The effect of oxide layer vacancies on switching behavior in oxide resistive devices

A high on/off ratio in oxide resistive devices is preferable for use in memory storage, especially when multibit operations are possible. Here, we demonstrate the effect of vacancy density on resistance by using three different Pt-copper oxide-W devices with different vacancy densities in the oxide...

Full description

Saved in:
Bibliographic Details
Published inElectronic materials letters Vol. 10; no. 1; pp. 57 - 60
Main Authors Choi, Sang-jun, Kim, Ki-Hong, Yang, Woo-young, Lee, Hyung-IK, Cho, Soohaeng
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2014
대한금속·재료학회
Subjects
Online AccessGet full text
ISSN1738-8090
2093-6788
DOI10.1007/s13391-013-3001-x

Cover

Abstract A high on/off ratio in oxide resistive devices is preferable for use in memory storage, especially when multibit operations are possible. Here, we demonstrate the effect of vacancy density on resistance by using three different Pt-copper oxide-W devices with different vacancy densities in the oxide layer. We show that a higher vacancy density in the oxide layer can enhance the on/off resistance ratio and demonstrate the advantage of this ratio in the realization of multi-bit operation. Finally, we successfully explain the impact of the vacancy density in the oxide layer using a simple model.
AbstractList A high on/off ratio in oxide resistive devices is preferable for use in memory storage, especially when multibit operations are possible. Here, we demonstrate the effect of vacancy density on resistance by using three different Pt-copper oxide-W devices with different vacancy densities in the oxide layer. We show that a higher vacancy density in the oxide layer can enhance the on/off resistance ratio and demonstrate the advantage of this ratio in the realization of multi-bit operation. Finally, we successfully explain the impact of the vacancy density in the oxide layer using a simple model.
A high on/off ratio in oxide resistive devices is preferable for use in memory storage, especially when multibit operations are possible. Here, we demonstrate the effect of vacancy density on resistance by using three different Pt-copper oxide-W devices with different vacancy densities in the oxide layer. We show that a higher vacancy density in the oxide layer can enhance the on/off resistance ratio and demonstrate the advantage of this ratio in the realization of multi-bit operation. Finally, we successfully explain the impact of the vacancy density in the oxide layer using a simple model. KCI Citation Count: 6
Author Cho, Soohaeng
Choi, Sang-jun
Lee, Hyung-IK
Yang, Woo-young
Kim, Ki-Hong
Author_xml – sequence: 1
  givenname: Sang-jun
  surname: Choi
  fullname: Choi, Sang-jun
  organization: System LSI, Samsung Electronics Co. Ltd
– sequence: 2
  givenname: Ki-Hong
  surname: Kim
  fullname: Kim, Ki-Hong
  email: kihong21.kim@samsung.com
  organization: Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd
– sequence: 3
  givenname: Woo-young
  surname: Yang
  fullname: Yang, Woo-young
  organization: Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd
– sequence: 4
  givenname: Hyung-IK
  surname: Lee
  fullname: Lee, Hyung-IK
  organization: Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd
– sequence: 5
  givenname: Soohaeng
  surname: Cho
  fullname: Cho, Soohaeng
  email: shcho@yonsei.ac.kr
  organization: Department of Physics, Yonsei University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001845552$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMFKJDEQQIMoOKt-gLccvfRaSU130kcR3RUEQcZzSKcrM9E20aRndvz7bR1B8OCpLu9VFe8X248pEmOnAn4LAHVeBGIrKhBYIYCotntsJqHFqlFa77OZUKgrDS0cspNSHgFAoqgbxBlbLFbEyXtyI0-ep23oiQ_2jTLfWGejC1R4irz8C6NbhbjkHa3sJqTMQ_zEM5VQxrAh3tMmOCrH7MDbodDJ5zxiD9dXi8u_1e3dn5vLi9vKYVuPVSfRA8qu7r0EaT3OQZPqp2fmWvXWOgLXSdm3tezQWy1c04FtZd-QsAoVHrGz3d6YvXlywSQbPuYymadsLu4XN0bBXNbyC33J6XVNZTTPoTgaBhsprYsRjRK11tg0Eyp2qMuplEzevOTwbPObEWDee5tdbzP1Nu-9zXZy1DfHhdGOIcUx2zD8aMqdWaYrcUnZPKZ1jlO2H6T_QweXTA
CitedBy_id crossref_primary_10_1007_s13391_021_00334_4
crossref_primary_10_1007_s13391_015_5402_5
crossref_primary_10_1007_s00339_017_0936_z
crossref_primary_10_1007_s13391_015_5216_5
crossref_primary_10_1109_TED_2014_2318833
crossref_primary_10_1007_s11664_018_6146_4
Cites_doi 10.1063/1.3596809
10.1063/1.3518514
10.1063/1.3151822
10.1002/adma.200602915
10.1002/adma.200901493
10.1016/S1369-7021(08)70119-6
10.1063/1.3626816
10.1063/1.3467854
10.1103/PhysRevB.70.224403
10.1002/adfm.201102362
10.1126/science.1153909
10.1063/1.1590741
10.1007/s00339-011-6282-7
10.1063/1.1812580
ContentType Journal Article
Copyright The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014
Copyright_xml – notice: The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014
DBID AAYXX
CITATION
7SP
7SR
7TB
8BQ
8FD
FR3
H8G
JG9
L7M
ACYCR
DOI 10.1007/s13391-013-3001-x
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
Korean Citation Index
DatabaseTitle CrossRef
Materials Research Database
Copper Technical Reference Library
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-6788
EndPage 60
ExternalDocumentID oai_kci_go_kr_ARTI_704252
10_1007_s13391_013_3001_x
GroupedDBID -EM
06D
0R~
0VY
203
2KG
2VQ
30V
4.4
406
408
5GY
8UJ
96X
9ZL
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
AYJHY
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HZB
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z83
Z88
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SP
7SR
7TB
85H
8BQ
8FD
ABRTQ
FR3
H8G
JG9
L7M
AAFGU
AAPBV
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
SQXTU
ID FETCH-LOGICAL-c395t-b23f032b5df202af3408e7dffe487daace0cb22d952b3fa81c6b0a92d6e1a7373
IEDL.DBID AGYKE
ISSN 1738-8090
IngestDate Tue Nov 21 21:47:40 EST 2023
Fri Sep 05 14:37:53 EDT 2025
Thu Apr 24 23:04:38 EDT 2025
Tue Jul 01 01:04:58 EDT 2025
Fri Feb 21 02:30:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords copper oxide
multi-bit operation
vacancy
oxide resistive switching memory
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-b23f032b5df202af3408e7dffe487daace0cb22d952b3fa81c6b0a92d6e1a7373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
G704-SER000000579.2014.10.1.027
PQID 1671588366
PQPubID 23500
PageCount 4
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_704252
proquest_miscellaneous_1671588366
crossref_primary_10_1007_s13391_013_3001_x
crossref_citationtrail_10_1007_s13391_013_3001_x
springer_journals_10_1007_s13391_013_3001_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140100
2014-1-00
20140101
2014-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 1
  year: 2014
  text: 20140100
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Electronic materials letters
PublicationTitleAbbrev Electron. Mater. Lett
PublicationYear 2014
Publisher Springer Netherlands
대한금속·재료학회
Publisher_xml – name: Springer Netherlands
– name: 대한금속·재료학회
References CalkaPMartinezELafondDMinoretSTiranoSDetlefsBRoyJZegenhagenJGuedjCJ. Appl. Phys.201110912450710.1063/1.3596809
SawaAMater. Today2008112810.1016/S1369-7021(08)70119-6
ChoiS-JKimG-BLeeKKimK-HYangW-YChoSBaeH-JSeoD-SKimS-ILeeK-JAppl. Phys. A2011102101910.1007/s00339-011-6282-7
WangS-YHuangC-WLeeD-YTsengT-YChangT-CJ. Appl. Phys.201010811411010.1063/1.3518514
OdagawaASatoHInoueI HAkohHKawasakiMTokuraYKannoTAdachiHPhys. Rev. B20047022440310.1103/PhysRevB.70.224403
BaeY CLeeA RLeeJ BKooJ HKwonK CParkJ GImH SHongJ PAdv. Funct. Mater.20122270910.1002/adfm.201102362
JanouschMMeijerG IStaubUDelleyBKargS FAndreassonB PAdv. Mater.200719223210.1002/adma.200602915
BaikalovAWangY QShenBLorenzBTsuiSSunY YXueY YChuC WAppl. Phys. Lett.20038395710.1063/1.1590741
ChoiS-JParkG-SKimK-HYangW-YBaeH-JLeeK-JLeeH-IParkS YHeoSShinH-JLeeSChoSJ. Appl. Phys.201111005610610.1063/1.3626816
LiuMAbidZWangWHeXLiuQGuanWAppl. Phys. Lett.20099423310610.1063/1.3151822
ShibuyaKDittmannRMaSWaserRAdv. Mater.20102241110.1002/adma.200901493
SawaAFujiiTKawasakiMTokuraYAppl. Phys. Lett.200485407310.1063/1.1812580
JeongH YLeeJ YChoiS-YAppl. Phys. Lett.20109704210910.1063/1.3467854
MeijerG IScience2008319162510.1126/science.1153909
G I Meijer (3001_CR1) 2008; 319
A Sawa (3001_CR13) 2004; 85
P Calka (3001_CR6) 2011; 109
A Baikalov (3001_CR15) 2003; 83
K Shibuya (3001_CR7) 2010; 22
S-Y Wang (3001_CR10) 2010; 108
M Liu (3001_CR3) 2009; 94
H Y Jeong (3001_CR9) 2010; 97
S-J Choi (3001_CR11) 2011; 102
M Janousch (3001_CR5) 2007; 19
A Sawa (3001_CR2) 2008; 11
S-Y Wang (3001_CR4) 2010; 108
S-J Choi (3001_CR12) 2011; 110
Y C Bae (3001_CR8) 2012; 22
A Odagawa (3001_CR14) 2004; 70
References_xml – reference: OdagawaASatoHInoueI HAkohHKawasakiMTokuraYKannoTAdachiHPhys. Rev. B20047022440310.1103/PhysRevB.70.224403
– reference: SawaAFujiiTKawasakiMTokuraYAppl. Phys. Lett.200485407310.1063/1.1812580
– reference: JeongH YLeeJ YChoiS-YAppl. Phys. Lett.20109704210910.1063/1.3467854
– reference: BaikalovAWangY QShenBLorenzBTsuiSSunY YXueY YChuC WAppl. Phys. Lett.20038395710.1063/1.1590741
– reference: WangS-YHuangC-WLeeD-YTsengT-YChangT-CJ. Appl. Phys.201010811411010.1063/1.3518514
– reference: ShibuyaKDittmannRMaSWaserRAdv. Mater.20102241110.1002/adma.200901493
– reference: SawaAMater. Today2008112810.1016/S1369-7021(08)70119-6
– reference: MeijerG IScience2008319162510.1126/science.1153909
– reference: BaeY CLeeA RLeeJ BKooJ HKwonK CParkJ GImH SHongJ PAdv. Funct. Mater.20122270910.1002/adfm.201102362
– reference: ChoiS-JParkG-SKimK-HYangW-YBaeH-JLeeK-JLeeH-IParkS YHeoSShinH-JLeeSChoSJ. Appl. Phys.201111005610610.1063/1.3626816
– reference: ChoiS-JKimG-BLeeKKimK-HYangW-YChoSBaeH-JSeoD-SKimS-ILeeK-JAppl. Phys. A2011102101910.1007/s00339-011-6282-7
– reference: JanouschMMeijerG IStaubUDelleyBKargS FAndreassonB PAdv. Mater.200719223210.1002/adma.200602915
– reference: LiuMAbidZWangWHeXLiuQGuanWAppl. Phys. Lett.20099423310610.1063/1.3151822
– reference: CalkaPMartinezELafondDMinoretSTiranoSDetlefsBRoyJZegenhagenJGuedjCJ. Appl. Phys.201110912450710.1063/1.3596809
– volume: 109
  start-page: 124507
  year: 2011
  ident: 3001_CR6
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3596809
– volume: 108
  start-page: 114110
  year: 2010
  ident: 3001_CR10
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3518514
– volume: 94
  start-page: 233106
  year: 2009
  ident: 3001_CR3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3151822
– volume: 19
  start-page: 2232
  year: 2007
  ident: 3001_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602915
– volume: 22
  start-page: 411
  year: 2010
  ident: 3001_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901493
– volume: 108
  start-page: 114110
  year: 2010
  ident: 3001_CR4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3518514
– volume: 11
  start-page: 28
  year: 2008
  ident: 3001_CR2
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(08)70119-6
– volume: 110
  start-page: 056106
  year: 2011
  ident: 3001_CR12
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3626816
– volume: 97
  start-page: 042109
  year: 2010
  ident: 3001_CR9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3467854
– volume: 70
  start-page: 224403
  year: 2004
  ident: 3001_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.224403
– volume: 22
  start-page: 709
  year: 2012
  ident: 3001_CR8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102362
– volume: 319
  start-page: 1625
  year: 2008
  ident: 3001_CR1
  publication-title: Science
  doi: 10.1126/science.1153909
– volume: 83
  start-page: 957
  year: 2003
  ident: 3001_CR15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1590741
– volume: 102
  start-page: 1019
  year: 2011
  ident: 3001_CR11
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-011-6282-7
– volume: 85
  start-page: 4073
  year: 2004
  ident: 3001_CR13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1812580
SSID ssj0002315633
ssib031263255
Score 1.961153
Snippet A high on/off ratio in oxide resistive devices is preferable for use in memory storage, especially when multibit operations are possible. Here, we demonstrate...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms Characterization and Evaluation of Materials
Chemistry and Materials Science
Condensed Matter Physics
COPPER OXIDE
Density
Devices
ELECTRICAL CONDUCTIVITY
Electronic materials
ELECTRONIC PRODUCTS
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Optical and Electronic Materials
OXIDES
Platinum
Switching
VACANCIES
전자/정보통신공학
Title The effect of oxide layer vacancies on switching behavior in oxide resistive devices
URI https://link.springer.com/article/10.1007/s13391-013-3001-x
https://www.proquest.com/docview/1671588366
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001845552
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Electronic Materials Letters, 2014, 10(1), , pp.57-60
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbKcmkPUPpQl5dcqadWQX7kYR9XCEqp2tOuRE-Wn9V2UYI2WUD8esZ58FJbiVMuk1j2jMffZGY-I_QpFNqn1pCEWIhN0jS4RPBAEkD2VkjjZB5iN_KPn_nJLD09y876Pu56qHYfUpKtp75vduM8VulQnvBYBwTAcT2jQooRWp98_fX9aDAjTiMHed9u-adldIEgpb1UnhawvQWRd_nNv3330Qm1Vi7DI_D5JF_aHkPHm2g6TKCrPlkcrBpzYG-ecDs-c4av0UYPS_Gks6Mt9MKXb9CrB2SFb9EULAp35R-4Cri6njuPzzVAdnypbXvJb42rEtdX86Yt0MQDBQCel704xPbRp1x67Hzrot6h2fHR9PAk6e9kSCyXWZMYBprkzGQuMMJ04CkRvnAwOEQ-TmvriTWMOZkxw4MW1OaGaMlc7qkueMHfo1FZlf4DwjGjyqyWjnOT2lRoYwEcMs1kRjyhdozIoAdle8LyeG_GubqnWo4LpmDBVFwwdT1Gn-9euejYOv4n_BGUqxZ2riLHdnz-rtRiqSCS-KaK6M0YyAyqV7DvYjJFl75a1YrmBc2E4Hk-Rl8GdareAdT_HnX7WdI76CUgtLT757OLRs1y5fcABTVmv7f6fbQ2Y5NbzoT9CQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5dD20NKXupRSV-qpVZBjO68jQtDleVokerL8rLaLkmqTBdRf33EeUFBB4pTLJJY99vibzMw3AF98ppwwmkbUoG8ihLdRzj2NENmbvNC2SH2oRj4-SSen4uAsOevruOsh230ISbaW-qbYjfOQpRPziIc8IASOqwJdcDqC1e3vPw53h23E48BB3pdb_moZXdBJaZvKxxke75wW1_HN_3331g31pFz4W-DzTry0vYb2XsJ0mECXfTLfWjZ6y_y5w-34yBmuwYselpLtbh-9ghVXvobn_5AVvoEp7ijSpX-QypPqamYdOVcI2cmFMm2T35pUJakvZ02boEkGCgAyK3tx9O2DTblwxLrWRL2F073d6c4k6nsyRIYXSRNphprkTCfWM8qU54LmLrM4OHo-VinjqNGM2SJhmnuVxybVVBXMpi5WGc_4OxiVVeneAwkRVWZUYTnXwohcaYPgkClWJNTR2IyBDnqQpicsD30zzuUN1XJYMIkLJsOCyasxfL1-5XfH1vGQ8GdUrpybmQwc2-H5s5LzhURPYl9mwZoxlBlUL_HchWCKKl21rGWcZnGS5zxNx_BtUKfsDUB9_6jrj5L-BE8n0-MjebR_cvgBniFaE93_nw0YNYul-4iIqNGb_Qn4C62K_v0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6VICE4VFBAhBbYSj21srIPP48REKWFVj0kUm-rfSLTyI5it-Tnd9aPpK0oEidfxl5pdnb2G8_MNwgduUTaUCsSEA2xSRg6E6TckQCQvU4zZbLY-W7k84t4Og_PrqKrbs5p1Ve79ynJtqfBszQV9Whp3Gjb-Ma5r9ihPOC-JghA5HPwxtQb-pyNe4Pi1LORd42XvxtuFwhXmvHyNIGDnpJsk-n821cf3FXPipV7AEMfZU6bC2nyGu12SBKP261_g3ZssYde3eMXfItmYAS4rdjApcPlOjcWLySgbHwrdTOXt8Jlgas_ed3UVOK-ax_nRScO4bh3A7cWG9t4lXdoPvk--zoNujEKgeZZVAeKgfI5U5FxjDDpeEhSmxhYHIIVI6W2RCvGTBYxxZ1MqY4VkRkzsaUy4Ql_jwZFWdgPCPskKNMyM5yrUIepVBrwHJMsi4glVA8R6RUmdMcx7kddLMSWHdnrWICOhdexWA_R8eaVZUuw8S_hQ9gFca1z4Wmx_fNXKa5XAsD_qUi8A2Ig0--RgKPi8x-ysOVNJWic0ChNeRwP0Um_eaI7s9XTq378L-kv6MXlt4n4eXrxYx-9BHwVtn9sDtCgXt3YT4BhavW5sdM79dLmQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Oxide+Layer+Vacancies+on+Switching+Behavior+in+Oxide+Resistive+Devices&rft.jtitle=Electronic+materials+letters&rft.au=%EC%B5%9C%EC%83%81%EC%A4%80&rft.au=%EA%B9%80%EA%B8%B0%ED%99%8D&rft.au=Woo-young+Yang&rft.au=Hyung-IK+Lee&rft.date=2014-01-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1738-8090&rft.eissn=2093-6788&rft.spage=57&rft.epage=60&rft_id=info:doi/10.1007%2Fs13391-013-3001-x&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_704252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-8090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-8090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-8090&client=summon