.130318_bb0180) 2017; 8
Sung (10.1016/j.bbagen.2023.130318_bb0115) 2016; 61
Sakata (10.1016/j.bbagen.2023.130318_bb0285) 2019; 62
Mohammadzadeh (10.1016/j.bbagen.2023.130318_bb0050) 2020; 26
Daniel (10.1016/j.bbagen.2023.130318_bb0005) 2004; 104
Rabus (10.1016/j.bbagen.2023.130318_bb0120) 2019; 64
Dheyab (10.1016/j.bbagen.2023.130318_bb0010) 2022; 23
Joh (10.1016/j.bbagen.2023.130318_bb0095) 2013; 8
Asadi (10.1016/j.bbagen.2023.130318_bb0235) 2016; 17
Li (10.1016/j.bbagen.2023.130318_bb0130) 2020; 69
Niita (10.1016/j.bbagen.2023.130318_bb0170) 2006; 41
Ali Dheyab (10.1016/j.bbagen.2023.130318_bb0025) 2020; 10
Jain (10.1016/j.bbagen.2023.130318_bb0085) 2011; 79
Ali Dheyab (10.1016/j.bbagen.2023.130318_bb0040) 2021; 11
Chithrani (10.1016/j.bbagen.2023.130318_bb0080) 2010; 173
Seo (10.1016/j.bbagen.2023.130318_bb0320) 2017; 93
Li (10.1016/j.bbagen.2023.130318_bb0105) 2021; 13
Khosravi (10.1016/j.bbagen.2023.130318_bb0215) 2015; 5
Xie (10.1016/j.bbagen.2023.130318_bb0175) 2015; 60
Zhang (10.1016/j.bbagen.2023.130318_bb0195) 2009; 11
Ghorbani (10.1016/j.bbagen.2023.130318_bb0210) 2012; 57
Archambault (10.1016/j.bbagen.2023.130318_bb0150) 2015; 60
Sakata (10.1016/j.bbagen.2023.130318_bb0330) 2018; 45
Rudek (10.1016/j.bbagen.2023.130318_bb0270) 2019; 64
Zhou (10.1016/j.bbagen.2023.130318_bb0075) 2015; 115
Cho (10.1016/j.bbagen.2023.130318_bb0200) 2010; 56
Faddegon (10.1016/j.bbagen.2023.130318_bb0165) 2009; 54
Klapproth (10.1016/j.bbagen.2023.130318_bb0185) 2021; 12
Gual (10.1016/j.bbagen.2023.130318_bb0205) 2009
Hossain (10.1016/j.bbagen.2023.130318_bb0055) 2012; 116
Chen (10.1016/j.bbagen.2023.130318_bb0100) 2015; 5
Perl (10.1016/j.bbagen.2023.130318_bb0295) 2012; 39
Jasim (10.1016/j.bbagen.2023.130318_bb0030) 2017
Garth (10.1016/j.bbagen.2023.130318_bb0145) 2005
Zhu (10.1016/j.bbagen.2023.130318_bb0265) 2020; 65
Lampe (10.1016/j.bbagen.2023.130318_bb0275) 2018; 48
Gray (10.1016/j.bbagen.2023.130318_bb0065) 2020; 65
Zygmanski (10.1016/j.bbagen.2023.130318_bb0255) 2013; 58
McMahon (10.1016/j.bbagen.2023.130318_bb0070) 2011; 100
Hainfeld (10.1016/j.bbagen.2023.130318_bb0090) 2013; 8
Granero (10.1016/j.bbagen.2023.130318_bb0290) 2011; 38
Dheyab (10.1016/j.bbagen.2023.130318_bb0015) 2021; 33
Zhu (10.1016/j.bbagen.2023.130318_bb0310) 2019; 64
Yang (10.1016/j.bbagen.2023.130318_bb0245) 2016; 96
Amato (10.1016/j.bbagen.2023.130318_bb0160) 2013; 10
Cole (10.1016/j.bbagen.2023.130318_bb0045) 2015; 10
Cheng (10.1016/j.bbagen.2023.130318_bb0315) 2012; 134
Zabihzadeh (10.1016/j.bbagen.2023.130318_bb0220) 2015; 11
Mehrdel (10.1016/j.bbagen.2023.130318_bb0035) 2020; 15
Amato (10.1016/j.bbagen.2023.130318_bb0225) 2013; 21
Xiao (10.1016/j.bbagen.2023.130318_bb0325) 2011; 22
Paro (10.1016/j.bbagen.2023.130318_bb0190) 2016; 11
Hashemi (10.1016/j.bbagen.2023.130318_bb0250) 2019; 14
Lechtman (10.1016/j.bbagen.2023.130318_bb0155) 2011; 56
Ngwa (10.1016/j.bbagen.2023.130318_bb0135) 2010; 55
Salvat (10.1016/j.bbagen.2023.130318_bb0140) 2008
References_xml – volume: 274
  start-page: 841
  year: 2014
  end-page: 882
  ident: bb0300
  article-title: Diffusion-controlled reactions modeling in Geant4-DNA
  publication-title: J. Comput. Phys.
– volume: 56
  start-page: 1754
  year: 2010
  end-page: 1758
  ident: bb0200
  article-title: Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy
  publication-title: J. Korean Phys. Soc.
– volume: 115
  start-page: 10575
  year: 2015
  end-page: 10636
  ident: bb0075
  article-title: Gold nanoparticles for in vitro diagnostics
  publication-title: Chem. Rev.
– volume: 11
  start-page: 2147
  year: 2021
  ident: bb0040
  article-title: Recent advances in synthesis, medical applications and challenges for gold-coated iron oxide: comprehensive study
  publication-title: Nanomaterials
– volume: 64
  start-page: 155016
  year: 2019
  ident: bb0120
  article-title: Determining dose enhancement factors of high-Z nanoparticles from simulations where lateral secondary particle disequilibrium exists
  publication-title: Phys. Med. Biol.
– volume: 60
  start-page: 4951
  year: 2015
  ident: bb0150
  article-title: Comparison between EGSnrc, Geant4, MCNP5 and Penelope for mono-energetic electron beams
  publication-title: Phys. Med. Biol.
– volume: 65
  year: 2020
  ident: bb0265
  article-title: A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio
  publication-title: Phys. Med. Biol.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 25
  ident: bb0180
  article-title: Biological mechanisms of gold nanoparticle radiosensitization
  publication-title: Cancer Nanotechnol.
– volume: 10
  start-page: 7020
  year: 2020
  ident: bb0025
  article-title: Rapid sonochemically-assisted synthesis of highly stable gold nanoparticles as computed tomography contrast agents
  publication-title: Appl. Sci.
– volume: 62
  start-page: 1935
  year: 2017
  ident: bb0230
  article-title: A Monte Carlo study of I-125 prostate brachytherapy with gold nanoparticles: dose enhancement with simultaneous rectal dose sparing via radiation shielding
  publication-title: Phys. Med. Biol.
– volume: 104
  start-page: 293
  year: 2004
  end-page: 346
  ident: bb0005
  article-title: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology
  publication-title: Chem. Rev.
– volume: 45
  start-page: 2230
  year: 2018
  end-page: 2242
  ident: bb0330
  article-title: Geant4-DNA track-structure simulations for gold nanoparticles: the importance of electron discrete models in nanometer volumes
  publication-title: Med. Phys.
– volume: 63
  start-page: 105014
  year: 2018
  ident: bb0305
  article-title: Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio
  publication-title: Phys. Med. Biol.
– volume: 14
  start-page: 4157
  year: 2019
  ident: bb0250
  article-title: Investigation of gold nanoparticle effects in brachytherapy by an electron emitter ophthalmic plaque
  publication-title: Int. J. Nanomedicine
– volume: 11
  start-page: 925
  year: 2009
  end-page: 933
  ident: bb0195
  article-title: Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study
  publication-title: Biomed. Microdevices
– volume: 134
  start-page: 1950
  year: 2012
  end-page: 1953
  ident: bb0315
  article-title: Chemical enhancement by nanomaterials under X-ray irradiation
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 6818
  year: 2012
  end-page: 6837
  ident: bb0295
  article-title: TOPAS: an innovative proton Monte Carlo platform for research and clinical applications
  publication-title: Med. Phys.
– volume: 41
  start-page: 1080
  year: 2006
  end-page: 1090
  ident: bb0170
  article-title: PHITS—a particle and heavy ion transport code system
  publication-title: Radiat. Meas.
– volume: 72
  start-page: 1
  year: 2018
  end-page: 22
  ident: bb0125
  article-title: Transport of secondary electrons through coatings of ion-irradiated metallic nanoparticles
  publication-title: Eur. Phys. J. D
– volume: 173
  start-page: 719
  year: 2010
  end-page: 728
  ident: bb0080
  article-title: Gold nanoparticles as radiation sensitizers in cancer therapy
  publication-title: Radiat. Res.
– volume: 58
  start-page: 7961
  year: 2013
  ident: bb0255
  article-title: Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles
  publication-title: Phys. Med. Biol.
– volume: 11
  start-page: 752
  year: 2015
  ident: bb0220
  article-title: Tumor dose enhancement by nanoparticles during high dose rate 192 Ir brachytherapy
  publication-title: J. Cancer Res. Ther.
– volume: 33
  start-page: 102177
  year: 2021
  ident: bb0015
  article-title: Potential of a sonochemical approach to generate MRI-PPT theranostic agents for breast cancer
  publication-title: Photodiagn. Photodyn. Ther.
– volume: 8
  start-page: 1601
  year: 2013
  end-page: 1609
  ident: bb0090
  article-title: Gold nanoparticle imaging and radiotherapy of brain tumors in mice
  publication-title: Nanomedicine
– start-page: 62
  year: 2017
  end-page: 109
  ident: bb0030
  article-title: Current update on the role of enhanced permeability and retention effect in cancer nanomedicine
  publication-title: Nanotechnology-based Approaches for Targeting and Delivery of Drugs and Genes
– volume: 8
  year: 2013
  ident: bb0095
  article-title: Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization
  publication-title: PLoS One
– volume: 5
  start-page: 40514
  year: 2015
  end-page: 40520
  ident: bb0100
  article-title: BSA capped au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy
  publication-title: RSC Adv.
– volume: 64
  start-page: 175005
  year: 2019
  ident: bb0270
  article-title: Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams
  publication-title: Phys. Med. Biol.
– volume: 64
  start-page: 145004
  year: 2019
  ident: bb0310
  article-title: The microdosimetric extension in TOPAS: development and comparison with published data
  publication-title: Phys. Med. Biol.
– volume: 100
  start-page: 412
  year: 2011
  end-page: 416
  ident: bb0070
  article-title: Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy
  publication-title: Radiother. Oncol.
– volume: 23
  start-page: 764
  year: 2004
  end-page: 771
  ident: bb0260
  article-title: Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 116
  start-page: 23047
  year: 2012
  end-page: 23052
  ident: bb0055
  article-title: Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 217
  year: 2020
  end-page: 223
  ident: bb0050
  article-title: Monte Carlo characterization of the gold nanoparticles dose enhancement and estimation of the physical interactions weight in dose enhancement mechanism
  publication-title: Polish J. Med. Phys. Eng.
– volume: 60
  start-page: 6195
  year: 2015
  ident: bb0175
  article-title: Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays
  publication-title: Phys. Med. Biol.
– volume: 65
  start-page: 135007
  year: 2020
  ident: bb0065
  article-title: A detailed Monte Carlo evaluation of 192Ir dose enhancement for gold nanoparticles and comparison with experimentally measured dose enhancements
  publication-title: Phys. Med. Biol.
– start-page: 17
  year: 2005
  end-page: 21
  ident: bb0145
  article-title: Electron/photon transport and its applications. The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World, Chattanooga, Tennessee
– volume: 62
  start-page: 152
  year: 2019
  end-page: 157
  ident: bb0285
  article-title: Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA
  publication-title: Phys. Med.
– volume: 15
  start-page: 176
  year: 2010
  end-page: 180
  ident: bb0110
  article-title: A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer
  publication-title: Reports Pract. Oncol. Radiother.
– volume: 96
  start-page: S170
  year: 2016
  ident: bb0245
  article-title: Monte Carlo simulation of microscopic dose enhancement of glucose conjugated gold nanoparticles for the I-125 radioactive seeds brachytherapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 69
  start-page: 147
  year: 2020
  end-page: 163
  ident: bb0130
  article-title: Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes
  publication-title: Phys. Med.
– volume: 93
  start-page: 1239
  year: 2017
  end-page: 1247
  ident: bb0320
  article-title: Reactive oxygen species-based measurement of the dependence of the coulomb nanoradiator effect on proton energy and atomic Z value
  publication-title: Int. J. Radiat. Biol.
– volume: 55
  start-page: 6533
  year: 2010
  ident: bb0135
  article-title: Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement
  publication-title: Phys. Med. Biol.
– volume: 79
  start-page: 531
  year: 2011
  end-page: 539
  ident: bb0085
  article-title: Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 22
  start-page: 465101
  year: 2011
  ident: bb0325
  article-title: On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles
  publication-title: Nanotechnology
– volume: 7
  start-page: 1
  year: 2017
  end-page: 15
  ident: bb0280
  article-title: Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA
  publication-title: Sci. Rep.
– volume: 13
  start-page: 416
  year: 2021
  ident: bb0020
  article-title: Fe3O4-au core-shell nanoparticles as a multimodal platform for in vivo imaging and focused photothermal therapy
  publication-title: Pharmaceutics
– volume: 10
  start-page: 321
  year: 2015
  end-page: 341
  ident: bb0045
  article-title: Gold nanoparticles as contrast agents in x-ray imaging and computed tomography
  publication-title: Nanomedicine
– volume: 11
  start-page: 4735
  year: 2016
  ident: bb0190
  article-title: Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy
  publication-title: Int. J. Nanomedicine
– volume: 23
  start-page: 7400
  year: 2022
  ident: bb0010
  article-title: Monodisperse gold nanoparticles: a review on synthesis and their application in modern medicine
  publication-title: Int. J. Mol. Sci.
– year: 2009
  ident: bb0205
  article-title: Use of nanoparticles in brachytherapy–an alternative for enhancing doses in cancer treatment
  publication-title: World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany
– volume: 16
  start-page: 344
  year: 2015
  end-page: 357
  ident: bb0240
  article-title: Gold nanoparticle-based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye
  publication-title: J. Appl. Clin. Med. Phys.
– volume: 15
  start-page: 123
  year: 2020
  end-page: 133
  ident: bb0035
  article-title: Identifying metal nanoparticle size effect on sensing common human plasma protein by counting the sensitivity of optical absorption spectra damping
  publication-title: Plasmonics
– volume: 21
  start-page: 237
  year: 2013
  end-page: 247
  ident: bb0225
  article-title: Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels
  publication-title: J. X-ray Sci. Technol.
– volume: 12
  start-page: 1
  year: 2021
  end-page: 18
  ident: bb0185
  article-title: Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio
  publication-title: Cancer Nanotechnol.
– volume: 81
  start-page: 270
  year: 2011
  end-page: 276
  ident: bb0060
  article-title: Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– year: 2008
  ident: bb0140
  article-title: PENELOPE-2008: A code system for Monte Carlo simulation of electron and photon transport
  publication-title: Workshop Proceedings, Barcelona, Spain
– volume: 38
  start-page: 487
  year: 2011
  end-page: 494
  ident: bb0290
  article-title: Dosimetry revisited for the HDR brachytherapy source model mHDR-v2
  publication-title: Med. Phys.
– volume: 13
  start-page: 5370
  year: 2021
  ident: bb0105
  article-title: Application of high-Z gold nanoparticles in targeted cancer radiotherapy—pharmacokinetic modeling, Monte Carlo simulation and radiobiological effect modeling
  publication-title: Cancers
– volume: 5
  start-page: 3
  year: 2015
  ident: bb0215
  article-title: Effect of gold nanoparticles on prostate dose distribution under Ir-192 internal and 18 MV external radiotherapy procedures using gel dosimetry and Monte Carlo method
  publication-title: J. Biomed. Phys. Eng.
– volume: 10
  start-page: 1045
  year: 2013
  end-page: 1054
  ident: bb0160
  article-title: Gold nanoparticles as a sensitising agent in external beam radiotherapy and brachytherapy: a feasibility study through Monte Carlo simulation
  publication-title: Int. J. Nanotechnol.
– volume: 48
  start-page: 135
  year: 2018
  end-page: 145
  ident: bb0275
  article-title: Mechanistic DNA damage simulations in Geant4-DNA part 1: a parameter study in a simplified geometry
  publication-title: Phys. Med.
– volume: 57
  start-page: 401
  year: 2012
  end-page: 406
  ident: bb0210
  article-title: Dose enhancement in brachytherapy in the presence of gold nanoparticles: a Monte Carlo study on the size of gold nanoparticles and method of modelling
  publication-title: Nukleonika
– volume: 54
  start-page: 6151
  year: 2009
  ident: bb0165
  article-title: The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 17
  start-page: 90
  year: 2016
  end-page: 99
  ident: bb0235
  article-title: Ocular brachytherapy dosimetry for and in the presence of gold nanoparticles: a Monte Carlo study
  publication-title: J. Appl. Clin. Med. Phys.
– volume: 56
  start-page: 4631
  year: 2011
  ident: bb0155
  article-title: Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location
  publication-title: Phys. Med. Biol.
– volume: 61
  start-page: 7522
  year: 2016
  ident: bb0115
  article-title: Evaluation of the microscopic dose enhancement for nanoparticle-enhanced auger therapy
  publication-title: Phys. Med. Biol.
– volume: 64
  start-page: 145004
  issue: 14
  year: 2019
  ident: 10.1016/j.bbagen.2023.130318_bb0310
  article-title: The microdosimetric extension in TOPAS: development and comparison with published data
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab23a3
– year: 2008
  ident: 10.1016/j.bbagen.2023.130318_bb0140
  article-title: PENELOPE-2008: A code system for Monte Carlo simulation of electron and photon transport
– volume: 5
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.bbagen.2023.130318_bb0215
  article-title: Effect of gold nanoparticles on prostate dose distribution under Ir-192 internal and 18 MV external radiotherapy procedures using gel dosimetry and Monte Carlo method
  publication-title: J. Biomed. Phys. Eng.
– volume: 64
  start-page: 175005
  issue: 17
  year: 2019
  ident: 10.1016/j.bbagen.2023.130318_bb0270
  article-title: Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab314c
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.bbagen.2023.130318_bb0280
  article-title: Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11851-4
– volume: 33
  start-page: 102177
  year: 2021
  ident: 10.1016/j.bbagen.2023.130318_bb0015
  article-title: Potential of a sonochemical approach to generate MRI-PPT theranostic agents for breast cancer
  publication-title: Photodiagn. Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2021.102177
– volume: 104
  start-page: 293
  issue: 1
  year: 2004
  ident: 10.1016/j.bbagen.2023.130318_bb0005
  article-title: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology
  publication-title: Chem. Rev.
  doi: 10.1021/cr030698+
– volume: 58
  start-page: 7961
  issue: 22
  year: 2013
  ident: 10.1016/j.bbagen.2023.130318_bb0255
  article-title: Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/22/7961
– volume: 16
  start-page: 344
  issue: 5
  year: 2015
  ident: 10.1016/j.bbagen.2023.130318_bb0240
  article-title: Gold nanoparticle-based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye
  publication-title: J. Appl. Clin. Med. Phys.
  doi: 10.1120/jacmp.v16i5.5568
– volume: 13
  start-page: 416
  issue: 3
  year: 2021
  ident: 10.1016/j.bbagen.2023.130318_bb0020
  article-title: Fe3O4-au core-shell nanoparticles as a multimodal platform for in vivo imaging and focused photothermal therapy
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13030416
– volume: 72
  start-page: 1
  issue: 6
  year: 2018
  ident: 10.1016/j.bbagen.2023.130318_bb0125
  article-title: Transport of secondary electrons through coatings of ion-irradiated metallic nanoparticles
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2018-90050-x
– volume: 11
  start-page: 752
  issue: 4
  year: 2015
  ident: 10.1016/j.bbagen.2023.130318_bb0220
  article-title: Tumor dose enhancement by nanoparticles during high dose rate 192 Ir brachytherapy
  publication-title: J. Cancer Res. Ther.
  doi: 10.4103/0973-1482.153668
– volume: 23
  start-page: 764
  issue: 6
  year: 2004
  ident: 10.1016/j.bbagen.2023.130318_bb0260
  article-title: Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.826953
– volume: 15
  start-page: 123
  year: 2020
  ident: 10.1016/j.bbagen.2023.130318_bb0035
  article-title: Identifying metal nanoparticle size effect on sensing common human plasma protein by counting the sensitivity of optical absorption spectra damping
  publication-title: Plasmonics
  doi: 10.1007/s11468-019-01007-7
– volume: 274
  start-page: 841
  year: 2014
  ident: 10.1016/j.bbagen.2023.130318_bb0300
  article-title: Diffusion-controlled reactions modeling in Geant4-DNA
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.06.011
– volume: 10
  start-page: 7020
  issue: 20
  year: 2020
  ident: 10.1016/j.bbagen.2023.130318_bb0025
  article-title: Rapid sonochemically-assisted synthesis of highly stable gold nanoparticles as computed tomography contrast agents
  publication-title: Appl. Sci.
  doi: 10.3390/app10207020
– volume: 8
  issue: 4
  year: 2013
  ident: 10.1016/j.bbagen.2023.130318_bb0095
  article-title: Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062425
– volume: 45
  start-page: 2230
  issue: 5
  year: 2018
  ident: 10.1016/j.bbagen.2023.130318_bb0330
  article-title: Geant4-DNA track-structure simulations for gold nanoparticles: the importance of electron discrete models in nanometer volumes
  publication-title: Med. Phys.
  doi: 10.1002/mp.12827
– volume: 116
  start-page: 23047
  issue: 43
  year: 2012
  ident: 10.1016/j.bbagen.2023.130318_bb0055
  article-title: Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp306543q
– volume: 61
  start-page: 7522
  issue: 21
  year: 2016
  ident: 10.1016/j.bbagen.2023.130318_bb0115
  article-title: Evaluation of the microscopic dose enhancement for nanoparticle-enhanced auger therapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/21/7522
– volume: 60
  start-page: 6195
  issue: 16
  year: 2015
  ident: 10.1016/j.bbagen.2023.130318_bb0175
  article-title: Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/16/6195
– volume: 79
  start-page: 531
  issue: 2
  year: 2011
  ident: 10.1016/j.bbagen.2023.130318_bb0085
  article-title: Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2010.08.044
– volume: 62
  start-page: 152
  year: 2019
  ident: 10.1016/j.bbagen.2023.130318_bb0285
  article-title: Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2019.04.010
– volume: 115
  start-page: 10575
  issue: 19
  year: 2015
  ident: 10.1016/j.bbagen.2023.130318_bb0075
  article-title: Gold nanoparticles for in vitro diagnostics
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00100
– volume: 64
  start-page: 155016
  issue: 15
  year: 2019
  ident: 10.1016/j.bbagen.2023.130318_bb0120
  article-title: Determining dose enhancement factors of high-Z nanoparticles from simulations where lateral secondary particle disequilibrium exists
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab31d4
– volume: 17
  start-page: 90
  issue: 3
  year: 2016
  ident: 10.1016/j.bbagen.2023.130318_bb0235
  article-title: Ocular brachytherapy dosimetry for and in the presence of gold nanoparticles: a Monte Carlo study
  publication-title: J. Appl. Clin. Med. Phys.
  doi: 10.1120/jacmp.v17i3.5945
– volume: 60
  start-page: 4951
  issue: 13
  year: 2015
  ident: 10.1016/j.bbagen.2023.130318_bb0150
  article-title: Comparison between EGSnrc, Geant4, MCNP5 and Penelope for mono-energetic electron beams
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/13/4951
– volume: 39
  start-page: 6818
  issue: 11
  year: 2012
  ident: 10.1016/j.bbagen.2023.130318_bb0295
  article-title: TOPAS: an innovative proton Monte Carlo platform for research and clinical applications
  publication-title: Med. Phys.
  doi: 10.1118/1.4758060
– volume: 14
  start-page: 4157
  year: 2019
  ident: 10.1016/j.bbagen.2023.130318_bb0250
  article-title: Investigation of gold nanoparticle effects in brachytherapy by an electron emitter ophthalmic plaque
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S205814
– volume: 62
  start-page: 1935
  issue: 5
  year: 2017
  ident: 10.1016/j.bbagen.2023.130318_bb0230
  article-title: A Monte Carlo study of I-125 prostate brachytherapy with gold nanoparticles: dose enhancement with simultaneous rectal dose sparing via radiation shielding
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa5bc7
– start-page: 17
  year: 2005
  ident: 10.1016/j.bbagen.2023.130318_bb0145
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.bbagen.2023.130318_bb0180
  article-title: Biological mechanisms of gold nanoparticle radiosensitization
  publication-title: Cancer Nanotechnol.
  doi: 10.1186/s12645-017-0026-0
– volume: 11
  start-page: 4735
  year: 2016
  ident: 10.1016/j.bbagen.2023.130318_bb0190
  article-title: Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S114025
– volume: 63
  start-page: 105014
  issue: 10
  year: 2018
  ident: 10.1016/j.bbagen.2023.130318_bb0305
  article-title: Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aac04c
– volume: 10
  start-page: 321
  issue: 2
  year: 2015
  ident: 10.1016/j.bbagen.2023.130318_bb0045
  article-title: Gold nanoparticles as contrast agents in x-ray imaging and computed tomography
  publication-title: Nanomedicine
  doi: 10.2217/nnm.14.171
– volume: 173
  start-page: 719
  issue: 6
  year: 2010
  ident: 10.1016/j.bbagen.2023.130318_bb0080
  article-title: Gold nanoparticles as radiation sensitizers in cancer therapy
  publication-title: Radiat. Res.
  doi: 10.1667/RR1984.1
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.bbagen.2023.130318_bb0185
  article-title: Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio
  publication-title: Cancer Nanotechnol.
  doi: 10.1186/s12645-021-00099-3
– volume: 26
  start-page: 217
  issue: 4
  year: 2020
  ident: 10.1016/j.bbagen.2023.130318_bb0050
  article-title: Monte Carlo characterization of the gold nanoparticles dose enhancement and estimation of the physical interactions weight in dose enhancement mechanism
  publication-title: Polish J. Med. Phys. Eng.
  doi: 10.2478/pjmpe-2020-0026
– volume: 13
  start-page: 5370
  issue: 21
  year: 2021
  ident: 10.1016/j.bbagen.2023.130318_bb0105
  article-title: Application of high-Z gold nanoparticles in targeted cancer radiotherapy—pharmacokinetic modeling, Monte Carlo simulation and radiobiological effect modeling
  publication-title: Cancers
  doi: 10.3390/cancers13215370
– volume: 21
  start-page: 237
  issue: 2
  year: 2013
  ident: 10.1016/j.bbagen.2023.130318_bb0225
  article-title: Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels
  publication-title: J. X-ray Sci. Technol.
– volume: 100
  start-page: 412
  issue: 3
  year: 2011
  ident: 10.1016/j.bbagen.2023.130318_bb0070
  article-title: Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2011.08.026
– start-page: 62
  year: 2017
  ident: 10.1016/j.bbagen.2023.130318_bb0030
  article-title: Current update on the role of enhanced permeability and retention effect in cancer nanomedicine
– volume: 81
  start-page: 270
  issue: 1
  year: 2011
  ident: 10.1016/j.bbagen.2023.130318_bb0060
  article-title: Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2010.10.022
– volume: 65
  start-page: 135007
  issue: 13
  year: 2020
  ident: 10.1016/j.bbagen.2023.130318_bb0065
  article-title: A detailed Monte Carlo evaluation of 192Ir dose enhancement for gold nanoparticles and comparison with experimentally measured dose enhancements
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab9502
– volume: 5
  start-page: 40514
  issue: 51
  year: 2015
  ident: 10.1016/j.bbagen.2023.130318_bb0100
  article-title: BSA capped au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04013B
– volume: 55
  start-page: 6533
  issue: 21
  year: 2010
  ident: 10.1016/j.bbagen.2023.130318_bb0135
  article-title: Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/21/013
– volume: 48
  start-page: 135
  year: 2018
  ident: 10.1016/j.bbagen.2023.130318_bb0275
  article-title: Mechanistic DNA damage simulations in Geant4-DNA part 1: a parameter study in a simplified geometry
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2018.02.011
– year: 2009
  ident: 10.1016/j.bbagen.2023.130318_bb0205
  article-title: Use of nanoparticles in brachytherapy–an alternative for enhancing doses in cancer treatment
– volume: 41
  start-page: 1080
  issue: 9–10
  year: 2006
  ident: 10.1016/j.bbagen.2023.130318_bb0170
  article-title: PHITS—a particle and heavy ion transport code system
  publication-title: Radiat. Meas.
  doi: 10.1016/j.radmeas.2006.07.013
– volume: 65
  issue: 8
  year: 2020
  ident: 10.1016/j.bbagen.2023.130318_bb0265
  article-title: A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab7a6b
– volume: 57
  start-page: 401
  year: 2012
  ident: 10.1016/j.bbagen.2023.130318_bb0210
  article-title: Dose enhancement in brachytherapy in the presence of gold nanoparticles: a Monte Carlo study on the size of gold nanoparticles and method of modelling
  publication-title: Nukleonika
– volume: 11
  start-page: 2147
  issue: 8
  year: 2021
  ident: 10.1016/j.bbagen.2023.130318_bb0040
  article-title: Recent advances in synthesis, medical applications and challenges for gold-coated iron oxide: comprehensive study
  publication-title: Nanomaterials
  doi: 10.3390/nano11082147
– volume: 15
  start-page: 176
  issue: 6
  year: 2010
  ident: 10.1016/j.bbagen.2023.130318_bb0110
  article-title: A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer
  publication-title: Reports Pract. Oncol. Radiother.
  doi: 10.1016/j.rpor.2010.09.001
– volume: 23
  start-page: 7400
  issue: 13
  year: 2022
  ident: 10.1016/j.bbagen.2023.130318_bb0010
  article-title: Monodisperse gold nanoparticles: a review on synthesis and their application in modern medicine
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23137400
– volume: 93
  start-page: 1239
  issue: 11
  year: 2017
  ident: 10.1016/j.bbagen.2023.130318_bb0320
  article-title: Reactive oxygen species-based measurement of the dependence of the coulomb nanoradiator effect on proton energy and atomic Z value
  publication-title: Int. J. Radiat. Biol.
  doi: 10.1080/09553002.2017.1361556
– volume: 69
  start-page: 147
  year: 2020
  ident: 10.1016/j.bbagen.2023.130318_bb0130
  article-title: Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2019.12.011
– volume: 10
  start-page: 1045
  issue: 12
  year: 2013
  ident: 10.1016/j.bbagen.2023.130318_bb0160
  article-title: Gold nanoparticles as a sensitising agent in external beam radiotherapy and brachytherapy: a feasibility study through Monte Carlo simulation
  publication-title: Int. J. Nanotechnol.
  doi: 10.1504/IJNT.2013.058563
– volume: 54
  start-page: 6151
  issue: 20
  year: 2009
  ident: 10.1016/j.bbagen.2023.130318_bb0165
  article-title: The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/20/008
– volume: 96
  start-page: S170
  issue: 2
  year: 2016
  ident: 10.1016/j.bbagen.2023.130318_bb0245
  article-title: Monte Carlo simulation of microscopic dose enhancement of glucose conjugated gold nanoparticles for the I-125 radioactive seeds brachytherapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2016.06.427
– volume: 56
  start-page: 4631
  issue: 15
  year: 2011
  ident: 10.1016/j.bbagen.2023.130318_bb0155
  article-title: Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/15/001
– volume: 8
  start-page: 1601
  issue: 10
  year: 2013
  ident: 10.1016/j.bbagen.2023.130318_bb0090
  article-title: Gold nanoparticle imaging and radiotherapy of brain tumors in mice
  publication-title: Nanomedicine
  doi: 10.2217/nnm.12.165
– volume: 56
  start-page: 1754
  issue: 6
  year: 2010
  ident: 10.1016/j.bbagen.2023.130318_bb0200
  article-title: Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.56.1754
– volume: 134
  start-page: 1950
  issue: 4
  year: 2012
  ident: 10.1016/j.bbagen.2023.130318_bb0315
  article-title: Chemical enhancement by nanomaterials under X-ray irradiation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210239k
– volume: 11
  start-page: 925
  issue: 4
  year: 2009
  ident: 10.1016/j.bbagen.2023.130318_bb0195
  article-title: Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-009-9309-5
– volume: 22
  start-page: 465101
  issue: 46
  year: 2011
  ident: 10.1016/j.bbagen.2023.130318_bb0325
  article-title: On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/46/465101
– volume: 38
  start-page: 487
  issue: 1
  year: 2011
  ident: 10.1016/j.bbagen.2023.130318_bb0290
  article-title: Dosimetry revisited for the HDR brachytherapy source model mHDR-v2
  publication-title: Med. Phys.
  doi: 10.1118/1.3531973
SSID ssj0000595
Score 2.431912
SecondaryResourceType review_article
Snippet Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130318
SubjectTerms Au NPs
Computer Simulation
DNA
DNA damage
Dose enhancement factor (DEF)
Geant4
Gold
irradiation
Metal Nanoparticles
Monte Carlo Method
Monte Carlo simulation
nanogold
neoplasms
prediction
Radiation therapy
Radiosensitization
X-radiation
X-Rays
Title Monte Carlo simulation of gold nanoparticles for X-ray enhancement application
URI https://dx.doi.org/10.1016/j.bbagen.2023.130318
https://www.ncbi.nlm.nih.gov/pubmed/36740000
https://www.proquest.com/docview/2773715090
https://www.proquest.com/docview/2834225695
Volume 1867
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4hUFUuCCiFAEWuxNVNYnvXu0cUgQIVubRIuVm2Y7epwi4K4cCF385MvEtBokXitA95JWtmdvzZ8_gAjvs6Oum15CrPC66CUNwGW3DX8yIqpwrZp0Lhy1E-vFIX42y8AoO2FobSKhvfn3z60ls3b7qNNLs302n3BwX1EE7QsSYBFyr4VUqTlX97-JvmgfAhS5EExWl0Wz63zPFyDn9a6oIqJNEiS6L-eH15-hf8XC5DZ5uw0eBHdpKmuAUrodqGD4lR8n4bPg5aArdPMLqkzlNsYOezmt1OrxuiLlZH9queTVhlK9wxN4lxDMErG_O5vWeh-k2mQMeG7Fl8eweuzk5_Doa8oU_gXpbZgnuBF-EFLvKu7yICkQliNa1DEXse7wnqFN56Fb3TvpgI0c-dslkmY6-wiNM-w2pVV2EPWGZL66WI0gXczk1UGQRtDPMyeESUPnZAtlIzvuktThQXM9Mmkf0xSdaGZG2SrDvAn766Sb013hivW4WYFzZi0P2_8eXXVn8GlUAxEVuF-u7WCK2lRlBc9v4zppAK3V5eZh3YTcp_mq_MtSIr23_33A5gnZ5SNtAhrC7md-ELAp2FO1pa8hGsnZx_H44eAfjk-oE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVqhcKiivtDyMxNUksb1r77GKqNJHcqGVcrNsx4agsFul6aEXfjsz8W4BCajEaVe7tmTNjMefPeP5AN4PdfIyaMlVWRquolDcRWe4HwSRlFdGDumi8GRaji_V6ayYbcGouwtDaZWt788-feOt2y_9Vpr9q8Wi_4mCeggn6FiTgIt5ADsKpy_RGHz4_jPPA_FDkUMJilPz7v7cJsnLe5y1VAZVSOJFlsT98ef16W_4c7MOHT-GvRZAsqM8xiewFet9eJgpJW_3YXfUMbg9hemESk-xkVstG3a9-NYydbEmsc_Ncs5qV-OWuc2MY4he2Yyv3C2L9ReyBTo3ZL8EuJ_B5fHHi9GYt_wJPMiqWPMg8CGCwFXeD31CJDJHsKZ1NGkQ8J2wjgkuqBS8DmYuxLD0yhWFTAPjEKg9h-26qeNLYIWrXJAiSR9xPzdXVRS0MyyrGBBShtQD2UnNhra4OHFcLG2XRfbVZllbkrXNsu4Bv-t1lYtr3NNedwqxvxmJRf9_T893nf4sKoGCIq6Ozc21FVpLjai4GvyjjZEK_V5ZFT14kZV_N15ZakVWdvDfY3sLu-OLybk9P5meHcIj-pNTg17B9np1E18j6ln7Nxur_gGr1fwP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monte+Carlo+simulation+of+gold+nanoparticles+for+X-ray+enhancement+application&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Dheyab%2C+Mohammed+Ali&rft.au=Aziz%2C+Azlan+Abdul&rft.au=Rahman%2C+Azhar+Abdul&rft.au=Ashour%2C+Nabeel+Ibrahim&rft.date=2023-04-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1867&rft.issue=4&rft.spage=130318&rft_id=info:doi/10.1016%2Fj.bbagen.2023.130318&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon