Petroleum hydrocarbon (PHC) uptake in plants: A literature review

Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 245; pp. 472 - 484
Main Authors Hunt, Lillian J., Duca, Daiana, Dan, Tereza, Knopper, Loren D.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife. [Display omitted] •Consumption of plants is a potential exposure pathway in health risk assessments.•Common pardigm is that plants are unable to take up PHC from soil.•Plants are indeed able to uptake PHC in their tissues.•As such, the current approach for risk assessment of PHC may underestimate exposure.•The soil-plant-wildlife/human pathway should be considered in risk assessments of PHC exposure. The findings of this review indicate that the soil-plant-wildlife/human exposure pathway may be complete and as such, risk assessors may want to consider more fully this pathway in human and ecological risk assessments.
AbstractList Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife. [Display omitted] •Consumption of plants is a potential exposure pathway in health risk assessments.•Common pardigm is that plants are unable to take up PHC from soil.•Plants are indeed able to uptake PHC in their tissues.•As such, the current approach for risk assessment of PHC may underestimate exposure.•The soil-plant-wildlife/human pathway should be considered in risk assessments of PHC exposure. The findings of this review indicate that the soil-plant-wildlife/human exposure pathway may be complete and as such, risk assessors may want to consider more fully this pathway in human and ecological risk assessments.
Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife.
Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife.Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife.
Author Dan, Tereza
Duca, Daiana
Knopper, Loren D.
Hunt, Lillian J.
Author_xml – sequence: 1
  givenname: Lillian J.
  surname: Hunt
  fullname: Hunt, Lillian J.
  organization: Ophardt Hygiene-Technik GmbH Co. KG, North Rhine-Westphalia, Germany
– sequence: 2
  givenname: Daiana
  surname: Duca
  fullname: Duca, Daiana
  organization: Stantec Consulting Ltd., Ontario, Canada
– sequence: 3
  givenname: Tereza
  surname: Dan
  fullname: Dan, Tereza
  organization: Stantec Consulting Ltd., Ontario, Canada
– sequence: 4
  givenname: Loren D.
  surname: Knopper
  fullname: Knopper, Loren D.
  email: loren.knopper@stantec.com
  organization: Stantec Consulting Ltd., Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30458377$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFO3DAURa0KVAbaP0BVlrBI8LNjO2ZRaTQqUAmpLNq15TgvqodMnNoOiL9v0MCGBe3qbc69errnmByMYURCToFWQEFebCscH6YwVIxCUwFUFNgHsoJG8VLWrD4gK8qkLlWt4Ygcp7SllNac84_kiNNaNFypFVnfYY5hwHlX_H7qYnA2tmEszu5uNufFPGV7j4Ufi2mwY06XxboYfMZo8xyxiPjg8fETOeztkPDzyz0hv66-_dzclLc_rr9v1rel41rkspWS2UYJsKJzFnXNaA0WZd8yrbVFik0PgjvVU8q04i1ScLg8TJWQrFP8hJzte6cY_syYstn55HBYPsMwJ8MYo02jpf4PFLgUApQUC_rlBZ3bHXZmin5n45N5XWgBLveAiyGliL1xPtvsw5ij9YMBap51mK3Z6zDPOgyAWXQs4fpN-LX_H7Gv-xguey4bR5Ocx9Fh5yO6bLrg3y_4C0ejpBg
CitedBy_id crossref_primary_10_36906_2311_4444_25_1_08
crossref_primary_10_1016_j_jenvman_2023_119058
crossref_primary_10_1016_j_jhazmat_2022_129963
crossref_primary_10_1016_j_chemosphere_2020_125932
crossref_primary_10_1039_D4EM00548A
crossref_primary_10_3390_ijerph18168794
crossref_primary_10_1007_s10668_024_04848_3
crossref_primary_10_1088_1755_1315_1110_1_012037
crossref_primary_10_3390_s20123362
crossref_primary_10_1016_j_catena_2021_105270
crossref_primary_10_1016_j_ibiod_2019_104808
crossref_primary_10_1016_j_matpr_2020_12_921
crossref_primary_10_1007_s13369_024_09389_5
crossref_primary_10_3390_ma16103738
crossref_primary_10_3390_molecules27030897
crossref_primary_10_3390_life12111712
crossref_primary_10_1016_j_cej_2021_133600
crossref_primary_10_1016_j_ecoenv_2020_110410
crossref_primary_10_1016_j_jhazmat_2021_126592
crossref_primary_10_1080_15226514_2022_2104808
crossref_primary_10_1016_j_envpol_2020_114950
crossref_primary_10_2166_wst_2024_362
crossref_primary_10_3390_app11146305
crossref_primary_10_1080_15226514_2024_2389563
crossref_primary_10_1016_j_jece_2024_113672
crossref_primary_10_1007_s11356_021_16571_x
crossref_primary_10_1016_j_jenvman_2023_118475
crossref_primary_10_3390_plants13020298
crossref_primary_10_1016_j_scitotenv_2023_161808
crossref_primary_10_1016_j_rineng_2024_102378
crossref_primary_10_1016_j_jenvman_2024_123587
crossref_primary_10_1016_j_scitotenv_2024_176189
crossref_primary_10_3389_fmicb_2020_621581
crossref_primary_10_3390_agronomy13030812
crossref_primary_10_1186_s43141_022_00412_6
crossref_primary_10_12677_aep_2025_153037
crossref_primary_10_1016_j_scitotenv_2020_140104
crossref_primary_10_1007_s11270_020_04914_2
crossref_primary_10_12688_openresafrica_13383_1
crossref_primary_10_3390_ijerph16142474
crossref_primary_10_3390_ijms22179557
crossref_primary_10_1590_1678_4324_2024230728
crossref_primary_10_1039_D4EM00096J
crossref_primary_10_1186_s12870_024_05709_x
Cites_doi 10.1021/es048136a
10.1016/j.scitotenv.2014.01.023
10.1080/15226514.2011.568533
10.1021/es9809758
10.1080/15226514.2017.1393386
10.1080/15226514.2010.495144
10.1093/jxb/eri295
10.1007/s00128-016-1990-5
10.1016/j.envpol.2008.01.004
10.1016/S0269-7491(99)00107-4
10.1021/es025795j
10.1006/eesa.2002.2181
10.1016/j.ecoleng.2014.11.007
10.1002/etc.2285
10.1002/etc.3992
10.1016/S0734-9750(03)00055-7
10.1002/jctb.3773
10.1086/335891
10.1016/j.marpolbul.2016.09.012
10.1016/0025-326X(85)90447-3
10.1007/s11270-009-0190-x
10.1046/j.1351-0754.2003.0564.x
10.1002/ps.2780130506
10.1016/j.jhazmat.2017.12.012
10.1021/ef200128m
10.1016/j.ecoleng.2016.03.041
10.2134/jeq2002.1649
10.1080/15226510008500046
10.1016/0147-6513(86)90066-7
10.1016/0013-9327(70)90004-2
10.4172/2471-2698.1000105
10.1016/j.ibiod.2014.11.019
10.1016/S0048-9697(00)00669-0
10.1080/00207233.2013.771503
10.1016/j.envpol.2007.11.008
10.1016/S0960-8524(02)00055-X
10.1016/j.fuel.2005.05.021
10.1007/s11270-014-2033-7
10.1093/aob/mct008
10.3389/fmicb.2016.01836
10.1007/s10661-006-9546-5
10.1080/15226510802656326
10.1016/0045-6535(88)90142-7
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2018.11.012
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
EndPage 484
ExternalDocumentID 30458377
10_1016_j_envpol_2018_11_012
S0269749118326952
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-b662a8751a5dcae942041ae6fb2999ae0e8f153c7f002973be01ce04307562d73
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Fri Jul 11 03:22:52 EDT 2025
Thu Jul 10 22:52:32 EDT 2025
Wed Feb 19 02:36:35 EST 2025
Tue Jul 01 03:14:40 EDT 2025
Thu Apr 24 23:05:53 EDT 2025
Fri Feb 23 02:21:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Petroleum hydrocarbons
PHC
Plant uptake
Risk assessment
Phytoremediation
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-b662a8751a5dcae942041ae6fb2999ae0e8f153c7f002973be01ce04307562d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 30458377
PQID 2136551765
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2220889697
proquest_miscellaneous_2136551765
pubmed_primary_30458377
crossref_citationtrail_10_1016_j_envpol_2018_11_012
crossref_primary_10_1016_j_envpol_2018_11_012
elsevier_sciencedirect_doi_10_1016_j_envpol_2018_11_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
2019-Feb
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Campos, Souto, Medeiros, Toledo, Sayeg, Ramos, Shinzato (bib12) 2014; 225
Kvenvolden (bib28) 2006
Nisa, Rashid (bib37) 2015; 47
Lodish, Berk, Zipursky, Matsudaira, Baltimore, Darnell (bib30) 2000
NRC (bib38) 2005
Zhu, Zhang (bib57) 2008; 156
Al-Baldawi, Abdullah, Anuar, Suja, Mushrifah (bib2) 2015; 74
Balasubramaniyam (bib8) 2015; 01
Rao, Afzal, Malallah, Kurian, Gulshan (bib43) 2007; 132
Baker (bib6) 1970; 1
Naidoo, Naidoo (bib35) 2016; 113
Basumatary, Saikia, Bordoloi, Das, Sarma (bib10) 2012; 87
Hirsch, Bezdek, Wendling (bib25) 2005; 91
Chen, Zhao, Xu, Gao, Xu (bib13) 2011; 25
Barrett (bib9) 2013
Palmroth, Pichtel, Puhakka (bib40) 2002; 84
Weishaar, Tsao, Burken (bib52) 2009; 11
Zhang, Fan, Zhang, Grieneisen, Zhang (bib56) 2018; 346
Su, Zhu (bib48) 2008; 155
Al-Ali, Al-Aradi, Al-Khion, Al-Saad (bib59) 2016; 6
Topp, Scheunert, Attar, Korte (bib49) 1986; 11
Glick (bib23) 2003; 21
Lotfinasabasl, Gunale, Rajurkar (bib31) 2013; 2
Doucette, Shunthirasingham, Dettenmaier, Zaleski, Fantke, Arnot (bib15) 2018
Fismes, Perrin-Ganier, Empereur-Bissonnet, Morel (bib17) 2002; 31
Zhang, Fan, Yang, Du, Li, Hou (bib55) 2014; 476–477
Bakker, Casado, Koerselman, Tolls, Kollöffel (bib7) 2000; 263
Umadevi, Kumar, Bhowmik, Duraivel (bib50) 2013; 2
Fantke, Arnot, Doucette (bib16) 2016
Canadian Council of Ministers of the Environment (bib14) 2008
Ryan, Bell, Davidson, O'Connor (bib44) 1988; 17
Anyasi, Atagana (bib4) 2018; 20
Glick, Stearns (bib24) 2011; 13
Schwab, Su, Wetzel, Pekarek, Banks (bib45) 1999; 33
Lu, Zhang, Sun, Wei, Wang, Su (bib32) 2010; 209
Ndimele, Ndimele (bib36) 2013; 70
Getter, Ballou, Dahlin (bib18) 1983
Getter, Ballou, Bruce Koons (bib20) 1985; 16
Getter, Baca (bib19) 1984
Liao, Xu, Lu, Deng, Liang, Guo, Dang (bib29) 2016; 92
Skoss (bib47) 1955; 117
Van Epps (bib51) 2006
Semple, Morriss, Paton (bib46) 2003; 54
Kelly-Hooper, Farwell, Pike, Kennedy, Wang, Grunsky, Dixon (bib26) 2013; 32
Patowary, Patowary, Devi, Kalita, Deka (bib41) 2017; 98
Briggs, Bromilow, Evans (bib11) 1982; 13
Moubasher, Hegazy, Mohamed, Moustafa, Kabiel, Hamad (bib34) 2015; 98
Ma, Burken (bib33) 2002; 36
Agency for Toxic Substances and Disease Registry (ATSDR) (bib1) 1999
Zaalishvili, Sadunishvili, Scalla, Laurent, Kvesitadze (bib54) 2002; 52
Badre, Carla Goncalves, Norinaga, Gustavson, Mullins (bib5) 2006; 85
Nwaichi, Osuji, Onyeike (bib39) 2011; 13
Getter, Ballou (bib21) 1985
Radwan, Al-Awadhi, El-Nemr (bib42) 2000; 2
Albers (bib58) 2003
Alkio, Tabuchi, Wang, Colón-Carmona (bib3) 2005; 56
Gkorezis, Daghio, Franzetti, Van Hamme, Sillen, Vangronsveld (bib22) 2016
Kipopoulou, Manoli, Samara (bib27) 1999; 106
Wild, Dent, Thomas, Jones (bib53) 2005; 39
Zhu (10.1016/j.envpol.2018.11.012_bib57) 2008; 156
Glick (10.1016/j.envpol.2018.11.012_bib23) 2003; 21
Naidoo (10.1016/j.envpol.2018.11.012_bib35) 2016; 113
Hirsch (10.1016/j.envpol.2018.11.012_bib25) 2005; 91
Ndimele (10.1016/j.envpol.2018.11.012_bib36) 2013; 70
Lu (10.1016/j.envpol.2018.11.012_bib32) 2010; 209
Getter (10.1016/j.envpol.2018.11.012_bib21) 1985
Albers (10.1016/j.envpol.2018.11.012_bib58) 2003
Al-Baldawi (10.1016/j.envpol.2018.11.012_bib2) 2015; 74
Lotfinasabasl (10.1016/j.envpol.2018.11.012_bib31) 2013; 2
Bakker (10.1016/j.envpol.2018.11.012_bib7) 2000; 263
Van Epps (10.1016/j.envpol.2018.11.012_bib51) 2006
Kipopoulou (10.1016/j.envpol.2018.11.012_bib27) 1999; 106
NRC (10.1016/j.envpol.2018.11.012_bib38) 2005
Nisa (10.1016/j.envpol.2018.11.012_bib37) 2015; 47
Semple (10.1016/j.envpol.2018.11.012_bib46) 2003; 54
Getter (10.1016/j.envpol.2018.11.012_bib18) 1983
Palmroth (10.1016/j.envpol.2018.11.012_bib40) 2002; 84
Fantke (10.1016/j.envpol.2018.11.012_bib16) 2016
Chen (10.1016/j.envpol.2018.11.012_bib13) 2011; 25
Zhang (10.1016/j.envpol.2018.11.012_bib56) 2018; 346
Schwab (10.1016/j.envpol.2018.11.012_bib45) 1999; 33
Zaalishvili (10.1016/j.envpol.2018.11.012_bib54) 2002; 52
Balasubramaniyam (10.1016/j.envpol.2018.11.012_bib8) 2015; 01
Badre (10.1016/j.envpol.2018.11.012_bib5) 2006; 85
Alkio (10.1016/j.envpol.2018.11.012_bib3) 2005; 56
Gkorezis (10.1016/j.envpol.2018.11.012_bib22) 2016
Al-Ali (10.1016/j.envpol.2018.11.012_bib59) 2016; 6
Umadevi (10.1016/j.envpol.2018.11.012_bib50) 2013; 2
Zhang (10.1016/j.envpol.2018.11.012_bib55) 2014; 476–477
Weishaar (10.1016/j.envpol.2018.11.012_bib52) 2009; 11
Baker (10.1016/j.envpol.2018.11.012_bib6) 1970; 1
Briggs (10.1016/j.envpol.2018.11.012_bib11) 1982; 13
Anyasi (10.1016/j.envpol.2018.11.012_bib4) 2018; 20
Topp (10.1016/j.envpol.2018.11.012_bib49) 1986; 11
Getter (10.1016/j.envpol.2018.11.012_bib20) 1985; 16
Kelly-Hooper (10.1016/j.envpol.2018.11.012_bib26) 2013; 32
Glick (10.1016/j.envpol.2018.11.012_bib24) 2011; 13
Radwan (10.1016/j.envpol.2018.11.012_bib42) 2000; 2
Wild (10.1016/j.envpol.2018.11.012_bib53) 2005; 39
Fismes (10.1016/j.envpol.2018.11.012_bib17) 2002; 31
Moubasher (10.1016/j.envpol.2018.11.012_bib34) 2015; 98
Nwaichi (10.1016/j.envpol.2018.11.012_bib39) 2011; 13
Rao (10.1016/j.envpol.2018.11.012_bib43) 2007; 132
Ryan (10.1016/j.envpol.2018.11.012_bib44) 1988; 17
Agency for Toxic Substances and Disease Registry (ATSDR) (10.1016/j.envpol.2018.11.012_bib1) 1999
Su (10.1016/j.envpol.2018.11.012_bib48) 2008; 155
Liao (10.1016/j.envpol.2018.11.012_bib29) 2016; 92
Getter (10.1016/j.envpol.2018.11.012_bib19) 1984
Doucette (10.1016/j.envpol.2018.11.012_bib15) 2018
Lodish (10.1016/j.envpol.2018.11.012_bib30) 2000
Patowary (10.1016/j.envpol.2018.11.012_bib41) 2017; 98
Canadian Council of Ministers of the Environment (10.1016/j.envpol.2018.11.012_bib14) 2008
Skoss (10.1016/j.envpol.2018.11.012_bib47) 1955; 117
Campos (10.1016/j.envpol.2018.11.012_bib12) 2014; 225
Kvenvolden (10.1016/j.envpol.2018.11.012_bib28) 2006
Ma (10.1016/j.envpol.2018.11.012_bib33) 2002; 36
Barrett (10.1016/j.envpol.2018.11.012_bib9) 2013
Basumatary (10.1016/j.envpol.2018.11.012_bib10) 2012; 87
References_xml – start-page: 1
  year: 2008
  end-page: 383
  ident: bib14
  article-title: Canada-wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale, Supporting Technical Document. PN 1399
– volume: 70
  start-page: 241
  year: 2013
  end-page: 258
  ident: bib36
  article-title: Comparative effects of biostimulation and phytoremediation on crude oil degradation and absorption by water hyacinth (Eichhornia crassipes [Mart.] Solms)
  publication-title: Int. J. Environ. Stud.
– volume: 87
  start-page: 1329
  year: 2012
  end-page: 1334
  ident: bib10
  article-title: Assessment of potential plant species for phytoremediation of hydrocarbon-contaminated areas of upper Assam, India
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 225
  year: 2014
  ident: bib12
  article-title: Assessment of the removal capacity, tolerance, and anatomical adaptation of different plant species to benzene contamination
  publication-title: Water Air Soil Pollut.
– volume: 2
  start-page: 191
  year: 2013
  end-page: 200
  ident: bib50
  article-title: Traditional and medicinal use of Vetiver
  publication-title: J. Med. Plant Stud.
– volume: 36
  start-page: 4663
  year: 2002
  end-page: 4668
  ident: bib33
  article-title: VOCs fate and partitioning in vegetation: use of tree cores in groundwater analysis
  publication-title: Environ. Sci. Technol.
– volume: 98
  start-page: 113
  year: 2015
  end-page: 120
  ident: bib34
  article-title: Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 156
  start-page: 46
  year: 2008
  end-page: 52
  ident: bib57
  article-title: Effect of rhamnolipids on the uptake of PAHs by ryegrass
  publication-title: Environ. Pollut.
– volume: 11
  start-page: 509
  year: 2009
  end-page: 523
  ident: bib52
  article-title: Phytoremediation of BTEX hydrocarbons: potential impacts of diurnal groundwater fluctuation on microbial degradation
  publication-title: Int. J. Phytoremediation
– start-page: 135
  year: 2005
  end-page: 271
  ident: bib38
  article-title: Transport and fate and Toxicological effects of dispersants and dispersed oil
  publication-title: Oil Spill Dispersants: Efficacy and Effects
– volume: 25
  start-page: 2109
  year: 2011
  end-page: 2114
  ident: bib13
  article-title: Molecular size and size distribution of petroleum residue
  publication-title: Energy Fuels
– year: 2016
  ident: bib22
  article-title: The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective
  publication-title: Front. Microbiol.
– start-page: 5
  year: 1984
  end-page: 13
  ident: bib19
  article-title: A laboratory approach for determining the effect of oil on dispe∼sants and mangroves
  publication-title: Oil Spill Chemical Dispersants: Research, Experience, and Recommendations
– volume: 20
  start-page: 352
  year: 2018
  end-page: 361
  ident: bib4
  article-title: Profiling of plants at petroleum contaminated site for phytoremediation
  publication-title: Int. J. Phytoremediation
– volume: 21
  start-page: 383
  year: 2003
  end-page: 393
  ident: bib23
  article-title: Phytoremediation: synergistic use of plants and bacteria to clean up the environment
  publication-title: Biotechnol. Adv.
– year: 2006
  ident: bib51
  article-title: Phytoremediation of Petroleum Hydrocarbons
– start-page: 533
  year: 1983
  end-page: 538
  ident: bib18
  article-title: Preliminary results of laboratory testing of oil and dispersants on mangroves
  publication-title: Proc. 1983 Oil Spill Conf., API No. 4356
– volume: 113
  start-page: 193
  year: 2016
  end-page: 199
  ident: bib35
  article-title: Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza
  publication-title: Mar. Pollut. Bull.
– volume: 47
  start-page: 291
  year: 2015
  end-page: 296
  ident: bib37
  article-title: Potential of vetiver (Vetiveria Zizanioides L.) grass in removing selected pahs from diesel contaminated soil
  publication-title: Pakistan J. Bot.
– year: 2013
  ident: bib9
  article-title: Ecological importance of sedges: a survey of the Australasian Cyperaceae genus Lepidosperma
  publication-title: Ann. Bot.
– volume: 16
  start-page: 318
  year: 1985
  end-page: 324
  ident: bib20
  article-title: Effects of dispersed oil on mangroves synthesis of a seven-year study
  publication-title: Mar. Pollut. Bull.
– volume: 39
  start-page: 3695
  year: 2005
  end-page: 3702
  ident: bib53
  article-title: Direct observation of organic contaminant uptake, storage, and metabolism within plant roots
  publication-title: Environ. Sci. Technol.
– year: 1999
  ident: bib1
  article-title: Toxicological profile for total petroleum hydrocarbons (TPH)
  publication-title: Toxicol. Profile Total Pet. Hydrocarb. (TPH)
– volume: 85
  start-page: 1
  year: 2006
  end-page: 11
  ident: bib5
  article-title: Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen
  publication-title: Fuel
– volume: 54
  start-page: 809
  year: 2003
  end-page: 818
  ident: bib46
  article-title: Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis
  publication-title: Eur. J. Soil Sci.
– volume: 263
  start-page: 91
  year: 2000
  end-page: 100
  ident: bib7
  article-title: Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery
  publication-title: Sci. Total Environ.
– volume: 106
  start-page: 369
  year: 1999
  end-page: 380
  ident: bib27
  article-title: Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area
  publication-title: Environ. Pollut.
– volume: 11
  start-page: 219
  year: 1986
  end-page: 228
  ident: bib49
  article-title: Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 346
  start-page: 10
  year: 2018
  end-page: 18
  ident: bib56
  article-title: Aliphatic hydrocarbons recovered in vegetables from soils based on their in-situ distribution in various soil humus fractions using a successive extraction method
  publication-title: J. Hazard Mater.
– volume: 1
  start-page: 27
  year: 1970
  end-page: 44
  ident: bib6
  article-title: The effects of oils on plants
  publication-title: Environ. Pollut.
– volume: 01
  year: 2015
  ident: bib8
  article-title: The influence of plants in the remediation of petroleum hydrocarbon- contaminated sites
  publication-title: Pharm. Anal. Chem. Open Access
– volume: 209
  start-page: 181
  year: 2010
  end-page: 189
  ident: bib32
  article-title: The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum
  publication-title: Water Air Soil Pollut.
– volume: 92
  start-page: 10
  year: 2016
  end-page: 17
  ident: bib29
  article-title: Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L)
  publication-title: Ecol. Eng.
– volume: 33
  start-page: 1940
  year: 1999
  end-page: 1945
  ident: bib45
  article-title: Extraction of petroleum hydrocarbons from soil by mechanical shaking
  publication-title: Environ. Sci. Technol.
– volume: 2
  start-page: 383
  year: 2000
  end-page: 396
  ident: bib42
  article-title: Cropping as a phytoremediation practice for oily desert soil with reference to crop safety as food
  publication-title: Int. J. Phytoremediation
– volume: 32
  start-page: 2197
  year: 2013
  end-page: 2206
  ident: bib26
  article-title: Is it clean or contaminated soil? Using petrogenic versus biogenic GC-FID chromatogram patterns to mathematically resolve false petroleum hydrocarbon detections in clean organic soils: a crude oil-spiked peat microcosm experiment
  publication-title: Environ. Toxicol. Chem.
– volume: 476–477
  start-page: 258
  year: 2014
  end-page: 265
  ident: bib55
  article-title: Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set
  publication-title: Sci. Total Environ.
– year: 2000
  ident: bib30
  article-title: Molecular Cell Biology
– volume: 52
  start-page: 190
  year: 2002
  end-page: 197
  ident: bib54
  article-title: Electron microscopic investigation of nitrobenzene distribution and effect on plant root tip cells ultrastructure
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 17
  start-page: 2299
  year: 1988
  end-page: 2323
  ident: bib44
  article-title: Plant uptake of non-ionic organic chemicals from soils
  publication-title: Chemosphere
– volume: 6
  start-page: 55
  year: 2016
  end-page: 64
  ident: bib59
  article-title: Petroleum hydrocarbons in water, soil and tomato plant (
  publication-title: J. Biol. Agric. Healthc.
– volume: 13
  start-page: 373
  year: 2011
  end-page: 382
  ident: bib39
  article-title: Evaluation and decontamination of crude Oil-Polluted Soils using centrosema pubescen benth and Amendment-support Options
  publication-title: Int. J. Phytoremediation
– volume: 155
  start-page: 359
  year: 2008
  end-page: 365
  ident: bib48
  article-title: Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution
  publication-title: Environ. Pollut.
– volume: 98
  start-page: 120
  year: 2017
  end-page: 126
  ident: bib41
  article-title: Uptake of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) by Oryza sativa L. Grown in soil contaminated with crude oil
  publication-title: Bull. Environ. Contam. Toxicol.
– start-page: 1
  year: 2006
  end-page: 11
  ident: bib28
  article-title: Organic geochemistry - a retrospective of its first 70 years
  publication-title: Organic Geochemistry
– year: 1985
  ident: bib21
  article-title: Field Experiments on the Effects of Oil and Dispersant on Mangroves
– volume: 56
  start-page: 2983
  year: 2005
  end-page: 2994
  ident: bib3
  article-title: Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms
  publication-title: J. Exp. Bot.
– volume: 13
  start-page: 4
  year: 2011
  end-page: 16
  ident: bib24
  article-title: Making phytoremediation work better: maximizing a plant's growth potential in the midst of adversity
  publication-title: Int. J. Phytoremediation
– volume: 74
  start-page: 463
  year: 2015
  end-page: 473
  ident: bib2
  article-title: Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus
  publication-title: Ecol. Eng.
– volume: 31
  start-page: 1649
  year: 2002
  ident: bib17
  article-title: Soil-to-Root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils
  publication-title: J. Environ. Qual.
– volume: 91
  year: 2005
  ident: bib25
  article-title: Peaking of world oil production: impacts, mitigation, & risk management
  publication-title: Driv. Clim. Chang.
– year: 2018
  ident: bib15
  article-title: A review of measured bioaccumulation data on terrestrial plants for organic chemicals: metrics, variability, and the need for standardized measurement protocols
  publication-title: Environ. Toxicol. Chem.
– volume: 117
  start-page: 55
  year: 1955
  end-page: 72
  ident: bib47
  article-title: Structure and composition of plant cuticle in relation to environmental factors and structure and composition of plant cuticle in relation to environmental factors
  publication-title: Source Bot. Gaz.
– volume: 13
  start-page: 495
  year: 1982
  end-page: 504
  ident: bib11
  article-title: Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley
  publication-title: Pestic. Sci.
– volume: 132
  start-page: 439
  year: 2007
  end-page: 443
  ident: bib43
  article-title: Hydrocarbon uptake by roots of Vicia faba (fabaceae)
  publication-title: Environ. Monit. Assess.
– volume: 2
  start-page: 1
  year: 2013
  end-page: 7
  ident: bib31
  article-title: Petroleum hydrocarbons pollution in soil and its bioaccumulation in mangrove species, Avicennia marina from alibaug mangrove ecosystem, Maharashtra, India *
  publication-title: Int. J. Adv. Res. Technol.
– year: 2016
  ident: bib16
  article-title: Improving plant bioaccumulation science through consistent reporting of experimental data
  publication-title: J. Environ. Manag.
– start-page: 341
  year: 2003
  end-page: 371
  ident: bib58
  article-title: Petroleum and individual polycyclic aromatic hydrocarbons
  publication-title: Handbook of Ecotoxicology
– volume: 84
  start-page: 221
  year: 2002
  end-page: 228
  ident: bib40
  article-title: Phytoremediation of subarctic soil contaminated with diesel fuel
  publication-title: Bioresour. Technol.
– volume: 39
  start-page: 3695
  year: 2005
  ident: 10.1016/j.envpol.2018.11.012_bib53
  article-title: Direct observation of organic contaminant uptake, storage, and metabolism within plant roots
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048136a
– volume: 476–477
  start-page: 258
  year: 2014
  ident: 10.1016/j.envpol.2018.11.012_bib55
  article-title: Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.01.023
– start-page: 135
  year: 2005
  ident: 10.1016/j.envpol.2018.11.012_bib38
  article-title: Transport and fate and Toxicological effects of dispersants and dispersed oil
– year: 2016
  ident: 10.1016/j.envpol.2018.11.012_bib16
  article-title: Improving plant bioaccumulation science through consistent reporting of experimental data
  publication-title: J. Environ. Manag.
– volume: 13
  start-page: 4
  year: 2011
  ident: 10.1016/j.envpol.2018.11.012_bib24
  article-title: Making phytoremediation work better: maximizing a plant's growth potential in the midst of adversity
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2011.568533
– volume: 33
  start-page: 1940
  year: 1999
  ident: 10.1016/j.envpol.2018.11.012_bib45
  article-title: Extraction of petroleum hydrocarbons from soil by mechanical shaking
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9809758
– volume: 20
  start-page: 352
  year: 2018
  ident: 10.1016/j.envpol.2018.11.012_bib4
  article-title: Profiling of plants at petroleum contaminated site for phytoremediation
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2017.1393386
– volume: 13
  start-page: 373
  year: 2011
  ident: 10.1016/j.envpol.2018.11.012_bib39
  article-title: Evaluation and decontamination of crude Oil-Polluted Soils using centrosema pubescen benth and Amendment-support Options
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2010.495144
– volume: 56
  start-page: 2983
  year: 2005
  ident: 10.1016/j.envpol.2018.11.012_bib3
  article-title: Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri295
– start-page: 1
  year: 2006
  ident: 10.1016/j.envpol.2018.11.012_bib28
  article-title: Organic geochemistry - a retrospective of its first 70 years
– start-page: 533
  year: 1983
  ident: 10.1016/j.envpol.2018.11.012_bib18
  article-title: Preliminary results of laboratory testing of oil and dispersants on mangroves
– year: 1985
  ident: 10.1016/j.envpol.2018.11.012_bib21
– volume: 98
  start-page: 120
  year: 2017
  ident: 10.1016/j.envpol.2018.11.012_bib41
  article-title: Uptake of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) by Oryza sativa L. Grown in soil contaminated with crude oil
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s00128-016-1990-5
– volume: 156
  start-page: 46
  year: 2008
  ident: 10.1016/j.envpol.2018.11.012_bib57
  article-title: Effect of rhamnolipids on the uptake of PAHs by ryegrass
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.01.004
– volume: 106
  start-page: 369
  year: 1999
  ident: 10.1016/j.envpol.2018.11.012_bib27
  article-title: Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(99)00107-4
– volume: 36
  start-page: 4663
  year: 2002
  ident: 10.1016/j.envpol.2018.11.012_bib33
  article-title: VOCs fate and partitioning in vegetation: use of tree cores in groundwater analysis
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es025795j
– volume: 2
  start-page: 191
  year: 2013
  ident: 10.1016/j.envpol.2018.11.012_bib50
  article-title: Traditional and medicinal use of Vetiver
  publication-title: J. Med. Plant Stud.
– volume: 52
  start-page: 190
  year: 2002
  ident: 10.1016/j.envpol.2018.11.012_bib54
  article-title: Electron microscopic investigation of nitrobenzene distribution and effect on plant root tip cells ultrastructure
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1006/eesa.2002.2181
– start-page: 5
  year: 1984
  ident: 10.1016/j.envpol.2018.11.012_bib19
  article-title: A laboratory approach for determining the effect of oil on dispe∼sants and mangroves
– volume: 74
  start-page: 463
  year: 2015
  ident: 10.1016/j.envpol.2018.11.012_bib2
  article-title: Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.11.007
– volume: 32
  start-page: 2197
  year: 2013
  ident: 10.1016/j.envpol.2018.11.012_bib26
  article-title: Is it clean or contaminated soil? Using petrogenic versus biogenic GC-FID chromatogram patterns to mathematically resolve false petroleum hydrocarbon detections in clean organic soils: a crude oil-spiked peat microcosm experiment
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.2285
– start-page: 341
  year: 2003
  ident: 10.1016/j.envpol.2018.11.012_bib58
  article-title: Petroleum and individual polycyclic aromatic hydrocarbons
– volume: 91
  year: 2005
  ident: 10.1016/j.envpol.2018.11.012_bib25
  article-title: Peaking of world oil production: impacts, mitigation, & risk management
  publication-title: Driv. Clim. Chang.
– year: 2018
  ident: 10.1016/j.envpol.2018.11.012_bib15
  article-title: A review of measured bioaccumulation data on terrestrial plants for organic chemicals: metrics, variability, and the need for standardized measurement protocols
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.3992
– volume: 21
  start-page: 383
  year: 2003
  ident: 10.1016/j.envpol.2018.11.012_bib23
  article-title: Phytoremediation: synergistic use of plants and bacteria to clean up the environment
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(03)00055-7
– volume: 87
  start-page: 1329
  year: 2012
  ident: 10.1016/j.envpol.2018.11.012_bib10
  article-title: Assessment of potential plant species for phytoremediation of hydrocarbon-contaminated areas of upper Assam, India
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.3773
– volume: 117
  start-page: 55
  year: 1955
  ident: 10.1016/j.envpol.2018.11.012_bib47
  article-title: Structure and composition of plant cuticle in relation to environmental factors and structure and composition of plant cuticle in relation to environmental factors
  publication-title: Source Bot. Gaz.
  doi: 10.1086/335891
– volume: 113
  start-page: 193
  year: 2016
  ident: 10.1016/j.envpol.2018.11.012_bib35
  article-title: Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.09.012
– volume: 6
  start-page: 55
  year: 2016
  ident: 10.1016/j.envpol.2018.11.012_bib59
  article-title: Petroleum hydrocarbons in water, soil and tomato plant (Lycopersican esculentum L.) at Basra City, Iraq
  publication-title: J. Biol. Agric. Healthc.
– volume: 16
  start-page: 318
  year: 1985
  ident: 10.1016/j.envpol.2018.11.012_bib20
  article-title: Effects of dispersed oil on mangroves synthesis of a seven-year study
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/0025-326X(85)90447-3
– volume: 209
  start-page: 181
  year: 2010
  ident: 10.1016/j.envpol.2018.11.012_bib32
  article-title: The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-009-0190-x
– volume: 54
  start-page: 809
  year: 2003
  ident: 10.1016/j.envpol.2018.11.012_bib46
  article-title: Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1351-0754.2003.0564.x
– volume: 13
  start-page: 495
  year: 1982
  ident: 10.1016/j.envpol.2018.11.012_bib11
  article-title: Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley
  publication-title: Pestic. Sci.
  doi: 10.1002/ps.2780130506
– volume: 346
  start-page: 10
  year: 2018
  ident: 10.1016/j.envpol.2018.11.012_bib56
  article-title: Aliphatic hydrocarbons recovered in vegetables from soils based on their in-situ distribution in various soil humus fractions using a successive extraction method
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2017.12.012
– year: 2006
  ident: 10.1016/j.envpol.2018.11.012_bib51
– volume: 25
  start-page: 2109
  year: 2011
  ident: 10.1016/j.envpol.2018.11.012_bib13
  article-title: Molecular size and size distribution of petroleum residue
  publication-title: Energy Fuels
  doi: 10.1021/ef200128m
– volume: 92
  start-page: 10
  year: 2016
  ident: 10.1016/j.envpol.2018.11.012_bib29
  article-title: Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L)
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2016.03.041
– volume: 31
  start-page: 1649
  year: 2002
  ident: 10.1016/j.envpol.2018.11.012_bib17
  article-title: Soil-to-Root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2002.1649
– volume: 2
  start-page: 383
  year: 2000
  ident: 10.1016/j.envpol.2018.11.012_bib42
  article-title: Cropping as a phytoremediation practice for oily desert soil with reference to crop safety as food
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226510008500046
– volume: 11
  start-page: 219
  year: 1986
  ident: 10.1016/j.envpol.2018.11.012_bib49
  article-title: Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/0147-6513(86)90066-7
– volume: 1
  start-page: 27
  year: 1970
  ident: 10.1016/j.envpol.2018.11.012_bib6
  article-title: The effects of oils on plants
  publication-title: Environ. Pollut.
  doi: 10.1016/0013-9327(70)90004-2
– volume: 01
  year: 2015
  ident: 10.1016/j.envpol.2018.11.012_bib8
  article-title: The influence of plants in the remediation of petroleum hydrocarbon- contaminated sites
  publication-title: Pharm. Anal. Chem. Open Access
  doi: 10.4172/2471-2698.1000105
– volume: 98
  start-page: 113
  year: 2015
  ident: 10.1016/j.envpol.2018.11.012_bib34
  article-title: Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2014.11.019
– volume: 263
  start-page: 91
  year: 2000
  ident: 10.1016/j.envpol.2018.11.012_bib7
  article-title: Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(00)00669-0
– start-page: 1
  year: 2008
  ident: 10.1016/j.envpol.2018.11.012_bib14
– volume: 70
  start-page: 241
  year: 2013
  ident: 10.1016/j.envpol.2018.11.012_bib36
  article-title: Comparative effects of biostimulation and phytoremediation on crude oil degradation and absorption by water hyacinth (Eichhornia crassipes [Mart.] Solms)
  publication-title: Int. J. Environ. Stud.
  doi: 10.1080/00207233.2013.771503
– volume: 155
  start-page: 359
  year: 2008
  ident: 10.1016/j.envpol.2018.11.012_bib48
  article-title: Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.11.008
– year: 2000
  ident: 10.1016/j.envpol.2018.11.012_bib30
– volume: 47
  start-page: 291
  year: 2015
  ident: 10.1016/j.envpol.2018.11.012_bib37
  article-title: Potential of vetiver (Vetiveria Zizanioides L.) grass in removing selected pahs from diesel contaminated soil
  publication-title: Pakistan J. Bot.
– volume: 2
  start-page: 1
  year: 2013
  ident: 10.1016/j.envpol.2018.11.012_bib31
  article-title: Petroleum hydrocarbons pollution in soil and its bioaccumulation in mangrove species, Avicennia marina from alibaug mangrove ecosystem, Maharashtra, India *
  publication-title: Int. J. Adv. Res. Technol.
– volume: 84
  start-page: 221
  year: 2002
  ident: 10.1016/j.envpol.2018.11.012_bib40
  article-title: Phytoremediation of subarctic soil contaminated with diesel fuel
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(02)00055-X
– year: 1999
  ident: 10.1016/j.envpol.2018.11.012_bib1
  article-title: Toxicological profile for total petroleum hydrocarbons (TPH)
– volume: 85
  start-page: 1
  year: 2006
  ident: 10.1016/j.envpol.2018.11.012_bib5
  article-title: Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen
  publication-title: Fuel
  doi: 10.1016/j.fuel.2005.05.021
– volume: 225
  year: 2014
  ident: 10.1016/j.envpol.2018.11.012_bib12
  article-title: Assessment of the removal capacity, tolerance, and anatomical adaptation of different plant species to benzene contamination
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-014-2033-7
– year: 2013
  ident: 10.1016/j.envpol.2018.11.012_bib9
  article-title: Ecological importance of sedges: a survey of the Australasian Cyperaceae genus Lepidosperma
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mct008
– year: 2016
  ident: 10.1016/j.envpol.2018.11.012_bib22
  article-title: The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01836
– volume: 132
  start-page: 439
  year: 2007
  ident: 10.1016/j.envpol.2018.11.012_bib43
  article-title: Hydrocarbon uptake by roots of Vicia faba (fabaceae)
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-006-9546-5
– volume: 11
  start-page: 509
  year: 2009
  ident: 10.1016/j.envpol.2018.11.012_bib52
  article-title: Phytoremediation of BTEX hydrocarbons: potential impacts of diurnal groundwater fluctuation on microbial degradation
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226510802656326
– volume: 17
  start-page: 2299
  year: 1988
  ident: 10.1016/j.envpol.2018.11.012_bib44
  article-title: Plant uptake of non-ionic organic chemicals from soils
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(88)90142-7
SSID ssj0004333
Score 2.5072477
SecondaryResourceType review_article
Snippet Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 472
SubjectTerms adverse effects
birds
exposure pathways
food plants
guidelines
health effects assessments
herbivores
human health
humans
omnivores
petroleum
Petroleum hydrocarbons
PHC
Phytoremediation
plant tissues
Plant uptake
polluted soils
receptors
risk
Risk assessment
risk assessment process
trophic levels
wildlife
Title Petroleum hydrocarbon (PHC) uptake in plants: A literature review
URI https://dx.doi.org/10.1016/j.envpol.2018.11.012
https://www.ncbi.nlm.nih.gov/pubmed/30458377
https://www.proquest.com/docview/2136551765
https://www.proquest.com/docview/2220889697
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V7QUOiG4pLJTKSAjBwd04seMNt2jVagFRIUGl3iw7mYiFbRK1u0i98Ns7jpMtHEoljonsyPKM5yN-8wbgdYIikU5arlQsuXQu5k5UyEvyDUWUFZHumJg-n6bzM_nxXJ1vwWyohfGwyt72B5veWev-zaTfzUm7WEy-UvZAwTAdVlLKNFPeDkupvZYf_b6FecgktJOnIdyPHsrnOowX1r_axl9AiOmR5_IU8V3u6a7ws3NDJ4_hUR8_sjwscRe2sB7BXl5T7nxxzd6wDtHZ_SofwcM_yAZHsH98W9NGX-gP9dUe5L6rVrPE9QX7fl2SQ7OXrqnZ2y_z2Tu2blf2J7JFzdqlh8y8ZzlbbqiYWah8eQJnJ8ffZnPed1bgRZKpFXdpGlvKVIRVZWExk3EkhcW0cuSdMosRTisyhYWuQnMrh5Eo0NODaYqXSp3sw3bd1PgMmEwd6qknOS3JHmDlaJMLS1ETfVCJKhlDMmyoKXracd_9YmkGfNkPE8RgvBgoIzEkhjHwzaw20G7cM14PsjJ_qY8hz3DPzFeDaA2dLH9dYmts1lcm9ghAJXSq_jEmjj1OjBRxDE-DXmzWG-6ktX7-32t7AQ_oKQsg8QPYXl2u8SXFQCt32Cn5IezkHz7NT28AVBcERg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5VA4oLK8lhbqSlVVDmbjJI43vUUrUCiwqlSQuFl24ohtlySC3Ur8-47jZKEHitRrYkeWZzyP-JtvAD4FhgWhDhXl3A9pqLVPNSsMzdE3ZF6ceaJhYrqcROl1-O2G36zAuKuFsbDK1vY7m95Y6_bJsN3NYT2dDn9g9oDBMB5WVMoo5miHVy07Fe_BanJ2nk6eyiMD11EeR1E7oauga2BepvxdV_YOgo2OLZ0n81_yUC9FoI0nOn0LG20ISRK3yk1YMWUftpIS0-e7R_KZNKDO5m95H9af8Q32YefkqawNv9Ce64ctSGxjrWpmFnfk9jFHn6budVWSL9_T8RFZ1HP1y5BpSeqZRc18JQmZLdmYiSt-2Ybr05OrcUrb5go0C2I-pzqKfIXJClM8z5SJQ98LmTJRodFBxcp4ZlSgNcxE4fpbaeOxzFiGMIEhUy6CHeiVVWn2gISRNmJkeU5zNAmm0LjJmcLACT_IWREMIOg2VGYt87htgDGTHcTsp3RikFYMmJRIFMMA6HJW7Zg3XhkvOlnJvzRIonN4ZebHTrQSD5e9MVGlqRYP0rcgQM5ExP8xxvctVAx1cQC7Ti-W63XX0kLs__faPsCb9OryQl6cTc7fwRq-iR1m_D305vcLc4Ah0Vwftir_BzueBvc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Petroleum+hydrocarbon+%28PHC%29+uptake+in+plants%3A+A+literature+review&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Hunt%2C+Lillian+J.&rft.au=Duca%2C+Daiana&rft.au=Dan%2C+Tereza&rft.au=Knopper%2C+Loren+D.&rft.date=2019-02-01&rft.pub=Elsevier+Ltd&rft.issn=0269-7491&rft.eissn=1873-6424&rft.volume=245&rft.spage=472&rft.epage=484&rft_id=info:doi/10.1016%2Fj.envpol.2018.11.012&rft.externalDocID=S0269749118326952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon