Data-driven risk-averse newsvendor problems: developing the CVaR criteria and support vector machines

Incorporating decision-makers' risk preferences into data-driven newsvendor models and developing machine learning methods to solve the models are the challenging problems addressed in this study. To consider different distributions and decision-makers' different risk preferences for the t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of production research Vol. 62; no. 4; pp. 1221 - 1238
Main Author Chen, Zhen-Yu
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 16.02.2024
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incorporating decision-makers' risk preferences into data-driven newsvendor models and developing machine learning methods to solve the models are the challenging problems addressed in this study. To consider different distributions and decision-makers' different risk preferences for the two losses of the total cost newsvendor model, the symmetrical, the partial symmetrical and the asymmetrical CVaR criteria are introduced. The regularisation, the primal-dual approach and the kernels in support vector machines are used to transform the data-driven risk-averse newsvendor problems under the CVaR criterion into the convex quadratic programming problems with good theoretical properties. Computational experiments are conducted on a real-world dataset. The models under the partial symmetrical and the asymmetrical CVaR criteria obtained good performances, but that under the symmetrical CVaR criterion suffered the underfitting problem. Two factors including the degrees of risk aversion for the two losses in the total cost newsvendor model and the empirical errors of data-driven models affect order decisions. The degrees of risk aversion for the two losses have anti-directional effects on order quantities. The introduction of asymmetrical CVaR criterion paves a new way to reveal the effects of different risk references for different losses on order decisions, and has the potential to improve newsvendor decisions.
AbstractList Incorporating decision-makers' risk preferences into data-driven newsvendor models and developing machine learning methods to solve the models are the challenging problems addressed in this study. To consider different distributions and decision-makers' different risk preferences for the two losses of the total cost newsvendor model, the symmetrical, the partial symmetrical and the asymmetrical CVaR criteria are introduced. The regularisation, the primal-dual approach and the kernels in support vector machines are used to transform the data-driven risk-averse newsvendor problems under the CVaR criterion into the convex quadratic programming problems with good theoretical properties. Computational experiments are conducted on a real-world dataset. The models under the partial symmetrical and the asymmetrical CVaR criteria obtained good performances, but that under the symmetrical CVaR criterion suffered the underfitting problem. Two factors including the degrees of risk aversion for the two losses in the total cost newsvendor model and the empirical errors of data-driven models affect order decisions. The degrees of risk aversion for the two losses have anti-directional effects on order quantities. The introduction of asymmetrical CVaR criterion paves a new way to reveal the effects of different risk references for different losses on order decisions, and has the potential to improve newsvendor decisions.
Author Chen, Zhen-Yu
Author_xml – sequence: 1
  givenname: Zhen-Yu
  surname: Chen
  fullname: Chen, Zhen-Yu
  email: zychen@mail.neu.edu.cn
  organization: Northeastern University
BookMark eNqFkE2LFDEQhoOs4OzqTxACnnvNR6c70YsyfsKCICreQjpdcbP2JG0lM8v-ezPMevGgdaiC4n3q4z0nZyknIOQpZ5ecafacMcFG1ctLwURLfDRSsQdkw-UwdErr72dkc9R0R9Ejcl7KDWuhdL8h8MZV180YD5AoxvKzcwfAAjTBbWm9OSNdMU8L7MoLOsMBlrzG9IPWa6Dbb-4z9RgrYHTUpZmW_bpmrPQAvjZy5_x1TFAek4fBLQWe3NcL8vXd2y_bD93Vp_cft6-vOi-Nqp2bZh10D1KMoJkHr8QUtAhghHADV-0Xw3vJegEmMGN4GHqhez9NcjBOgbwgz05z28m_9lCqvcl7TG2lFYaPIxsZN02lTiqPuRSEYFeMO4d3ljN7dNT-cdQeHbX3jjbu5V-cj9XVmFNFF5f_0q9OdEwh487dZlxmW93dkjGgSz4WK_894jd4vJGH
CitedBy_id crossref_primary_10_1051_ro_2024171
crossref_primary_10_1177_00375497241289138
crossref_primary_10_1007_s10479_024_05923_8
crossref_primary_10_3390_math12040533
crossref_primary_10_1016_j_heliyon_2024_e39770
crossref_primary_10_1016_j_cie_2025_111038
Cites_doi 10.1287/msom.2018.0725
10.1016/j.ejor.2006.03.022
10.1002/nav.21949
10.1287/msom.2018.0726
10.1080/00207543.2022.2060770
10.1111/poms.13159
10.1016/j.ejor.2019.04.043
10.21314/JOR.2002.057
10.1080/24725854.2018.1539888
10.1016/j.ejor.2016.05.021
10.1109/TNNLS.2014.2378270
10.1016/j.ejor.2010.11.024
10.1016/j.ijpe.2019.107597
10.1016/j.dss.2020.113340
10.1016/j.ijpe.2013.06.007
10.1016/j.ejor.2009.12.020
10.1080/00207543.2021.1905901
10.1111/deci.12429
10.1080/00207543.2021.1956695
10.1145/1390156.1390289
10.1287/msom.2015.0561
10.1016/j.ejor.2015.07.021
10.1287/opre.2018.1757
10.1016/j.orl.2004.08.003
10.1287/msom.2013.0471
10.1111/poms.12838
10.1287/opre.1080.0603
10.1080/00207543.2015.1100765
10.1016/j.cor.2021.105641
10.1287/mnsc.2016.2644
10.1016/j.csda.2014.03.016
10.1080/00207543.2016.1195932
10.1016/j.cageo.2010.07.005
10.1016/j.ejor.2016.06.002
10.1111/poms.13635
10.1016/j.ejor.2008.07.027
10.1007/978-1-4757-2440-0
10.1016/j.ejor.2021.08.013
10.1016/j.orl.2019.08.008
10.1016/j.cie.2016.11.026
10.1162/089976600300015565
10.1016/j.ejor.2011.09.012
10.1057/jors.2013.48
10.1111/itor.12726
10.21314/JOR.2000.038
10.1287/mnsc.2018.3253
10.1080/00207543.2019.1671624
10.1080/24725854.2019.1632502
10.1016/j.ijpe.2011.04.017
10.1111/poms.12836
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/00207543.2023.2179350
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1366-588X
EndPage 1238
ExternalDocumentID 10_1080_00207543_2023_2179350
2179350
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBR
EBS
EBU
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
A8Z
AAGDL
AAHIA
AAYXX
ADYSH
AEMOZ
AFRVT
AHQJS
AIYEW
AMPGV
CITATION
EBD
EBE
EBO
EMK
EPL
I-F
ML~
TH9
7SC
8FD
F28
FR3
JQ2
K1G
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c395t-abd8f84e327e80cec52bf82fe922a6155889143042e9f0991f64284cbb369a5e3
ISSN 0020-7543
IngestDate Wed Aug 13 09:51:00 EDT 2025
Tue Jul 01 03:30:25 EDT 2025
Thu Apr 24 23:01:38 EDT 2025
Wed Dec 25 09:05:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-abd8f84e327e80cec52bf82fe922a6155889143042e9f0991f64284cbb369a5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917707019
PQPubID 30924
PageCount 18
ParticipantIDs informaworld_taylorfrancis_310_1080_00207543_2023_2179350
crossref_citationtrail_10_1080_00207543_2023_2179350
proquest_journals_2917707019
crossref_primary_10_1080_00207543_2023_2179350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-16
PublicationDateYYYYMMDD 2024-02-16
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of production research
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_3_52_1
e_1_3_3_50_1
Hastie T. (e_1_3_3_23_1) 2010
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_40_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_34_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_41_1
Takeuchi I. (e_1_3_3_48_1) 2006; 7
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_5_1
  doi: 10.1287/msom.2018.0725
– ident: e_1_3_3_21_1
  doi: 10.1016/j.ejor.2006.03.022
– ident: e_1_3_3_37_1
  doi: 10.1002/nav.21949
– ident: e_1_3_3_28_1
  doi: 10.1287/msom.2018.0726
– ident: e_1_3_3_45_1
  doi: 10.1080/00207543.2022.2060770
– ident: e_1_3_3_53_1
  doi: 10.1111/poms.13159
– ident: e_1_3_3_25_1
  doi: 10.1016/j.ejor.2019.04.043
– ident: e_1_3_3_29_1
  doi: 10.21314/JOR.2002.057
– ident: e_1_3_3_41_1
  doi: 10.1080/24725854.2018.1539888
– ident: e_1_3_3_33_1
  doi: 10.1016/j.ejor.2016.05.021
– ident: e_1_3_3_50_1
  doi: 10.1109/TNNLS.2014.2378270
– ident: e_1_3_3_38_1
  doi: 10.1016/j.ejor.2010.11.024
– ident: e_1_3_3_27_1
  doi: 10.1016/j.ijpe.2019.107597
– ident: e_1_3_3_36_1
  doi: 10.1016/j.dss.2020.113340
– ident: e_1_3_3_51_1
  doi: 10.1016/j.ijpe.2013.06.007
– ident: e_1_3_3_20_1
  doi: 10.1016/j.ejor.2009.12.020
– ident: e_1_3_3_13_1
  doi: 10.1080/00207543.2021.1905901
– ident: e_1_3_3_42_1
  doi: 10.1111/deci.12429
– ident: e_1_3_3_34_1
  doi: 10.1080/00207543.2021.1956695
– ident: e_1_3_3_47_1
  doi: 10.1145/1390156.1390289
– ident: e_1_3_3_18_1
  doi: 10.1287/msom.2015.0561
– ident: e_1_3_3_44_1
  doi: 10.1016/j.ejor.2015.07.021
– ident: e_1_3_3_7_1
  doi: 10.1287/opre.2018.1757
– ident: e_1_3_3_32_1
  doi: 10.1016/j.orl.2004.08.003
– ident: e_1_3_3_43_1
  doi: 10.1287/msom.2013.0471
– volume: 7
  start-page: 1231
  year: 2006
  ident: e_1_3_3_48_1
  article-title: Nonparametric Quantile Estimation
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_14_1
  doi: 10.1111/poms.12838
– ident: e_1_3_3_12_1
  doi: 10.1287/opre.1080.0603
– ident: e_1_3_3_52_1
  doi: 10.1080/00207543.2015.1100765
– ident: e_1_3_3_15_1
  doi: 10.1016/j.cor.2021.105641
– ident: e_1_3_3_6_1
  doi: 10.1287/mnsc.2016.2644
– ident: e_1_3_3_24_1
  doi: 10.1016/j.csda.2014.03.016
– ident: e_1_3_3_3_1
  doi: 10.1080/00207543.2016.1195932
– ident: e_1_3_3_10_1
  doi: 10.1016/j.cageo.2010.07.005
– ident: e_1_3_3_4_1
  doi: 10.1016/j.ejor.2016.06.002
– ident: e_1_3_3_30_1
  doi: 10.1111/poms.13635
– ident: e_1_3_3_46_1
  doi: 10.1016/j.ejor.2008.07.027
– ident: e_1_3_3_49_1
  doi: 10.1007/978-1-4757-2440-0
– ident: e_1_3_3_31_1
  doi: 10.1016/j.ejor.2021.08.013
– ident: e_1_3_3_11_1
  doi: 10.1016/j.orl.2019.08.008
– ident: e_1_3_3_2_1
  doi: 10.1016/j.cie.2016.11.026
– ident: e_1_3_3_40_1
  doi: 10.1162/089976600300015565
– ident: e_1_3_3_22_1
  doi: 10.1016/j.ejor.2011.09.012
– ident: e_1_3_3_26_1
  doi: 10.1057/jors.2013.48
– ident: e_1_3_3_19_1
  doi: 10.1111/itor.12726
– ident: e_1_3_3_39_1
  doi: 10.21314/JOR.2000.038
– ident: e_1_3_3_8_1
  doi: 10.1287/mnsc.2018.3253
– ident: e_1_3_3_16_1
  doi: 10.1080/00207543.2019.1671624
– ident: e_1_3_3_35_1
  doi: 10.1080/24725854.2019.1632502
– ident: e_1_3_3_9_1
  doi: 10.1016/j.ijpe.2011.04.017
– ident: e_1_3_3_17_1
  doi: 10.1111/poms.12836
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2010
  ident: e_1_3_3_23_1
SSID ssj0000584
Score 2.4570117
Snippet Incorporating decision-makers' risk preferences into data-driven newsvendor models and developing machine learning methods to solve the models are the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1221
SubjectTerms Asymmetry
conditional value-at-risk
Criteria
Data science
Decisions
Kernel functions
Machine learning
newsvendor model
Quadratic programming
Regularization
Risk
Risk aversion
support vector machine
Support vector machines
Title Data-driven risk-averse newsvendor problems: developing the CVaR criteria and support vector machines
URI https://www.tandfonline.com/doi/abs/10.1080/00207543.2023.2179350
https://www.proquest.com/docview/2917707019
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcABUR6iUCofuEWOEttJbG7VFrRCag-ohdJLZCf2AdHtapvlwK9n_Mhjy4pSLtmVJXuzO1_GM95vvkHoncxFo4zMic6VgASFUaJa2xJeKUMVrZT05WInp-X8nH-6KC5G6pCvLul02vzaWlfyP1aFMbCrq5K9h2WHRWEA3oN94QoWhus_2fhYdYq0K-ewPEecKEeyML5NOIy116skNozxxLdbBVKzL-pzAk7DqTX7yqzkZr104Xjy0x_lJ1eeaBlJht9Hyvt4gjjRnVgG6ViHpiggNBw0z2IFyCW8km_r6UED5Y6bHOogB-J_RqoiqCqlJvhLVpakEL478OBQSzoBDp94x5yGaui408KmKbZ68Z72SDP3canr8J5S50mCRu2mavat3WzgGOaD-GlYpnbL1HGZh2iXQl4BjnH3aH58-XXcvAsRhbvDd-2Lvpwc-7b72QhnNsRu_9jcfcRy9hQ9iakGPgq42UMPzOIZejwRoHyOzARBeIIgPCII9wh6j0f8YMAPdvjBPX4w4AdH_OCAH9zj5wU6__jhbDYnsfEGaZgsOqJ0K6zghtHKiKwxTUG1FdQaSalyf2QLISHOBn9vpIUUI7cui-WN1qyUqjDsJdpZXC_MK4RZxWzLJeNWGs6sFaUWkMNqTTNeirLZR7z__eomqtK75ig_6r_abx-lw7RlkGW5a4KcGqfu_HmYDc1ranbH3IPeknV8rm5qKvOqylwzg9f3vZc36NH4fB2gnW61Nm8htO30YYTjbymtm2M
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RONAeWlpaFUqpD_ToKLGdxEbqoYKipcAeECBurp3Yl8KCNlkQfSxepS9UT374FeKAOPSayJbjmfHMxN98A7CiElkYpxJqEyNDgsIZNaUvqciNY4blRjXlYjvDbLAvfh6mh1Nw2dfCIKwSc2jfEkU0ZzUaN_6M7iFxWMIdPJ3gEfb-jhjqWBp3wMotd3Ee0rbq2-Z6kPFXxjZ-7K0NaNdZgBZcpTU1tpReCsdZ7mRcuCJl1kvmnWLM4E2dlCoEEkGhnfIhhko8humisJZnyqSOh3lfwEyqshxti8fD69M_lR3zc0xxjX3V0EPLvuUPb7Gl3vMOjcvbeAN_-81qkS6_o0lto-LPHR7J_2s35-B1F4GT763JvIUpN3oHr27wMs6DWze1oeUYPQFB8D01iF5xBHOQ8Kw8GZOuE0-1Sq7rzkiIpsnagdkl4SxGEmxDwraQanKKWQ45a25IyHGDX3XVe9h_lu_8ANOjk5H7CITn3JdCceGVE9x7mVkZUjtrWSwymRULIHqt0EVH1o49Q450csXp2kpNo9R0J7UFiK6GnbZsJY8NUDdVTtfNbyLf9nTR_JGxS71-6u7gqzQL6X8eI8f_4hOm_gKzg72dbb29Odz6BC_DK4FI-SRbgul6PHGfQyBY2-XG8gj8em7l_Aeur1xl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiF64I1aKOADHB0ltpPYSBxQl1VLYYUQRb0ZO7EvwHa1yYLgX_FX-EXM5NEHCPWAeuCayJbjGc8j_uYbgMcm05ULJuM-cxoTFCm4q2PNVemCcKJ0pisXez0rdg_Uy8P8cA1-jLUwBKukHDr2RBGdrabDvajjiIijCm50dEom1Po7EaRieTrgKvfDt6-YtTXP9iYo4idCTF-829nlQ2MBXkmTt9z5WketghRl0GkVqlz4qEUMRghHF3VaG4wjUJ-DiRhCZZGidFV5Lwvj8iBx3ktwuaDCTqoaSWcnxj_XA_FzymmNY9HQ35Z9xh2eIUv9wzl0Hm96HX6Oe9UDXT4mq9Yn1fffaCT_q828AdeG-Js97w_MTVgL81uwcYqV8TaEiWsdr5fkBxhB77kj7EpglIHgs_poyYY-PM1TdlJ1xjCWZjvv3VuGlpgosB3DXWHNakE5DvvS3Y-wzx16NTR34OBCvvMurM-P5mETmCxlrJWRKpqgZIy68BoTO-8FapQuqi1Qo1LYaqBqp44hn2x2zOjaS82S1OwgtS1Ijocteq6S8waY0xpn2-4nUew7ulh5ztjtUT3tYPYaKzD5L1Ni-L_3D1M_gitvJlP7am-2fx-u4htFMPms2Ib1drkKDzAKbP3D7twx-HDRuvkL4TpbCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+risk-averse+newsvendor+problems%3A+developing+the+CVaR+criteria+and+support+vector+machines&rft.jtitle=International+journal+of+production+research&rft.au=Chen%2C+Zhen-Yu&rft.date=2024-02-16&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=62&rft.issue=4&rft.spage=1221&rft.epage=1238&rft_id=info:doi/10.1080%2F00207543.2023.2179350&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207543_2023_2179350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon