Adaptive Neural Dynamic Surface Control for Nonstrict-Feedback Systems With Output Dead Zone

This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown symmetric output dead zone and input saturation. A Nussbaum-type function-based dead-zone model is introduced such that the dynamic surface con...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 11; pp. 5200 - 5213
Main Authors Shi, Xiaocheng, Lim, Cheng-Chew, Shi, Peng, Xu, Shengyuan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown symmetric output dead zone and input saturation. A Nussbaum-type function-based dead-zone model is introduced such that the dynamic surface control approach can be used for controller design. The variable separation technique is employed to decompose the unknown function of entire states in each subsystem into a series of smooth functions. Radial basis function neural networks are utilized to approximate the unknown black-box functions derived from Young's inequality. With the help of auxiliary first-order filters, the dimensions of neural network input are reduced in each recursive design. A main advantage of the proposed method is that for an <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-order nonlinear system, only one adaptation parameter needs to be tuned online. It is rigorously shown that the proposed output-constrained controller guarantees that all the closed-loop signals are semiglobal uniformly ultimately bounded and the tracking error never violates the output constraint.
AbstractList This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown symmetric output dead zone and input saturation. A Nussbaum-type function-based dead-zone model is introduced such that the dynamic surface control approach can be used for controller design. The variable separation technique is employed to decompose the unknown function of entire states in each subsystem into a series of smooth functions. Radial basis function neural networks are utilized to approximate the unknown black-box functions derived from Young's inequality. With the help of auxiliary first-order filters, the dimensions of neural network input are reduced in each recursive design. A main advantage of the proposed method is that for an <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-order nonlinear system, only one adaptation parameter needs to be tuned online. It is rigorously shown that the proposed output-constrained controller guarantees that all the closed-loop signals are semiglobal uniformly ultimately bounded and the tracking error never violates the output constraint.
This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown symmetric output dead zone and input saturation. A Nussbaum-type function-based dead-zone model is introduced such that the dynamic surface control approach can be used for controller design. The variable separation technique is employed to decompose the unknown function of entire states in each subsystem into a series of smooth functions. Radial basis function neural networks are utilized to approximate the unknown black-box functions derived from Young's inequality. With the help of auxiliary first-order filters, the dimensions of neural network input are reduced in each recursive design. A main advantage of the proposed method is that for an n-order nonlinear system, only one adaptation parameter needs to be tuned online. It is rigorously shown that the proposed output-constrained controller guarantees that all the closed-loop signals are semiglobal uniformly ultimately bounded and the tracking error never violates the output constraint.
This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown symmetric output dead zone and input saturation. A Nussbaum-type function-based dead-zone model is introduced such that the dynamic surface control approach can be used for controller design. The variable separation technique is employed to decompose the unknown function of entire states in each subsystem into a series of smooth functions. Radial basis function neural networks are utilized to approximate the unknown black-box functions derived from Young's inequality. With the help of auxiliary first-order filters, the dimensions of neural network input are reduced in each recursive design. A main advantage of the proposed method is that for an -order nonlinear system, only one adaptation parameter needs to be tuned online. It is rigorously shown that the proposed output-constrained controller guarantees that all the closed-loop signals are semiglobal uniformly ultimately bounded and the tracking error never violates the output constraint.
Author Shi, Peng
Xu, Shengyuan
Shi, Xiaocheng
Lim, Cheng-Chew
Author_xml – sequence: 1
  givenname: Xiaocheng
  orcidid: 0000-0003-4211-640X
  surname: Shi
  fullname: Shi, Xiaocheng
  email: nihaoshixiaocheng@gmail.com
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Cheng-Chew
  orcidid: 0000-0002-2463-9760
  surname: Lim
  fullname: Lim, Cheng-Chew
  email: cheng.lim@adelaide.edu.au
  organization: School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
– sequence: 3
  givenname: Peng
  orcidid: 0000-0001-8218-586X
  surname: Shi
  fullname: Shi, Peng
  email: Peng.Shi@adelaide.edu.au
  organization: School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
– sequence: 4
  givenname: Shengyuan
  orcidid: 0000-0002-3015-0662
  surname: Xu
  fullname: Xu, Shengyuan
  email: syxu@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994516$$D View this record in MEDLINE/PubMed
BookMark eNpdkE1rGzEQhkVJaD6aP9BAEPSSy7r6Wlk6Bqf5AOMcnNJSCkKrnSWb7K5cSVvwv48cOz5ElxHMMy8zzwk6GPwACH2lZEIp0d8fF4v5csIIVRM21VxL9QkdMypZwbhSB_v_9PcROovxmeQnSSmF_oyOmNZalFQeo79XtV2l9j_gBYzBdvh6Pdi-dXg5hsY6wDM_pOA73PiAF36IKbQuFTcAdWXdC16uY4I-4l9tesIPY1qNCV-DrfGfvO4XdNjYLsLZrp6inzc_Hmd3xfzh9n52NS8c12UqqqluXN0Ac7YkNbipbECCZEoKCoQSIQWRlZYNt2CFU7yspRCSMMpUVXPHT9HlNncV_L8RYjJ9Gx10nR3Aj9EwIhUXJGvK6LcP6LMfw5C3MzmO6lJLtqHYlnLBxxigMavQ9jasDSVmo9-86Tcb_WanPw9d7KLHqod6P_IuOwPnW6AFgH1bsXwQF_wVsw-KTg
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TSMC_2022_3212988
crossref_primary_10_1155_2018_9648126
crossref_primary_10_1109_TCYB_2019_2940296
crossref_primary_10_1016_j_jfranklin_2023_02_026
crossref_primary_10_1016_j_ins_2023_03_088
crossref_primary_10_1016_j_amc_2019_03_054
crossref_primary_10_1109_TNNLS_2020_2978898
crossref_primary_10_1109_TNNLS_2020_3016954
crossref_primary_10_1109_TNNLS_2022_3149894
crossref_primary_10_1007_s00521_020_05344_1
crossref_primary_10_1109_TFUZZ_2020_2982618
crossref_primary_10_1109_TCYB_2019_2904768
crossref_primary_10_1007_s11071_020_05536_3
crossref_primary_10_1002_rnc_4714
crossref_primary_10_1007_s12555_021_0971_6
crossref_primary_10_1002_rnc_6817
crossref_primary_10_1016_j_ins_2020_08_012
crossref_primary_10_1016_j_jfranklin_2020_04_042
crossref_primary_10_1002_rnc_4831
crossref_primary_10_1002_rnc_5204
crossref_primary_10_1002_asjc_2278
crossref_primary_10_1007_s11071_024_09749_8
crossref_primary_10_1109_ACCESS_2019_2892045
crossref_primary_10_1007_s12555_018_0584_x
crossref_primary_10_1080_00207721_2023_2210147
crossref_primary_10_1007_s40815_021_01174_y
crossref_primary_10_1002_rnc_7472
crossref_primary_10_1109_ACCESS_2023_3315245
crossref_primary_10_1109_TNNLS_2022_3210269
crossref_primary_10_1016_j_neucom_2020_09_026
crossref_primary_10_1002_rnc_5730
crossref_primary_10_1007_s11071_022_08216_6
crossref_primary_10_3390_electronics11091343
crossref_primary_10_1016_j_isatra_2019_07_013
crossref_primary_10_1016_j_neucom_2021_02_039
crossref_primary_10_1016_j_isatra_2023_07_032
crossref_primary_10_1109_TSMC_2020_2969289
crossref_primary_10_1002_asjc_3231
crossref_primary_10_1002_acs_3589
crossref_primary_10_1007_s11071_018_04754_0
crossref_primary_10_1109_TSMC_2023_3260583
crossref_primary_10_1016_j_amc_2019_124662
crossref_primary_10_1109_TFUZZ_2021_3120206
crossref_primary_10_1109_TSMC_2022_3166461
crossref_primary_10_1016_j_jfranklin_2022_11_042
crossref_primary_10_1080_00207721_2023_2268778
crossref_primary_10_1002_adts_202301140
crossref_primary_10_1002_rnc_5489
crossref_primary_10_1002_rnc_7420
crossref_primary_10_1002_asjc_2691
crossref_primary_10_1016_j_ins_2023_119998
crossref_primary_10_1177_1077546320962639
crossref_primary_10_1177_1687814019827157
crossref_primary_10_1109_TNNLS_2019_2952709
crossref_primary_10_1109_TNNLS_2020_2979174
crossref_primary_10_1109_TCYB_2021_3079129
crossref_primary_10_3934_math_20241008
crossref_primary_10_1109_TAC_2020_3006283
crossref_primary_10_1007_s40815_021_01112_y
crossref_primary_10_1002_acs_3112
crossref_primary_10_1016_j_jfranklin_2020_02_034
crossref_primary_10_1109_TFUZZ_2020_2993696
crossref_primary_10_1109_TCSI_2021_3098830
crossref_primary_10_1016_j_neucom_2019_06_014
crossref_primary_10_1109_JAS_2020_1003605
crossref_primary_10_1016_j_neucom_2020_04_104
crossref_primary_10_3233_JIFS_238024
crossref_primary_10_1016_j_amc_2022_127318
crossref_primary_10_1080_00207721_2020_1808733
Cites_doi 10.1109/TFUZZ.2004.840096
10.1016/j.automatica.2015.10.034
10.1016/j.neucom.2015.01.048
10.1109/TCYB.2014.2334695
10.1109/TNNLS.2014.2360933
10.1109/TFUZZ.2014.2310491
10.1142/S0218127402004930
10.1109/TNNLS.2015.2420661
10.1016/j.automatica.2014.11.013
10.1109/TSMCB.2008.918568
10.1016/j.asoc.2009.11.015
10.1109/TSMCA.2009.2030164
10.1109/TNN.2004.839354
10.1109/TNNLS.2013.2238554
10.1109/TNNLS.2014.2330336
10.1016/j.automatica.2006.12.014
10.1109/TCYB.2013.2263131
10.1109/TNNLS.2014.2357451
10.1016/j.automatica.2007.11.025
10.1016/j.automatica.2011.01.025
10.1109/TCYB.2013.2240296
10.1109/TIE.2015.2418317
10.1109/TFUZZ.2012.2190048
10.1007/s00521-015-1938-4
10.1016/j.fss.2012.11.002
10.1016/j.neucom.2015.08.003
10.1109/TSMCB.2012.2196432
10.1109/TFUZZ.2014.2327987
10.1109/TNNLS.2015.2508926
10.1109/9.895588
10.1109/TFUZZ.2012.2204065
10.1109/TFUZZ.2014.2375917
10.1109/TFUZZ.2014.2312026
10.1109/TFUZZ.2012.2213259
10.1109/TFUZZ.2015.2396075
10.1109/TNNLS.2015.2412035
10.1109/TCYB.2015.2405616
10.1109/87.317980
10.1016/j.automatica.2009.11.010
10.1016/j.ins.2015.08.035
10.1109/TNNLS.2015.2412121
10.1109/TCST.2006.872507
10.1016/j.automatica.2017.03.033
10.1109/TFUZZ.2013.2264939
10.1016/j.automatica.2015.07.022
10.1007/s12555-012-0403-8
10.1109/TAC.2000.880994
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2793968
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 5213
ExternalDocumentID 10_1109_TNNLS_2018_2793968
29994516
8283534
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61773131; U1509217
  funderid: 10.13039/501100001809
– fundername: 111 Project
  grantid: B17048; B17017
– fundername: Australian Research Council
  grantid: DP170102644
  funderid: 10.13039/501100000923
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RIG
RNS
NPM
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c395t-b79fcdfe2ca50dec76fe6e628641e01046406b96f3aea4c835d644602128bd3c3
IEDL.DBID RIE
ISSN 2162-237X
IngestDate Thu Jul 25 08:10:21 EDT 2024
Thu Oct 10 17:47:55 EDT 2024
Fri Aug 23 00:57:09 EDT 2024
Sat Sep 28 08:32:49 EDT 2024
Wed Jun 26 19:31:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-b79fcdfe2ca50dec76fe6e628641e01046406b96f3aea4c835d644602128bd3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2463-9760
0000-0001-8218-586X
0000-0003-4211-640X
0000-0002-3015-0662
OpenAccessLink https://digital.library.adelaide.edu.au/dspace/bitstream/2440/114200/2/hdl_114200.pdf
PMID 29994516
PQID 2121959623
PQPubID 85436
PageCount 14
ParticipantIDs proquest_journals_2121959623
ieee_primary_8283534
pubmed_primary_29994516
proquest_miscellaneous_2068340793
crossref_primary_10_1109_TNNLS_2018_2793968
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref47
ref42
ref41
ref44
wu (ref48) 2018; 14
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
fu (ref49) 2017; 13
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
yoo (ref26) 2013; 24
ref28
ref27
ref29
liu (ref37) 2015; 26
References_xml – ident: ref2
  doi: 10.1109/TFUZZ.2004.840096
– ident: ref47
  doi: 10.1016/j.automatica.2015.10.034
– ident: ref31
  doi: 10.1016/j.neucom.2015.01.048
– ident: ref27
  doi: 10.1109/TCYB.2014.2334695
– ident: ref39
  doi: 10.1109/TNNLS.2014.2360933
– ident: ref17
  doi: 10.1109/TFUZZ.2014.2310491
– ident: ref44
  doi: 10.1142/S0218127402004930
– volume: 26
  start-page: 1789
  year: 2015
  ident: ref37
  article-title: Adaptive neural output feedback control of output-constrained nonlinear systems with unknown output nonlinearity
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2420661
  contributor:
    fullname: liu
– ident: ref34
  doi: 10.1016/j.automatica.2014.11.013
– ident: ref42
  doi: 10.1109/TSMCB.2008.918568
– ident: ref1
  doi: 10.1016/j.asoc.2009.11.015
– ident: ref15
  doi: 10.1109/TSMCA.2009.2030164
– ident: ref24
  doi: 10.1109/TNN.2004.839354
– volume: 24
  start-page: 666
  year: 2013
  ident: ref26
  article-title: Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed graph
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2238554
  contributor:
    fullname: yoo
– ident: ref12
  doi: 10.1109/TNNLS.2014.2330336
– ident: ref30
  doi: 10.1016/j.automatica.2006.12.014
– ident: ref22
  doi: 10.1109/TCYB.2013.2263131
– ident: ref9
  doi: 10.1109/TNNLS.2014.2357451
– ident: ref25
  doi: 10.1016/j.automatica.2007.11.025
– ident: ref40
  doi: 10.1016/j.automatica.2011.01.025
– ident: ref43
  doi: 10.1109/TCYB.2013.2240296
– ident: ref11
  doi: 10.1109/TIE.2015.2418317
– ident: ref19
  doi: 10.1109/TFUZZ.2012.2190048
– ident: ref5
  doi: 10.1007/s00521-015-1938-4
– ident: ref14
  doi: 10.1016/j.fss.2012.11.002
– ident: ref4
  doi: 10.1016/j.neucom.2015.08.003
– ident: ref7
  doi: 10.1109/TSMCB.2012.2196432
– ident: ref29
  doi: 10.1109/TFUZZ.2014.2327987
– ident: ref18
  doi: 10.1109/TNNLS.2015.2508926
– volume: 13
  start-page: 471
  year: 2017
  ident: ref49
  article-title: A novel online black-box identification method for unknown nonlinear system via differential neural network
  publication-title: Int J Innov Comput Inf Control
  contributor:
    fullname: fu
– ident: ref38
  doi: 10.1109/9.895588
– ident: ref13
  doi: 10.1109/TFUZZ.2012.2204065
– ident: ref3
  doi: 10.1109/TFUZZ.2014.2375917
– ident: ref6
  doi: 10.1109/TFUZZ.2014.2312026
– ident: ref10
  doi: 10.1109/TFUZZ.2012.2213259
– ident: ref36
  doi: 10.1109/TFUZZ.2015.2396075
– ident: ref20
  doi: 10.1109/TNNLS.2015.2412035
– ident: ref8
  doi: 10.1109/TCYB.2015.2405616
– ident: ref45
  doi: 10.1109/87.317980
– volume: 14
  start-page: 33
  year: 2018
  ident: ref48
  article-title: Anti-saturation dynamic surface control for spacecraft terminal safe approach based on command filter
  publication-title: Int J Innov Comput Inf Control
  contributor:
    fullname: wu
– ident: ref33
  doi: 10.1016/j.automatica.2009.11.010
– ident: ref16
  doi: 10.1016/j.ins.2015.08.035
– ident: ref21
  doi: 10.1109/TNNLS.2015.2412121
– ident: ref41
  doi: 10.1109/TCST.2006.872507
– ident: ref46
  doi: 10.1016/j.automatica.2017.03.033
– ident: ref32
  doi: 10.1109/TFUZZ.2013.2264939
– ident: ref35
  doi: 10.1016/j.automatica.2015.07.022
– ident: ref28
  doi: 10.1007/s12555-012-0403-8
– ident: ref23
  doi: 10.1109/TAC.2000.880994
SSID ssj0000605649
Score 2.5798366
Snippet This paper focuses on the problem of adaptive output-constrained neural tracking control for uncertain nonstrict-feedback systems in the presence of unknown...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5200
SubjectTerms Adaptation models
Adaptive control
Adaptive output-constrained control
Adaptive systems
Artificial neural networks
Backstepping
Basis functions
Control systems
Control systems design
dynamic surface control (DSC)
Feedback
Neural networks
neural networks (NNs)
Nonlinear systems
nonstrict-feedback nonlinear systems
output dead zone
Radial basis function
Recursive methods
Tracking control
Title Adaptive Neural Dynamic Surface Control for Nonstrict-Feedback Systems With Output Dead Zone
URI https://ieeexplore.ieee.org/document/8283534
https://www.ncbi.nlm.nih.gov/pubmed/29994516
https://www.proquest.com/docview/2121959623
https://search.proquest.com/docview/2068340793
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp15KW1pISytX6o16ySZeOz4i6ApVZTkA6qpCihxnLBDSLoLkwq_vjPOhqipSb5HiOLZn7Hm2Z94AfAmBQOpMGWlSP5MKfS5pH1LIAk1qg85ciFFpZwt9eqW-L2fLDfg6xsIgYnQ-wwk_xrv8eu1bPio7LJgcLFebsGms7WK1xvOUlHC5jmg3m-pMZrlZDjEyqT28XCx-XLAjVzHJSCMtM6v-YYdiYpXnMWa0NfNtOBta2bmY3E3appr4p78IHP-3G6_gZQ86xVGnJa9hA1dvYHtI6CD6-b0D10e1u-f1TzBnB31x0uWrFxftQ3AexXHn2C4I6YoFI0taRRs5JwtYOX8nevpz8fO2uRHnbUPVixNSIvFrvcK3cDX_dnl8Kvv0C9LndtbIytjg64AZZ02o0RsdUCOHsqop8jZOExiorA65Q6c89akmcKWZM76o6tzn72BrRdXvgfC1NdYwFCMEFKbKqVBVKkNHAsmmKiRwMAijvO9YNsq4O0ltGUVXsujKXnQJ7PCgjiX78Uxgf5Bf2U_Ex5Iaw_Q5BPIS-Dy-pinE9yJuheuWyqS6yBUzBSaw28l9rJusteVcxu___c8P8IJb1gUn7sNW89DiR0IpTfUpqudvNc_iLA
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoALLRRKaAEjcYNss4njxMeqZbXAbjh0K1YIKXKcsUCVdquSXPj1zDgfqlCRuEWK49iesefZnnkD8NY5AqmpzMIssmko0SYh7UPyMMcs0k7FxvmotGWh5pfy0zpd78D7MRYGEb3zGU740d_l11vb8lHZSc7kYIm8B_dTxhVdtNZ4ohIRMlce78ZTFYdxkq2HKJlIn6yKYnHBrlz5JCad1MytessS-dQq_0aZ3trM9mA5tLNzMrmatE01sb__onD8347sw6MedorTTk8eww5unsDekNJB9DP8AL6f1uaaV0DBrB30xXmXsV5ctDfOWBRnnWu7IKwrCsaWtI424YxsYGXslegJ0MXXn80P8aVtqHpxTmokvm03-BQuZx9WZ_OwT8AQ2kSnTVhl2tnaYcx5E2q0mXKokINZ5RR5I6cIDlRaucSgkZb6VBO8Uswan1d1YpNnsLuh6p-DsLXOdMZgjDCQm0ojXVXJGA0JJJ5KF8C7QRjldcezUfr9SaRLL7qSRVf2ogvggAd1LNmPZwDHg_zKfir-KqkxTKBDMC-AN-NrmkR8M2I2uG2pTKTyRDJXYACHndzHuslea85m_OLuf76GB_PVclEuPhafj-Aht7ILVTyG3eamxZeEWZrqlVfVPzTd5Xk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Dynamic+Surface+Control+for+Nonstrict-Feedback+Systems+With+Output+Dead+Zone&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Shi%2C+Xiaocheng&rft.au=Cheng-Chew%2C+Lim&rft.au=Shi%2C+Peng&rft.au=Xu%2C+Shengyuan&rft.date=2018-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=11&rft.spage=5200&rft_id=info:doi/10.1109%2FTNNLS.2018.2793968&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon