Identification of release sources in advection–diffusion system by machine learning combined with Green’s function inverse method
•Novel inverse method for advection–diffusion equation with unknown number of sources is proposed.•Observational data containing mixtures of unknown number of release sources is decomposed.•Proposed method combines machine learning techniques with Greens function inverse analysis.•Sets of synthetic...
Saved in:
Published in | Applied Mathematical Modelling Vol. 60; no. C; pp. 64 - 76 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.08.2018
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Novel inverse method for advection–diffusion equation with unknown number of sources is proposed.•Observational data containing mixtures of unknown number of release sources is decomposed.•Proposed method combines machine learning techniques with Greens function inverse analysis.•Sets of synthetic contamination sources in a two dimensional aquifer are identified.•Method can be extended to complex release sources and applied with different Green’s functions.
The identification of sources of advection–diffusion transport is based usually on solving complex ill-posed inverse models against the available state-variable data records. However, if there are several sources with different locations and strengths, the data records represent mixtures rather than the separate influences of the original sources. Importantly, the number of these original release sources is typically unknown, which hinders reliability of the classical inverse-model analyses. To address this challenge, we present here a novel hybrid method for identification of the unknown number of release sources. Our hybrid method, called HNMF, couples unsupervised learning based on Non-negative Matrix Factorization (NMF) and inverse-analysis Green’s functions method. HNMF synergistically performs decomposition of the recorded mixtures, finds the number of the unknown sources and uses the Green’s function of advection–diffusion equation to identify their characteristics. In the paper, we introduce the method and demonstrate that it is capable of identifying the advection velocity and dispersivity of the medium as well as the unknown number, locations, and properties of various sets of synthetic release sources with different space and time dependencies, based only on the recorded data. HNMF can be applied directly to any problem controlled by a partial-differential parabolic equation where mixtures of an unknown number of sources are measured at multiple locations. |
---|---|
AbstractList | The identification of sources of advection–diffusion transport is based usually on solving complex ill-posed inverse models against the available state-variable data records. However, if there are several sources with different locations and strengths, the data records represent mixtures rather than the separate influences of the original sources. Importantly, the number of these original release sources is typically unknown, which hinders reliability of the classical inverse-model analyses. To address this challenge, we present a novel hybrid method for identification of the unknown number of release sources. Our hybrid method, called HNMF, couples unsupervised learning based on Non-negative Matrix Factorization (NMF) and inverse-analysis Green’s functions method. HNMF synergistically performs decomposition of the recorded mixtures, finds the number of the unknown sources and uses the Green’s function of advection–diffusion equation to identify their characteristics. In the paper, we introduce the method and demonstrate that it is capable of identifying the advection velocity and dispersivity of the medium as well as the unknown number, locations, and properties of various sets of synthetic release sources with different space and time dependencies, based only on the recorded data. HNMF can be applied directly to any problem controlled by a partial-differential parabolic equation where mixtures of an unknown number of sources are measured at multiple locations. •Novel inverse method for advection–diffusion equation with unknown number of sources is proposed.•Observational data containing mixtures of unknown number of release sources is decomposed.•Proposed method combines machine learning techniques with Greens function inverse analysis.•Sets of synthetic contamination sources in a two dimensional aquifer are identified.•Method can be extended to complex release sources and applied with different Green’s functions. The identification of sources of advection–diffusion transport is based usually on solving complex ill-posed inverse models against the available state-variable data records. However, if there are several sources with different locations and strengths, the data records represent mixtures rather than the separate influences of the original sources. Importantly, the number of these original release sources is typically unknown, which hinders reliability of the classical inverse-model analyses. To address this challenge, we present here a novel hybrid method for identification of the unknown number of release sources. Our hybrid method, called HNMF, couples unsupervised learning based on Non-negative Matrix Factorization (NMF) and inverse-analysis Green’s functions method. HNMF synergistically performs decomposition of the recorded mixtures, finds the number of the unknown sources and uses the Green’s function of advection–diffusion equation to identify their characteristics. In the paper, we introduce the method and demonstrate that it is capable of identifying the advection velocity and dispersivity of the medium as well as the unknown number, locations, and properties of various sets of synthetic release sources with different space and time dependencies, based only on the recorded data. HNMF can be applied directly to any problem controlled by a partial-differential parabolic equation where mixtures of an unknown number of sources are measured at multiple locations. The identification of sources of advection–diffusion transport is based usually on solving complex ill-posed inverse models against the available state-variable data records. However, if there are several sources with different locations and strengths, the data records represent mixtures rather than the separate influences of the original sources. Importantly, the number of these original release sources is typically unknown, which hinders reliability of the classical inverse-model analyses. To address this challenge, we present here a novel hybrid method for identification of the unknown number of release sources. Our hybrid method, called HNMF, couples unsupervised learning based on Non-negative Matrix Factorization (NMF) and inverse-analysis Green’s functions method. HNMF synergistically performs decomposition of the recorded mixtures, finds the number of the unknown sources and uses the Green’s function of advection–diffusion equation to identify their characteristics. In the paper, we introduce the method and demonstrate that it is capable of identifying the advection velocity and dispersivity of the medium as well as the unknown number, locations, and properties of various sets of synthetic release sources with different space and time dependencies, based only on the recorded data. HNMF can be applied directly to any problem controlled by a partial-differential parabolic equation where mixtures of an unknown number of sources are measured at multiple locations. |
Author | Iliev, Filip L. Stanev, Valentin G. Alexandrov, Boian S. Vesselinov, Velimir V. Hansen, Scott |
Author_xml | – sequence: 1 givenname: Valentin G. surname: Stanev fullname: Stanev, Valentin G. organization: Physics and Chemistry of Materials GroupTheoretical Division Los Alamos National LaboratoryLos Alamos, NM, USA – sequence: 2 givenname: Filip L. surname: Iliev fullname: Iliev, Filip L. organization: Physics and Chemistry of Materials GroupTheoretical Division Los Alamos National LaboratoryLos Alamos, NM, USA – sequence: 3 givenname: Scott surname: Hansen fullname: Hansen, Scott organization: Computational Earth Science GroupEarth and Environmental Sciences Division Los Alamos National LaboratoryLos Alamos, NM, USA – sequence: 4 givenname: Velimir V. surname: Vesselinov fullname: Vesselinov, Velimir V. organization: Computational Earth Science GroupEarth and Environmental Sciences Division Los Alamos National LaboratoryLos Alamos, NM, USA – sequence: 5 givenname: Boian S. orcidid: 0000-0001-8636-4603 surname: Alexandrov fullname: Alexandrov, Boian S. email: boian@lanl.gov organization: Physics and Chemistry of Materials GroupTheoretical Division Los Alamos National LaboratoryLos Alamos, NM, USA |
BackLink | https://www.osti.gov/servlets/purl/1459817$$D View this record in Osti.gov |
BookMark | eNp9UbFuHCEQRZEjxXbyAelQUt96OHZhV64iy3YsWXLjSOkQC0OOkxfOwF10nZt8Qar8Xr4krM9FKlcM8N6bN_NOyFGIAQn5yKBhwMTZutGbqVkC6xvgDYB4Q46Bg1wM0H4_-q9-R05yXgNAV2_H5NeNxVC880YXHwONjiZ8QJ2R5rhNBjP1gWq7QzP__336bb1z2zxj8z4XnOi4p5M2Kx-QVmIKPvygJk5jfbD0py8rep0QK_VPpm4bnnWq6A5TbTJhWUX7nrx1-iHjh5fzlHy7ury_-Lq4vbu-ufhyuzB86MpiZAL40Aqh0bSaGcElt-1y0KB16_ph7KXoXdsByEG2Eg06OQrnjGPGAmh-Sj4ddGMuXmXjC5qViSHU6RRru6FnsoI-H0CbFB-3mIta102E6kstQXLGOyl4RbEDyqSYc0KnNslPOu0VAzVHotaqRqLmSBRwVSOpnPMDB-uMO49ptoDBoPVpdmCjf4X9D6Z4mnE |
CitedBy_id | crossref_primary_10_1007_s11356_022_21402_8 crossref_primary_10_1016_j_jconhyd_2022_103980 crossref_primary_10_1145_3664813 crossref_primary_10_1016_j_jcp_2019_05_039 crossref_primary_10_1016_j_advwatres_2020_103619 crossref_primary_10_3390_w12082281 crossref_primary_10_1016_j_jenvman_2021_113022 crossref_primary_10_1016_j_buildenv_2022_109062 crossref_primary_10_1103_PhysRevResearch_2_023248 crossref_primary_10_3390_app10113899 crossref_primary_10_1002_sam_11407 crossref_primary_10_1016_j_aej_2020_12_053 crossref_primary_10_3390_math11132828 crossref_primary_10_1007_s10596_019_09850_7 crossref_primary_10_1038_s41524_018_0099_2 crossref_primary_10_1007_s11227_020_03181_6 crossref_primary_10_1016_j_eswa_2023_121114 crossref_primary_10_1021_acs_jctc_9b00074 crossref_primary_10_3389_fenvs_2019_00149 |
Cites_doi | 10.1016/j.engappai.2015.02.010 10.1080/17415977.2013.764871 10.1109/TPAMI.2012.240 10.1002/env.3170050203 10.1016/0377-0427(87)90125-7 10.1007/s11783-008-0067-z 10.1016/j.ijheatmasstransfer.2015.07.066 10.1029/2001WR000223 10.1088/0266-5611/29/3/035009 10.1002/env.2222 10.1002/2013WR015037 10.3934/ipi.2014.8.199 10.1016/j.apm.2010.11.015 10.1016/j.advwatres.2014.02.006 10.1016/S0952-1976(03)00062-9 10.1029/2004WR003608 10.1016/S0169-7722(01)00136-X 10.1016/j.apm.2010.07.024 10.1109/78.554307 10.1038/44565 10.1061/(ASCE)0733-9496(2006)132:4(252) 10.1109/T-C.1973.223602 10.1038/nature12477 10.1021/es405118y 10.1016/j.apm.2006.10.022 |
ContentType | Journal Article |
Copyright | 2018 Copyright Elsevier BV Aug 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright Elsevier BV Aug 2018 |
CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D OIOZB OTOTI |
DOI | 10.1016/j.apm.2018.03.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Psychology |
EISSN | 0307-904X |
EndPage | 76 |
ExternalDocumentID | 1459817 10_1016_j_apm_2018_03_006 S0307904X18301227 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- 0SF AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGZJ AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABJNI ABLIJ ABPEM ABRYG ABTAI ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEGXH AEGYZ AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AGDLA AGMYJ AGRBW AHDZW AIJEM AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF J.O JQ2 K1G KYCEM L7M L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ AALMO ABPIF ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c395t-b16039466aec4a1c6373d429a0aa4f89b8768f450079747ecef7b6ffcf1cd00a3 |
IEDL.DBID | IXB |
ISSN | 0307-904X 1088-8691 |
IngestDate | Fri May 19 00:38:13 EDT 2023 Tue Nov 05 22:05:35 EST 2024 Thu Sep 26 21:29:30 EDT 2024 Fri Feb 23 02:45:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Source identification Non-negative matrix factorization Green functions Advection–diffusion transport Inverse problem |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-b16039466aec4a1c6373d429a0aa4f89b8768f450079747ecef7b6ffcf1cd00a3 |
Notes | AC52-06NA25396; 11145687; 20180060 LA-UR-16-27231 USDOE Office of Environmental Management (EM) USDOE Laboratory Directed Research and Development (LDRD) Program |
ORCID | 0000-0001-8636-4603 0000000186364603 0000000262220530 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0307904X18301227 |
PQID | 2073135763 |
PQPubID | 2045280 |
PageCount | 13 |
ParticipantIDs | osti_scitechconnect_1459817 proquest_journals_2073135763 crossref_primary_10_1016_j_apm_2018_03_006 elsevier_sciencedirect_doi_10_1016_j_apm_2018_03_006 |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Applied Mathematical Modelling |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV – name: Elsevier |
References | Lin, Yang (bib0018) 2007; 31 V.V. Vesselinov, D. O’Malley, Y. Lin, S. Hansen, B. Alexandrov, MADS.jl: Model analyses and decision support in julia, 2016 Lin (bib0019) 2011; 35 Rasekh, Brumbelow (bib0012) 2012 Tan, Févotte (bib0032) 2013; 35 O’Malley, Vesselinov (bib0039) 2014; 68 Hamdi, Mahfoudhi (bib0008) 2013; 21 Fetter, Fetter (bib0002) 1999; 500 Alexandrov, Nik-Zainal, Wedge, Aparicio, Behjati, Biankin, Bignell, Bolli, Borg, Børresen-Dale (bib0034) 2013; 500 Bear (bib0020) 2013 Gelhar (bib0001) 1993 Li, Osher, Tsai (bib0021) 2014; 8 Atmadja, Bagtzoglou (bib0004) 2001; 37 Pang-Ning, Steinbach, Kumar (bib0036) 2006 Bayesian Non-negative matrix factorization (bib0031) 2009 Shahraiyni, Sodoudi, Kerschbaumer, Cubasch (bib0014) 2015; 41 Dmitry (bib0030) 2013; 160 Sakthivel, Gnanavel, Balan, Balachandran (bib0005) 2011; 35 Murray-Bruce, Dragotti (bib0009) 2014 Paatero, Tapper (bib0025) 1994; 5 Fischler, Elschlager (bib0026) 1973; 100 Guan, Aral, Maslia, Grayman (bib0003) 2006; 132 Borukhov, Zayats (bib0006) 2015; 91 A. Khalil, M.N. Almasri, M. McKee, J.J. Kaluarachchi, Applicability of statistical learning algorithms in groundwater quality modeling, Water Resour. Res. 41(5). Park, Zhan (bib0022) 2001; 53 Lee, Seung (bib0017) 1999; 401 . Wang, Wu (bib0040) 2009; 3 Cichocki, Zdunek, Phan, Amari (bib0027) 2009 Vengosh, Jackson, Warner, Darrah, Kondash (bib0015) 2014; 48 Vesselinov, O’Malley (bib0029) 2016 Alexandrov, Vesselinov (bib0035) 2014; 50 Mørup, Hansen (bib0033) 2009 Rousseeuw (bib0037) 1987; 20 Akaike (bib0038) 2011 Mamonov, Tsai (bib0007) 2013; 29 Chan, Huang (bib0010) 2003; 16 Belouchrani, Abed-Meraim, Cardoso, Moulines (bib0016) 1997; 45 Manca, Cervone (bib0013) 2013; 24 Cichocki (10.1016/j.apm.2018.03.006_sbref0026) 2009 Alexandrov (10.1016/j.apm.2018.03.006_bib0034) 2013; 500 10.1016/j.apm.2018.03.006_bib0028 Murray-Bruce (10.1016/j.apm.2018.03.006_bib0009) 2014 Akaike (10.1016/j.apm.2018.03.006_bib0038) 2011 Vesselinov (10.1016/j.apm.2018.03.006_bib0029) 2016 Sakthivel (10.1016/j.apm.2018.03.006_bib0005) 2011; 35 Mamonov (10.1016/j.apm.2018.03.006_bib0007) 2013; 29 Rasekh (10.1016/j.apm.2018.03.006_bib0012) 2012 Borukhov (10.1016/j.apm.2018.03.006_bib0006) 2015; 91 Bayesian Non-negative matrix factorization (10.1016/j.apm.2018.03.006_bib0031) 2009 Fetter (10.1016/j.apm.2018.03.006_bib0002) 1999; 500 Vengosh (10.1016/j.apm.2018.03.006_bib0015) 2014; 48 Li (10.1016/j.apm.2018.03.006_bib0021) 2014; 8 Atmadja (10.1016/j.apm.2018.03.006_bib0004) 2001; 37 Rousseeuw (10.1016/j.apm.2018.03.006_bib0037) 1987; 20 Tan (10.1016/j.apm.2018.03.006_bib0032) 2013; 35 Guan (10.1016/j.apm.2018.03.006_bib0003) 2006; 132 Chan (10.1016/j.apm.2018.03.006_bib0010) 2003; 16 Mørup (10.1016/j.apm.2018.03.006_bib0033) 2009 Paatero (10.1016/j.apm.2018.03.006_bib0025) 1994; 5 Park (10.1016/j.apm.2018.03.006_bib0022) 2001; 53 10.1016/j.apm.2018.03.006_bib0011 Belouchrani (10.1016/j.apm.2018.03.006_bib0016) 1997; 45 Hamdi (10.1016/j.apm.2018.03.006_bib0008) 2013; 21 Lee (10.1016/j.apm.2018.03.006_bib0017) 1999; 401 Manca (10.1016/j.apm.2018.03.006_bib0013) 2013; 24 Dmitry (10.1016/j.apm.2018.03.006_bib0030) 2013; 160 Alexandrov (10.1016/j.apm.2018.03.006_bib0035) 2014; 50 Lin (10.1016/j.apm.2018.03.006_bib0019) 2011; 35 Gelhar (10.1016/j.apm.2018.03.006_bib0001) 1993 Lin (10.1016/j.apm.2018.03.006_bib0018) 2007; 31 Pang-Ning (10.1016/j.apm.2018.03.006_sbref0034) 2006 Wang (10.1016/j.apm.2018.03.006_bib0040) 2009; 3 Bear (10.1016/j.apm.2018.03.006_bib0020) 2013 O’Malley (10.1016/j.apm.2018.03.006_sbref0037) 2014; 68 Fischler (10.1016/j.apm.2018.03.006_bib0026) 1973; 100 Shahraiyni (10.1016/j.apm.2018.03.006_bib0014) 2015; 41 |
References_xml | – volume: 31 start-page: 2696 year: 2007 end-page: 2710 ident: bib0018 article-title: The estimation of the strength of the heat source in the heat conduction problems publication-title: Appl. Math. Model. contributor: fullname: Yang – volume: 68 start-page: 13 year: 2014 end-page: 23 ident: bib0039 article-title: Analytical solutions for anomalous dispersion transport publication-title: Adv. in Water Resour. contributor: fullname: Vesselinov – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib0037 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. contributor: fullname: Rousseeuw – volume: 35 start-page: 2607 year: 2011 end-page: 2617 ident: bib0019 article-title: A sequential algorithm and error sensitivity analysis for the inverse heat conduction problems with multiple heat sources publication-title: Appl. Math. Model. contributor: fullname: Lin – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: bib0017 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature contributor: fullname: Seung – year: 2006 ident: bib0036 publication-title: Introduction to Data Mining contributor: fullname: Kumar – volume: 3 start-page: 112 year: 2009 end-page: 128 ident: bib0040 article-title: Analytical solutions of three-dimensional contaminant transport in uniform flow field in porous media: a library publication-title: Front. Environ. Sci. Eng. Chin. contributor: fullname: Wu – volume: 16 start-page: 75 year: 2003 end-page: 90 ident: bib0010 article-title: Artificial intelligence for management and control of pollution minimization and mitigation processes publication-title: Eng. Appl. Artif. Intell. contributor: fullname: Huang – start-page: 31 year: 2014 end-page: 35 ident: bib0009 article-title: Spatio-temporal sampling and reconstruction of diffusion fields induced by point sources publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) contributor: fullname: Dragotti – year: 2013 ident: bib0020 publication-title: Dynamics of Fluids in Porous Media contributor: fullname: Bear – volume: 35 start-page: 571 year: 2011 end-page: 579 ident: bib0005 article-title: Inverse problem for the reaction diffusion system by optimization method publication-title: Appl. Math. Model. contributor: fullname: Balachandran – year: 2012 ident: bib0012 article-title: Machine learning approach for contamination source identification in water distribution systems publication-title: Proceedings of the World Environmental and Water Resources Congress contributor: fullname: Brumbelow – start-page: 540 year: 2009 end-page: 547 ident: bib0031 publication-title: Independent Component Analysis and Signal Separation contributor: fullname: Bayesian Non-negative matrix factorization – volume: 21 start-page: 1007 year: 2013 end-page: 1031 ident: bib0008 article-title: Inverse source problem in a one-dimensional evolution linear transport equation with spatially varying coefficients: application to surface water pollution publication-title: Invers. Prob. Sci. Eng. contributor: fullname: Mahfoudhi – volume: 41 start-page: 175 year: 2015 end-page: 182 ident: bib0014 article-title: A new structure identification scheme for ANFIS and its application for the simulation of virtual air pollution monitoring stations in urban areas publication-title: Eng. Appl. Artif. Intell. contributor: fullname: Cubasch – volume: 160 start-page: 163 year: 2013 end-page: 175 ident: bib0030 article-title: Univariate interpolation by exponential functions and gaussian RBFs for generic sets of nodes publication-title: J. Approx. Theory contributor: fullname: Dmitry – volume: 35 start-page: 1592 year: 2013 end-page: 1605 ident: bib0032 article-title: Automatic relevance determination in non-negative matrix factorization with the /spl beta/-divergence publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Févotte – volume: 50 start-page: 7332 year: 2014 end-page: 7347 ident: bib0035 article-title: Blind source separation for groundwater pressure analysis based on non-negative matrix factorization publication-title: Water Resour. Res. contributor: fullname: Vesselinov – volume: 91 start-page: 1106 year: 2015 end-page: 1113 ident: bib0006 article-title: Identification of a time-dependent source term in nonlinear hyperbolic or parabolic heat equation publication-title: Int. J. Heat Mass Transf. contributor: fullname: Zayats – year: 2009 ident: bib0027 publication-title: Non-negative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation contributor: fullname: Amari – volume: 45 start-page: 434 year: 1997 end-page: 444 ident: bib0016 article-title: A blind source separation technique using second-order statistics publication-title: IEEE Trans. Signal Process. contributor: fullname: Moulines – volume: 29 start-page: 035009 year: 2013 ident: bib0007 article-title: Point source identification in nonlinear advection–diffusion–reaction systems publication-title: Invers. Prob. contributor: fullname: Tsai – volume: 48 start-page: 8334 year: 2014 end-page: 8348 ident: bib0015 article-title: A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the united states publication-title: Environ. Sci. Technol. contributor: fullname: Kondash – year: 2016 ident: bib0029 article-title: Model analysis of complex systems behavior using MADS publication-title: Proceedings of the AGU Fall Meeting contributor: fullname: O’Malley – volume: 132 start-page: 252 year: 2006 end-page: 262 ident: bib0003 article-title: Identification of contaminant sources in water distribution systems using simulation–optimization method: case study publication-title: J. Water Resour. Plan. Manag. contributor: fullname: Grayman – volume: 37 start-page: 2113 year: 2001 end-page: 2125 ident: bib0004 article-title: Pollution source identification in heterogeneous porous media publication-title: Water Resour. Res. contributor: fullname: Bagtzoglou – volume: 5 start-page: 111 year: 1994 end-page: 126 ident: bib0025 article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values publication-title: Environmetrics contributor: fullname: Tapper – volume: 500 start-page: 415421 year: 2013 ident: bib0034 article-title: Signatures of mutational processes in human cancer publication-title: Nature contributor: fullname: Børresen-Dale – volume: 24 start-page: 400 year: 2013 end-page: 406 ident: bib0013 article-title: The case of arsenic contamination in the Sardinian Geopark, Italy, analyzed using symbolic machine learning publication-title: Environmetrics contributor: fullname: Cervone – volume: 100 start-page: 67 year: 1973 end-page: 92 ident: bib0026 article-title: The representation and matching of pictorial structures publication-title: IEEE Trans. Comput. contributor: fullname: Elschlager – year: 2009 ident: bib0033 article-title: Tuning pruning in sparse non-negative matrix factorization publication-title: Proceedings of the European Signal Processing Conference contributor: fullname: Hansen – year: 1993 ident: bib0001 publication-title: Stochastic Subsurface Hydrology contributor: fullname: Gelhar – start-page: 25 year: 2011 ident: bib0038 article-title: Akaike’s information criterion publication-title: International Encyclopedia of Statistical Science contributor: fullname: Akaike – volume: 8 start-page: 199 year: 2014 end-page: 221 ident: bib0021 article-title: Heat source identification based ON constrained minimization publication-title: Invers. Prob. Imaging contributor: fullname: Tsai – volume: 500 year: 1999 ident: bib0002 publication-title: Contaminant Hydrogeology contributor: fullname: Fetter – volume: 53 start-page: 41 year: 2001 end-page: 61 ident: bib0022 article-title: Analytical solutions of contaminant transport from finite one-, two-, and three-dimensional sources in a finite-thickness aquifer publication-title: J. Contam. Hydrol. contributor: fullname: Zhan – volume: 41 start-page: 175 year: 2015 ident: 10.1016/j.apm.2018.03.006_bib0014 article-title: A new structure identification scheme for ANFIS and its application for the simulation of virtual air pollution monitoring stations in urban areas publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.02.010 contributor: fullname: Shahraiyni – volume: 21 start-page: 1007 issue: 6 year: 2013 ident: 10.1016/j.apm.2018.03.006_bib0008 article-title: Inverse source problem in a one-dimensional evolution linear transport equation with spatially varying coefficients: application to surface water pollution publication-title: Invers. Prob. Sci. Eng. doi: 10.1080/17415977.2013.764871 contributor: fullname: Hamdi – year: 2009 ident: 10.1016/j.apm.2018.03.006_sbref0026 contributor: fullname: Cichocki – year: 2016 ident: 10.1016/j.apm.2018.03.006_bib0029 article-title: Model analysis of complex systems behavior using MADS contributor: fullname: Vesselinov – ident: 10.1016/j.apm.2018.03.006_bib0028 – start-page: 31 year: 2014 ident: 10.1016/j.apm.2018.03.006_bib0009 article-title: Spatio-temporal sampling and reconstruction of diffusion fields induced by point sources contributor: fullname: Murray-Bruce – volume: 35 start-page: 1592 issue: 7 year: 2013 ident: 10.1016/j.apm.2018.03.006_bib0032 article-title: Automatic relevance determination in non-negative matrix factorization with the /spl beta/-divergence publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.240 contributor: fullname: Tan – volume: 160 start-page: 163 year: 2013 ident: 10.1016/j.apm.2018.03.006_bib0030 article-title: Univariate interpolation by exponential functions and gaussian RBFs for generic sets of nodes publication-title: J. Approx. Theory contributor: fullname: Dmitry – volume: 5 start-page: 111 issue: 2 year: 1994 ident: 10.1016/j.apm.2018.03.006_bib0025 article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values publication-title: Environmetrics doi: 10.1002/env.3170050203 contributor: fullname: Paatero – volume: 500 year: 1999 ident: 10.1016/j.apm.2018.03.006_bib0002 contributor: fullname: Fetter – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.apm.2018.03.006_bib0037 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 contributor: fullname: Rousseeuw – volume: 3 start-page: 112 year: 2009 ident: 10.1016/j.apm.2018.03.006_bib0040 article-title: Analytical solutions of three-dimensional contaminant transport in uniform flow field in porous media: a library publication-title: Front. Environ. Sci. Eng. Chin. doi: 10.1007/s11783-008-0067-z contributor: fullname: Wang – volume: 91 start-page: 1106 year: 2015 ident: 10.1016/j.apm.2018.03.006_bib0006 article-title: Identification of a time-dependent source term in nonlinear hyperbolic or parabolic heat equation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.07.066 contributor: fullname: Borukhov – volume: 37 start-page: 2113 issue: 8 year: 2001 ident: 10.1016/j.apm.2018.03.006_bib0004 article-title: Pollution source identification in heterogeneous porous media publication-title: Water Resour. Res. doi: 10.1029/2001WR000223 contributor: fullname: Atmadja – volume: 29 start-page: 035009 issue: 3 year: 2013 ident: 10.1016/j.apm.2018.03.006_bib0007 article-title: Point source identification in nonlinear advection–diffusion–reaction systems publication-title: Invers. Prob. doi: 10.1088/0266-5611/29/3/035009 contributor: fullname: Mamonov – volume: 24 start-page: 400 issue: 6 year: 2013 ident: 10.1016/j.apm.2018.03.006_bib0013 article-title: The case of arsenic contamination in the Sardinian Geopark, Italy, analyzed using symbolic machine learning publication-title: Environmetrics doi: 10.1002/env.2222 contributor: fullname: Manca – volume: 50 start-page: 7332 issue: 9 year: 2014 ident: 10.1016/j.apm.2018.03.006_bib0035 article-title: Blind source separation for groundwater pressure analysis based on non-negative matrix factorization publication-title: Water Resour. Res. doi: 10.1002/2013WR015037 contributor: fullname: Alexandrov – volume: 8 start-page: 199 issue: 1 year: 2014 ident: 10.1016/j.apm.2018.03.006_bib0021 article-title: Heat source identification based ON constrained minimization publication-title: Invers. Prob. Imaging doi: 10.3934/ipi.2014.8.199 contributor: fullname: Li – volume: 35 start-page: 2607 issue: 6 year: 2011 ident: 10.1016/j.apm.2018.03.006_bib0019 article-title: A sequential algorithm and error sensitivity analysis for the inverse heat conduction problems with multiple heat sources publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2010.11.015 contributor: fullname: Lin – year: 2013 ident: 10.1016/j.apm.2018.03.006_bib0020 contributor: fullname: Bear – year: 2009 ident: 10.1016/j.apm.2018.03.006_bib0033 article-title: Tuning pruning in sparse non-negative matrix factorization contributor: fullname: Mørup – volume: 68 start-page: 13 year: 2014 ident: 10.1016/j.apm.2018.03.006_sbref0037 article-title: Analytical solutions for anomalous dispersion transport publication-title: Adv. in Water Resour. doi: 10.1016/j.advwatres.2014.02.006 contributor: fullname: O’Malley – volume: 16 start-page: 75 issue: 2 year: 2003 ident: 10.1016/j.apm.2018.03.006_bib0010 article-title: Artificial intelligence for management and control of pollution minimization and mitigation processes publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/S0952-1976(03)00062-9 contributor: fullname: Chan – year: 1993 ident: 10.1016/j.apm.2018.03.006_bib0001 contributor: fullname: Gelhar – start-page: 25 year: 2011 ident: 10.1016/j.apm.2018.03.006_bib0038 article-title: Akaike’s information criterion contributor: fullname: Akaike – year: 2012 ident: 10.1016/j.apm.2018.03.006_bib0012 article-title: Machine learning approach for contamination source identification in water distribution systems contributor: fullname: Rasekh – ident: 10.1016/j.apm.2018.03.006_bib0011 doi: 10.1029/2004WR003608 – volume: 53 start-page: 41 issue: 1 year: 2001 ident: 10.1016/j.apm.2018.03.006_bib0022 article-title: Analytical solutions of contaminant transport from finite one-, two-, and three-dimensional sources in a finite-thickness aquifer publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(01)00136-X contributor: fullname: Park – volume: 35 start-page: 571 issue: 1 year: 2011 ident: 10.1016/j.apm.2018.03.006_bib0005 article-title: Inverse problem for the reaction diffusion system by optimization method publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2010.07.024 contributor: fullname: Sakthivel – volume: 45 start-page: 434 issue: 2 year: 1997 ident: 10.1016/j.apm.2018.03.006_bib0016 article-title: A blind source separation technique using second-order statistics publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.554307 contributor: fullname: Belouchrani – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.apm.2018.03.006_bib0017 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 contributor: fullname: Lee – volume: 132 start-page: 252 issue: 4 year: 2006 ident: 10.1016/j.apm.2018.03.006_bib0003 article-title: Identification of contaminant sources in water distribution systems using simulation–optimization method: case study publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2006)132:4(252) contributor: fullname: Guan – volume: 100 start-page: 67 issue: 1 year: 1973 ident: 10.1016/j.apm.2018.03.006_bib0026 article-title: The representation and matching of pictorial structures publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1973.223602 contributor: fullname: Fischler – volume: 500 start-page: 415421 year: 2013 ident: 10.1016/j.apm.2018.03.006_bib0034 article-title: Signatures of mutational processes in human cancer publication-title: Nature doi: 10.1038/nature12477 contributor: fullname: Alexandrov – volume: 48 start-page: 8334 issue: 15 year: 2014 ident: 10.1016/j.apm.2018.03.006_bib0015 article-title: A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the united states publication-title: Environ. Sci. Technol. doi: 10.1021/es405118y contributor: fullname: Vengosh – year: 2006 ident: 10.1016/j.apm.2018.03.006_sbref0034 contributor: fullname: Pang-Ning – volume: 31 start-page: 2696 issue: 12 year: 2007 ident: 10.1016/j.apm.2018.03.006_bib0018 article-title: The estimation of the strength of the heat source in the heat conduction problems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2006.10.022 contributor: fullname: Lin – start-page: 540 year: 2009 ident: 10.1016/j.apm.2018.03.006_bib0031 contributor: fullname: Bayesian Non-negative matrix factorization |
SSID | ssj0005904 ssj0012860 |
Score | 2.3786597 |
Snippet | •Novel inverse method for advection–diffusion equation with unknown number of sources is proposed.•Observational data containing mixtures of unknown number of... The identification of sources of advection–diffusion transport is based usually on solving complex ill-posed inverse models against the available... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 64 |
SubjectTerms | Advection Advection–diffusion transport Artificial intelligence Differential equations Diffusion Environmental Protection Green functions Heat transfer Ill posed problems Information Science Inverse method Inverse problem Inverse problems Linear equations Machine learning MATHEMATICS AND COMPUTING Non-negative matrix factorization Reliability analysis Source identification |
Title | Identification of release sources in advection–diffusion system by machine learning combined with Green’s function inverse method |
URI | https://dx.doi.org/10.1016/j.apm.2018.03.006 https://www.proquest.com/docview/2073135763 https://www.osti.gov/servlets/purl/1459817 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6V7QUOCAqIpe3Kh54qhbVr58fHtmoV-ncoLdqb5Tg22kpkV-wWiQvqhSfg1Nfrk3QmTkAIlUNPkZOMEnnGM57xNzMAWzbkta5wIRVZkSbKSpdo7kXieFCaO6qQRQnOp2dZeamOJulkBfb7XBiCVXa6P-r0Vlt3d8bdbI7n0-n4I4mn5mqCQknnQ5RRTrB0SuKb7P2BeWiu-mKI9HZ_stlivOycktFFEeucZg_ZpsEMl9s_yrq1QIcv4Hm3dWS78e9ewopv1uDZ6e-6q4tX8DPm3YYuEMdmgVFTFLRULEbpF2zaMFt_awFYzd3NL2qQck0RMxZrOrPqO_vSAiw96zpKfGY4OehA-5pR1Ja1UJ27m9sFI6PYfmfaELrDs9iP-jVcHh5c7JdJ12ghcVKny6SiXtNUaN56p6xwmcxljYbKcmtVKHSFKrMIKsX9BLkf3vmQV1kILghXc27lGxg0s8a_BabpAe6SfJbW6JqKasfVLrWpCorXXO4MYbufYjOP9TRMDzS7MsgPQ_wwXBrkxxBUzwTzl1AY1Pf_I1snhhEJFcJ1hBhCGqFSXYh8CBs9H023XhdInUsh0feS7x73zXV4SqMIDdyAwfLrtd_E7cqyGsGT9z_ECFZ39z4dn9D1w3F5NmqlFEcX50dleQ8UuPHI |
link.rule.ids | 230,315,783,787,888,3514,4510,24129,27582,27937,27938,45598,45676,45692,45887 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB5Beig9oJaCCFDqA6dKS7yx9-9YoaJAEy4FKTfL67VRkNhEJKnEBeXCE3Di9fIkzKx3KxCCQ6-7O_LKM54Z2998A3CgXVJkOS6kNE6jQGphgozbMDDcyYwbYsiiAufBWdy7kKfDaLgCR00tDMEqa9_vfXrlresnnXo2O5PRqPOHzDPjcohGSfdDySp8kEQ3jkZ9ePcM55Fx2bAh0ufN1WYF8tITqkYPU090Gr8VnFpjXG-vvHUVgo4_w3qdO7Kf_ve-wIotN-DT4B_x6vQr3PvCW1efxLGxY9QVBUMV88f0UzYqmS7-Vgiscrl4oA4pczoyY57UmeW37LpCWFpWt5S4ZDg7uIO2BaNjW1ZhdZaLxymjqFiNMyoJ3mGZb0i9CRfHv86PekHdaSEwIotmQU7NpolpXlsjdWhikYgCI5XmWkuXZjn6zNTJCBMK2n9YY12Sx84ZF5qCcy22oFWOS7sNLKMXmCbZOCpwbxrmXVOYSEfSSV5w0W3Dj2aK1cQTaqgGaXalUB-K9KG4UKiPNshGCeqFVSh0-O-J7ZLCSISYcA1BhlAmlGgdYdKGvUaPql6wU5RORChw8yV2_m_M7_Cxdz7oq_7J2e9dWKM3Hie4B63Zzdx-w9xllu9XtvkEDifvJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+release+sources+in+advection%E2%80%93diffusion+system+by+machine+learning+combined+with+Green%E2%80%99s+function+inverse+method&rft.jtitle=Applied+mathematical+modelling&rft.au=Stanev%2C+Valentin+G.&rft.au=Iliev%2C+Filip+L.&rft.au=Hansen%2C+Scott&rft.au=Vesselinov%2C+Velimir+V.&rft.date=2018-08-01&rft.issn=0307-904X&rft.volume=60&rft.spage=64&rft.epage=76&rft_id=info:doi/10.1016%2Fj.apm.2018.03.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2018_03_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |