Petroleum hydrocarbon (PHC) uptake in plants: A literature review
Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One...
Saved in:
Published in | Environmental pollution (1987) Vol. 245; pp. 472 - 484 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife.
[Display omitted]
•Consumption of plants is a potential exposure pathway in health risk assessments.•Common pardigm is that plants are unable to take up PHC from soil.•Plants are indeed able to uptake PHC in their tissues.•As such, the current approach for risk assessment of PHC may underestimate exposure.•The soil-plant-wildlife/human pathway should be considered in risk assessments of PHC exposure.
The findings of this review indicate that the soil-plant-wildlife/human exposure pathway may be complete and as such, risk assessors may want to consider more fully this pathway in human and ecological risk assessments. |
---|---|
AbstractList | Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife.
[Display omitted]
•Consumption of plants is a potential exposure pathway in health risk assessments.•Common pardigm is that plants are unable to take up PHC from soil.•Plants are indeed able to uptake PHC in their tissues.•As such, the current approach for risk assessment of PHC may underestimate exposure.•The soil-plant-wildlife/human pathway should be considered in risk assessments of PHC exposure.
The findings of this review indicate that the soil-plant-wildlife/human exposure pathway may be complete and as such, risk assessors may want to consider more fully this pathway in human and ecological risk assessments. Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife. Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife.Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife. |
Author | Dan, Tereza Duca, Daiana Knopper, Loren D. Hunt, Lillian J. |
Author_xml | – sequence: 1 givenname: Lillian J. surname: Hunt fullname: Hunt, Lillian J. organization: Ophardt Hygiene-Technik GmbH Co. KG, North Rhine-Westphalia, Germany – sequence: 2 givenname: Daiana surname: Duca fullname: Duca, Daiana organization: Stantec Consulting Ltd., Ontario, Canada – sequence: 3 givenname: Tereza surname: Dan fullname: Dan, Tereza organization: Stantec Consulting Ltd., Ontario, Canada – sequence: 4 givenname: Loren D. surname: Knopper fullname: Knopper, Loren D. email: loren.knopper@stantec.com organization: Stantec Consulting Ltd., Ontario, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30458377$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFO3DAURa0KVAbaP0BVlrBI8LNjO2ZRaTQqUAmpLNq15TgvqodMnNoOiL9v0MCGBe3qbc69errnmByMYURCToFWQEFebCscH6YwVIxCUwFUFNgHsoJG8VLWrD4gK8qkLlWt4Ygcp7SllNac84_kiNNaNFypFVnfYY5hwHlX_H7qYnA2tmEszu5uNufFPGV7j4Ufi2mwY06XxboYfMZo8xyxiPjg8fETOeztkPDzyz0hv66-_dzclLc_rr9v1rel41rkspWS2UYJsKJzFnXNaA0WZd8yrbVFik0PgjvVU8q04i1ScLg8TJWQrFP8hJzte6cY_syYstn55HBYPsMwJ8MYo02jpf4PFLgUApQUC_rlBZ3bHXZmin5n45N5XWgBLveAiyGliL1xPtvsw5ij9YMBap51mK3Z6zDPOgyAWXQs4fpN-LX_H7Gv-xguey4bR5Ocx9Fh5yO6bLrg3y_4C0ejpBg |
CitedBy_id | crossref_primary_10_36906_2311_4444_25_1_08 crossref_primary_10_1016_j_jenvman_2023_119058 crossref_primary_10_1016_j_jhazmat_2022_129963 crossref_primary_10_1016_j_chemosphere_2020_125932 crossref_primary_10_1039_D4EM00548A crossref_primary_10_3390_ijerph18168794 crossref_primary_10_1007_s10668_024_04848_3 crossref_primary_10_1088_1755_1315_1110_1_012037 crossref_primary_10_3390_s20123362 crossref_primary_10_1016_j_catena_2021_105270 crossref_primary_10_1016_j_ibiod_2019_104808 crossref_primary_10_1016_j_matpr_2020_12_921 crossref_primary_10_1007_s13369_024_09389_5 crossref_primary_10_3390_ma16103738 crossref_primary_10_3390_molecules27030897 crossref_primary_10_3390_life12111712 crossref_primary_10_1016_j_cej_2021_133600 crossref_primary_10_1016_j_ecoenv_2020_110410 crossref_primary_10_1016_j_jhazmat_2021_126592 crossref_primary_10_1080_15226514_2022_2104808 crossref_primary_10_1016_j_envpol_2020_114950 crossref_primary_10_2166_wst_2024_362 crossref_primary_10_3390_app11146305 crossref_primary_10_1080_15226514_2024_2389563 crossref_primary_10_1016_j_jece_2024_113672 crossref_primary_10_1007_s11356_021_16571_x crossref_primary_10_1016_j_jenvman_2023_118475 crossref_primary_10_3390_plants13020298 crossref_primary_10_1016_j_scitotenv_2023_161808 crossref_primary_10_1016_j_rineng_2024_102378 crossref_primary_10_1016_j_jenvman_2024_123587 crossref_primary_10_1016_j_scitotenv_2024_176189 crossref_primary_10_3389_fmicb_2020_621581 crossref_primary_10_3390_agronomy13030812 crossref_primary_10_1186_s43141_022_00412_6 crossref_primary_10_12677_aep_2025_153037 crossref_primary_10_1016_j_scitotenv_2020_140104 crossref_primary_10_1007_s11270_020_04914_2 crossref_primary_10_12688_openresafrica_13383_1 crossref_primary_10_3390_ijerph16142474 crossref_primary_10_3390_ijms22179557 crossref_primary_10_1590_1678_4324_2024230728 crossref_primary_10_1039_D4EM00096J crossref_primary_10_1186_s12870_024_05709_x |
Cites_doi | 10.1021/es048136a 10.1016/j.scitotenv.2014.01.023 10.1080/15226514.2011.568533 10.1021/es9809758 10.1080/15226514.2017.1393386 10.1080/15226514.2010.495144 10.1093/jxb/eri295 10.1007/s00128-016-1990-5 10.1016/j.envpol.2008.01.004 10.1016/S0269-7491(99)00107-4 10.1021/es025795j 10.1006/eesa.2002.2181 10.1016/j.ecoleng.2014.11.007 10.1002/etc.2285 10.1002/etc.3992 10.1016/S0734-9750(03)00055-7 10.1002/jctb.3773 10.1086/335891 10.1016/j.marpolbul.2016.09.012 10.1016/0025-326X(85)90447-3 10.1007/s11270-009-0190-x 10.1046/j.1351-0754.2003.0564.x 10.1002/ps.2780130506 10.1016/j.jhazmat.2017.12.012 10.1021/ef200128m 10.1016/j.ecoleng.2016.03.041 10.2134/jeq2002.1649 10.1080/15226510008500046 10.1016/0147-6513(86)90066-7 10.1016/0013-9327(70)90004-2 10.4172/2471-2698.1000105 10.1016/j.ibiod.2014.11.019 10.1016/S0048-9697(00)00669-0 10.1080/00207233.2013.771503 10.1016/j.envpol.2007.11.008 10.1016/S0960-8524(02)00055-X 10.1016/j.fuel.2005.05.021 10.1007/s11270-014-2033-7 10.1093/aob/mct008 10.3389/fmicb.2016.01836 10.1007/s10661-006-9546-5 10.1080/15226510802656326 10.1016/0045-6535(88)90142-7 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2018.11.012 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
EndPage | 484 |
ExternalDocumentID | 30458377 10_1016_j_envpol_2018_11_012 S0269749118326952 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-b662a8751a5dcae942041ae6fb2999ae0e8f153c7f002973be01ce04307562d73 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Fri Jul 11 03:22:52 EDT 2025 Thu Jul 10 22:52:32 EDT 2025 Wed Feb 19 02:36:35 EST 2025 Tue Jul 01 03:14:40 EDT 2025 Thu Apr 24 23:05:53 EDT 2025 Fri Feb 23 02:21:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Petroleum hydrocarbons PHC Plant uptake Risk assessment Phytoremediation |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-b662a8751a5dcae942041ae6fb2999ae0e8f153c7f002973be01ce04307562d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 30458377 |
PQID | 2136551765 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2220889697 proquest_miscellaneous_2136551765 pubmed_primary_30458377 crossref_citationtrail_10_1016_j_envpol_2018_11_012 crossref_primary_10_1016_j_envpol_2018_11_012 elsevier_sciencedirect_doi_10_1016_j_envpol_2018_11_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 2019-Feb 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Campos, Souto, Medeiros, Toledo, Sayeg, Ramos, Shinzato (bib12) 2014; 225 Kvenvolden (bib28) 2006 Nisa, Rashid (bib37) 2015; 47 Lodish, Berk, Zipursky, Matsudaira, Baltimore, Darnell (bib30) 2000 NRC (bib38) 2005 Zhu, Zhang (bib57) 2008; 156 Al-Baldawi, Abdullah, Anuar, Suja, Mushrifah (bib2) 2015; 74 Balasubramaniyam (bib8) 2015; 01 Rao, Afzal, Malallah, Kurian, Gulshan (bib43) 2007; 132 Baker (bib6) 1970; 1 Naidoo, Naidoo (bib35) 2016; 113 Basumatary, Saikia, Bordoloi, Das, Sarma (bib10) 2012; 87 Hirsch, Bezdek, Wendling (bib25) 2005; 91 Chen, Zhao, Xu, Gao, Xu (bib13) 2011; 25 Barrett (bib9) 2013 Palmroth, Pichtel, Puhakka (bib40) 2002; 84 Weishaar, Tsao, Burken (bib52) 2009; 11 Zhang, Fan, Zhang, Grieneisen, Zhang (bib56) 2018; 346 Su, Zhu (bib48) 2008; 155 Al-Ali, Al-Aradi, Al-Khion, Al-Saad (bib59) 2016; 6 Topp, Scheunert, Attar, Korte (bib49) 1986; 11 Glick (bib23) 2003; 21 Lotfinasabasl, Gunale, Rajurkar (bib31) 2013; 2 Doucette, Shunthirasingham, Dettenmaier, Zaleski, Fantke, Arnot (bib15) 2018 Fismes, Perrin-Ganier, Empereur-Bissonnet, Morel (bib17) 2002; 31 Zhang, Fan, Yang, Du, Li, Hou (bib55) 2014; 476–477 Bakker, Casado, Koerselman, Tolls, Kollöffel (bib7) 2000; 263 Umadevi, Kumar, Bhowmik, Duraivel (bib50) 2013; 2 Fantke, Arnot, Doucette (bib16) 2016 Canadian Council of Ministers of the Environment (bib14) 2008 Ryan, Bell, Davidson, O'Connor (bib44) 1988; 17 Anyasi, Atagana (bib4) 2018; 20 Glick, Stearns (bib24) 2011; 13 Schwab, Su, Wetzel, Pekarek, Banks (bib45) 1999; 33 Lu, Zhang, Sun, Wei, Wang, Su (bib32) 2010; 209 Ndimele, Ndimele (bib36) 2013; 70 Getter, Ballou, Dahlin (bib18) 1983 Getter, Ballou, Bruce Koons (bib20) 1985; 16 Getter, Baca (bib19) 1984 Liao, Xu, Lu, Deng, Liang, Guo, Dang (bib29) 2016; 92 Skoss (bib47) 1955; 117 Van Epps (bib51) 2006 Semple, Morriss, Paton (bib46) 2003; 54 Kelly-Hooper, Farwell, Pike, Kennedy, Wang, Grunsky, Dixon (bib26) 2013; 32 Patowary, Patowary, Devi, Kalita, Deka (bib41) 2017; 98 Briggs, Bromilow, Evans (bib11) 1982; 13 Moubasher, Hegazy, Mohamed, Moustafa, Kabiel, Hamad (bib34) 2015; 98 Ma, Burken (bib33) 2002; 36 Agency for Toxic Substances and Disease Registry (ATSDR) (bib1) 1999 Zaalishvili, Sadunishvili, Scalla, Laurent, Kvesitadze (bib54) 2002; 52 Badre, Carla Goncalves, Norinaga, Gustavson, Mullins (bib5) 2006; 85 Nwaichi, Osuji, Onyeike (bib39) 2011; 13 Getter, Ballou (bib21) 1985 Radwan, Al-Awadhi, El-Nemr (bib42) 2000; 2 Albers (bib58) 2003 Alkio, Tabuchi, Wang, Colón-Carmona (bib3) 2005; 56 Gkorezis, Daghio, Franzetti, Van Hamme, Sillen, Vangronsveld (bib22) 2016 Kipopoulou, Manoli, Samara (bib27) 1999; 106 Wild, Dent, Thomas, Jones (bib53) 2005; 39 Zhu (10.1016/j.envpol.2018.11.012_bib57) 2008; 156 Glick (10.1016/j.envpol.2018.11.012_bib23) 2003; 21 Naidoo (10.1016/j.envpol.2018.11.012_bib35) 2016; 113 Hirsch (10.1016/j.envpol.2018.11.012_bib25) 2005; 91 Ndimele (10.1016/j.envpol.2018.11.012_bib36) 2013; 70 Lu (10.1016/j.envpol.2018.11.012_bib32) 2010; 209 Getter (10.1016/j.envpol.2018.11.012_bib21) 1985 Albers (10.1016/j.envpol.2018.11.012_bib58) 2003 Al-Baldawi (10.1016/j.envpol.2018.11.012_bib2) 2015; 74 Lotfinasabasl (10.1016/j.envpol.2018.11.012_bib31) 2013; 2 Bakker (10.1016/j.envpol.2018.11.012_bib7) 2000; 263 Van Epps (10.1016/j.envpol.2018.11.012_bib51) 2006 Kipopoulou (10.1016/j.envpol.2018.11.012_bib27) 1999; 106 NRC (10.1016/j.envpol.2018.11.012_bib38) 2005 Nisa (10.1016/j.envpol.2018.11.012_bib37) 2015; 47 Semple (10.1016/j.envpol.2018.11.012_bib46) 2003; 54 Getter (10.1016/j.envpol.2018.11.012_bib18) 1983 Palmroth (10.1016/j.envpol.2018.11.012_bib40) 2002; 84 Fantke (10.1016/j.envpol.2018.11.012_bib16) 2016 Chen (10.1016/j.envpol.2018.11.012_bib13) 2011; 25 Zhang (10.1016/j.envpol.2018.11.012_bib56) 2018; 346 Schwab (10.1016/j.envpol.2018.11.012_bib45) 1999; 33 Zaalishvili (10.1016/j.envpol.2018.11.012_bib54) 2002; 52 Balasubramaniyam (10.1016/j.envpol.2018.11.012_bib8) 2015; 01 Badre (10.1016/j.envpol.2018.11.012_bib5) 2006; 85 Alkio (10.1016/j.envpol.2018.11.012_bib3) 2005; 56 Gkorezis (10.1016/j.envpol.2018.11.012_bib22) 2016 Al-Ali (10.1016/j.envpol.2018.11.012_bib59) 2016; 6 Umadevi (10.1016/j.envpol.2018.11.012_bib50) 2013; 2 Zhang (10.1016/j.envpol.2018.11.012_bib55) 2014; 476–477 Weishaar (10.1016/j.envpol.2018.11.012_bib52) 2009; 11 Baker (10.1016/j.envpol.2018.11.012_bib6) 1970; 1 Briggs (10.1016/j.envpol.2018.11.012_bib11) 1982; 13 Anyasi (10.1016/j.envpol.2018.11.012_bib4) 2018; 20 Topp (10.1016/j.envpol.2018.11.012_bib49) 1986; 11 Getter (10.1016/j.envpol.2018.11.012_bib20) 1985; 16 Kelly-Hooper (10.1016/j.envpol.2018.11.012_bib26) 2013; 32 Glick (10.1016/j.envpol.2018.11.012_bib24) 2011; 13 Radwan (10.1016/j.envpol.2018.11.012_bib42) 2000; 2 Wild (10.1016/j.envpol.2018.11.012_bib53) 2005; 39 Fismes (10.1016/j.envpol.2018.11.012_bib17) 2002; 31 Moubasher (10.1016/j.envpol.2018.11.012_bib34) 2015; 98 Nwaichi (10.1016/j.envpol.2018.11.012_bib39) 2011; 13 Rao (10.1016/j.envpol.2018.11.012_bib43) 2007; 132 Ryan (10.1016/j.envpol.2018.11.012_bib44) 1988; 17 Agency for Toxic Substances and Disease Registry (ATSDR) (10.1016/j.envpol.2018.11.012_bib1) 1999 Su (10.1016/j.envpol.2018.11.012_bib48) 2008; 155 Liao (10.1016/j.envpol.2018.11.012_bib29) 2016; 92 Getter (10.1016/j.envpol.2018.11.012_bib19) 1984 Doucette (10.1016/j.envpol.2018.11.012_bib15) 2018 Lodish (10.1016/j.envpol.2018.11.012_bib30) 2000 Patowary (10.1016/j.envpol.2018.11.012_bib41) 2017; 98 Canadian Council of Ministers of the Environment (10.1016/j.envpol.2018.11.012_bib14) 2008 Skoss (10.1016/j.envpol.2018.11.012_bib47) 1955; 117 Campos (10.1016/j.envpol.2018.11.012_bib12) 2014; 225 Kvenvolden (10.1016/j.envpol.2018.11.012_bib28) 2006 Ma (10.1016/j.envpol.2018.11.012_bib33) 2002; 36 Barrett (10.1016/j.envpol.2018.11.012_bib9) 2013 Basumatary (10.1016/j.envpol.2018.11.012_bib10) 2012; 87 |
References_xml | – start-page: 1 year: 2008 end-page: 383 ident: bib14 article-title: Canada-wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale, Supporting Technical Document. PN 1399 – volume: 70 start-page: 241 year: 2013 end-page: 258 ident: bib36 article-title: Comparative effects of biostimulation and phytoremediation on crude oil degradation and absorption by water hyacinth (Eichhornia crassipes [Mart.] Solms) publication-title: Int. J. Environ. Stud. – volume: 87 start-page: 1329 year: 2012 end-page: 1334 ident: bib10 article-title: Assessment of potential plant species for phytoremediation of hydrocarbon-contaminated areas of upper Assam, India publication-title: J. Chem. Technol. Biotechnol. – volume: 225 year: 2014 ident: bib12 article-title: Assessment of the removal capacity, tolerance, and anatomical adaptation of different plant species to benzene contamination publication-title: Water Air Soil Pollut. – volume: 2 start-page: 191 year: 2013 end-page: 200 ident: bib50 article-title: Traditional and medicinal use of Vetiver publication-title: J. Med. Plant Stud. – volume: 36 start-page: 4663 year: 2002 end-page: 4668 ident: bib33 article-title: VOCs fate and partitioning in vegetation: use of tree cores in groundwater analysis publication-title: Environ. Sci. Technol. – volume: 98 start-page: 113 year: 2015 end-page: 120 ident: bib34 article-title: Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms publication-title: Int. Biodeterior. Biodegrad. – volume: 156 start-page: 46 year: 2008 end-page: 52 ident: bib57 article-title: Effect of rhamnolipids on the uptake of PAHs by ryegrass publication-title: Environ. Pollut. – volume: 11 start-page: 509 year: 2009 end-page: 523 ident: bib52 article-title: Phytoremediation of BTEX hydrocarbons: potential impacts of diurnal groundwater fluctuation on microbial degradation publication-title: Int. J. Phytoremediation – start-page: 135 year: 2005 end-page: 271 ident: bib38 article-title: Transport and fate and Toxicological effects of dispersants and dispersed oil publication-title: Oil Spill Dispersants: Efficacy and Effects – volume: 25 start-page: 2109 year: 2011 end-page: 2114 ident: bib13 article-title: Molecular size and size distribution of petroleum residue publication-title: Energy Fuels – year: 2016 ident: bib22 article-title: The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective publication-title: Front. Microbiol. – start-page: 5 year: 1984 end-page: 13 ident: bib19 article-title: A laboratory approach for determining the effect of oil on dispe∼sants and mangroves publication-title: Oil Spill Chemical Dispersants: Research, Experience, and Recommendations – volume: 20 start-page: 352 year: 2018 end-page: 361 ident: bib4 article-title: Profiling of plants at petroleum contaminated site for phytoremediation publication-title: Int. J. Phytoremediation – volume: 21 start-page: 383 year: 2003 end-page: 393 ident: bib23 article-title: Phytoremediation: synergistic use of plants and bacteria to clean up the environment publication-title: Biotechnol. Adv. – year: 2006 ident: bib51 article-title: Phytoremediation of Petroleum Hydrocarbons – start-page: 533 year: 1983 end-page: 538 ident: bib18 article-title: Preliminary results of laboratory testing of oil and dispersants on mangroves publication-title: Proc. 1983 Oil Spill Conf., API No. 4356 – volume: 113 start-page: 193 year: 2016 end-page: 199 ident: bib35 article-title: Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza publication-title: Mar. Pollut. Bull. – volume: 47 start-page: 291 year: 2015 end-page: 296 ident: bib37 article-title: Potential of vetiver (Vetiveria Zizanioides L.) grass in removing selected pahs from diesel contaminated soil publication-title: Pakistan J. Bot. – year: 2013 ident: bib9 article-title: Ecological importance of sedges: a survey of the Australasian Cyperaceae genus Lepidosperma publication-title: Ann. Bot. – volume: 16 start-page: 318 year: 1985 end-page: 324 ident: bib20 article-title: Effects of dispersed oil on mangroves synthesis of a seven-year study publication-title: Mar. Pollut. Bull. – volume: 39 start-page: 3695 year: 2005 end-page: 3702 ident: bib53 article-title: Direct observation of organic contaminant uptake, storage, and metabolism within plant roots publication-title: Environ. Sci. Technol. – year: 1999 ident: bib1 article-title: Toxicological profile for total petroleum hydrocarbons (TPH) publication-title: Toxicol. Profile Total Pet. Hydrocarb. (TPH) – volume: 85 start-page: 1 year: 2006 end-page: 11 ident: bib5 article-title: Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen publication-title: Fuel – volume: 54 start-page: 809 year: 2003 end-page: 818 ident: bib46 article-title: Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis publication-title: Eur. J. Soil Sci. – volume: 263 start-page: 91 year: 2000 end-page: 100 ident: bib7 article-title: Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery publication-title: Sci. Total Environ. – volume: 106 start-page: 369 year: 1999 end-page: 380 ident: bib27 article-title: Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area publication-title: Environ. Pollut. – volume: 11 start-page: 219 year: 1986 end-page: 228 ident: bib49 article-title: Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil publication-title: Ecotoxicol. Environ. Saf. – volume: 346 start-page: 10 year: 2018 end-page: 18 ident: bib56 article-title: Aliphatic hydrocarbons recovered in vegetables from soils based on their in-situ distribution in various soil humus fractions using a successive extraction method publication-title: J. Hazard Mater. – volume: 1 start-page: 27 year: 1970 end-page: 44 ident: bib6 article-title: The effects of oils on plants publication-title: Environ. Pollut. – volume: 01 year: 2015 ident: bib8 article-title: The influence of plants in the remediation of petroleum hydrocarbon- contaminated sites publication-title: Pharm. Anal. Chem. Open Access – volume: 209 start-page: 181 year: 2010 end-page: 189 ident: bib32 article-title: The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum publication-title: Water Air Soil Pollut. – volume: 92 start-page: 10 year: 2016 end-page: 17 ident: bib29 article-title: Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L) publication-title: Ecol. Eng. – volume: 33 start-page: 1940 year: 1999 end-page: 1945 ident: bib45 article-title: Extraction of petroleum hydrocarbons from soil by mechanical shaking publication-title: Environ. Sci. Technol. – volume: 2 start-page: 383 year: 2000 end-page: 396 ident: bib42 article-title: Cropping as a phytoremediation practice for oily desert soil with reference to crop safety as food publication-title: Int. J. Phytoremediation – volume: 32 start-page: 2197 year: 2013 end-page: 2206 ident: bib26 article-title: Is it clean or contaminated soil? Using petrogenic versus biogenic GC-FID chromatogram patterns to mathematically resolve false petroleum hydrocarbon detections in clean organic soils: a crude oil-spiked peat microcosm experiment publication-title: Environ. Toxicol. Chem. – volume: 476–477 start-page: 258 year: 2014 end-page: 265 ident: bib55 article-title: Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set publication-title: Sci. Total Environ. – year: 2000 ident: bib30 article-title: Molecular Cell Biology – volume: 52 start-page: 190 year: 2002 end-page: 197 ident: bib54 article-title: Electron microscopic investigation of nitrobenzene distribution and effect on plant root tip cells ultrastructure publication-title: Ecotoxicol. Environ. Saf. – volume: 17 start-page: 2299 year: 1988 end-page: 2323 ident: bib44 article-title: Plant uptake of non-ionic organic chemicals from soils publication-title: Chemosphere – volume: 6 start-page: 55 year: 2016 end-page: 64 ident: bib59 article-title: Petroleum hydrocarbons in water, soil and tomato plant ( publication-title: J. Biol. Agric. Healthc. – volume: 13 start-page: 373 year: 2011 end-page: 382 ident: bib39 article-title: Evaluation and decontamination of crude Oil-Polluted Soils using centrosema pubescen benth and Amendment-support Options publication-title: Int. J. Phytoremediation – volume: 155 start-page: 359 year: 2008 end-page: 365 ident: bib48 article-title: Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution publication-title: Environ. Pollut. – volume: 98 start-page: 120 year: 2017 end-page: 126 ident: bib41 article-title: Uptake of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) by Oryza sativa L. Grown in soil contaminated with crude oil publication-title: Bull. Environ. Contam. Toxicol. – start-page: 1 year: 2006 end-page: 11 ident: bib28 article-title: Organic geochemistry - a retrospective of its first 70 years publication-title: Organic Geochemistry – year: 1985 ident: bib21 article-title: Field Experiments on the Effects of Oil and Dispersant on Mangroves – volume: 56 start-page: 2983 year: 2005 end-page: 2994 ident: bib3 article-title: Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms publication-title: J. Exp. Bot. – volume: 13 start-page: 4 year: 2011 end-page: 16 ident: bib24 article-title: Making phytoremediation work better: maximizing a plant's growth potential in the midst of adversity publication-title: Int. J. Phytoremediation – volume: 74 start-page: 463 year: 2015 end-page: 473 ident: bib2 article-title: Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus publication-title: Ecol. Eng. – volume: 31 start-page: 1649 year: 2002 ident: bib17 article-title: Soil-to-Root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils publication-title: J. Environ. Qual. – volume: 91 year: 2005 ident: bib25 article-title: Peaking of world oil production: impacts, mitigation, & risk management publication-title: Driv. Clim. Chang. – year: 2018 ident: bib15 article-title: A review of measured bioaccumulation data on terrestrial plants for organic chemicals: metrics, variability, and the need for standardized measurement protocols publication-title: Environ. Toxicol. Chem. – volume: 117 start-page: 55 year: 1955 end-page: 72 ident: bib47 article-title: Structure and composition of plant cuticle in relation to environmental factors and structure and composition of plant cuticle in relation to environmental factors publication-title: Source Bot. Gaz. – volume: 13 start-page: 495 year: 1982 end-page: 504 ident: bib11 article-title: Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley publication-title: Pestic. Sci. – volume: 132 start-page: 439 year: 2007 end-page: 443 ident: bib43 article-title: Hydrocarbon uptake by roots of Vicia faba (fabaceae) publication-title: Environ. Monit. Assess. – volume: 2 start-page: 1 year: 2013 end-page: 7 ident: bib31 article-title: Petroleum hydrocarbons pollution in soil and its bioaccumulation in mangrove species, Avicennia marina from alibaug mangrove ecosystem, Maharashtra, India * publication-title: Int. J. Adv. Res. Technol. – year: 2016 ident: bib16 article-title: Improving plant bioaccumulation science through consistent reporting of experimental data publication-title: J. Environ. Manag. – start-page: 341 year: 2003 end-page: 371 ident: bib58 article-title: Petroleum and individual polycyclic aromatic hydrocarbons publication-title: Handbook of Ecotoxicology – volume: 84 start-page: 221 year: 2002 end-page: 228 ident: bib40 article-title: Phytoremediation of subarctic soil contaminated with diesel fuel publication-title: Bioresour. Technol. – volume: 39 start-page: 3695 year: 2005 ident: 10.1016/j.envpol.2018.11.012_bib53 article-title: Direct observation of organic contaminant uptake, storage, and metabolism within plant roots publication-title: Environ. Sci. Technol. doi: 10.1021/es048136a – volume: 476–477 start-page: 258 year: 2014 ident: 10.1016/j.envpol.2018.11.012_bib55 article-title: Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.01.023 – start-page: 135 year: 2005 ident: 10.1016/j.envpol.2018.11.012_bib38 article-title: Transport and fate and Toxicological effects of dispersants and dispersed oil – year: 2016 ident: 10.1016/j.envpol.2018.11.012_bib16 article-title: Improving plant bioaccumulation science through consistent reporting of experimental data publication-title: J. Environ. Manag. – volume: 13 start-page: 4 year: 2011 ident: 10.1016/j.envpol.2018.11.012_bib24 article-title: Making phytoremediation work better: maximizing a plant's growth potential in the midst of adversity publication-title: Int. J. Phytoremediation doi: 10.1080/15226514.2011.568533 – volume: 33 start-page: 1940 year: 1999 ident: 10.1016/j.envpol.2018.11.012_bib45 article-title: Extraction of petroleum hydrocarbons from soil by mechanical shaking publication-title: Environ. Sci. Technol. doi: 10.1021/es9809758 – volume: 20 start-page: 352 year: 2018 ident: 10.1016/j.envpol.2018.11.012_bib4 article-title: Profiling of plants at petroleum contaminated site for phytoremediation publication-title: Int. J. Phytoremediation doi: 10.1080/15226514.2017.1393386 – volume: 13 start-page: 373 year: 2011 ident: 10.1016/j.envpol.2018.11.012_bib39 article-title: Evaluation and decontamination of crude Oil-Polluted Soils using centrosema pubescen benth and Amendment-support Options publication-title: Int. J. Phytoremediation doi: 10.1080/15226514.2010.495144 – volume: 56 start-page: 2983 year: 2005 ident: 10.1016/j.envpol.2018.11.012_bib3 article-title: Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri295 – start-page: 1 year: 2006 ident: 10.1016/j.envpol.2018.11.012_bib28 article-title: Organic geochemistry - a retrospective of its first 70 years – start-page: 533 year: 1983 ident: 10.1016/j.envpol.2018.11.012_bib18 article-title: Preliminary results of laboratory testing of oil and dispersants on mangroves – year: 1985 ident: 10.1016/j.envpol.2018.11.012_bib21 – volume: 98 start-page: 120 year: 2017 ident: 10.1016/j.envpol.2018.11.012_bib41 article-title: Uptake of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) by Oryza sativa L. Grown in soil contaminated with crude oil publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-016-1990-5 – volume: 156 start-page: 46 year: 2008 ident: 10.1016/j.envpol.2018.11.012_bib57 article-title: Effect of rhamnolipids on the uptake of PAHs by ryegrass publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.01.004 – volume: 106 start-page: 369 year: 1999 ident: 10.1016/j.envpol.2018.11.012_bib27 article-title: Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(99)00107-4 – volume: 36 start-page: 4663 year: 2002 ident: 10.1016/j.envpol.2018.11.012_bib33 article-title: VOCs fate and partitioning in vegetation: use of tree cores in groundwater analysis publication-title: Environ. Sci. Technol. doi: 10.1021/es025795j – volume: 2 start-page: 191 year: 2013 ident: 10.1016/j.envpol.2018.11.012_bib50 article-title: Traditional and medicinal use of Vetiver publication-title: J. Med. Plant Stud. – volume: 52 start-page: 190 year: 2002 ident: 10.1016/j.envpol.2018.11.012_bib54 article-title: Electron microscopic investigation of nitrobenzene distribution and effect on plant root tip cells ultrastructure publication-title: Ecotoxicol. Environ. Saf. doi: 10.1006/eesa.2002.2181 – start-page: 5 year: 1984 ident: 10.1016/j.envpol.2018.11.012_bib19 article-title: A laboratory approach for determining the effect of oil on dispe∼sants and mangroves – volume: 74 start-page: 463 year: 2015 ident: 10.1016/j.envpol.2018.11.012_bib2 article-title: Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.11.007 – volume: 32 start-page: 2197 year: 2013 ident: 10.1016/j.envpol.2018.11.012_bib26 article-title: Is it clean or contaminated soil? Using petrogenic versus biogenic GC-FID chromatogram patterns to mathematically resolve false petroleum hydrocarbon detections in clean organic soils: a crude oil-spiked peat microcosm experiment publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.2285 – start-page: 341 year: 2003 ident: 10.1016/j.envpol.2018.11.012_bib58 article-title: Petroleum and individual polycyclic aromatic hydrocarbons – volume: 91 year: 2005 ident: 10.1016/j.envpol.2018.11.012_bib25 article-title: Peaking of world oil production: impacts, mitigation, & risk management publication-title: Driv. Clim. Chang. – year: 2018 ident: 10.1016/j.envpol.2018.11.012_bib15 article-title: A review of measured bioaccumulation data on terrestrial plants for organic chemicals: metrics, variability, and the need for standardized measurement protocols publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3992 – volume: 21 start-page: 383 year: 2003 ident: 10.1016/j.envpol.2018.11.012_bib23 article-title: Phytoremediation: synergistic use of plants and bacteria to clean up the environment publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(03)00055-7 – volume: 87 start-page: 1329 year: 2012 ident: 10.1016/j.envpol.2018.11.012_bib10 article-title: Assessment of potential plant species for phytoremediation of hydrocarbon-contaminated areas of upper Assam, India publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.3773 – volume: 117 start-page: 55 year: 1955 ident: 10.1016/j.envpol.2018.11.012_bib47 article-title: Structure and composition of plant cuticle in relation to environmental factors and structure and composition of plant cuticle in relation to environmental factors publication-title: Source Bot. Gaz. doi: 10.1086/335891 – volume: 113 start-page: 193 year: 2016 ident: 10.1016/j.envpol.2018.11.012_bib35 article-title: Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.09.012 – volume: 6 start-page: 55 year: 2016 ident: 10.1016/j.envpol.2018.11.012_bib59 article-title: Petroleum hydrocarbons in water, soil and tomato plant (Lycopersican esculentum L.) at Basra City, Iraq publication-title: J. Biol. Agric. Healthc. – volume: 16 start-page: 318 year: 1985 ident: 10.1016/j.envpol.2018.11.012_bib20 article-title: Effects of dispersed oil on mangroves synthesis of a seven-year study publication-title: Mar. Pollut. Bull. doi: 10.1016/0025-326X(85)90447-3 – volume: 209 start-page: 181 year: 2010 ident: 10.1016/j.envpol.2018.11.012_bib32 article-title: The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-009-0190-x – volume: 54 start-page: 809 year: 2003 ident: 10.1016/j.envpol.2018.11.012_bib46 article-title: Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1351-0754.2003.0564.x – volume: 13 start-page: 495 year: 1982 ident: 10.1016/j.envpol.2018.11.012_bib11 article-title: Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley publication-title: Pestic. Sci. doi: 10.1002/ps.2780130506 – volume: 346 start-page: 10 year: 2018 ident: 10.1016/j.envpol.2018.11.012_bib56 article-title: Aliphatic hydrocarbons recovered in vegetables from soils based on their in-situ distribution in various soil humus fractions using a successive extraction method publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.12.012 – year: 2006 ident: 10.1016/j.envpol.2018.11.012_bib51 – volume: 25 start-page: 2109 year: 2011 ident: 10.1016/j.envpol.2018.11.012_bib13 article-title: Molecular size and size distribution of petroleum residue publication-title: Energy Fuels doi: 10.1021/ef200128m – volume: 92 start-page: 10 year: 2016 ident: 10.1016/j.envpol.2018.11.012_bib29 article-title: Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L) publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2016.03.041 – volume: 31 start-page: 1649 year: 2002 ident: 10.1016/j.envpol.2018.11.012_bib17 article-title: Soil-to-Root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils publication-title: J. Environ. Qual. doi: 10.2134/jeq2002.1649 – volume: 2 start-page: 383 year: 2000 ident: 10.1016/j.envpol.2018.11.012_bib42 article-title: Cropping as a phytoremediation practice for oily desert soil with reference to crop safety as food publication-title: Int. J. Phytoremediation doi: 10.1080/15226510008500046 – volume: 11 start-page: 219 year: 1986 ident: 10.1016/j.envpol.2018.11.012_bib49 article-title: Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/0147-6513(86)90066-7 – volume: 1 start-page: 27 year: 1970 ident: 10.1016/j.envpol.2018.11.012_bib6 article-title: The effects of oils on plants publication-title: Environ. Pollut. doi: 10.1016/0013-9327(70)90004-2 – volume: 01 year: 2015 ident: 10.1016/j.envpol.2018.11.012_bib8 article-title: The influence of plants in the remediation of petroleum hydrocarbon- contaminated sites publication-title: Pharm. Anal. Chem. Open Access doi: 10.4172/2471-2698.1000105 – volume: 98 start-page: 113 year: 2015 ident: 10.1016/j.envpol.2018.11.012_bib34 article-title: Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2014.11.019 – volume: 263 start-page: 91 year: 2000 ident: 10.1016/j.envpol.2018.11.012_bib7 article-title: Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(00)00669-0 – start-page: 1 year: 2008 ident: 10.1016/j.envpol.2018.11.012_bib14 – volume: 70 start-page: 241 year: 2013 ident: 10.1016/j.envpol.2018.11.012_bib36 article-title: Comparative effects of biostimulation and phytoremediation on crude oil degradation and absorption by water hyacinth (Eichhornia crassipes [Mart.] Solms) publication-title: Int. J. Environ. Stud. doi: 10.1080/00207233.2013.771503 – volume: 155 start-page: 359 year: 2008 ident: 10.1016/j.envpol.2018.11.012_bib48 article-title: Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.11.008 – year: 2000 ident: 10.1016/j.envpol.2018.11.012_bib30 – volume: 47 start-page: 291 year: 2015 ident: 10.1016/j.envpol.2018.11.012_bib37 article-title: Potential of vetiver (Vetiveria Zizanioides L.) grass in removing selected pahs from diesel contaminated soil publication-title: Pakistan J. Bot. – volume: 2 start-page: 1 year: 2013 ident: 10.1016/j.envpol.2018.11.012_bib31 article-title: Petroleum hydrocarbons pollution in soil and its bioaccumulation in mangrove species, Avicennia marina from alibaug mangrove ecosystem, Maharashtra, India * publication-title: Int. J. Adv. Res. Technol. – volume: 84 start-page: 221 year: 2002 ident: 10.1016/j.envpol.2018.11.012_bib40 article-title: Phytoremediation of subarctic soil contaminated with diesel fuel publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(02)00055-X – year: 1999 ident: 10.1016/j.envpol.2018.11.012_bib1 article-title: Toxicological profile for total petroleum hydrocarbons (TPH) – volume: 85 start-page: 1 year: 2006 ident: 10.1016/j.envpol.2018.11.012_bib5 article-title: Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen publication-title: Fuel doi: 10.1016/j.fuel.2005.05.021 – volume: 225 year: 2014 ident: 10.1016/j.envpol.2018.11.012_bib12 article-title: Assessment of the removal capacity, tolerance, and anatomical adaptation of different plant species to benzene contamination publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-014-2033-7 – year: 2013 ident: 10.1016/j.envpol.2018.11.012_bib9 article-title: Ecological importance of sedges: a survey of the Australasian Cyperaceae genus Lepidosperma publication-title: Ann. Bot. doi: 10.1093/aob/mct008 – year: 2016 ident: 10.1016/j.envpol.2018.11.012_bib22 article-title: The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01836 – volume: 132 start-page: 439 year: 2007 ident: 10.1016/j.envpol.2018.11.012_bib43 article-title: Hydrocarbon uptake by roots of Vicia faba (fabaceae) publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-006-9546-5 – volume: 11 start-page: 509 year: 2009 ident: 10.1016/j.envpol.2018.11.012_bib52 article-title: Phytoremediation of BTEX hydrocarbons: potential impacts of diurnal groundwater fluctuation on microbial degradation publication-title: Int. J. Phytoremediation doi: 10.1080/15226510802656326 – volume: 17 start-page: 2299 year: 1988 ident: 10.1016/j.envpol.2018.11.012_bib44 article-title: Plant uptake of non-ionic organic chemicals from soils publication-title: Chemosphere doi: 10.1016/0045-6535(88)90142-7 |
SSID | ssj0004333 |
Score | 2.5072477 |
SecondaryResourceType | review_article |
Snippet | Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 472 |
SubjectTerms | adverse effects birds exposure pathways food plants guidelines health effects assessments herbivores human health humans omnivores petroleum Petroleum hydrocarbons PHC Phytoremediation plant tissues Plant uptake polluted soils receptors risk Risk assessment risk assessment process trophic levels wildlife |
Title | Petroleum hydrocarbon (PHC) uptake in plants: A literature review |
URI | https://dx.doi.org/10.1016/j.envpol.2018.11.012 https://www.ncbi.nlm.nih.gov/pubmed/30458377 https://www.proquest.com/docview/2136551765 https://www.proquest.com/docview/2220889697 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V7QUOiG4pLJTKSAjBwd04seMNt2jVagFRIUGl3iw7mYiFbRK1u0i98Ns7jpMtHEoljonsyPKM5yN-8wbgdYIikU5arlQsuXQu5k5UyEvyDUWUFZHumJg-n6bzM_nxXJ1vwWyohfGwyt72B5veWev-zaTfzUm7WEy-UvZAwTAdVlLKNFPeDkupvZYf_b6FecgktJOnIdyPHsrnOowX1r_axl9AiOmR5_IU8V3u6a7ws3NDJ4_hUR8_sjwscRe2sB7BXl5T7nxxzd6wDtHZ_SofwcM_yAZHsH98W9NGX-gP9dUe5L6rVrPE9QX7fl2SQ7OXrqnZ2y_z2Tu2blf2J7JFzdqlh8y8ZzlbbqiYWah8eQJnJ8ffZnPed1bgRZKpFXdpGlvKVIRVZWExk3EkhcW0cuSdMosRTisyhYWuQnMrh5Eo0NODaYqXSp3sw3bd1PgMmEwd6qknOS3JHmDlaJMLS1ETfVCJKhlDMmyoKXracd_9YmkGfNkPE8RgvBgoIzEkhjHwzaw20G7cM14PsjJ_qY8hz3DPzFeDaA2dLH9dYmts1lcm9ghAJXSq_jEmjj1OjBRxDE-DXmzWG-6ktX7-32t7AQ_oKQsg8QPYXl2u8SXFQCt32Cn5IezkHz7NT28AVBcERg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5VA4oLK8lhbqSlVVDmbjJI43vUUrUCiwqlSQuFl24ohtlySC3Ur8-47jZKEHitRrYkeWZzyP-JtvAD4FhgWhDhXl3A9pqLVPNSsMzdE3ZF6ceaJhYrqcROl1-O2G36zAuKuFsbDK1vY7m95Y6_bJsN3NYT2dDn9g9oDBMB5WVMoo5miHVy07Fe_BanJ2nk6eyiMD11EeR1E7oauga2BepvxdV_YOgo2OLZ0n81_yUC9FoI0nOn0LG20ISRK3yk1YMWUftpIS0-e7R_KZNKDO5m95H9af8Q32YefkqawNv9Ce64ctSGxjrWpmFnfk9jFHn6budVWSL9_T8RFZ1HP1y5BpSeqZRc18JQmZLdmYiSt-2Ybr05OrcUrb5go0C2I-pzqKfIXJClM8z5SJQ98LmTJRodFBxcp4ZlSgNcxE4fpbaeOxzFiGMIEhUy6CHeiVVWn2gISRNmJkeU5zNAmm0LjJmcLACT_IWREMIOg2VGYt87htgDGTHcTsp3RikFYMmJRIFMMA6HJW7Zg3XhkvOlnJvzRIonN4ZebHTrQSD5e9MVGlqRYP0rcgQM5ExP8xxvctVAx1cQC7Ti-W63XX0kLs__faPsCb9OryQl6cTc7fwRq-iR1m_D305vcLc4Ah0Vwftir_BzueBvc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Petroleum+hydrocarbon+%28PHC%29+uptake+in+plants%3A+A+literature+review&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Hunt%2C+Lillian+J.&rft.au=Duca%2C+Daiana&rft.au=Dan%2C+Tereza&rft.au=Knopper%2C+Loren+D.&rft.date=2019-02-01&rft.pub=Elsevier+Ltd&rft.issn=0269-7491&rft.eissn=1873-6424&rft.volume=245&rft.spage=472&rft.epage=484&rft_id=info:doi/10.1016%2Fj.envpol.2018.11.012&rft.externalDocID=S0269749118326952 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |