Highly efficient and reusable CuAu nanoparticles supported on crosslinked chitosan hydrogels as a plasmonic catalyst for nitroarene reduction
The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate aver...
Saved in:
Published in | Environmental research Vol. 247; p. 118204 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
15.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-9351 1096-0953 1096-0953 |
DOI | 10.1016/j.envres.2024.118204 |
Cover
Loading…
Abstract | The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV–visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application.
[Display omitted]
•CuAu BNPs synthesized on biobased hydrogels were used in nitrophenol reduction.•Cu and Au present a bimetallic synergy for catalysis in nanostructured materials.•Using visible light radiation improves the reaction kinetics by LSPR activation.•Chitosan enables an easy and effective reusability of the catalyst in several runs. |
---|---|
AbstractList | The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV-visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application.The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV-visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application. The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV–visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application. The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV-visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application. The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV–visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application. [Display omitted] •CuAu BNPs synthesized on biobased hydrogels were used in nitrophenol reduction.•Cu and Au present a bimetallic synergy for catalysis in nanostructured materials.•Using visible light radiation improves the reaction kinetics by LSPR activation.•Chitosan enables an easy and effective reusability of the catalyst in several runs. |
ArticleNumber | 118204 |
Author | Saldías, César Ramírez, Oscar Leiva, Angel Díaz Díaz, David Bonardd, Sebastián |
Author_xml | – sequence: 1 givenname: Oscar orcidid: 0000-0002-4525-1490 surname: Ramírez fullname: Ramírez, Oscar email: ogramirez@uc.cl organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile – sequence: 2 givenname: Sebastián orcidid: 0000-0002-3764-9968 surname: Bonardd fullname: Bonardd, Sebastián organization: Materials Physics Center, CSIC-UPV/EHU, San Sebastián, 20018, Spain – sequence: 3 givenname: César surname: Saldías fullname: Saldías, César organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile – sequence: 4 givenname: Angel surname: Leiva fullname: Leiva, Angel email: aleivac@uc.cl organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile – sequence: 5 givenname: David orcidid: 0000-0002-0557-3364 surname: Díaz Díaz fullname: Díaz Díaz, David email: ddiazdiaz@ull.edu.es organization: Departamento de Química Orgánica, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38224938$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9qGzEQxkVJaJykb1CKjr2sq3-79vZQCKZNAoFekrPQSqNYrixtJW3AD5F3rtxNLj00MDAMfN83zPzO0UmIARD6SMmSEtp92S0hPCXIS0aYWFK6ZkS8QwtK-q4hfctP0IIQypuet_QMnee8qyNtOXmPzviaMdHz9QI937jHrT9gsNZpB6FgFQxOMGU1eMCb6WrCQYU4qlSc9pBxnsYxpgIGx4B1ijl7F37VUW9diVkFvD2YFB_BZ6xq4dGrvI_BaaxVUf6QC7Yx4eBKiipBgLrOTLq4GC7RqVU-w4eXfoEefny_39w0dz-vbzdXd43mfVuawdAV1Z1mZkUGWy9pwRquSG-FHrhoNecEmDCGm8EOtldMdx0TneLWmm6w_AJ9nnPHFH9PkIvcu6zBexUgTllyIghfdWzN3pSynrbtioiurdJPL9Jp2IORY3J7lQ7y9dtV8HUW_H1bAiu1K-p4eEnKeUmJPKKVOzmjlUe0ckZbzeIf82v-G7Zvs63ygCcHSeYjZw3GJdBFmuj-H_AHDXHDjg |
CitedBy_id | crossref_primary_10_3389_fbioe_2024_1389733 crossref_primary_10_1016_j_ijbiomac_2024_133043 crossref_primary_10_1016_j_carres_2025_109409 crossref_primary_10_1021_acsanm_4c04543 crossref_primary_10_1016_j_ijbiomac_2024_136715 crossref_primary_10_1039_D4NA01079E crossref_primary_10_1016_j_jece_2025_115714 crossref_primary_10_1016_j_partic_2024_12_012 |
Cites_doi | 10.1002/adsc.202101048 10.1016/j.carbpol.2014.04.105 10.1016/j.carbpol.2021.118809 10.1021/nl025774n 10.1016/j.carbpol.2020.116286 10.3390/molecules25173981 10.1016/j.colsurfa.2020.125889 10.1007/BF03218650 10.1186/s13068-021-01939-5 10.1016/j.jclepro.2020.124830 10.1108/NFS-01-2019-0020 10.1016/j.seppur.2003.10.004 10.1016/j.molliq.2015.12.013 10.1021/acs.chemrev.8b00057 10.1007/s10311-022-01443-8 10.1039/D2TA08396E 10.1021/jp990387w 10.1016/j.carbpol.2018.03.029 10.1016/j.jhazmat.2021.126451 10.1021/acs.chemrev.2c00644 10.1016/j.envres.2022.113450 10.1038/s43016-022-00591-y 10.1039/C9RA06001D 10.1038/s41598-022-10237-5 10.1016/j.envres.2022.113185 10.1007/s00289-018-2574-9 10.1021/acscatal.3c00265 10.1002/cctc.201700649 10.1016/j.fuel.2020.119447 10.1002/chem.201705749 10.1039/C5TB00644A 10.1103/PhysRevLett.80.4249 10.1016/j.ijbiomac.2017.06.043 10.1021/acscatal.0c00725 10.1007/s11468-016-0305-3 10.1039/D2CY00232A 10.1016/j.carres.2009.12.010 10.3389/fenrg.2021.580808 10.1016/j.carbpol.2018.03.038 10.1039/C6CY01858K 10.1021/acs.chemrev.2c00733 10.3390/md13041819 10.1021/acssuschemeng.0c02276 10.1021/acssuschemeng.0c04298 10.1016/j.carbpol.2005.02.022 10.3390/agriculture12101511 10.1002/anie.202105931 10.1016/j.jphotochemrev.2011.02.003 10.1016/j.ijhydene.2019.12.059 10.1039/c1jm10646e 10.1016/j.carbpol.2022.120021 10.1039/D0MA00404A 10.1021/acsomega.0c03305 10.1021/acs.chemrev.2c00611 10.1016/S0140-6736(12)60685-0 10.1016/j.carbpol.2014.12.005 10.1021/cr040090g 10.1021/la5042019 10.1021/acs.macromol.1c00970 10.1016/j.apcata.2022.118943 10.1021/acs.chemrev.9b00187 10.1016/j.apcatb.2014.12.001 10.1016/j.cocis.2019.01.014 10.1002/jbm.820070604 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024. Published by Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024. Published by Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envres.2024.118204 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Environmental Sciences |
EISSN | 1096-0953 |
ExternalDocumentID | 38224938 10_1016_j_envres_2024_118204 S0013935124001087 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC C45 CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM L7B LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K TAE TEORI TN5 TWZ UPT WH7 ZCA ZU3 ~02 ~G- ~KM .GJ 29G 3O- 53G AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABFNM ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADXHL AEGFY AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ OHT R2- RIG SEN SSH VOH WUQ XOL XPP ZGI ZKB ZMT ZXP EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-bd171c6c2d70bf2495efd3a09f4cb345c330e24dd3dbfbf9a2c66246a3ffd6bf3 |
IEDL.DBID | .~1 |
ISSN | 0013-9351 1096-0953 |
IngestDate | Wed Jul 02 03:12:28 EDT 2025 Thu Jul 10 23:05:45 EDT 2025 Mon Jul 21 05:18:27 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 05:35:20 EDT 2025 Sat Feb 01 16:04:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chitosan Hydrogel Catalysis Synergism Plasmonic and reusability |
Language | English |
License | Copyright © 2024. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-bd171c6c2d70bf2495efd3a09f4cb345c330e24dd3dbfbf9a2c66246a3ffd6bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3764-9968 0000-0002-4525-1490 0000-0002-0557-3364 |
PMID | 38224938 |
PQID | 2915570465 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3040376282 proquest_miscellaneous_2915570465 pubmed_primary_38224938 crossref_citationtrail_10_1016_j_envres_2024_118204 crossref_primary_10_1016_j_envres_2024_118204 elsevier_sciencedirect_doi_10_1016_j_envres_2024_118204 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-15 |
PublicationDateYYYYMMDD | 2024-04-15 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environmental research |
PublicationTitleAlternate | Environ Res |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liew (bib33) 2017; 9 Lyu (bib37) 2023 Wu (bib62) 2017; 12 Rosseler (bib50) 2015; 166 Berillo, Cundy (bib10) 2018; 192 Khan (bib28) 2020; 242 Kang (bib25) 2023; 11 Neto (bib42) 2005; 62 Barbosa (bib9) 2018; 24 Saravanan (bib53) 2021; 419 Strachan (bib57) 2020; 10 Leong (bib32) 2021; 14 Banupriya (bib8) 2022; 12 Szymańska, Winnicka (bib58) 2015; 13 Araujo (bib6) 2019; 39 Balakrishnan (bib7) 2022; 20 Pavez (bib46) 2020; 5 Abe (bib1) 2010; 11 Klar (bib29) 1998; 80 Liu (bib35) 2021; 60 Dawood (bib15) 2020; 45 Yin (bib64) 2011; 21 Ferrando (bib16) 2008; 108 Adeyeye (bib3) 2019; 49 Kumar (bib31) 2020; 57 Sdg (bib54) 2019; 7 Jiménez-Gómez, Cecilia (bib24) 2020; 25 Papageorgiou (bib44) 2010; 345 Zhao (bib69) 2022; 212 Abramov (bib2) 2022; 364 Jhon, Andrade (bib23) 1973; 7 Ristig (bib49) 2015; 3 Cavuslar (bib11) 2020; 1 Gelle (bib18) 2019; 120 Tournier (bib59) 2023; 123 Amiri (bib5) 2022; 3 Guibal (bib21) 2004; 38 Wang (bib60) 2018; 118 Giraldo (bib20) 2019; 76 Mallin, Murphy (bib39) 2002; 2 Khan (bib27) 2021; 285 Sha (bib55) 2019; 9 Zhang (bib68) 2016; 214 Cyganowski, Dzimitrowicz (bib14) 2022; 12 Link (bib34) 1999; 103 Liu, Corma (bib36) 2023; 123 Solhi (bib56) 2023; 123 Kozuch, Martin (bib30) 2012; vol. 2 Zhu (bib70) 2021; 611 Yudianti (bib65) 2009; 17 Karimi-Maleh (bib26) 2023 Zhang (bib67) 2020; 8 Sachs (bib51) 2012; 379 Ramírez (bib48) 2022; 297 Ghavam (bib19) 2021; 9 Xu (bib63) 2020; 8 Malathi (bib38) 2014; 111 Musa (bib41) 2023; 13 Murugadoss, Chattopadhyay (bib40) 2007; 19 Friedmann (bib17) 2023; 649 Chu, Su (bib13) 2014; 30 Osaki (bib43) 2021; 54 Ali (bib4) 2018; 192 Yue (bib66) 2016; 6 Poovan (bib47) 2022; 12 Saravanakumar (bib52) 2022; 212 Wang (bib61) 2015; 120 Paulraj (bib45) 2017; 104 Changmai (bib12) 2021; 286 Hu (bib22) 2022; 277 Liew (10.1016/j.envres.2024.118204_bib33) 2017; 9 Araujo (10.1016/j.envres.2024.118204_bib6) 2019; 39 Friedmann (10.1016/j.envres.2024.118204_bib17) 2023; 649 Giraldo (10.1016/j.envres.2024.118204_bib20) 2019; 76 Osaki (10.1016/j.envres.2024.118204_bib43) 2021; 54 Berillo (10.1016/j.envres.2024.118204_bib10) 2018; 192 Wu (10.1016/j.envres.2024.118204_bib62) 2017; 12 Guibal (10.1016/j.envres.2024.118204_bib21) 2004; 38 Zhu (10.1016/j.envres.2024.118204_bib70) 2021; 611 Chu (10.1016/j.envres.2024.118204_bib13) 2014; 30 Wang (10.1016/j.envres.2024.118204_bib60) 2018; 118 Cyganowski (10.1016/j.envres.2024.118204_bib14) 2022; 12 Banupriya (10.1016/j.envres.2024.118204_bib8) 2022; 12 Karimi-Maleh (10.1016/j.envres.2024.118204_bib26) 2023 Neto (10.1016/j.envres.2024.118204_bib42) 2005; 62 Musa (10.1016/j.envres.2024.118204_bib41) 2023; 13 Sha (10.1016/j.envres.2024.118204_bib55) 2019; 9 Ramírez (10.1016/j.envres.2024.118204_bib48) 2022; 297 Adeyeye (10.1016/j.envres.2024.118204_bib3) 2019; 49 Jiménez-Gómez (10.1016/j.envres.2024.118204_bib24) 2020; 25 Balakrishnan (10.1016/j.envres.2024.118204_bib7) 2022; 20 Zhang (10.1016/j.envres.2024.118204_bib68) 2016; 214 Abe (10.1016/j.envres.2024.118204_bib1) 2010; 11 Ghavam (10.1016/j.envres.2024.118204_bib19) 2021; 9 Sachs (10.1016/j.envres.2024.118204_bib51) 2012; 379 Jhon (10.1016/j.envres.2024.118204_bib23) 1973; 7 Abramov (10.1016/j.envres.2024.118204_bib2) 2022; 364 Dawood (10.1016/j.envres.2024.118204_bib15) 2020; 45 Barbosa (10.1016/j.envres.2024.118204_bib9) 2018; 24 Paulraj (10.1016/j.envres.2024.118204_bib45) 2017; 104 Wang (10.1016/j.envres.2024.118204_bib61) 2015; 120 Gelle (10.1016/j.envres.2024.118204_bib18) 2019; 120 Zhao (10.1016/j.envres.2024.118204_bib69) 2022; 212 Lyu (10.1016/j.envres.2024.118204_bib37) 2023 Rosseler (10.1016/j.envres.2024.118204_bib50) 2015; 166 Yudianti (10.1016/j.envres.2024.118204_bib65) 2009; 17 Liu (10.1016/j.envres.2024.118204_bib36) 2023; 123 Papageorgiou (10.1016/j.envres.2024.118204_bib44) 2010; 345 Xu (10.1016/j.envres.2024.118204_bib63) 2020; 8 Mallin (10.1016/j.envres.2024.118204_bib39) 2002; 2 Tournier (10.1016/j.envres.2024.118204_bib59) 2023; 123 Malathi (10.1016/j.envres.2024.118204_bib38) 2014; 111 Saravanan (10.1016/j.envres.2024.118204_bib53) 2021; 419 Khan (10.1016/j.envres.2024.118204_bib28) 2020; 242 Liu (10.1016/j.envres.2024.118204_bib35) 2021; 60 Cavuslar (10.1016/j.envres.2024.118204_bib11) 2020; 1 Kozuch (10.1016/j.envres.2024.118204_bib30) 2012; vol. 2 Pavez (10.1016/j.envres.2024.118204_bib46) 2020; 5 Ristig (10.1016/j.envres.2024.118204_bib49) 2015; 3 Poovan (10.1016/j.envres.2024.118204_bib47) 2022; 12 Hu (10.1016/j.envres.2024.118204_bib22) 2022; 277 Link (10.1016/j.envres.2024.118204_bib34) 1999; 103 Murugadoss (10.1016/j.envres.2024.118204_bib40) 2007; 19 Changmai (10.1016/j.envres.2024.118204_bib12) 2021; 286 Strachan (10.1016/j.envres.2024.118204_bib57) 2020; 10 Ali (10.1016/j.envres.2024.118204_bib4) 2018; 192 Leong (10.1016/j.envres.2024.118204_bib32) 2021; 14 Yue (10.1016/j.envres.2024.118204_bib66) 2016; 6 Ferrando (10.1016/j.envres.2024.118204_bib16) 2008; 108 Khan (10.1016/j.envres.2024.118204_bib27) 2021; 285 Solhi (10.1016/j.envres.2024.118204_bib56) 2023; 123 Amiri (10.1016/j.envres.2024.118204_bib5) 2022; 3 Kumar (10.1016/j.envres.2024.118204_bib31) 2020; 57 Klar (10.1016/j.envres.2024.118204_bib29) 1998; 80 Szymańska (10.1016/j.envres.2024.118204_bib58) 2015; 13 Sdg (10.1016/j.envres.2024.118204_bib54) 2019; 7 Yin (10.1016/j.envres.2024.118204_bib64) 2011; 21 Kang (10.1016/j.envres.2024.118204_bib25) 2023; 11 Zhang (10.1016/j.envres.2024.118204_bib67) 2020; 8 Saravanakumar (10.1016/j.envres.2024.118204_bib52) 2022; 212 |
References_xml | – volume: vol. 2 start-page: 2787 year: 2012 end-page: 2794 ident: bib30 publication-title: “Turning over” Definitions in Catalytic Cycles – volume: 24 start-page: 12330 year: 2018 end-page: 12339 ident: bib9 article-title: Reaction pathway dependence in plasmonic catalysis: hydrogenation as a model molecular transformation publication-title: Chem.--Eur. J. – volume: 60 start-page: 19324 year: 2021 end-page: 19330 ident: bib35 article-title: Integration of bimetallic electronic synergy with oxide site isolation improves the selective hydrogenation of acetylene publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 1015 year: 2009 end-page: 1020 ident: bib65 article-title: DSC analysis on water state of salvia hydrogels publication-title: Macromol. Res. – volume: 120 start-page: 53 year: 2015 end-page: 59 ident: bib61 article-title: Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent publication-title: Carbohydr. Polym. – volume: 7 start-page: 509 year: 1973 end-page: 522 ident: bib23 article-title: Water and hydrogels publication-title: J. Biomed. Mater. Res. – volume: 108 start-page: 845 year: 2008 end-page: 910 ident: bib16 article-title: Nanoalloys: from theory to applications of alloy clusters and nanoparticles publication-title: Chem. Rev. – volume: 54 start-page: 8067 year: 2021 end-page: 8076 ident: bib43 article-title: Mechanical properties with respect to water content of host–guest hydrogels publication-title: Macromolecules – volume: 2 start-page: 1235 year: 2002 end-page: 1237 ident: bib39 article-title: Solution-phase synthesis of sub-10 nm Au− Ag alloy nanoparticles publication-title: Nano Lett. – volume: 212 year: 2022 ident: bib69 article-title: Removal of p-Nitrophenol from simulated sewage using steel slag: capability and mechanism publication-title: Environ. Res. – volume: 192 start-page: 217 year: 2018 end-page: 230 ident: bib4 article-title: Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes publication-title: Carbohydr. Polym. – volume: 30 start-page: 15345 year: 2014 end-page: 15350 ident: bib13 article-title: Facile synthesis of AuPt alloy nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for reduction of 4-nitrophenol publication-title: Langmuir – volume: 25 start-page: 3981 year: 2020 ident: bib24 article-title: Chitosan: a natural biopolymer with a wide and varied range of applications publication-title: Molecules – volume: 11 start-page: 5245 year: 2023 end-page: 5256 ident: bib25 article-title: Dramatic acceleration by visible light and mechanism of AuPd@ ZIF-8-catalyzed ammonia borane methanolysis for efficient hydrogen production publication-title: J. Mater. Chem. A – volume: 103 start-page: 3529 year: 1999 end-page: 3533 ident: bib34 article-title: Alloy formation of gold− silver nanoparticles and the dependence of the plasmon absorption on their composition publication-title: J. Phys. Chem. B – volume: 7 start-page: 805 year: 2019 end-page: 814 ident: bib54 article-title: Sustainable development goals. The energy progress report publication-title: Tracking SDG – volume: 649 year: 2023 ident: bib17 article-title: Transient absorption spectroscopy insights into heterogeneous photocatalysis for water pollution remediation publication-title: Appl. Catal. Gen. – volume: 120 start-page: 986 year: 2019 end-page: 1041 ident: bib18 article-title: Applications of plasmon-enhanced nanocatalysis to organic transformations publication-title: Chem. Rev. – volume: 39 start-page: 110 year: 2019 end-page: 122 ident: bib6 article-title: Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals publication-title: Curr. Opin. Colloid Interface Sci. – volume: 57 year: 2020 ident: bib31 article-title: Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering publication-title: J. Drug Deliv. Sci. Technol. – volume: 364 start-page: 2 year: 2022 end-page: 17 ident: bib2 article-title: Recyclable, Immobilized transition‐metal photocatalysts publication-title: Adv. Synth. Catal. – volume: 166 start-page: 381 year: 2015 end-page: 392 ident: bib50 article-title: Structural and electronic effects in bimetallic PdPt nanoparticles on TiO2 for improved photocatalytic oxidation of CO in the presence of humidity publication-title: Appl. Catal. B Environ. – volume: 13 start-page: 1819 year: 2015 end-page: 1846 ident: bib58 article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications publication-title: Mar. Drugs – volume: 123 start-page: 5612 year: 2023 end-page: 5701 ident: bib59 article-title: Enzymes' power for plastics degradation publication-title: Chem. Rev. – volume: 20 start-page: 3071 year: 2022 end-page: 3098 ident: bib7 article-title: Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: a review publication-title: Environ. Chem. Lett. – year: 2023 ident: bib26 article-title: State-of-art Advances on Removal, Degradation and Electrochemical Monitoring of 4-aminophenol Pollutants in Real Samples: A Review – volume: 118 start-page: 9843 year: 2018 end-page: 9929 ident: bib60 article-title: Reusable N-heterocyclic carbene complex catalysts and beyond: a perspective on recycling strategies publication-title: Chem. Rev. – volume: 49 start-page: 1164 year: 2019 end-page: 1179 ident: bib3 article-title: Food packaging and nanotechnology: safeguarding consumer health and safety publication-title: Nutr. Food Sci. – year: 2023 ident: bib37 article-title: The interaction of amines with gold nanoparticles publication-title: Adv. Mater. – volume: 45 start-page: 3847 year: 2020 end-page: 3869 ident: bib15 article-title: Hydrogen production for energy: an overview publication-title: Int. J. Hydrogen Energy – volume: 38 start-page: 43 year: 2004 end-page: 74 ident: bib21 article-title: Interactions of metal ions with chitosan-based sorbents: a review publication-title: Separ. Purif. Technol. – volume: 6 start-page: 8300 year: 2016 end-page: 8308 ident: bib66 article-title: Superior performance of CuInS 2 for photocatalytic water treatment: full conversion of highly stable nitrate ions into harmless N 2 under visible light publication-title: Catal. Sci. Technol. – volume: 285 year: 2021 ident: bib27 article-title: Chitosan coated NiAl layered double hydroxide microsphere templated zero-valent metal NPs for environmental remediation publication-title: J. Clean. Prod. – volume: 19 year: 2007 ident: bib40 article-title: A ‘green’chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst publication-title: Nanotechnology – volume: 277 year: 2022 ident: bib22 article-title: Chitosan-assisted MOFs dispersion via covalent bonding interaction toward highly efficient removal of heavy metal ions from wastewater publication-title: Carbohydr. Polym. – volume: 3 start-page: 4654 year: 2015 end-page: 4662 ident: bib49 article-title: Nanostructure of wet-chemically prepared, polymer-stabilized silver–gold nanoalloys (6 nm) over the entire composition range publication-title: J. Mater. Chem. B – volume: 123 start-page: 1925 year: 2023 end-page: 2015 ident: bib56 article-title: Understanding Nanocellulose–water interactions: Turning a Detriment into an asset publication-title: Chem. Rev. – volume: 12 start-page: 1511 year: 2022 ident: bib8 article-title: Rapid, clean, and sustainable bioprocessing of toxic weeds into benign organic fertilizer publication-title: Agriculture – volume: 13 start-page: 3710 year: 2023 end-page: 3722 ident: bib41 article-title: Two Birds, one Stone: coupling hydrogen production with Herbicide degradation over metal–organic Framework-derived Titanium dioxide publication-title: ACS Catal. – volume: 419 year: 2021 ident: bib53 article-title: A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes publication-title: J. Hazard Mater. – volume: 14 start-page: 1 year: 2021 end-page: 15 ident: bib32 article-title: Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues publication-title: Biotechnol. Biofuels – volume: 12 start-page: 6228 year: 2022 ident: bib14 article-title: Heterogenous nanocomposite catalysts with rhenium nanostructures for the catalytic reduction of 4-nitrophenol publication-title: Sci. Rep. – volume: 12 start-page: 6623 year: 2022 end-page: 6649 ident: bib47 article-title: Synergy between homogeneous and heterogeneous catalysis publication-title: Catal. Sci. Technol. – volume: 379 start-page: 2206 year: 2012 end-page: 2211 ident: bib51 article-title: From millennium development goals to sustainable development goals publication-title: Lancet – volume: 5 start-page: 26562 year: 2020 end-page: 26572 ident: bib46 article-title: Choline [amino acid] ionic liquid/water mixtures: a triple effect for the degradation of an organophosphorus pesticide publication-title: ACS Omega – volume: 111 start-page: 734 year: 2014 end-page: 743 ident: bib38 article-title: One pot green synthesis of Ag, Au and Au–Ag alloy nanoparticles using isonicotinic acid hydrazide and starch publication-title: Carbohydr. Polym. – volume: 3 start-page: 822 year: 2022 end-page: 828 ident: bib5 article-title: Chitin and chitosan derived from crustacean waste valorization streams can support food systems and the UN Sustainable Development Goals publication-title: Nature food – volume: 11 start-page: 179 year: 2010 end-page: 209 ident: bib1 article-title: Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation publication-title: J. Photochem. Photobiol. C Photochem. Rev. – volume: 9 start-page: 29888 year: 2019 end-page: 29901 ident: bib55 article-title: Au-based bimetallic catalysts: how the synergy between two metals affects their catalytic activity publication-title: RSC Adv. – volume: 297 year: 2022 ident: bib48 article-title: CuAu bimetallic plasmonic-enhanced catalysts supported on alginate biohydrogels publication-title: Carbohydr. Polym. – volume: 8 start-page: 12655 year: 2020 end-page: 12663 ident: bib67 article-title: Lignin-directed control of silver nanoparticles with tunable size in porous lignocellulose hydrogels and their application in catalytic reduction publication-title: ACS Sustain. Chem. Eng. – volume: 123 start-page: 4855 year: 2023 end-page: 4933 ident: bib36 article-title: Bimetallic Sites for catalysis: from Binuclear metal Sites to bimetallic Nanoclusters and nanoparticles publication-title: Chem. Rev. – volume: 242 year: 2020 ident: bib28 article-title: Metal nanoparticles containing chitosan wrapped cellulose nanocomposites for catalytic hydrogen production and reduction of environmental pollutants publication-title: Carbohydr. Polym. – volume: 80 start-page: 4249 year: 1998 ident: bib29 article-title: Surface-plasmon resonances in single metallic nanoparticles publication-title: Phys. Rev. Lett. – volume: 611 year: 2021 ident: bib70 article-title: Preparation of PdNPs doped chitosan-based composite hydrogels as highly efficient catalysts for reduction of 4-nitrophenol publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 212 year: 2022 ident: bib52 article-title: Noble metal nanoparticles (Mx= Ag, Au, Pd) decorated graphitic carbon nitride nanosheets for ultrafast catalytic reduction of anthropogenic pollutant, 4-nitrophenol publication-title: Environ. Res. – volume: 9 start-page: 34 year: 2021 ident: bib19 article-title: Sustainable ammonia production processes publication-title: Front. Energy Res. – volume: 12 start-page: 611 year: 2017 end-page: 620 ident: bib62 article-title: New insight into the synthesis of aromatic azo compounds assisted by surface plasmon resonance publication-title: Plasmonics – volume: 192 start-page: 166 year: 2018 end-page: 175 ident: bib10 article-title: 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction publication-title: Carbohydr. Polym. – volume: 76 start-page: 3879 year: 2019 end-page: 3903 ident: bib20 article-title: Chitosan–tripolyphosphate bead: the interactions that govern its formation publication-title: Polym. Bull. – volume: 104 start-page: 1813 year: 2017 end-page: 1819 ident: bib45 article-title: Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications publication-title: Int. J. Biol. Macromol. – volume: 21 start-page: 8997 year: 2011 end-page: 8999 ident: bib64 article-title: Nanocasting of CuAu alloy nanoparticles for methyl glycolate synthesis publication-title: J. Mater. Chem. – volume: 286 year: 2021 ident: bib12 article-title: A novel Citrus sinensis peel ash coated magnetic nanoparticles as an easily recoverable solid catalyst for biodiesel production publication-title: Fuel – volume: 9 start-page: 3930 year: 2017 end-page: 3941 ident: bib33 article-title: Highly active Ruthenium supported on Magnetically recyclable chitosan‐based nanocatalyst for Nitroarenes reduction publication-title: ChemCatChem – volume: 8 start-page: 12366 year: 2020 end-page: 12377 ident: bib63 article-title: Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@ Pd core–shell nanocubes publication-title: ACS Sustain. Chem. Eng. – volume: 62 start-page: 97 year: 2005 end-page: 103 ident: bib42 article-title: Thermal analysis of chitosan based networks publication-title: Carbohydr. Polym. – volume: 10 start-page: 5516 year: 2020 end-page: 5521 ident: bib57 article-title: 4-Nitrophenol reduction: probing the putative mechanism of the model reaction publication-title: ACS Catal. – volume: 214 start-page: 175 year: 2016 end-page: 191 ident: bib68 article-title: Removal of heavy metal ions using chitosan and modified chitosan: a review publication-title: J. Mol. Liq. – volume: 1 start-page: 2407 year: 2020 end-page: 2417 ident: bib11 article-title: Synthesis of stable gold nanoparticles using linear polyethyleneimines and catalysis of both anionic and cationic azo dye degradation publication-title: Materials Advances – volume: 345 start-page: 469 year: 2010 end-page: 473 ident: bib44 article-title: Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy publication-title: Carbohydr. Res. – volume: 364 start-page: 2 year: 2022 ident: 10.1016/j.envres.2024.118204_bib2 article-title: Recyclable, Immobilized transition‐metal photocatalysts publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202101048 – year: 2023 ident: 10.1016/j.envres.2024.118204_bib37 article-title: The interaction of amines with gold nanoparticles publication-title: Adv. Mater. – volume: 111 start-page: 734 year: 2014 ident: 10.1016/j.envres.2024.118204_bib38 article-title: One pot green synthesis of Ag, Au and Au–Ag alloy nanoparticles using isonicotinic acid hydrazide and starch publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.04.105 – volume: 277 year: 2022 ident: 10.1016/j.envres.2024.118204_bib22 article-title: Chitosan-assisted MOFs dispersion via covalent bonding interaction toward highly efficient removal of heavy metal ions from wastewater publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118809 – volume: 2 start-page: 1235 year: 2002 ident: 10.1016/j.envres.2024.118204_bib39 article-title: Solution-phase synthesis of sub-10 nm Au− Ag alloy nanoparticles publication-title: Nano Lett. doi: 10.1021/nl025774n – volume: 242 year: 2020 ident: 10.1016/j.envres.2024.118204_bib28 article-title: Metal nanoparticles containing chitosan wrapped cellulose nanocomposites for catalytic hydrogen production and reduction of environmental pollutants publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116286 – volume: 25 start-page: 3981 year: 2020 ident: 10.1016/j.envres.2024.118204_bib24 article-title: Chitosan: a natural biopolymer with a wide and varied range of applications publication-title: Molecules doi: 10.3390/molecules25173981 – volume: 611 year: 2021 ident: 10.1016/j.envres.2024.118204_bib70 article-title: Preparation of PdNPs doped chitosan-based composite hydrogels as highly efficient catalysts for reduction of 4-nitrophenol publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2020.125889 – volume: 17 start-page: 1015 year: 2009 ident: 10.1016/j.envres.2024.118204_bib65 article-title: DSC analysis on water state of salvia hydrogels publication-title: Macromol. Res. doi: 10.1007/BF03218650 – volume: 14 start-page: 1 year: 2021 ident: 10.1016/j.envres.2024.118204_bib32 article-title: Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-021-01939-5 – volume: 285 year: 2021 ident: 10.1016/j.envres.2024.118204_bib27 article-title: Chitosan coated NiAl layered double hydroxide microsphere templated zero-valent metal NPs for environmental remediation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124830 – volume: 49 start-page: 1164 year: 2019 ident: 10.1016/j.envres.2024.118204_bib3 article-title: Food packaging and nanotechnology: safeguarding consumer health and safety publication-title: Nutr. Food Sci. doi: 10.1108/NFS-01-2019-0020 – volume: 38 start-page: 43 year: 2004 ident: 10.1016/j.envres.2024.118204_bib21 article-title: Interactions of metal ions with chitosan-based sorbents: a review publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2003.10.004 – volume: 214 start-page: 175 year: 2016 ident: 10.1016/j.envres.2024.118204_bib68 article-title: Removal of heavy metal ions using chitosan and modified chitosan: a review publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2015.12.013 – volume: vol. 2 start-page: 2787 year: 2012 ident: 10.1016/j.envres.2024.118204_bib30 – volume: 118 start-page: 9843 year: 2018 ident: 10.1016/j.envres.2024.118204_bib60 article-title: Reusable N-heterocyclic carbene complex catalysts and beyond: a perspective on recycling strategies publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00057 – volume: 20 start-page: 3071 year: 2022 ident: 10.1016/j.envres.2024.118204_bib7 article-title: Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-022-01443-8 – volume: 11 start-page: 5245 year: 2023 ident: 10.1016/j.envres.2024.118204_bib25 article-title: Dramatic acceleration by visible light and mechanism of AuPd@ ZIF-8-catalyzed ammonia borane methanolysis for efficient hydrogen production publication-title: J. Mater. Chem. A doi: 10.1039/D2TA08396E – volume: 103 start-page: 3529 year: 1999 ident: 10.1016/j.envres.2024.118204_bib34 article-title: Alloy formation of gold− silver nanoparticles and the dependence of the plasmon absorption on their composition publication-title: J. Phys. Chem. B doi: 10.1021/jp990387w – volume: 192 start-page: 217 year: 2018 ident: 10.1016/j.envres.2024.118204_bib4 article-title: Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.03.029 – volume: 419 year: 2021 ident: 10.1016/j.envres.2024.118204_bib53 article-title: A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.126451 – volume: 123 start-page: 5612 year: 2023 ident: 10.1016/j.envres.2024.118204_bib59 article-title: Enzymes' power for plastics degradation publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00644 – volume: 7 start-page: 805 year: 2019 ident: 10.1016/j.envres.2024.118204_bib54 article-title: Sustainable development goals. The energy progress report publication-title: Tracking SDG – volume: 212 year: 2022 ident: 10.1016/j.envres.2024.118204_bib69 article-title: Removal of p-Nitrophenol from simulated sewage using steel slag: capability and mechanism publication-title: Environ. Res. doi: 10.1016/j.envres.2022.113450 – volume: 3 start-page: 822 year: 2022 ident: 10.1016/j.envres.2024.118204_bib5 article-title: Chitin and chitosan derived from crustacean waste valorization streams can support food systems and the UN Sustainable Development Goals publication-title: Nature food doi: 10.1038/s43016-022-00591-y – volume: 9 start-page: 29888 year: 2019 ident: 10.1016/j.envres.2024.118204_bib55 article-title: Au-based bimetallic catalysts: how the synergy between two metals affects their catalytic activity publication-title: RSC Adv. doi: 10.1039/C9RA06001D – volume: 12 start-page: 6228 year: 2022 ident: 10.1016/j.envres.2024.118204_bib14 article-title: Heterogenous nanocomposite catalysts with rhenium nanostructures for the catalytic reduction of 4-nitrophenol publication-title: Sci. Rep. doi: 10.1038/s41598-022-10237-5 – volume: 212 year: 2022 ident: 10.1016/j.envres.2024.118204_bib52 article-title: Noble metal nanoparticles (Mx= Ag, Au, Pd) decorated graphitic carbon nitride nanosheets for ultrafast catalytic reduction of anthropogenic pollutant, 4-nitrophenol publication-title: Environ. Res. doi: 10.1016/j.envres.2022.113185 – volume: 76 start-page: 3879 year: 2019 ident: 10.1016/j.envres.2024.118204_bib20 article-title: Chitosan–tripolyphosphate bead: the interactions that govern its formation publication-title: Polym. Bull. doi: 10.1007/s00289-018-2574-9 – volume: 13 start-page: 3710 year: 2023 ident: 10.1016/j.envres.2024.118204_bib41 article-title: Two Birds, one Stone: coupling hydrogen production with Herbicide degradation over metal–organic Framework-derived Titanium dioxide publication-title: ACS Catal. doi: 10.1021/acscatal.3c00265 – volume: 9 start-page: 3930 year: 2017 ident: 10.1016/j.envres.2024.118204_bib33 article-title: Highly active Ruthenium supported on Magnetically recyclable chitosan‐based nanocatalyst for Nitroarenes reduction publication-title: ChemCatChem doi: 10.1002/cctc.201700649 – volume: 286 year: 2021 ident: 10.1016/j.envres.2024.118204_bib12 article-title: A novel Citrus sinensis peel ash coated magnetic nanoparticles as an easily recoverable solid catalyst for biodiesel production publication-title: Fuel doi: 10.1016/j.fuel.2020.119447 – volume: 24 start-page: 12330 year: 2018 ident: 10.1016/j.envres.2024.118204_bib9 article-title: Reaction pathway dependence in plasmonic catalysis: hydrogenation as a model molecular transformation publication-title: Chem.--Eur. J. doi: 10.1002/chem.201705749 – volume: 3 start-page: 4654 year: 2015 ident: 10.1016/j.envres.2024.118204_bib49 article-title: Nanostructure of wet-chemically prepared, polymer-stabilized silver–gold nanoalloys (6 nm) over the entire composition range publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00644A – volume: 80 start-page: 4249 year: 1998 ident: 10.1016/j.envres.2024.118204_bib29 article-title: Surface-plasmon resonances in single metallic nanoparticles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.4249 – volume: 104 start-page: 1813 year: 2017 ident: 10.1016/j.envres.2024.118204_bib45 article-title: Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.06.043 – volume: 10 start-page: 5516 year: 2020 ident: 10.1016/j.envres.2024.118204_bib57 article-title: 4-Nitrophenol reduction: probing the putative mechanism of the model reaction publication-title: ACS Catal. doi: 10.1021/acscatal.0c00725 – volume: 12 start-page: 611 year: 2017 ident: 10.1016/j.envres.2024.118204_bib62 article-title: New insight into the synthesis of aromatic azo compounds assisted by surface plasmon resonance publication-title: Plasmonics doi: 10.1007/s11468-016-0305-3 – volume: 12 start-page: 6623 year: 2022 ident: 10.1016/j.envres.2024.118204_bib47 article-title: Synergy between homogeneous and heterogeneous catalysis publication-title: Catal. Sci. Technol. doi: 10.1039/D2CY00232A – volume: 345 start-page: 469 year: 2010 ident: 10.1016/j.envres.2024.118204_bib44 article-title: Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2009.12.010 – volume: 9 start-page: 34 year: 2021 ident: 10.1016/j.envres.2024.118204_bib19 article-title: Sustainable ammonia production processes publication-title: Front. Energy Res. doi: 10.3389/fenrg.2021.580808 – volume: 192 start-page: 166 year: 2018 ident: 10.1016/j.envres.2024.118204_bib10 article-title: 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.03.038 – volume: 6 start-page: 8300 year: 2016 ident: 10.1016/j.envres.2024.118204_bib66 article-title: Superior performance of CuInS 2 for photocatalytic water treatment: full conversion of highly stable nitrate ions into harmless N 2 under visible light publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY01858K – volume: 123 start-page: 4855 year: 2023 ident: 10.1016/j.envres.2024.118204_bib36 article-title: Bimetallic Sites for catalysis: from Binuclear metal Sites to bimetallic Nanoclusters and nanoparticles publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00733 – volume: 19 year: 2007 ident: 10.1016/j.envres.2024.118204_bib40 article-title: A ‘green’chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst publication-title: Nanotechnology – volume: 13 start-page: 1819 year: 2015 ident: 10.1016/j.envres.2024.118204_bib58 article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications publication-title: Mar. Drugs doi: 10.3390/md13041819 – volume: 8 start-page: 12366 year: 2020 ident: 10.1016/j.envres.2024.118204_bib63 article-title: Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@ Pd core–shell nanocubes publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c02276 – volume: 8 start-page: 12655 year: 2020 ident: 10.1016/j.envres.2024.118204_bib67 article-title: Lignin-directed control of silver nanoparticles with tunable size in porous lignocellulose hydrogels and their application in catalytic reduction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c04298 – volume: 62 start-page: 97 year: 2005 ident: 10.1016/j.envres.2024.118204_bib42 article-title: Thermal analysis of chitosan based networks publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2005.02.022 – volume: 12 start-page: 1511 year: 2022 ident: 10.1016/j.envres.2024.118204_bib8 article-title: Rapid, clean, and sustainable bioprocessing of toxic weeds into benign organic fertilizer publication-title: Agriculture doi: 10.3390/agriculture12101511 – volume: 60 start-page: 19324 year: 2021 ident: 10.1016/j.envres.2024.118204_bib35 article-title: Integration of bimetallic electronic synergy with oxide site isolation improves the selective hydrogenation of acetylene publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105931 – year: 2023 ident: 10.1016/j.envres.2024.118204_bib26 – volume: 11 start-page: 179 year: 2010 ident: 10.1016/j.envres.2024.118204_bib1 article-title: Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation publication-title: J. Photochem. Photobiol. C Photochem. Rev. doi: 10.1016/j.jphotochemrev.2011.02.003 – volume: 45 start-page: 3847 year: 2020 ident: 10.1016/j.envres.2024.118204_bib15 article-title: Hydrogen production for energy: an overview publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.12.059 – volume: 21 start-page: 8997 year: 2011 ident: 10.1016/j.envres.2024.118204_bib64 article-title: Nanocasting of CuAu alloy nanoparticles for methyl glycolate synthesis publication-title: J. Mater. Chem. doi: 10.1039/c1jm10646e – volume: 297 year: 2022 ident: 10.1016/j.envres.2024.118204_bib48 article-title: CuAu bimetallic plasmonic-enhanced catalysts supported on alginate biohydrogels publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.120021 – volume: 1 start-page: 2407 year: 2020 ident: 10.1016/j.envres.2024.118204_bib11 article-title: Synthesis of stable gold nanoparticles using linear polyethyleneimines and catalysis of both anionic and cationic azo dye degradation publication-title: Materials Advances doi: 10.1039/D0MA00404A – volume: 5 start-page: 26562 year: 2020 ident: 10.1016/j.envres.2024.118204_bib46 article-title: Choline [amino acid] ionic liquid/water mixtures: a triple effect for the degradation of an organophosphorus pesticide publication-title: ACS Omega doi: 10.1021/acsomega.0c03305 – volume: 123 start-page: 1925 year: 2023 ident: 10.1016/j.envres.2024.118204_bib56 article-title: Understanding Nanocellulose–water interactions: Turning a Detriment into an asset publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00611 – volume: 379 start-page: 2206 year: 2012 ident: 10.1016/j.envres.2024.118204_bib51 article-title: From millennium development goals to sustainable development goals publication-title: Lancet doi: 10.1016/S0140-6736(12)60685-0 – volume: 120 start-page: 53 year: 2015 ident: 10.1016/j.envres.2024.118204_bib61 article-title: Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.12.005 – volume: 108 start-page: 845 year: 2008 ident: 10.1016/j.envres.2024.118204_bib16 article-title: Nanoalloys: from theory to applications of alloy clusters and nanoparticles publication-title: Chem. Rev. doi: 10.1021/cr040090g – volume: 30 start-page: 15345 year: 2014 ident: 10.1016/j.envres.2024.118204_bib13 article-title: Facile synthesis of AuPt alloy nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for reduction of 4-nitrophenol publication-title: Langmuir doi: 10.1021/la5042019 – volume: 54 start-page: 8067 year: 2021 ident: 10.1016/j.envres.2024.118204_bib43 article-title: Mechanical properties with respect to water content of host–guest hydrogels publication-title: Macromolecules doi: 10.1021/acs.macromol.1c00970 – volume: 649 year: 2023 ident: 10.1016/j.envres.2024.118204_bib17 article-title: Transient absorption spectroscopy insights into heterogeneous photocatalysis for water pollution remediation publication-title: Appl. Catal. Gen. doi: 10.1016/j.apcata.2022.118943 – volume: 120 start-page: 986 year: 2019 ident: 10.1016/j.envres.2024.118204_bib18 article-title: Applications of plasmon-enhanced nanocatalysis to organic transformations publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00187 – volume: 57 year: 2020 ident: 10.1016/j.envres.2024.118204_bib31 article-title: Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering publication-title: J. Drug Deliv. Sci. Technol. – volume: 166 start-page: 381 year: 2015 ident: 10.1016/j.envres.2024.118204_bib50 article-title: Structural and electronic effects in bimetallic PdPt nanoparticles on TiO2 for improved photocatalytic oxidation of CO in the presence of humidity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.12.001 – volume: 39 start-page: 110 year: 2019 ident: 10.1016/j.envres.2024.118204_bib6 article-title: Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2019.01.014 – volume: 7 start-page: 509 year: 1973 ident: 10.1016/j.envres.2024.118204_bib23 article-title: Water and hydrogels publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820070604 |
SSID | ssj0011530 |
Score | 2.4670255 |
Snippet | The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118204 |
SubjectTerms | absorption adsorption aminophenols Catalysis catalysts catalytic activity Chitosan crosslinking hydrazine Hydrogel hydrogels irradiation light nanocomposites nanoparticles nitroaromatic compounds p-nitrophenol Plasmonic and reusability Synergism tripolyphosphates ultraviolet-visible spectroscopy |
Title | Highly efficient and reusable CuAu nanoparticles supported on crosslinked chitosan hydrogels as a plasmonic catalyst for nitroarene reduction |
URI | https://dx.doi.org/10.1016/j.envres.2024.118204 https://www.ncbi.nlm.nih.gov/pubmed/38224938 https://www.proquest.com/docview/2915570465 https://www.proquest.com/docview/3040376282 |
Volume | 247 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvRRKadKm3eaBCr06sSzJXh-XJWHb0pwayM3o2aak8rJeB_bSf9D_nBlL3hJoCBR8kT3CskcazWjmmyHkYwW2v3eOZS5XBgwUXmRaTnmmKyatRKXWokf362W5uBKfr-X1DpmPWBgMq0yyP8r0QVqnO2fpb54tb24Q48sQV8owCpLlU0SUC1HhLD_9vQ3zAIWH52MVA6Qe4XNDjJcLd2DUgpVYiFPUtFO5tn9sT4-pn8M2dPGKvEz6I53FIe6RHRf2ycH5X7gaPEzrtdsnL-KpHI1go9fkD4Z13G6oGxJHADVVwdKV6ztEUNF5P-tpUAEM6RQvR7t-OaQ-t7QNdBgzunyhif6HtlOB_tjYVfsdvoEquOgS1PFfmG-XDidDm25NQS-mIDlWLQLPHLzOxpS1b8jVxfm3-SJLBRkyw2u5zrRlFTOlKWyVa49Vq523XOW1F0ZzIQ3nuSuEtdxqr32tClOWhSgV996W2vMDshva4N4RWhpgsK0UZ8wLprQWU1PURWVz4byTfEL4yIfGpGzlWDTjthnD0n42kXsNcq-J3JuQbNtrGbN1PEFfjSxuHsy6BjaUJ3p-GGdEAwsSvSwquLYHIsy4X-WilI_TcBCdINnB3J2Qt3E6bcfLMa635tP3_z22Q_IcW-jzYvKI7K5XvTsG1WmtT4a1cUKezT59WVzeA3IMHQY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9swUHTpwwajbN26pfvSYK9eLUuy48cQWtK1zVMLfTP63Do6OcTxID9i_3l3tpwxaCkU_GLrhM8-3elO90XIlwJsf-8cS1yqDBgoPEu0nPBEF0xaiUqtRY_uxSKfX4lv1_J6h8yGXBgMq4yyv5fpnbSOT47i3zxa3txgji_DvFKGUZAsnRRPyC5Wp5Ijsjs9PZsvts4EYOp0aGSAE4YMui7My4XfYNeCoZiJr6hsx45td-xQ92mg3U508oLsRRWSTnssX5IdF_bJwfG_jDUYjCzb7JPn_cEc7fONXpE_GNlxu6Guqx0B0FQFS1eubTCJis7aaUuDCmBLx5A52rTLrvq5pXWgHc7o9YVbdEHUjQr0x8au6u_wDVTBRZegkf_Ckru0OxzaNGsKqjEF4bGqMffMwetsX7X2Nbk6Ob6czZPYkyExvJTrRFtWMJObzBap9ti42nnLVVp6YTQX0nCeukxYy6322pcqM3meiVxx722uPT8go1AH95bQ3ACNbaE4Y14wpbWYmKzMCpsK553kY8IHOlQmFizHvhm31RCZ9rPqqVch9aqeemOSbGct-4IdD8AXA4mr_xZeBXvKAzM_DyuiAp5ER4sKrm4BCIvuF6nI5f0wHKQnCHeweMfkTb-ctvhyDO0t-eTw0bh9Ik_nlxfn1fnp4uwdeYYj6AJj8j0ZrVet-wCa1Fp_jJzyFxdqH7c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+and+reusable+CuAu+nanoparticles+supported+on+crosslinked+chitosan+hydrogels+as+a+plasmonic+catalyst+for+nitroarene+reduction&rft.jtitle=Environmental+research&rft.au=Ram%C3%ADrez%2C+Oscar&rft.au=Bonardd%2C+Sebasti%C3%A1n&rft.au=Sald%C3%ADas%2C+C%C3%A9sar&rft.au=Leiva%2C+Angel&rft.date=2024-04-15&rft.eissn=1096-0953&rft.volume=247&rft.spage=118204&rft_id=info:doi/10.1016%2Fj.envres.2024.118204&rft_id=info%3Apmid%2F38224938&rft.externalDocID=38224938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon |