Data-driven risk-averse newsvendor problems: developing the CVaR criteria and support vector machines
Incorporating decision-makers' risk preferences into data-driven newsvendor models and developing machine learning methods to solve the models are the challenging problems addressed in this study. To consider different distributions and decision-makers' different risk preferences for the t...
Saved in:
Published in | International journal of production research Vol. 62; no. 4; pp. 1221 - 1238 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
16.02.2024
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Incorporating decision-makers' risk preferences into data-driven newsvendor models and developing machine learning methods to solve the models are the challenging problems addressed in this study. To consider different distributions and decision-makers' different risk preferences for the two losses of the total cost newsvendor model, the symmetrical, the partial symmetrical and the asymmetrical CVaR criteria are introduced. The regularisation, the primal-dual approach and the kernels in support vector machines are used to transform the data-driven risk-averse newsvendor problems under the CVaR criterion into the convex quadratic programming problems with good theoretical properties. Computational experiments are conducted on a real-world dataset. The models under the partial symmetrical and the asymmetrical CVaR criteria obtained good performances, but that under the symmetrical CVaR criterion suffered the underfitting problem. Two factors including the degrees of risk aversion for the two losses in the total cost newsvendor model and the empirical errors of data-driven models affect order decisions. The degrees of risk aversion for the two losses have anti-directional effects on order quantities. The introduction of asymmetrical CVaR criterion paves a new way to reveal the effects of different risk references for different losses on order decisions, and has the potential to improve newsvendor decisions. |
---|---|
AbstractList | Incorporating decision-makers' risk preferences into data-driven newsvendor models and developing machine learning methods to solve the models are the challenging problems addressed in this study. To consider different distributions and decision-makers' different risk preferences for the two losses of the total cost newsvendor model, the symmetrical, the partial symmetrical and the asymmetrical CVaR criteria are introduced. The regularisation, the primal-dual approach and the kernels in support vector machines are used to transform the data-driven risk-averse newsvendor problems under the CVaR criterion into the convex quadratic programming problems with good theoretical properties. Computational experiments are conducted on a real-world dataset. The models under the partial symmetrical and the asymmetrical CVaR criteria obtained good performances, but that under the symmetrical CVaR criterion suffered the underfitting problem. Two factors including the degrees of risk aversion for the two losses in the total cost newsvendor model and the empirical errors of data-driven models affect order decisions. The degrees of risk aversion for the two losses have anti-directional effects on order quantities. The introduction of asymmetrical CVaR criterion paves a new way to reveal the effects of different risk references for different losses on order decisions, and has the potential to improve newsvendor decisions. |
Author | Chen, Zhen-Yu |
Author_xml | – sequence: 1 givenname: Zhen-Yu surname: Chen fullname: Chen, Zhen-Yu email: zychen@mail.neu.edu.cn organization: Northeastern University |
BookMark | eNqFkE2LFDEQhoOs4OzqTxACnnvNR6c70YsyfsKCICreQjpdcbP2JG0lM8v-ezPMevGgdaiC4n3q4z0nZyknIOQpZ5ecafacMcFG1ctLwURLfDRSsQdkw-UwdErr72dkc9R0R9Ejcl7KDWuhdL8h8MZV180YD5AoxvKzcwfAAjTBbWm9OSNdMU8L7MoLOsMBlrzG9IPWa6Dbb-4z9RgrYHTUpZmW_bpmrPQAvjZy5_x1TFAek4fBLQWe3NcL8vXd2y_bD93Vp_cft6-vOi-Nqp2bZh10D1KMoJkHr8QUtAhghHADV-0Xw3vJegEmMGN4GHqhez9NcjBOgbwgz05z28m_9lCqvcl7TG2lFYaPIxsZN02lTiqPuRSEYFeMO4d3ljN7dNT-cdQeHbX3jjbu5V-cj9XVmFNFF5f_0q9OdEwh487dZlxmW93dkjGgSz4WK_894jd4vJGH |
CitedBy_id | crossref_primary_10_1051_ro_2024171 crossref_primary_10_1177_00375497241289138 crossref_primary_10_1007_s10479_024_05923_8 crossref_primary_10_3390_math12040533 crossref_primary_10_1016_j_heliyon_2024_e39770 crossref_primary_10_1016_j_cie_2025_111038 |
Cites_doi | 10.1287/msom.2018.0725 10.1016/j.ejor.2006.03.022 10.1002/nav.21949 10.1287/msom.2018.0726 10.1080/00207543.2022.2060770 10.1111/poms.13159 10.1016/j.ejor.2019.04.043 10.21314/JOR.2002.057 10.1080/24725854.2018.1539888 10.1016/j.ejor.2016.05.021 10.1109/TNNLS.2014.2378270 10.1016/j.ejor.2010.11.024 10.1016/j.ijpe.2019.107597 10.1016/j.dss.2020.113340 10.1016/j.ijpe.2013.06.007 10.1016/j.ejor.2009.12.020 10.1080/00207543.2021.1905901 10.1111/deci.12429 10.1080/00207543.2021.1956695 10.1145/1390156.1390289 10.1287/msom.2015.0561 10.1016/j.ejor.2015.07.021 10.1287/opre.2018.1757 10.1016/j.orl.2004.08.003 10.1287/msom.2013.0471 10.1111/poms.12838 10.1287/opre.1080.0603 10.1080/00207543.2015.1100765 10.1016/j.cor.2021.105641 10.1287/mnsc.2016.2644 10.1016/j.csda.2014.03.016 10.1080/00207543.2016.1195932 10.1016/j.cageo.2010.07.005 10.1016/j.ejor.2016.06.002 10.1111/poms.13635 10.1016/j.ejor.2008.07.027 10.1007/978-1-4757-2440-0 10.1016/j.ejor.2021.08.013 10.1016/j.orl.2019.08.008 10.1016/j.cie.2016.11.026 10.1162/089976600300015565 10.1016/j.ejor.2011.09.012 10.1057/jors.2013.48 10.1111/itor.12726 10.21314/JOR.2000.038 10.1287/mnsc.2018.3253 10.1080/00207543.2019.1671624 10.1080/24725854.2019.1632502 10.1016/j.ijpe.2011.04.017 10.1111/poms.12836 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1080/00207543.2023.2179350 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1366-588X |
EndPage | 1238 |
ExternalDocumentID | 10_1080_00207543_2023_2179350 2179350 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACNCT ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBR EBS EBU E~A E~B GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ A8Z AAGDL AAHIA AAYXX ADYSH AEMOZ AFRVT AHQJS AIYEW AMPGV CITATION EBD EBE EBO EMK EPL I-F ML~ TH9 7SC 8FD F28 FR3 JQ2 K1G L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c395t-abd8f84e327e80cec52bf82fe922a6155889143042e9f0991f64284cbb369a5e3 |
ISSN | 0020-7543 |
IngestDate | Wed Aug 13 09:51:00 EDT 2025 Tue Jul 01 03:30:25 EDT 2025 Thu Apr 24 23:01:38 EDT 2025 Wed Dec 25 09:05:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-abd8f84e327e80cec52bf82fe922a6155889143042e9f0991f64284cbb369a5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2917707019 |
PQPubID | 30924 |
PageCount | 18 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_00207543_2023_2179350 crossref_citationtrail_10_1080_00207543_2023_2179350 proquest_journals_2917707019 crossref_primary_10_1080_00207543_2023_2179350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-16 |
PublicationDateYYYYMMDD | 2024-02-16 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of production research |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | e_1_3_3_52_1 e_1_3_3_50_1 Hastie T. (e_1_3_3_23_1) 2010 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_40_1 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_5_1 e_1_3_3_42_1 e_1_3_3_30_1 e_1_3_3_51_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_34_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_53_1 e_1_3_3_41_1 Takeuchi I. (e_1_3_3_48_1) 2006; 7 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
References_xml | – ident: e_1_3_3_5_1 doi: 10.1287/msom.2018.0725 – ident: e_1_3_3_21_1 doi: 10.1016/j.ejor.2006.03.022 – ident: e_1_3_3_37_1 doi: 10.1002/nav.21949 – ident: e_1_3_3_28_1 doi: 10.1287/msom.2018.0726 – ident: e_1_3_3_45_1 doi: 10.1080/00207543.2022.2060770 – ident: e_1_3_3_53_1 doi: 10.1111/poms.13159 – ident: e_1_3_3_25_1 doi: 10.1016/j.ejor.2019.04.043 – ident: e_1_3_3_29_1 doi: 10.21314/JOR.2002.057 – ident: e_1_3_3_41_1 doi: 10.1080/24725854.2018.1539888 – ident: e_1_3_3_33_1 doi: 10.1016/j.ejor.2016.05.021 – ident: e_1_3_3_50_1 doi: 10.1109/TNNLS.2014.2378270 – ident: e_1_3_3_38_1 doi: 10.1016/j.ejor.2010.11.024 – ident: e_1_3_3_27_1 doi: 10.1016/j.ijpe.2019.107597 – ident: e_1_3_3_36_1 doi: 10.1016/j.dss.2020.113340 – ident: e_1_3_3_51_1 doi: 10.1016/j.ijpe.2013.06.007 – ident: e_1_3_3_20_1 doi: 10.1016/j.ejor.2009.12.020 – ident: e_1_3_3_13_1 doi: 10.1080/00207543.2021.1905901 – ident: e_1_3_3_42_1 doi: 10.1111/deci.12429 – ident: e_1_3_3_34_1 doi: 10.1080/00207543.2021.1956695 – ident: e_1_3_3_47_1 doi: 10.1145/1390156.1390289 – ident: e_1_3_3_18_1 doi: 10.1287/msom.2015.0561 – ident: e_1_3_3_44_1 doi: 10.1016/j.ejor.2015.07.021 – ident: e_1_3_3_7_1 doi: 10.1287/opre.2018.1757 – ident: e_1_3_3_32_1 doi: 10.1016/j.orl.2004.08.003 – ident: e_1_3_3_43_1 doi: 10.1287/msom.2013.0471 – volume: 7 start-page: 1231 year: 2006 ident: e_1_3_3_48_1 article-title: Nonparametric Quantile Estimation publication-title: Journal of Machine Learning Research – ident: e_1_3_3_14_1 doi: 10.1111/poms.12838 – ident: e_1_3_3_12_1 doi: 10.1287/opre.1080.0603 – ident: e_1_3_3_52_1 doi: 10.1080/00207543.2015.1100765 – ident: e_1_3_3_15_1 doi: 10.1016/j.cor.2021.105641 – ident: e_1_3_3_6_1 doi: 10.1287/mnsc.2016.2644 – ident: e_1_3_3_24_1 doi: 10.1016/j.csda.2014.03.016 – ident: e_1_3_3_3_1 doi: 10.1080/00207543.2016.1195932 – ident: e_1_3_3_10_1 doi: 10.1016/j.cageo.2010.07.005 – ident: e_1_3_3_4_1 doi: 10.1016/j.ejor.2016.06.002 – ident: e_1_3_3_30_1 doi: 10.1111/poms.13635 – ident: e_1_3_3_46_1 doi: 10.1016/j.ejor.2008.07.027 – ident: e_1_3_3_49_1 doi: 10.1007/978-1-4757-2440-0 – ident: e_1_3_3_31_1 doi: 10.1016/j.ejor.2021.08.013 – ident: e_1_3_3_11_1 doi: 10.1016/j.orl.2019.08.008 – ident: e_1_3_3_2_1 doi: 10.1016/j.cie.2016.11.026 – ident: e_1_3_3_40_1 doi: 10.1162/089976600300015565 – ident: e_1_3_3_22_1 doi: 10.1016/j.ejor.2011.09.012 – ident: e_1_3_3_26_1 doi: 10.1057/jors.2013.48 – ident: e_1_3_3_19_1 doi: 10.1111/itor.12726 – ident: e_1_3_3_39_1 doi: 10.21314/JOR.2000.038 – ident: e_1_3_3_8_1 doi: 10.1287/mnsc.2018.3253 – ident: e_1_3_3_16_1 doi: 10.1080/00207543.2019.1671624 – ident: e_1_3_3_35_1 doi: 10.1080/24725854.2019.1632502 – ident: e_1_3_3_9_1 doi: 10.1016/j.ijpe.2011.04.017 – ident: e_1_3_3_17_1 doi: 10.1111/poms.12836 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2010 ident: e_1_3_3_23_1 |
SSID | ssj0000584 |
Score | 2.4570117 |
Snippet | Incorporating decision-makers' risk preferences into data-driven newsvendor models and developing machine learning methods to solve the models are the... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1221 |
SubjectTerms | Asymmetry conditional value-at-risk Criteria Data science Decisions Kernel functions Machine learning newsvendor model Quadratic programming Regularization Risk Risk aversion support vector machine Support vector machines |
Title | Data-driven risk-averse newsvendor problems: developing the CVaR criteria and support vector machines |
URI | https://www.tandfonline.com/doi/abs/10.1080/00207543.2023.2179350 https://www.proquest.com/docview/2917707019 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcABUR6iUCofuEWOEttJbG7VFrRCag-ohdJLZCf2AdHtapvlwK9n_Mhjy4pSLtmVJXuzO1_GM95vvkHoncxFo4zMic6VgASFUaJa2xJeKUMVrZT05WInp-X8nH-6KC5G6pCvLul02vzaWlfyP1aFMbCrq5K9h2WHRWEA3oN94QoWhus_2fhYdYq0K-ewPEecKEeyML5NOIy116skNozxxLdbBVKzL-pzAk7DqTX7yqzkZr104Xjy0x_lJ1eeaBlJht9Hyvt4gjjRnVgG6ViHpiggNBw0z2IFyCW8km_r6UED5Y6bHOogB-J_RqoiqCqlJvhLVpakEL478OBQSzoBDp94x5yGaui408KmKbZ68Z72SDP3canr8J5S50mCRu2mavat3WzgGOaD-GlYpnbL1HGZh2iXQl4BjnH3aH58-XXcvAsRhbvDd-2Lvpwc-7b72QhnNsRu_9jcfcRy9hQ9iakGPgq42UMPzOIZejwRoHyOzARBeIIgPCII9wh6j0f8YMAPdvjBPX4w4AdH_OCAH9zj5wU6__jhbDYnsfEGaZgsOqJ0K6zghtHKiKwxTUG1FdQaSalyf2QLISHOBn9vpIUUI7cui-WN1qyUqjDsJdpZXC_MK4RZxWzLJeNWGs6sFaUWkMNqTTNeirLZR7z__eomqtK75ig_6r_abx-lw7RlkGW5a4KcGqfu_HmYDc1ranbH3IPeknV8rm5qKvOqylwzg9f3vZc36NH4fB2gnW61Nm8htO30YYTjbymtm2M |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RONAeWlpaFUqpD_ToKLGdxEbqoYKipcAeECBurp3Yl8KCNlkQfSxepS9UT374FeKAOPSayJbjmfHMxN98A7CiElkYpxJqEyNDgsIZNaUvqciNY4blRjXlYjvDbLAvfh6mh1Nw2dfCIKwSc2jfEkU0ZzUaN_6M7iFxWMIdPJ3gEfb-jhjqWBp3wMotd3Ee0rbq2-Z6kPFXxjZ-7K0NaNdZgBZcpTU1tpReCsdZ7mRcuCJl1kvmnWLM4E2dlCoEEkGhnfIhhko8humisJZnyqSOh3lfwEyqshxti8fD69M_lR3zc0xxjX3V0EPLvuUPb7Gl3vMOjcvbeAN_-81qkS6_o0lto-LPHR7J_2s35-B1F4GT763JvIUpN3oHr27wMs6DWze1oeUYPQFB8D01iF5xBHOQ8Kw8GZOuE0-1Sq7rzkiIpsnagdkl4SxGEmxDwraQanKKWQ45a25IyHGDX3XVe9h_lu_8ANOjk5H7CITn3JdCceGVE9x7mVkZUjtrWSwymRULIHqt0EVH1o49Q450csXp2kpNo9R0J7UFiK6GnbZsJY8NUDdVTtfNbyLf9nTR_JGxS71-6u7gqzQL6X8eI8f_4hOm_gKzg72dbb29Odz6BC_DK4FI-SRbgul6PHGfQyBY2-XG8gj8em7l_Aeur1xl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiF64I1aKOADHB0ltpPYSBxQl1VLYYUQRb0ZO7EvwHa1yYLgX_FX-EXM5NEHCPWAeuCayJbjGc8j_uYbgMcm05ULJuM-cxoTFCm4q2PNVemCcKJ0pisXez0rdg_Uy8P8cA1-jLUwBKukHDr2RBGdrabDvajjiIijCm50dEom1Po7EaRieTrgKvfDt6-YtTXP9iYo4idCTF-829nlQ2MBXkmTt9z5WketghRl0GkVqlz4qEUMRghHF3VaG4wjUJ-DiRhCZZGidFV5Lwvj8iBx3ktwuaDCTqoaSWcnxj_XA_FzymmNY9HQ35Z9xh2eIUv9wzl0Hm96HX6Oe9UDXT4mq9Yn1fffaCT_q828AdeG-Js97w_MTVgL81uwcYqV8TaEiWsdr5fkBxhB77kj7EpglIHgs_poyYY-PM1TdlJ1xjCWZjvv3VuGlpgosB3DXWHNakE5DvvS3Y-wzx16NTR34OBCvvMurM-P5mETmCxlrJWRKpqgZIy68BoTO-8FapQuqi1Qo1LYaqBqp44hn2x2zOjaS82S1OwgtS1Ijocteq6S8waY0xpn2-4nUew7ulh5ztjtUT3tYPYaKzD5L1Ni-L_3D1M_gitvJlP7am-2fx-u4htFMPms2Ib1drkKDzAKbP3D7twx-HDRuvkL4TpbCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+risk-averse+newsvendor+problems%3A+developing+the+CVaR+criteria+and+support+vector+machines&rft.jtitle=International+journal+of+production+research&rft.au=Chen%2C+Zhen-Yu&rft.date=2024-02-16&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=62&rft.issue=4&rft.spage=1221&rft.epage=1238&rft_id=info:doi/10.1080%2F00207543.2023.2179350&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207543_2023_2179350 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon |