Highly efficient and reusable CuAu nanoparticles supported on crosslinked chitosan hydrogels as a plasmonic catalyst for nitroarene reduction

The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate aver...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research Vol. 247; p. 118204
Main Authors Ramírez, Oscar, Bonardd, Sebastián, Saldías, César, Leiva, Angel, Díaz Díaz, David
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 15.04.2024
Subjects
Online AccessGet full text
ISSN0013-9351
1096-0953
1096-0953
DOI10.1016/j.envres.2024.118204

Cover

Loading…
Abstract The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV–visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application. [Display omitted] •CuAu BNPs synthesized on biobased hydrogels were used in nitrophenol reduction.•Cu and Au present a bimetallic synergy for catalysis in nanostructured materials.•Using visible light radiation improves the reaction kinetics by LSPR activation.•Chitosan enables an easy and effective reusability of the catalyst in several runs.
AbstractList The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV-visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application.The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV-visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application.
The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV–visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application.
The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV-visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application.
The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV–visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application. [Display omitted] •CuAu BNPs synthesized on biobased hydrogels were used in nitrophenol reduction.•Cu and Au present a bimetallic synergy for catalysis in nanostructured materials.•Using visible light radiation improves the reaction kinetics by LSPR activation.•Chitosan enables an easy and effective reusability of the catalyst in several runs.
ArticleNumber 118204
Author Saldías, César
Ramírez, Oscar
Leiva, Angel
Díaz Díaz, David
Bonardd, Sebastián
Author_xml – sequence: 1
  givenname: Oscar
  orcidid: 0000-0002-4525-1490
  surname: Ramírez
  fullname: Ramírez, Oscar
  email: ogramirez@uc.cl
  organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
– sequence: 2
  givenname: Sebastián
  orcidid: 0000-0002-3764-9968
  surname: Bonardd
  fullname: Bonardd, Sebastián
  organization: Materials Physics Center, CSIC-UPV/EHU, San Sebastián, 20018, Spain
– sequence: 3
  givenname: César
  surname: Saldías
  fullname: Saldías, César
  organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
– sequence: 4
  givenname: Angel
  surname: Leiva
  fullname: Leiva, Angel
  email: aleivac@uc.cl
  organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
– sequence: 5
  givenname: David
  orcidid: 0000-0002-0557-3364
  surname: Díaz Díaz
  fullname: Díaz Díaz, David
  email: ddiazdiaz@ull.edu.es
  organization: Departamento de Química Orgánica, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38224938$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9qGzEQxkVJaJykb1CKjr2sq3-79vZQCKZNAoFekrPQSqNYrixtJW3AD5F3rtxNLj00MDAMfN83zPzO0UmIARD6SMmSEtp92S0hPCXIS0aYWFK6ZkS8QwtK-q4hfctP0IIQypuet_QMnee8qyNtOXmPzviaMdHz9QI937jHrT9gsNZpB6FgFQxOMGU1eMCb6WrCQYU4qlSc9pBxnsYxpgIGx4B1ijl7F37VUW9diVkFvD2YFB_BZ6xq4dGrvI_BaaxVUf6QC7Yx4eBKiipBgLrOTLq4GC7RqVU-w4eXfoEefny_39w0dz-vbzdXd43mfVuawdAV1Z1mZkUGWy9pwRquSG-FHrhoNecEmDCGm8EOtldMdx0TneLWmm6w_AJ9nnPHFH9PkIvcu6zBexUgTllyIghfdWzN3pSynrbtioiurdJPL9Jp2IORY3J7lQ7y9dtV8HUW_H1bAiu1K-p4eEnKeUmJPKKVOzmjlUe0ckZbzeIf82v-G7Zvs63ygCcHSeYjZw3GJdBFmuj-H_AHDXHDjg
CitedBy_id crossref_primary_10_3389_fbioe_2024_1389733
crossref_primary_10_1016_j_ijbiomac_2024_133043
crossref_primary_10_1016_j_carres_2025_109409
crossref_primary_10_1021_acsanm_4c04543
crossref_primary_10_1016_j_ijbiomac_2024_136715
crossref_primary_10_1039_D4NA01079E
crossref_primary_10_1016_j_jece_2025_115714
crossref_primary_10_1016_j_partic_2024_12_012
Cites_doi 10.1002/adsc.202101048
10.1016/j.carbpol.2014.04.105
10.1016/j.carbpol.2021.118809
10.1021/nl025774n
10.1016/j.carbpol.2020.116286
10.3390/molecules25173981
10.1016/j.colsurfa.2020.125889
10.1007/BF03218650
10.1186/s13068-021-01939-5
10.1016/j.jclepro.2020.124830
10.1108/NFS-01-2019-0020
10.1016/j.seppur.2003.10.004
10.1016/j.molliq.2015.12.013
10.1021/acs.chemrev.8b00057
10.1007/s10311-022-01443-8
10.1039/D2TA08396E
10.1021/jp990387w
10.1016/j.carbpol.2018.03.029
10.1016/j.jhazmat.2021.126451
10.1021/acs.chemrev.2c00644
10.1016/j.envres.2022.113450
10.1038/s43016-022-00591-y
10.1039/C9RA06001D
10.1038/s41598-022-10237-5
10.1016/j.envres.2022.113185
10.1007/s00289-018-2574-9
10.1021/acscatal.3c00265
10.1002/cctc.201700649
10.1016/j.fuel.2020.119447
10.1002/chem.201705749
10.1039/C5TB00644A
10.1103/PhysRevLett.80.4249
10.1016/j.ijbiomac.2017.06.043
10.1021/acscatal.0c00725
10.1007/s11468-016-0305-3
10.1039/D2CY00232A
10.1016/j.carres.2009.12.010
10.3389/fenrg.2021.580808
10.1016/j.carbpol.2018.03.038
10.1039/C6CY01858K
10.1021/acs.chemrev.2c00733
10.3390/md13041819
10.1021/acssuschemeng.0c02276
10.1021/acssuschemeng.0c04298
10.1016/j.carbpol.2005.02.022
10.3390/agriculture12101511
10.1002/anie.202105931
10.1016/j.jphotochemrev.2011.02.003
10.1016/j.ijhydene.2019.12.059
10.1039/c1jm10646e
10.1016/j.carbpol.2022.120021
10.1039/D0MA00404A
10.1021/acsomega.0c03305
10.1021/acs.chemrev.2c00611
10.1016/S0140-6736(12)60685-0
10.1016/j.carbpol.2014.12.005
10.1021/cr040090g
10.1021/la5042019
10.1021/acs.macromol.1c00970
10.1016/j.apcata.2022.118943
10.1021/acs.chemrev.9b00187
10.1016/j.apcatb.2014.12.001
10.1016/j.cocis.2019.01.014
10.1002/jbm.820070604
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024. Published by Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024. Published by Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envres.2024.118204
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
EISSN 1096-0953
ExternalDocumentID 38224938
10_1016_j_envres_2024_118204
S0013935124001087
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
C45
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
L7B
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TAE
TEORI
TN5
TWZ
UPT
WH7
ZCA
ZU3
~02
~G-
~KM
.GJ
29G
3O-
53G
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABFNM
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADXHL
AEGFY
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
OHT
R2-
RIG
SEN
SSH
VOH
WUQ
XOL
XPP
ZGI
ZKB
ZMT
ZXP
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-bd171c6c2d70bf2495efd3a09f4cb345c330e24dd3dbfbf9a2c66246a3ffd6bf3
IEDL.DBID .~1
ISSN 0013-9351
1096-0953
IngestDate Wed Jul 02 03:12:28 EDT 2025
Thu Jul 10 23:05:45 EDT 2025
Mon Jul 21 05:18:27 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 05:35:20 EDT 2025
Sat Feb 01 16:04:37 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Chitosan
Hydrogel
Catalysis
Synergism
Plasmonic and reusability
Language English
License Copyright © 2024. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-bd171c6c2d70bf2495efd3a09f4cb345c330e24dd3dbfbf9a2c66246a3ffd6bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3764-9968
0000-0002-4525-1490
0000-0002-0557-3364
PMID 38224938
PQID 2915570465
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3040376282
proquest_miscellaneous_2915570465
pubmed_primary_38224938
crossref_citationtrail_10_1016_j_envres_2024_118204
crossref_primary_10_1016_j_envres_2024_118204
elsevier_sciencedirect_doi_10_1016_j_envres_2024_118204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Environmental research
PublicationTitleAlternate Environ Res
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liew (bib33) 2017; 9
Lyu (bib37) 2023
Wu (bib62) 2017; 12
Rosseler (bib50) 2015; 166
Berillo, Cundy (bib10) 2018; 192
Khan (bib28) 2020; 242
Kang (bib25) 2023; 11
Neto (bib42) 2005; 62
Barbosa (bib9) 2018; 24
Saravanan (bib53) 2021; 419
Strachan (bib57) 2020; 10
Leong (bib32) 2021; 14
Banupriya (bib8) 2022; 12
Szymańska, Winnicka (bib58) 2015; 13
Araujo (bib6) 2019; 39
Balakrishnan (bib7) 2022; 20
Pavez (bib46) 2020; 5
Abe (bib1) 2010; 11
Klar (bib29) 1998; 80
Liu (bib35) 2021; 60
Dawood (bib15) 2020; 45
Yin (bib64) 2011; 21
Ferrando (bib16) 2008; 108
Adeyeye (bib3) 2019; 49
Kumar (bib31) 2020; 57
Sdg (bib54) 2019; 7
Jiménez-Gómez, Cecilia (bib24) 2020; 25
Papageorgiou (bib44) 2010; 345
Zhao (bib69) 2022; 212
Abramov (bib2) 2022; 364
Jhon, Andrade (bib23) 1973; 7
Ristig (bib49) 2015; 3
Cavuslar (bib11) 2020; 1
Gelle (bib18) 2019; 120
Tournier (bib59) 2023; 123
Amiri (bib5) 2022; 3
Guibal (bib21) 2004; 38
Wang (bib60) 2018; 118
Giraldo (bib20) 2019; 76
Mallin, Murphy (bib39) 2002; 2
Khan (bib27) 2021; 285
Sha (bib55) 2019; 9
Zhang (bib68) 2016; 214
Cyganowski, Dzimitrowicz (bib14) 2022; 12
Link (bib34) 1999; 103
Liu, Corma (bib36) 2023; 123
Solhi (bib56) 2023; 123
Kozuch, Martin (bib30) 2012; vol. 2
Zhu (bib70) 2021; 611
Yudianti (bib65) 2009; 17
Karimi-Maleh (bib26) 2023
Zhang (bib67) 2020; 8
Sachs (bib51) 2012; 379
Ramírez (bib48) 2022; 297
Ghavam (bib19) 2021; 9
Xu (bib63) 2020; 8
Malathi (bib38) 2014; 111
Musa (bib41) 2023; 13
Murugadoss, Chattopadhyay (bib40) 2007; 19
Friedmann (bib17) 2023; 649
Chu, Su (bib13) 2014; 30
Osaki (bib43) 2021; 54
Ali (bib4) 2018; 192
Yue (bib66) 2016; 6
Poovan (bib47) 2022; 12
Saravanakumar (bib52) 2022; 212
Wang (bib61) 2015; 120
Paulraj (bib45) 2017; 104
Changmai (bib12) 2021; 286
Hu (bib22) 2022; 277
Liew (10.1016/j.envres.2024.118204_bib33) 2017; 9
Araujo (10.1016/j.envres.2024.118204_bib6) 2019; 39
Friedmann (10.1016/j.envres.2024.118204_bib17) 2023; 649
Giraldo (10.1016/j.envres.2024.118204_bib20) 2019; 76
Osaki (10.1016/j.envres.2024.118204_bib43) 2021; 54
Berillo (10.1016/j.envres.2024.118204_bib10) 2018; 192
Wu (10.1016/j.envres.2024.118204_bib62) 2017; 12
Guibal (10.1016/j.envres.2024.118204_bib21) 2004; 38
Zhu (10.1016/j.envres.2024.118204_bib70) 2021; 611
Chu (10.1016/j.envres.2024.118204_bib13) 2014; 30
Wang (10.1016/j.envres.2024.118204_bib60) 2018; 118
Cyganowski (10.1016/j.envres.2024.118204_bib14) 2022; 12
Banupriya (10.1016/j.envres.2024.118204_bib8) 2022; 12
Karimi-Maleh (10.1016/j.envres.2024.118204_bib26) 2023
Neto (10.1016/j.envres.2024.118204_bib42) 2005; 62
Musa (10.1016/j.envres.2024.118204_bib41) 2023; 13
Sha (10.1016/j.envres.2024.118204_bib55) 2019; 9
Ramírez (10.1016/j.envres.2024.118204_bib48) 2022; 297
Adeyeye (10.1016/j.envres.2024.118204_bib3) 2019; 49
Jiménez-Gómez (10.1016/j.envres.2024.118204_bib24) 2020; 25
Balakrishnan (10.1016/j.envres.2024.118204_bib7) 2022; 20
Zhang (10.1016/j.envres.2024.118204_bib68) 2016; 214
Abe (10.1016/j.envres.2024.118204_bib1) 2010; 11
Ghavam (10.1016/j.envres.2024.118204_bib19) 2021; 9
Sachs (10.1016/j.envres.2024.118204_bib51) 2012; 379
Jhon (10.1016/j.envres.2024.118204_bib23) 1973; 7
Abramov (10.1016/j.envres.2024.118204_bib2) 2022; 364
Dawood (10.1016/j.envres.2024.118204_bib15) 2020; 45
Barbosa (10.1016/j.envres.2024.118204_bib9) 2018; 24
Paulraj (10.1016/j.envres.2024.118204_bib45) 2017; 104
Wang (10.1016/j.envres.2024.118204_bib61) 2015; 120
Gelle (10.1016/j.envres.2024.118204_bib18) 2019; 120
Zhao (10.1016/j.envres.2024.118204_bib69) 2022; 212
Lyu (10.1016/j.envres.2024.118204_bib37) 2023
Rosseler (10.1016/j.envres.2024.118204_bib50) 2015; 166
Yudianti (10.1016/j.envres.2024.118204_bib65) 2009; 17
Liu (10.1016/j.envres.2024.118204_bib36) 2023; 123
Papageorgiou (10.1016/j.envres.2024.118204_bib44) 2010; 345
Xu (10.1016/j.envres.2024.118204_bib63) 2020; 8
Mallin (10.1016/j.envres.2024.118204_bib39) 2002; 2
Tournier (10.1016/j.envres.2024.118204_bib59) 2023; 123
Malathi (10.1016/j.envres.2024.118204_bib38) 2014; 111
Saravanan (10.1016/j.envres.2024.118204_bib53) 2021; 419
Khan (10.1016/j.envres.2024.118204_bib28) 2020; 242
Liu (10.1016/j.envres.2024.118204_bib35) 2021; 60
Cavuslar (10.1016/j.envres.2024.118204_bib11) 2020; 1
Kozuch (10.1016/j.envres.2024.118204_bib30) 2012; vol. 2
Pavez (10.1016/j.envres.2024.118204_bib46) 2020; 5
Ristig (10.1016/j.envres.2024.118204_bib49) 2015; 3
Poovan (10.1016/j.envres.2024.118204_bib47) 2022; 12
Hu (10.1016/j.envres.2024.118204_bib22) 2022; 277
Link (10.1016/j.envres.2024.118204_bib34) 1999; 103
Murugadoss (10.1016/j.envres.2024.118204_bib40) 2007; 19
Changmai (10.1016/j.envres.2024.118204_bib12) 2021; 286
Strachan (10.1016/j.envres.2024.118204_bib57) 2020; 10
Ali (10.1016/j.envres.2024.118204_bib4) 2018; 192
Leong (10.1016/j.envres.2024.118204_bib32) 2021; 14
Yue (10.1016/j.envres.2024.118204_bib66) 2016; 6
Ferrando (10.1016/j.envres.2024.118204_bib16) 2008; 108
Khan (10.1016/j.envres.2024.118204_bib27) 2021; 285
Solhi (10.1016/j.envres.2024.118204_bib56) 2023; 123
Amiri (10.1016/j.envres.2024.118204_bib5) 2022; 3
Kumar (10.1016/j.envres.2024.118204_bib31) 2020; 57
Klar (10.1016/j.envres.2024.118204_bib29) 1998; 80
Szymańska (10.1016/j.envres.2024.118204_bib58) 2015; 13
Sdg (10.1016/j.envres.2024.118204_bib54) 2019; 7
Yin (10.1016/j.envres.2024.118204_bib64) 2011; 21
Kang (10.1016/j.envres.2024.118204_bib25) 2023; 11
Zhang (10.1016/j.envres.2024.118204_bib67) 2020; 8
Saravanakumar (10.1016/j.envres.2024.118204_bib52) 2022; 212
References_xml – volume: vol. 2
  start-page: 2787
  year: 2012
  end-page: 2794
  ident: bib30
  publication-title: “Turning over” Definitions in Catalytic Cycles
– volume: 24
  start-page: 12330
  year: 2018
  end-page: 12339
  ident: bib9
  article-title: Reaction pathway dependence in plasmonic catalysis: hydrogenation as a model molecular transformation
  publication-title: Chem.--Eur. J.
– volume: 60
  start-page: 19324
  year: 2021
  end-page: 19330
  ident: bib35
  article-title: Integration of bimetallic electronic synergy with oxide site isolation improves the selective hydrogenation of acetylene
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 1015
  year: 2009
  end-page: 1020
  ident: bib65
  article-title: DSC analysis on water state of salvia hydrogels
  publication-title: Macromol. Res.
– volume: 120
  start-page: 53
  year: 2015
  end-page: 59
  ident: bib61
  article-title: Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent
  publication-title: Carbohydr. Polym.
– volume: 7
  start-page: 509
  year: 1973
  end-page: 522
  ident: bib23
  article-title: Water and hydrogels
  publication-title: J. Biomed. Mater. Res.
– volume: 108
  start-page: 845
  year: 2008
  end-page: 910
  ident: bib16
  article-title: Nanoalloys: from theory to applications of alloy clusters and nanoparticles
  publication-title: Chem. Rev.
– volume: 54
  start-page: 8067
  year: 2021
  end-page: 8076
  ident: bib43
  article-title: Mechanical properties with respect to water content of host–guest hydrogels
  publication-title: Macromolecules
– volume: 2
  start-page: 1235
  year: 2002
  end-page: 1237
  ident: bib39
  article-title: Solution-phase synthesis of sub-10 nm Au− Ag alloy nanoparticles
  publication-title: Nano Lett.
– volume: 212
  year: 2022
  ident: bib69
  article-title: Removal of p-Nitrophenol from simulated sewage using steel slag: capability and mechanism
  publication-title: Environ. Res.
– volume: 192
  start-page: 217
  year: 2018
  end-page: 230
  ident: bib4
  article-title: Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes
  publication-title: Carbohydr. Polym.
– volume: 30
  start-page: 15345
  year: 2014
  end-page: 15350
  ident: bib13
  article-title: Facile synthesis of AuPt alloy nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for reduction of 4-nitrophenol
  publication-title: Langmuir
– volume: 25
  start-page: 3981
  year: 2020
  ident: bib24
  article-title: Chitosan: a natural biopolymer with a wide and varied range of applications
  publication-title: Molecules
– volume: 11
  start-page: 5245
  year: 2023
  end-page: 5256
  ident: bib25
  article-title: Dramatic acceleration by visible light and mechanism of AuPd@ ZIF-8-catalyzed ammonia borane methanolysis for efficient hydrogen production
  publication-title: J. Mater. Chem. A
– volume: 103
  start-page: 3529
  year: 1999
  end-page: 3533
  ident: bib34
  article-title: Alloy formation of gold− silver nanoparticles and the dependence of the plasmon absorption on their composition
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 805
  year: 2019
  end-page: 814
  ident: bib54
  article-title: Sustainable development goals. The energy progress report
  publication-title: Tracking SDG
– volume: 649
  year: 2023
  ident: bib17
  article-title: Transient absorption spectroscopy insights into heterogeneous photocatalysis for water pollution remediation
  publication-title: Appl. Catal. Gen.
– volume: 120
  start-page: 986
  year: 2019
  end-page: 1041
  ident: bib18
  article-title: Applications of plasmon-enhanced nanocatalysis to organic transformations
  publication-title: Chem. Rev.
– volume: 39
  start-page: 110
  year: 2019
  end-page: 122
  ident: bib6
  article-title: Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 57
  year: 2020
  ident: bib31
  article-title: Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 364
  start-page: 2
  year: 2022
  end-page: 17
  ident: bib2
  article-title: Recyclable, Immobilized transition‐metal photocatalysts
  publication-title: Adv. Synth. Catal.
– volume: 166
  start-page: 381
  year: 2015
  end-page: 392
  ident: bib50
  article-title: Structural and electronic effects in bimetallic PdPt nanoparticles on TiO2 for improved photocatalytic oxidation of CO in the presence of humidity
  publication-title: Appl. Catal. B Environ.
– volume: 13
  start-page: 1819
  year: 2015
  end-page: 1846
  ident: bib58
  article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications
  publication-title: Mar. Drugs
– volume: 123
  start-page: 5612
  year: 2023
  end-page: 5701
  ident: bib59
  article-title: Enzymes' power for plastics degradation
  publication-title: Chem. Rev.
– volume: 20
  start-page: 3071
  year: 2022
  end-page: 3098
  ident: bib7
  article-title: Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: a review
  publication-title: Environ. Chem. Lett.
– year: 2023
  ident: bib26
  article-title: State-of-art Advances on Removal, Degradation and Electrochemical Monitoring of 4-aminophenol Pollutants in Real Samples: A Review
– volume: 118
  start-page: 9843
  year: 2018
  end-page: 9929
  ident: bib60
  article-title: Reusable N-heterocyclic carbene complex catalysts and beyond: a perspective on recycling strategies
  publication-title: Chem. Rev.
– volume: 49
  start-page: 1164
  year: 2019
  end-page: 1179
  ident: bib3
  article-title: Food packaging and nanotechnology: safeguarding consumer health and safety
  publication-title: Nutr. Food Sci.
– year: 2023
  ident: bib37
  article-title: The interaction of amines with gold nanoparticles
  publication-title: Adv. Mater.
– volume: 45
  start-page: 3847
  year: 2020
  end-page: 3869
  ident: bib15
  article-title: Hydrogen production for energy: an overview
  publication-title: Int. J. Hydrogen Energy
– volume: 38
  start-page: 43
  year: 2004
  end-page: 74
  ident: bib21
  article-title: Interactions of metal ions with chitosan-based sorbents: a review
  publication-title: Separ. Purif. Technol.
– volume: 6
  start-page: 8300
  year: 2016
  end-page: 8308
  ident: bib66
  article-title: Superior performance of CuInS 2 for photocatalytic water treatment: full conversion of highly stable nitrate ions into harmless N 2 under visible light
  publication-title: Catal. Sci. Technol.
– volume: 285
  year: 2021
  ident: bib27
  article-title: Chitosan coated NiAl layered double hydroxide microsphere templated zero-valent metal NPs for environmental remediation
  publication-title: J. Clean. Prod.
– volume: 19
  year: 2007
  ident: bib40
  article-title: A ‘green’chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst
  publication-title: Nanotechnology
– volume: 277
  year: 2022
  ident: bib22
  article-title: Chitosan-assisted MOFs dispersion via covalent bonding interaction toward highly efficient removal of heavy metal ions from wastewater
  publication-title: Carbohydr. Polym.
– volume: 3
  start-page: 4654
  year: 2015
  end-page: 4662
  ident: bib49
  article-title: Nanostructure of wet-chemically prepared, polymer-stabilized silver–gold nanoalloys (6 nm) over the entire composition range
  publication-title: J. Mater. Chem. B
– volume: 123
  start-page: 1925
  year: 2023
  end-page: 2015
  ident: bib56
  article-title: Understanding Nanocellulose–water interactions: Turning a Detriment into an asset
  publication-title: Chem. Rev.
– volume: 12
  start-page: 1511
  year: 2022
  ident: bib8
  article-title: Rapid, clean, and sustainable bioprocessing of toxic weeds into benign organic fertilizer
  publication-title: Agriculture
– volume: 13
  start-page: 3710
  year: 2023
  end-page: 3722
  ident: bib41
  article-title: Two Birds, one Stone: coupling hydrogen production with Herbicide degradation over metal–organic Framework-derived Titanium dioxide
  publication-title: ACS Catal.
– volume: 419
  year: 2021
  ident: bib53
  article-title: A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes
  publication-title: J. Hazard Mater.
– volume: 14
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib32
  article-title: Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues
  publication-title: Biotechnol. Biofuels
– volume: 12
  start-page: 6228
  year: 2022
  ident: bib14
  article-title: Heterogenous nanocomposite catalysts with rhenium nanostructures for the catalytic reduction of 4-nitrophenol
  publication-title: Sci. Rep.
– volume: 12
  start-page: 6623
  year: 2022
  end-page: 6649
  ident: bib47
  article-title: Synergy between homogeneous and heterogeneous catalysis
  publication-title: Catal. Sci. Technol.
– volume: 379
  start-page: 2206
  year: 2012
  end-page: 2211
  ident: bib51
  article-title: From millennium development goals to sustainable development goals
  publication-title: Lancet
– volume: 5
  start-page: 26562
  year: 2020
  end-page: 26572
  ident: bib46
  article-title: Choline [amino acid] ionic liquid/water mixtures: a triple effect for the degradation of an organophosphorus pesticide
  publication-title: ACS Omega
– volume: 111
  start-page: 734
  year: 2014
  end-page: 743
  ident: bib38
  article-title: One pot green synthesis of Ag, Au and Au–Ag alloy nanoparticles using isonicotinic acid hydrazide and starch
  publication-title: Carbohydr. Polym.
– volume: 3
  start-page: 822
  year: 2022
  end-page: 828
  ident: bib5
  article-title: Chitin and chitosan derived from crustacean waste valorization streams can support food systems and the UN Sustainable Development Goals
  publication-title: Nature food
– volume: 11
  start-page: 179
  year: 2010
  end-page: 209
  ident: bib1
  article-title: Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation
  publication-title: J. Photochem. Photobiol. C Photochem. Rev.
– volume: 9
  start-page: 29888
  year: 2019
  end-page: 29901
  ident: bib55
  article-title: Au-based bimetallic catalysts: how the synergy between two metals affects their catalytic activity
  publication-title: RSC Adv.
– volume: 297
  year: 2022
  ident: bib48
  article-title: CuAu bimetallic plasmonic-enhanced catalysts supported on alginate biohydrogels
  publication-title: Carbohydr. Polym.
– volume: 8
  start-page: 12655
  year: 2020
  end-page: 12663
  ident: bib67
  article-title: Lignin-directed control of silver nanoparticles with tunable size in porous lignocellulose hydrogels and their application in catalytic reduction
  publication-title: ACS Sustain. Chem. Eng.
– volume: 123
  start-page: 4855
  year: 2023
  end-page: 4933
  ident: bib36
  article-title: Bimetallic Sites for catalysis: from Binuclear metal Sites to bimetallic Nanoclusters and nanoparticles
  publication-title: Chem. Rev.
– volume: 242
  year: 2020
  ident: bib28
  article-title: Metal nanoparticles containing chitosan wrapped cellulose nanocomposites for catalytic hydrogen production and reduction of environmental pollutants
  publication-title: Carbohydr. Polym.
– volume: 80
  start-page: 4249
  year: 1998
  ident: bib29
  article-title: Surface-plasmon resonances in single metallic nanoparticles
  publication-title: Phys. Rev. Lett.
– volume: 611
  year: 2021
  ident: bib70
  article-title: Preparation of PdNPs doped chitosan-based composite hydrogels as highly efficient catalysts for reduction of 4-nitrophenol
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 212
  year: 2022
  ident: bib52
  article-title: Noble metal nanoparticles (Mx= Ag, Au, Pd) decorated graphitic carbon nitride nanosheets for ultrafast catalytic reduction of anthropogenic pollutant, 4-nitrophenol
  publication-title: Environ. Res.
– volume: 9
  start-page: 34
  year: 2021
  ident: bib19
  article-title: Sustainable ammonia production processes
  publication-title: Front. Energy Res.
– volume: 12
  start-page: 611
  year: 2017
  end-page: 620
  ident: bib62
  article-title: New insight into the synthesis of aromatic azo compounds assisted by surface plasmon resonance
  publication-title: Plasmonics
– volume: 192
  start-page: 166
  year: 2018
  end-page: 175
  ident: bib10
  article-title: 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction
  publication-title: Carbohydr. Polym.
– volume: 76
  start-page: 3879
  year: 2019
  end-page: 3903
  ident: bib20
  article-title: Chitosan–tripolyphosphate bead: the interactions that govern its formation
  publication-title: Polym. Bull.
– volume: 104
  start-page: 1813
  year: 2017
  end-page: 1819
  ident: bib45
  article-title: Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications
  publication-title: Int. J. Biol. Macromol.
– volume: 21
  start-page: 8997
  year: 2011
  end-page: 8999
  ident: bib64
  article-title: Nanocasting of CuAu alloy nanoparticles for methyl glycolate synthesis
  publication-title: J. Mater. Chem.
– volume: 286
  year: 2021
  ident: bib12
  article-title: A novel Citrus sinensis peel ash coated magnetic nanoparticles as an easily recoverable solid catalyst for biodiesel production
  publication-title: Fuel
– volume: 9
  start-page: 3930
  year: 2017
  end-page: 3941
  ident: bib33
  article-title: Highly active Ruthenium supported on Magnetically recyclable chitosan‐based nanocatalyst for Nitroarenes reduction
  publication-title: ChemCatChem
– volume: 8
  start-page: 12366
  year: 2020
  end-page: 12377
  ident: bib63
  article-title: Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@ Pd core–shell nanocubes
  publication-title: ACS Sustain. Chem. Eng.
– volume: 62
  start-page: 97
  year: 2005
  end-page: 103
  ident: bib42
  article-title: Thermal analysis of chitosan based networks
  publication-title: Carbohydr. Polym.
– volume: 10
  start-page: 5516
  year: 2020
  end-page: 5521
  ident: bib57
  article-title: 4-Nitrophenol reduction: probing the putative mechanism of the model reaction
  publication-title: ACS Catal.
– volume: 214
  start-page: 175
  year: 2016
  end-page: 191
  ident: bib68
  article-title: Removal of heavy metal ions using chitosan and modified chitosan: a review
  publication-title: J. Mol. Liq.
– volume: 1
  start-page: 2407
  year: 2020
  end-page: 2417
  ident: bib11
  article-title: Synthesis of stable gold nanoparticles using linear polyethyleneimines and catalysis of both anionic and cationic azo dye degradation
  publication-title: Materials Advances
– volume: 345
  start-page: 469
  year: 2010
  end-page: 473
  ident: bib44
  article-title: Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy
  publication-title: Carbohydr. Res.
– volume: 364
  start-page: 2
  year: 2022
  ident: 10.1016/j.envres.2024.118204_bib2
  article-title: Recyclable, Immobilized transition‐metal photocatalysts
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202101048
– year: 2023
  ident: 10.1016/j.envres.2024.118204_bib37
  article-title: The interaction of amines with gold nanoparticles
  publication-title: Adv. Mater.
– volume: 111
  start-page: 734
  year: 2014
  ident: 10.1016/j.envres.2024.118204_bib38
  article-title: One pot green synthesis of Ag, Au and Au–Ag alloy nanoparticles using isonicotinic acid hydrazide and starch
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.04.105
– volume: 277
  year: 2022
  ident: 10.1016/j.envres.2024.118204_bib22
  article-title: Chitosan-assisted MOFs dispersion via covalent bonding interaction toward highly efficient removal of heavy metal ions from wastewater
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118809
– volume: 2
  start-page: 1235
  year: 2002
  ident: 10.1016/j.envres.2024.118204_bib39
  article-title: Solution-phase synthesis of sub-10 nm Au− Ag alloy nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl025774n
– volume: 242
  year: 2020
  ident: 10.1016/j.envres.2024.118204_bib28
  article-title: Metal nanoparticles containing chitosan wrapped cellulose nanocomposites for catalytic hydrogen production and reduction of environmental pollutants
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116286
– volume: 25
  start-page: 3981
  year: 2020
  ident: 10.1016/j.envres.2024.118204_bib24
  article-title: Chitosan: a natural biopolymer with a wide and varied range of applications
  publication-title: Molecules
  doi: 10.3390/molecules25173981
– volume: 611
  year: 2021
  ident: 10.1016/j.envres.2024.118204_bib70
  article-title: Preparation of PdNPs doped chitosan-based composite hydrogels as highly efficient catalysts for reduction of 4-nitrophenol
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2020.125889
– volume: 17
  start-page: 1015
  year: 2009
  ident: 10.1016/j.envres.2024.118204_bib65
  article-title: DSC analysis on water state of salvia hydrogels
  publication-title: Macromol. Res.
  doi: 10.1007/BF03218650
– volume: 14
  start-page: 1
  year: 2021
  ident: 10.1016/j.envres.2024.118204_bib32
  article-title: Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-021-01939-5
– volume: 285
  year: 2021
  ident: 10.1016/j.envres.2024.118204_bib27
  article-title: Chitosan coated NiAl layered double hydroxide microsphere templated zero-valent metal NPs for environmental remediation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124830
– volume: 49
  start-page: 1164
  year: 2019
  ident: 10.1016/j.envres.2024.118204_bib3
  article-title: Food packaging and nanotechnology: safeguarding consumer health and safety
  publication-title: Nutr. Food Sci.
  doi: 10.1108/NFS-01-2019-0020
– volume: 38
  start-page: 43
  year: 2004
  ident: 10.1016/j.envres.2024.118204_bib21
  article-title: Interactions of metal ions with chitosan-based sorbents: a review
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2003.10.004
– volume: 214
  start-page: 175
  year: 2016
  ident: 10.1016/j.envres.2024.118204_bib68
  article-title: Removal of heavy metal ions using chitosan and modified chitosan: a review
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2015.12.013
– volume: vol. 2
  start-page: 2787
  year: 2012
  ident: 10.1016/j.envres.2024.118204_bib30
– volume: 118
  start-page: 9843
  year: 2018
  ident: 10.1016/j.envres.2024.118204_bib60
  article-title: Reusable N-heterocyclic carbene complex catalysts and beyond: a perspective on recycling strategies
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00057
– volume: 20
  start-page: 3071
  year: 2022
  ident: 10.1016/j.envres.2024.118204_bib7
  article-title: Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-022-01443-8
– volume: 11
  start-page: 5245
  year: 2023
  ident: 10.1016/j.envres.2024.118204_bib25
  article-title: Dramatic acceleration by visible light and mechanism of AuPd@ ZIF-8-catalyzed ammonia borane methanolysis for efficient hydrogen production
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA08396E
– volume: 103
  start-page: 3529
  year: 1999
  ident: 10.1016/j.envres.2024.118204_bib34
  article-title: Alloy formation of gold− silver nanoparticles and the dependence of the plasmon absorption on their composition
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp990387w
– volume: 192
  start-page: 217
  year: 2018
  ident: 10.1016/j.envres.2024.118204_bib4
  article-title: Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.03.029
– volume: 419
  year: 2021
  ident: 10.1016/j.envres.2024.118204_bib53
  article-title: A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.126451
– volume: 123
  start-page: 5612
  year: 2023
  ident: 10.1016/j.envres.2024.118204_bib59
  article-title: Enzymes' power for plastics degradation
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00644
– volume: 7
  start-page: 805
  year: 2019
  ident: 10.1016/j.envres.2024.118204_bib54
  article-title: Sustainable development goals. The energy progress report
  publication-title: Tracking SDG
– volume: 212
  year: 2022
  ident: 10.1016/j.envres.2024.118204_bib69
  article-title: Removal of p-Nitrophenol from simulated sewage using steel slag: capability and mechanism
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113450
– volume: 3
  start-page: 822
  year: 2022
  ident: 10.1016/j.envres.2024.118204_bib5
  article-title: Chitin and chitosan derived from crustacean waste valorization streams can support food systems and the UN Sustainable Development Goals
  publication-title: Nature food
  doi: 10.1038/s43016-022-00591-y
– volume: 9
  start-page: 29888
  year: 2019
  ident: 10.1016/j.envres.2024.118204_bib55
  article-title: Au-based bimetallic catalysts: how the synergy between two metals affects their catalytic activity
  publication-title: RSC Adv.
  doi: 10.1039/C9RA06001D
– volume: 12
  start-page: 6228
  year: 2022
  ident: 10.1016/j.envres.2024.118204_bib14
  article-title: Heterogenous nanocomposite catalysts with rhenium nanostructures for the catalytic reduction of 4-nitrophenol
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-10237-5
– volume: 212
  year: 2022
  ident: 10.1016/j.envres.2024.118204_bib52
  article-title: Noble metal nanoparticles (Mx= Ag, Au, Pd) decorated graphitic carbon nitride nanosheets for ultrafast catalytic reduction of anthropogenic pollutant, 4-nitrophenol
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113185
– volume: 76
  start-page: 3879
  year: 2019
  ident: 10.1016/j.envres.2024.118204_bib20
  article-title: Chitosan–tripolyphosphate bead: the interactions that govern its formation
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-018-2574-9
– volume: 13
  start-page: 3710
  year: 2023
  ident: 10.1016/j.envres.2024.118204_bib41
  article-title: Two Birds, one Stone: coupling hydrogen production with Herbicide degradation over metal–organic Framework-derived Titanium dioxide
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c00265
– volume: 9
  start-page: 3930
  year: 2017
  ident: 10.1016/j.envres.2024.118204_bib33
  article-title: Highly active Ruthenium supported on Magnetically recyclable chitosan‐based nanocatalyst for Nitroarenes reduction
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201700649
– volume: 286
  year: 2021
  ident: 10.1016/j.envres.2024.118204_bib12
  article-title: A novel Citrus sinensis peel ash coated magnetic nanoparticles as an easily recoverable solid catalyst for biodiesel production
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119447
– volume: 24
  start-page: 12330
  year: 2018
  ident: 10.1016/j.envres.2024.118204_bib9
  article-title: Reaction pathway dependence in plasmonic catalysis: hydrogenation as a model molecular transformation
  publication-title: Chem.--Eur. J.
  doi: 10.1002/chem.201705749
– volume: 3
  start-page: 4654
  year: 2015
  ident: 10.1016/j.envres.2024.118204_bib49
  article-title: Nanostructure of wet-chemically prepared, polymer-stabilized silver–gold nanoalloys (6 nm) over the entire composition range
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00644A
– volume: 80
  start-page: 4249
  year: 1998
  ident: 10.1016/j.envres.2024.118204_bib29
  article-title: Surface-plasmon resonances in single metallic nanoparticles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4249
– volume: 104
  start-page: 1813
  year: 2017
  ident: 10.1016/j.envres.2024.118204_bib45
  article-title: Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.06.043
– volume: 10
  start-page: 5516
  year: 2020
  ident: 10.1016/j.envres.2024.118204_bib57
  article-title: 4-Nitrophenol reduction: probing the putative mechanism of the model reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00725
– volume: 12
  start-page: 611
  year: 2017
  ident: 10.1016/j.envres.2024.118204_bib62
  article-title: New insight into the synthesis of aromatic azo compounds assisted by surface plasmon resonance
  publication-title: Plasmonics
  doi: 10.1007/s11468-016-0305-3
– volume: 12
  start-page: 6623
  year: 2022
  ident: 10.1016/j.envres.2024.118204_bib47
  article-title: Synergy between homogeneous and heterogeneous catalysis
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D2CY00232A
– volume: 345
  start-page: 469
  year: 2010
  ident: 10.1016/j.envres.2024.118204_bib44
  article-title: Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2009.12.010
– volume: 9
  start-page: 34
  year: 2021
  ident: 10.1016/j.envres.2024.118204_bib19
  article-title: Sustainable ammonia production processes
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2021.580808
– volume: 192
  start-page: 166
  year: 2018
  ident: 10.1016/j.envres.2024.118204_bib10
  article-title: 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.03.038
– volume: 6
  start-page: 8300
  year: 2016
  ident: 10.1016/j.envres.2024.118204_bib66
  article-title: Superior performance of CuInS 2 for photocatalytic water treatment: full conversion of highly stable nitrate ions into harmless N 2 under visible light
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY01858K
– volume: 123
  start-page: 4855
  year: 2023
  ident: 10.1016/j.envres.2024.118204_bib36
  article-title: Bimetallic Sites for catalysis: from Binuclear metal Sites to bimetallic Nanoclusters and nanoparticles
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00733
– volume: 19
  year: 2007
  ident: 10.1016/j.envres.2024.118204_bib40
  article-title: A ‘green’chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst
  publication-title: Nanotechnology
– volume: 13
  start-page: 1819
  year: 2015
  ident: 10.1016/j.envres.2024.118204_bib58
  article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications
  publication-title: Mar. Drugs
  doi: 10.3390/md13041819
– volume: 8
  start-page: 12366
  year: 2020
  ident: 10.1016/j.envres.2024.118204_bib63
  article-title: Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@ Pd core–shell nanocubes
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c02276
– volume: 8
  start-page: 12655
  year: 2020
  ident: 10.1016/j.envres.2024.118204_bib67
  article-title: Lignin-directed control of silver nanoparticles with tunable size in porous lignocellulose hydrogels and their application in catalytic reduction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c04298
– volume: 62
  start-page: 97
  year: 2005
  ident: 10.1016/j.envres.2024.118204_bib42
  article-title: Thermal analysis of chitosan based networks
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2005.02.022
– volume: 12
  start-page: 1511
  year: 2022
  ident: 10.1016/j.envres.2024.118204_bib8
  article-title: Rapid, clean, and sustainable bioprocessing of toxic weeds into benign organic fertilizer
  publication-title: Agriculture
  doi: 10.3390/agriculture12101511
– volume: 60
  start-page: 19324
  year: 2021
  ident: 10.1016/j.envres.2024.118204_bib35
  article-title: Integration of bimetallic electronic synergy with oxide site isolation improves the selective hydrogenation of acetylene
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105931
– year: 2023
  ident: 10.1016/j.envres.2024.118204_bib26
– volume: 11
  start-page: 179
  year: 2010
  ident: 10.1016/j.envres.2024.118204_bib1
  article-title: Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation
  publication-title: J. Photochem. Photobiol. C Photochem. Rev.
  doi: 10.1016/j.jphotochemrev.2011.02.003
– volume: 45
  start-page: 3847
  year: 2020
  ident: 10.1016/j.envres.2024.118204_bib15
  article-title: Hydrogen production for energy: an overview
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.12.059
– volume: 21
  start-page: 8997
  year: 2011
  ident: 10.1016/j.envres.2024.118204_bib64
  article-title: Nanocasting of CuAu alloy nanoparticles for methyl glycolate synthesis
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10646e
– volume: 297
  year: 2022
  ident: 10.1016/j.envres.2024.118204_bib48
  article-title: CuAu bimetallic plasmonic-enhanced catalysts supported on alginate biohydrogels
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.120021
– volume: 1
  start-page: 2407
  year: 2020
  ident: 10.1016/j.envres.2024.118204_bib11
  article-title: Synthesis of stable gold nanoparticles using linear polyethyleneimines and catalysis of both anionic and cationic azo dye degradation
  publication-title: Materials Advances
  doi: 10.1039/D0MA00404A
– volume: 5
  start-page: 26562
  year: 2020
  ident: 10.1016/j.envres.2024.118204_bib46
  article-title: Choline [amino acid] ionic liquid/water mixtures: a triple effect for the degradation of an organophosphorus pesticide
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c03305
– volume: 123
  start-page: 1925
  year: 2023
  ident: 10.1016/j.envres.2024.118204_bib56
  article-title: Understanding Nanocellulose–water interactions: Turning a Detriment into an asset
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00611
– volume: 379
  start-page: 2206
  year: 2012
  ident: 10.1016/j.envres.2024.118204_bib51
  article-title: From millennium development goals to sustainable development goals
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60685-0
– volume: 120
  start-page: 53
  year: 2015
  ident: 10.1016/j.envres.2024.118204_bib61
  article-title: Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.12.005
– volume: 108
  start-page: 845
  year: 2008
  ident: 10.1016/j.envres.2024.118204_bib16
  article-title: Nanoalloys: from theory to applications of alloy clusters and nanoparticles
  publication-title: Chem. Rev.
  doi: 10.1021/cr040090g
– volume: 30
  start-page: 15345
  year: 2014
  ident: 10.1016/j.envres.2024.118204_bib13
  article-title: Facile synthesis of AuPt alloy nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for reduction of 4-nitrophenol
  publication-title: Langmuir
  doi: 10.1021/la5042019
– volume: 54
  start-page: 8067
  year: 2021
  ident: 10.1016/j.envres.2024.118204_bib43
  article-title: Mechanical properties with respect to water content of host–guest hydrogels
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.1c00970
– volume: 649
  year: 2023
  ident: 10.1016/j.envres.2024.118204_bib17
  article-title: Transient absorption spectroscopy insights into heterogeneous photocatalysis for water pollution remediation
  publication-title: Appl. Catal. Gen.
  doi: 10.1016/j.apcata.2022.118943
– volume: 120
  start-page: 986
  year: 2019
  ident: 10.1016/j.envres.2024.118204_bib18
  article-title: Applications of plasmon-enhanced nanocatalysis to organic transformations
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00187
– volume: 57
  year: 2020
  ident: 10.1016/j.envres.2024.118204_bib31
  article-title: Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 166
  start-page: 381
  year: 2015
  ident: 10.1016/j.envres.2024.118204_bib50
  article-title: Structural and electronic effects in bimetallic PdPt nanoparticles on TiO2 for improved photocatalytic oxidation of CO in the presence of humidity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.12.001
– volume: 39
  start-page: 110
  year: 2019
  ident: 10.1016/j.envres.2024.118204_bib6
  article-title: Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2019.01.014
– volume: 7
  start-page: 509
  year: 1973
  ident: 10.1016/j.envres.2024.118204_bib23
  article-title: Water and hydrogels
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820070604
SSID ssj0011530
Score 2.4670255
Snippet The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118204
SubjectTerms absorption
adsorption
aminophenols
Catalysis
catalysts
catalytic activity
Chitosan
crosslinking
hydrazine
Hydrogel
hydrogels
irradiation
light
nanocomposites
nanoparticles
nitroaromatic compounds
p-nitrophenol
Plasmonic and reusability
Synergism
tripolyphosphates
ultraviolet-visible spectroscopy
Title Highly efficient and reusable CuAu nanoparticles supported on crosslinked chitosan hydrogels as a plasmonic catalyst for nitroarene reduction
URI https://dx.doi.org/10.1016/j.envres.2024.118204
https://www.ncbi.nlm.nih.gov/pubmed/38224938
https://www.proquest.com/docview/2915570465
https://www.proquest.com/docview/3040376282
Volume 247
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvRRKadKm3eaBCr06sSzJXh-XJWHb0pwayM3o2aak8rJeB_bSf9D_nBlL3hJoCBR8kT3CskcazWjmmyHkYwW2v3eOZS5XBgwUXmRaTnmmKyatRKXWokf362W5uBKfr-X1DpmPWBgMq0yyP8r0QVqnO2fpb54tb24Q48sQV8owCpLlU0SUC1HhLD_9vQ3zAIWH52MVA6Qe4XNDjJcLd2DUgpVYiFPUtFO5tn9sT4-pn8M2dPGKvEz6I53FIe6RHRf2ycH5X7gaPEzrtdsnL-KpHI1go9fkD4Z13G6oGxJHADVVwdKV6ztEUNF5P-tpUAEM6RQvR7t-OaQ-t7QNdBgzunyhif6HtlOB_tjYVfsdvoEquOgS1PFfmG-XDidDm25NQS-mIDlWLQLPHLzOxpS1b8jVxfm3-SJLBRkyw2u5zrRlFTOlKWyVa49Vq523XOW1F0ZzIQ3nuSuEtdxqr32tClOWhSgV996W2vMDshva4N4RWhpgsK0UZ8wLprQWU1PURWVz4byTfEL4yIfGpGzlWDTjthnD0n42kXsNcq-J3JuQbNtrGbN1PEFfjSxuHsy6BjaUJ3p-GGdEAwsSvSwquLYHIsy4X-WilI_TcBCdINnB3J2Qt3E6bcfLMa635tP3_z22Q_IcW-jzYvKI7K5XvTsG1WmtT4a1cUKezT59WVzeA3IMHQY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9swUHTpwwajbN26pfvSYK9eLUuy48cQWtK1zVMLfTP63Do6OcTxID9i_3l3tpwxaCkU_GLrhM8-3elO90XIlwJsf-8cS1yqDBgoPEu0nPBEF0xaiUqtRY_uxSKfX4lv1_J6h8yGXBgMq4yyv5fpnbSOT47i3zxa3txgji_DvFKGUZAsnRRPyC5Wp5Ijsjs9PZsvts4EYOp0aGSAE4YMui7My4XfYNeCoZiJr6hsx45td-xQ92mg3U508oLsRRWSTnssX5IdF_bJwfG_jDUYjCzb7JPn_cEc7fONXpE_GNlxu6Guqx0B0FQFS1eubTCJis7aaUuDCmBLx5A52rTLrvq5pXWgHc7o9YVbdEHUjQr0x8au6u_wDVTBRZegkf_Ckru0OxzaNGsKqjEF4bGqMffMwetsX7X2Nbk6Ob6czZPYkyExvJTrRFtWMJObzBap9ti42nnLVVp6YTQX0nCeukxYy6322pcqM3meiVxx722uPT8go1AH95bQ3ACNbaE4Y14wpbWYmKzMCpsK553kY8IHOlQmFizHvhm31RCZ9rPqqVch9aqeemOSbGct-4IdD8AXA4mr_xZeBXvKAzM_DyuiAp5ER4sKrm4BCIvuF6nI5f0wHKQnCHeweMfkTb-ctvhyDO0t-eTw0bh9Ik_nlxfn1fnp4uwdeYYj6AJj8j0ZrVet-wCa1Fp_jJzyFxdqH7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+and+reusable+CuAu+nanoparticles+supported+on+crosslinked+chitosan+hydrogels+as+a+plasmonic+catalyst+for+nitroarene+reduction&rft.jtitle=Environmental+research&rft.au=Ram%C3%ADrez%2C+Oscar&rft.au=Bonardd%2C+Sebasti%C3%A1n&rft.au=Sald%C3%ADas%2C+C%C3%A9sar&rft.au=Leiva%2C+Angel&rft.date=2024-04-15&rft.eissn=1096-0953&rft.volume=247&rft.spage=118204&rft_id=info:doi/10.1016%2Fj.envres.2024.118204&rft_id=info%3Apmid%2F38224938&rft.externalDocID=38224938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon