Adaptive Neural Dynamic Surface Control for Nonstrict-Feedback Systems With Output Dead Zone
This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown symmetric output dead zone and input saturation. A Nussbaum-type function-based dead-zone model is introduced such that the dynamic surface con...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 11; pp. 5200 - 5213 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown symmetric output dead zone and input saturation. A Nussbaum-type function-based dead-zone model is introduced such that the dynamic surface control approach can be used for controller design. The variable separation technique is employed to decompose the unknown function of entire states in each subsystem into a series of smooth functions. Radial basis function neural networks are utilized to approximate the unknown black-box functions derived from Young's inequality. With the help of auxiliary first-order filters, the dimensions of neural network input are reduced in each recursive design. A main advantage of the proposed method is that for an <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-order nonlinear system, only one adaptation parameter needs to be tuned online. It is rigorously shown that the proposed output-constrained controller guarantees that all the closed-loop signals are semiglobal uniformly ultimately bounded and the tracking error never violates the output constraint. |
---|---|
AbstractList | This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown symmetric output dead zone and input saturation. A Nussbaum-type function-based dead-zone model is introduced such that the dynamic surface control approach can be used for controller design. The variable separation technique is employed to decompose the unknown function of entire states in each subsystem into a series of smooth functions. Radial basis function neural networks are utilized to approximate the unknown black-box functions derived from Young's inequality. With the help of auxiliary first-order filters, the dimensions of neural network input are reduced in each recursive design. A main advantage of the proposed method is that for an <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-order nonlinear system, only one adaptation parameter needs to be tuned online. It is rigorously shown that the proposed output-constrained controller guarantees that all the closed-loop signals are semiglobal uniformly ultimately bounded and the tracking error never violates the output constraint. This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown symmetric output dead zone and input saturation. A Nussbaum-type function-based dead-zone model is introduced such that the dynamic surface control approach can be used for controller design. The variable separation technique is employed to decompose the unknown function of entire states in each subsystem into a series of smooth functions. Radial basis function neural networks are utilized to approximate the unknown black-box functions derived from Young's inequality. With the help of auxiliary first-order filters, the dimensions of neural network input are reduced in each recursive design. A main advantage of the proposed method is that for an n-order nonlinear system, only one adaptation parameter needs to be tuned online. It is rigorously shown that the proposed output-constrained controller guarantees that all the closed-loop signals are semiglobal uniformly ultimately bounded and the tracking error never violates the output constraint. This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown symmetric output dead zone and input saturation. A Nussbaum-type function-based dead-zone model is introduced such that the dynamic surface control approach can be used for controller design. The variable separation technique is employed to decompose the unknown function of entire states in each subsystem into a series of smooth functions. Radial basis function neural networks are utilized to approximate the unknown black-box functions derived from Young's inequality. With the help of auxiliary first-order filters, the dimensions of neural network input are reduced in each recursive design. A main advantage of the proposed method is that for an -order nonlinear system, only one adaptation parameter needs to be tuned online. It is rigorously shown that the proposed output-constrained controller guarantees that all the closed-loop signals are semiglobal uniformly ultimately bounded and the tracking error never violates the output constraint. |
Author | Shi, Peng Xu, Shengyuan Shi, Xiaocheng Lim, Cheng-Chew |
Author_xml | – sequence: 1 givenname: Xiaocheng orcidid: 0000-0003-4211-640X surname: Shi fullname: Shi, Xiaocheng email: nihaoshixiaocheng@gmail.com organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Cheng-Chew orcidid: 0000-0002-2463-9760 surname: Lim fullname: Lim, Cheng-Chew email: cheng.lim@adelaide.edu.au organization: School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia – sequence: 3 givenname: Peng orcidid: 0000-0001-8218-586X surname: Shi fullname: Shi, Peng email: Peng.Shi@adelaide.edu.au organization: School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia – sequence: 4 givenname: Shengyuan orcidid: 0000-0002-3015-0662 surname: Xu fullname: Xu, Shengyuan email: syxu@njust.edu.cn organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994516$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkE1rGzEQhkVJaD6aP9BAEPSSy7r6Wlk6Bqf5AOMcnNJSCkKrnSWb7K5cSVvwv48cOz5ElxHMMy8zzwk6GPwACH2lZEIp0d8fF4v5csIIVRM21VxL9QkdMypZwbhSB_v_9PcROovxmeQnSSmF_oyOmNZalFQeo79XtV2l9j_gBYzBdvh6Pdi-dXg5hsY6wDM_pOA73PiAF36IKbQuFTcAdWXdC16uY4I-4l9tesIPY1qNCV-DrfGfvO4XdNjYLsLZrp6inzc_Hmd3xfzh9n52NS8c12UqqqluXN0Ac7YkNbipbECCZEoKCoQSIQWRlZYNt2CFU7yspRCSMMpUVXPHT9HlNncV_L8RYjJ9Gx10nR3Aj9EwIhUXJGvK6LcP6LMfw5C3MzmO6lJLtqHYlnLBxxigMavQ9jasDSVmo9-86Tcb_WanPw9d7KLHqod6P_IuOwPnW6AFgH1bsXwQF_wVsw-KTg |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TSMC_2022_3212988 crossref_primary_10_1155_2018_9648126 crossref_primary_10_1109_TCYB_2019_2940296 crossref_primary_10_1016_j_jfranklin_2023_02_026 crossref_primary_10_1016_j_ins_2023_03_088 crossref_primary_10_1016_j_amc_2019_03_054 crossref_primary_10_1109_TNNLS_2020_2978898 crossref_primary_10_1109_TNNLS_2020_3016954 crossref_primary_10_1109_TNNLS_2022_3149894 crossref_primary_10_1007_s00521_020_05344_1 crossref_primary_10_1109_TFUZZ_2020_2982618 crossref_primary_10_1109_TCYB_2019_2904768 crossref_primary_10_1007_s11071_020_05536_3 crossref_primary_10_1002_rnc_4714 crossref_primary_10_1007_s12555_021_0971_6 crossref_primary_10_1002_rnc_6817 crossref_primary_10_1016_j_ins_2020_08_012 crossref_primary_10_1016_j_jfranklin_2020_04_042 crossref_primary_10_1002_rnc_4831 crossref_primary_10_1002_rnc_5204 crossref_primary_10_1002_asjc_2278 crossref_primary_10_1007_s11071_024_09749_8 crossref_primary_10_1109_ACCESS_2019_2892045 crossref_primary_10_1007_s12555_018_0584_x crossref_primary_10_1080_00207721_2023_2210147 crossref_primary_10_1007_s40815_021_01174_y crossref_primary_10_1002_rnc_7472 crossref_primary_10_1109_ACCESS_2023_3315245 crossref_primary_10_1109_TNNLS_2022_3210269 crossref_primary_10_1016_j_neucom_2020_09_026 crossref_primary_10_1002_rnc_5730 crossref_primary_10_1007_s11071_022_08216_6 crossref_primary_10_3390_electronics11091343 crossref_primary_10_1016_j_isatra_2019_07_013 crossref_primary_10_1016_j_neucom_2021_02_039 crossref_primary_10_1016_j_isatra_2023_07_032 crossref_primary_10_1109_TSMC_2020_2969289 crossref_primary_10_1002_asjc_3231 crossref_primary_10_1002_acs_3589 crossref_primary_10_1007_s11071_018_04754_0 crossref_primary_10_1109_TSMC_2023_3260583 crossref_primary_10_1016_j_amc_2019_124662 crossref_primary_10_1109_TFUZZ_2021_3120206 crossref_primary_10_1109_TSMC_2022_3166461 crossref_primary_10_1016_j_jfranklin_2022_11_042 crossref_primary_10_1080_00207721_2023_2268778 crossref_primary_10_1002_adts_202301140 crossref_primary_10_1002_rnc_5489 crossref_primary_10_1002_rnc_7420 crossref_primary_10_1002_asjc_2691 crossref_primary_10_1016_j_ins_2023_119998 crossref_primary_10_1177_1077546320962639 crossref_primary_10_1177_1687814019827157 crossref_primary_10_1109_TNNLS_2019_2952709 crossref_primary_10_1109_TNNLS_2020_2979174 crossref_primary_10_1109_TCYB_2021_3079129 crossref_primary_10_3934_math_20241008 crossref_primary_10_1109_TAC_2020_3006283 crossref_primary_10_1007_s40815_021_01112_y crossref_primary_10_1002_acs_3112 crossref_primary_10_1016_j_jfranklin_2020_02_034 crossref_primary_10_1109_TFUZZ_2020_2993696 crossref_primary_10_1109_TCSI_2021_3098830 crossref_primary_10_1016_j_neucom_2019_06_014 crossref_primary_10_1109_JAS_2020_1003605 crossref_primary_10_1016_j_neucom_2020_04_104 crossref_primary_10_3233_JIFS_238024 crossref_primary_10_1016_j_amc_2022_127318 crossref_primary_10_1080_00207721_2020_1808733 |
Cites_doi | 10.1109/TFUZZ.2004.840096 10.1016/j.automatica.2015.10.034 10.1016/j.neucom.2015.01.048 10.1109/TCYB.2014.2334695 10.1109/TNNLS.2014.2360933 10.1109/TFUZZ.2014.2310491 10.1142/S0218127402004930 10.1109/TNNLS.2015.2420661 10.1016/j.automatica.2014.11.013 10.1109/TSMCB.2008.918568 10.1016/j.asoc.2009.11.015 10.1109/TSMCA.2009.2030164 10.1109/TNN.2004.839354 10.1109/TNNLS.2013.2238554 10.1109/TNNLS.2014.2330336 10.1016/j.automatica.2006.12.014 10.1109/TCYB.2013.2263131 10.1109/TNNLS.2014.2357451 10.1016/j.automatica.2007.11.025 10.1016/j.automatica.2011.01.025 10.1109/TCYB.2013.2240296 10.1109/TIE.2015.2418317 10.1109/TFUZZ.2012.2190048 10.1007/s00521-015-1938-4 10.1016/j.fss.2012.11.002 10.1016/j.neucom.2015.08.003 10.1109/TSMCB.2012.2196432 10.1109/TFUZZ.2014.2327987 10.1109/TNNLS.2015.2508926 10.1109/9.895588 10.1109/TFUZZ.2012.2204065 10.1109/TFUZZ.2014.2375917 10.1109/TFUZZ.2014.2312026 10.1109/TFUZZ.2012.2213259 10.1109/TFUZZ.2015.2396075 10.1109/TNNLS.2015.2412035 10.1109/TCYB.2015.2405616 10.1109/87.317980 10.1016/j.automatica.2009.11.010 10.1016/j.ins.2015.08.035 10.1109/TNNLS.2015.2412121 10.1109/TCST.2006.872507 10.1016/j.automatica.2017.03.033 10.1109/TFUZZ.2013.2264939 10.1016/j.automatica.2015.07.022 10.1007/s12555-012-0403-8 10.1109/TAC.2000.880994 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2018.2793968 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 5213 |
ExternalDocumentID | 10_1109_TNNLS_2018_2793968 29994516 8283534 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61773131; U1509217 funderid: 10.13039/501100001809 – fundername: 111 Project grantid: B17048; B17017 – fundername: Australian Research Council grantid: DP170102644 funderid: 10.13039/501100000923 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RIG RNS NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c395t-b79fcdfe2ca50dec76fe6e628641e01046406b96f3aea4c835d644602128bd3c3 |
IEDL.DBID | RIE |
ISSN | 2162-237X |
IngestDate | Thu Jul 25 08:10:21 EDT 2024 Thu Oct 10 17:47:55 EDT 2024 Fri Aug 23 00:57:09 EDT 2024 Sat Sep 28 08:32:49 EDT 2024 Wed Jun 26 19:31:36 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-b79fcdfe2ca50dec76fe6e628641e01046406b96f3aea4c835d644602128bd3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2463-9760 0000-0001-8218-586X 0000-0003-4211-640X 0000-0002-3015-0662 |
OpenAccessLink | https://digital.library.adelaide.edu.au/dspace/bitstream/2440/114200/2/hdl_114200.pdf |
PMID | 29994516 |
PQID | 2121959623 |
PQPubID | 85436 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2121959623 ieee_primary_8283534 pubmed_primary_29994516 proquest_miscellaneous_2068340793 crossref_primary_10_1109_TNNLS_2018_2793968 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref47 ref42 ref41 ref44 wu (ref48) 2018; 14 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 fu (ref49) 2017; 13 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref25 ref20 ref22 ref21 yoo (ref26) 2013; 24 ref28 ref27 ref29 liu (ref37) 2015; 26 |
References_xml | – ident: ref2 doi: 10.1109/TFUZZ.2004.840096 – ident: ref47 doi: 10.1016/j.automatica.2015.10.034 – ident: ref31 doi: 10.1016/j.neucom.2015.01.048 – ident: ref27 doi: 10.1109/TCYB.2014.2334695 – ident: ref39 doi: 10.1109/TNNLS.2014.2360933 – ident: ref17 doi: 10.1109/TFUZZ.2014.2310491 – ident: ref44 doi: 10.1142/S0218127402004930 – volume: 26 start-page: 1789 year: 2015 ident: ref37 article-title: Adaptive neural output feedback control of output-constrained nonlinear systems with unknown output nonlinearity publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2420661 contributor: fullname: liu – ident: ref34 doi: 10.1016/j.automatica.2014.11.013 – ident: ref42 doi: 10.1109/TSMCB.2008.918568 – ident: ref1 doi: 10.1016/j.asoc.2009.11.015 – ident: ref15 doi: 10.1109/TSMCA.2009.2030164 – ident: ref24 doi: 10.1109/TNN.2004.839354 – volume: 24 start-page: 666 year: 2013 ident: ref26 article-title: Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed graph publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2238554 contributor: fullname: yoo – ident: ref12 doi: 10.1109/TNNLS.2014.2330336 – ident: ref30 doi: 10.1016/j.automatica.2006.12.014 – ident: ref22 doi: 10.1109/TCYB.2013.2263131 – ident: ref9 doi: 10.1109/TNNLS.2014.2357451 – ident: ref25 doi: 10.1016/j.automatica.2007.11.025 – ident: ref40 doi: 10.1016/j.automatica.2011.01.025 – ident: ref43 doi: 10.1109/TCYB.2013.2240296 – ident: ref11 doi: 10.1109/TIE.2015.2418317 – ident: ref19 doi: 10.1109/TFUZZ.2012.2190048 – ident: ref5 doi: 10.1007/s00521-015-1938-4 – ident: ref14 doi: 10.1016/j.fss.2012.11.002 – ident: ref4 doi: 10.1016/j.neucom.2015.08.003 – ident: ref7 doi: 10.1109/TSMCB.2012.2196432 – ident: ref29 doi: 10.1109/TFUZZ.2014.2327987 – ident: ref18 doi: 10.1109/TNNLS.2015.2508926 – volume: 13 start-page: 471 year: 2017 ident: ref49 article-title: A novel online black-box identification method for unknown nonlinear system via differential neural network publication-title: Int J Innov Comput Inf Control contributor: fullname: fu – ident: ref38 doi: 10.1109/9.895588 – ident: ref13 doi: 10.1109/TFUZZ.2012.2204065 – ident: ref3 doi: 10.1109/TFUZZ.2014.2375917 – ident: ref6 doi: 10.1109/TFUZZ.2014.2312026 – ident: ref10 doi: 10.1109/TFUZZ.2012.2213259 – ident: ref36 doi: 10.1109/TFUZZ.2015.2396075 – ident: ref20 doi: 10.1109/TNNLS.2015.2412035 – ident: ref8 doi: 10.1109/TCYB.2015.2405616 – ident: ref45 doi: 10.1109/87.317980 – volume: 14 start-page: 33 year: 2018 ident: ref48 article-title: Anti-saturation dynamic surface control for spacecraft terminal safe approach based on command filter publication-title: Int J Innov Comput Inf Control contributor: fullname: wu – ident: ref33 doi: 10.1016/j.automatica.2009.11.010 – ident: ref16 doi: 10.1016/j.ins.2015.08.035 – ident: ref21 doi: 10.1109/TNNLS.2015.2412121 – ident: ref41 doi: 10.1109/TCST.2006.872507 – ident: ref46 doi: 10.1016/j.automatica.2017.03.033 – ident: ref32 doi: 10.1109/TFUZZ.2013.2264939 – ident: ref35 doi: 10.1016/j.automatica.2015.07.022 – ident: ref28 doi: 10.1007/s12555-012-0403-8 – ident: ref23 doi: 10.1109/TAC.2000.880994 |
SSID | ssj0000605649 |
Score | 2.5798366 |
Snippet | This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5200 |
SubjectTerms | Adaptation models Adaptive control Adaptive output-constrained control Adaptive systems Artificial neural networks Backstepping Basis functions Control systems Control systems design dynamic surface control (DSC) Feedback Neural networks neural networks (NNs) Nonlinear systems nonstrict-feedback nonlinear systems output dead zone Radial basis function Recursive methods Tracking control |
Title | Adaptive Neural Dynamic Surface Control for Nonstrict-Feedback Systems With Output Dead Zone |
URI | https://ieeexplore.ieee.org/document/8283534 https://www.ncbi.nlm.nih.gov/pubmed/29994516 https://www.proquest.com/docview/2121959623 https://search.proquest.com/docview/2068340793 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp15KW1pISytX6o16ySZeOz4i6ApVZTkA6qpCihxnLBDSLoLkwq_vjPOhqipSb5HiOLZn7Hm2Z94AfAmBQOpMGWlSP5MKfS5pH1LIAk1qg85ciFFpZwt9eqW-L2fLDfg6xsIgYnQ-wwk_xrv8eu1bPio7LJgcLFebsGms7WK1xvOUlHC5jmg3m-pMZrlZDjEyqT28XCx-XLAjVzHJSCMtM6v-YYdiYpXnMWa0NfNtOBta2bmY3E3appr4p78IHP-3G6_gZQ86xVGnJa9hA1dvYHtI6CD6-b0D10e1u-f1TzBnB31x0uWrFxftQ3AexXHn2C4I6YoFI0taRRs5JwtYOX8nevpz8fO2uRHnbUPVixNSIvFrvcK3cDX_dnl8Kvv0C9LndtbIytjg64AZZ02o0RsdUCOHsqop8jZOExiorA65Q6c89akmcKWZM76o6tzn72BrRdXvgfC1NdYwFCMEFKbKqVBVKkNHAsmmKiRwMAijvO9YNsq4O0ltGUVXsujKXnQJ7PCgjiX78Uxgf5Bf2U_Ex5Iaw_Q5BPIS-Dy-pinE9yJuheuWyqS6yBUzBSaw28l9rJusteVcxu___c8P8IJb1gUn7sNW89DiR0IpTfUpqudvNc_iLA |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoALLRRKaAEjcYNss4njxMeqZbXAbjh0K1YIKXKcsUCVdquSXPj1zDgfqlCRuEWK49iesefZnnkD8NY5AqmpzMIssmko0SYh7UPyMMcs0k7FxvmotGWh5pfy0zpd78D7MRYGEb3zGU740d_l11vb8lHZSc7kYIm8B_dTxhVdtNZ4ohIRMlce78ZTFYdxkq2HKJlIn6yKYnHBrlz5JCad1MytessS-dQq_0aZ3trM9mA5tLNzMrmatE01sb__onD8347sw6MedorTTk8eww5unsDekNJB9DP8AL6f1uaaV0DBrB30xXmXsV5ctDfOWBRnnWu7IKwrCsaWtI424YxsYGXslegJ0MXXn80P8aVtqHpxTmokvm03-BQuZx9WZ_OwT8AQ2kSnTVhl2tnaYcx5E2q0mXKokINZ5RR5I6cIDlRaucSgkZb6VBO8Uswan1d1YpNnsLuh6p-DsLXOdMZgjDCQm0ojXVXJGA0JJJ5KF8C7QRjldcezUfr9SaRLL7qSRVf2ogvggAd1LNmPZwDHg_zKfir-KqkxTKBDMC-AN-NrmkR8M2I2uG2pTKTyRDJXYACHndzHuslea85m_OLuf76GB_PVclEuPhafj-Aht7ILVTyG3eamxZeEWZrqlVfVPzTd5Xk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Dynamic+Surface+Control+for+Nonstrict-Feedback+Systems+With+Output+Dead+Zone&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Shi%2C+Xiaocheng&rft.au=Cheng-Chew%2C+Lim&rft.au=Shi%2C+Peng&rft.au=Xu%2C+Shengyuan&rft.date=2018-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=11&rft.spage=5200&rft_id=info:doi/10.1109%2FTNNLS.2018.2793968&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |