Cell stiffness determined by atomic force microscopy and its correlation with cell motility
Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially i...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1860; no. 9; pp. 1953 - 1960 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate.
In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence.
The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility.
This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters.
•Conflicting reports about correlation between motility and stiffness are summarized.•The determinants of the AFM-determined stiffness are discussed.•Crucial methodological issues in the AFM detection are suggested.•The possible reasons for the existence of the conflicting reports are proposed. |
---|---|
AbstractList | Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate.In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence.The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility.This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters. Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate. In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence. The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility. This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters. •Conflicting reports about correlation between motility and stiffness are summarized.•The determinants of the AFM-determined stiffness are discussed.•Crucial methodological issues in the AFM detection are suggested.•The possible reasons for the existence of the conflicting reports are proposed. Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate. In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence. The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility. This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters. Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate.BACKGROUNDCell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate.In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence.SCOPE OF REVIEWIn this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence.The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility.MAJOR CONCLUSIONSThe AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility.This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters.GENERAL SIGNIFICANCEThis review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters. |
Author | Kuang, Dongdong Song, Guanbin Zhang, Bingyu Luo, Qing |
Author_xml | – sequence: 1 givenname: Qing surname: Luo fullname: Luo, Qing email: qing.luo@cqu.edu.cn – sequence: 2 givenname: Dongdong surname: Kuang fullname: Kuang, Dongdong – sequence: 3 givenname: Bingyu surname: Zhang fullname: Zhang, Bingyu – sequence: 4 givenname: Guanbin surname: Song fullname: Song, Guanbin email: song@cqu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27288584$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9rFDEYxoNU7Lb6DURy9DLrm0ySzXgQZKmtUPCiJw8hk7yjWWYma5JV9ts341YPHmzDC_nD73kIz3NBzuY4IyEvGawZMPVmt-57-w3nNa-3NdRh8ISsmN7wRgOoM7KCFkQjmJLn5CLnHdQlO_mMnPMN11pqsSJftziONJcwDDPmTD0WTFOY0dP-SG2JU3B0iMkhracUs4v7-j57GkqmLqaEoy0hzvRXKN-pW9ymWMIYyvE5eTrYMeOL-_2SfPlw9Xl709x-uv64fX_buLaTpbGdENJrbVEJ3SsthBVa9V4KvlHglHLAeW_btnMe5CCc1CC9VEr3MNihay_J65PvPsUfB8zFTCEvP7EzxkM2TPPq1WlQj0BBCt3xllX01T166Cf0Zp_CZNPR_MmuAuIELLHkhMNfhIFZKjI7c6rILBUZqMOgyt7-I3Oh_I6wJBvGh8TvTmKsef4MmEx2AWeHPiR0xfgY_m9wB3Zirh0 |
CitedBy_id | crossref_primary_10_1016_j_isci_2023_106393 crossref_primary_10_1021_acsbiomaterials_8b01206 crossref_primary_10_1098_rsif_2022_0857 crossref_primary_10_1016_j_bbrc_2017_03_009 crossref_primary_10_1016_j_micron_2017_09_002 crossref_primary_10_1109_TNB_2021_3096056 crossref_primary_10_1038_s41536_023_00306_2 crossref_primary_10_1146_annurev_biophys_030822_030629 crossref_primary_10_1016_j_isci_2025_112150 crossref_primary_10_1042_BCJ20210806 crossref_primary_10_1515_bmc_2022_0024 crossref_primary_10_3389_fnmol_2024_1501874 crossref_primary_10_3390_biomedicines10092239 crossref_primary_10_1039_C8AY02711K crossref_primary_10_3390_ijms19102912 crossref_primary_10_1038_s41422_021_00558_x crossref_primary_10_1016_j_bioactmat_2023_05_007 crossref_primary_10_1016_j_biomaterials_2019_119300 crossref_primary_10_35848_1882_0786_abaeb5 crossref_primary_10_1038_s41540_023_00265_w crossref_primary_10_3390_ijms23147708 crossref_primary_10_3390_biology10040259 crossref_primary_10_1038_s41598_019_45578_1 crossref_primary_10_3390_ijms26072876 crossref_primary_10_1002_advs_202202282 crossref_primary_10_1242_jcs_258513 crossref_primary_10_3390_cimb43030089 crossref_primary_10_1007_s10103_020_03092_1 crossref_primary_10_2142_biophys_64_132 crossref_primary_10_1186_s12862_024_02221_6 crossref_primary_10_1039_C7RA01868A crossref_primary_10_3390_mi10110738 crossref_primary_10_1016_j_bbagen_2020_129683 crossref_primary_10_3390_ijms26062767 crossref_primary_10_1021_acsnano_2c02980 crossref_primary_10_1186_s40164_024_00591_7 crossref_primary_10_1007_s11626_024_00925_z crossref_primary_10_1155_2016_7260562 crossref_primary_10_3390_ma13204495 crossref_primary_10_3390_cancers15194834 crossref_primary_10_1098_rsif_2018_0826 crossref_primary_10_1039_D1CB00235J crossref_primary_10_1063_5_0021592 crossref_primary_10_1186_s40648_020_0154_x crossref_primary_10_3390_jcm9040924 crossref_primary_10_1083_jcb_202105147 crossref_primary_10_1016_j_bbagen_2021_129891 crossref_primary_10_1016_j_yexcr_2021_112765 crossref_primary_10_3390_cells12141871 crossref_primary_10_1021_acsbiomaterials_9b01640 crossref_primary_10_3390_ijms21176248 crossref_primary_10_1134_S1068162021010143 crossref_primary_10_1016_j_bpj_2019_09_012 crossref_primary_10_1021_acsbiomaterials_8b01019 crossref_primary_10_1038_s41467_024_46189_9 crossref_primary_10_1016_j_jbiomech_2019_06_028 crossref_primary_10_1016_j_mtbio_2025_101506 crossref_primary_10_3390_cimb45050278 crossref_primary_10_1016_j_ijsolstr_2024_112938 crossref_primary_10_1021_acschemneuro_9b00401 crossref_primary_10_1038_s41598_017_18120_4 crossref_primary_10_3390_life14101260 crossref_primary_10_1021_acs_analchem_9b01569 crossref_primary_10_1109_TUFFC_2022_3170074 crossref_primary_10_32604_cmes_2022_019376 crossref_primary_10_1088_1361_6439_aaabf7 crossref_primary_10_1016_j_ejcb_2022_151241 crossref_primary_10_1042_ETLS20200254 crossref_primary_10_1016_j_heliyon_2024_e31848 crossref_primary_10_1016_j_jmbbm_2023_105828 crossref_primary_10_1088_1742_6596_1777_1_012019 crossref_primary_10_1016_j_micron_2019_102822 crossref_primary_10_1126_sciadv_adl0515 crossref_primary_10_1128_mmbr_00094_20 crossref_primary_10_1016_j_bbamem_2019_07_005 crossref_primary_10_1038_s42003_022_04320_w crossref_primary_10_1016_j_nano_2022_102582 crossref_primary_10_1002_adma_201704463 crossref_primary_10_3390_ma16082980 crossref_primary_10_1016_j_compbiomed_2024_108744 crossref_primary_10_1093_rb_rbae004 crossref_primary_10_1016_j_jmps_2021_104630 crossref_primary_10_1038_s41598_018_38199_7 crossref_primary_10_1039_c9mt00049f crossref_primary_10_1115_1_4062299 crossref_primary_10_1063_5_0190994 crossref_primary_10_1186_s12964_024_01707_6 crossref_primary_10_3390_cells12192401 crossref_primary_10_1039_D3BM00363A crossref_primary_10_1002_hep4_1966 crossref_primary_10_1002_VIW_20220049 crossref_primary_10_1080_19336918_2022_2154732 crossref_primary_10_1016_j_jmbbm_2019_03_018 crossref_primary_10_1021_acsami_8b01990 crossref_primary_10_1007_s11010_022_04459_4 crossref_primary_10_1007_s13204_021_01674_1 crossref_primary_10_3390_cancers11071008 crossref_primary_10_1021_acs_langmuir_9b00372 crossref_primary_10_4251_wjgo_v16_i6_2727 crossref_primary_10_1088_2515_7647_ad3d1a crossref_primary_10_3389_fncel_2017_00104 crossref_primary_10_1002_jbm_a_36670 crossref_primary_10_3389_fcell_2022_932510 crossref_primary_10_3390_cells10030663 crossref_primary_10_1109_TNB_2023_3312754 crossref_primary_10_1016_j_jncc_2021_11_007 crossref_primary_10_1186_s12885_023_11375_3 crossref_primary_10_3389_fcell_2021_652791 crossref_primary_10_3389_fimmu_2020_01097 crossref_primary_10_3390_ijms221810098 crossref_primary_10_1016_j_bone_2024_117055 crossref_primary_10_1016_j_bbagen_2018_01_001 crossref_primary_10_3390_nano13232999 crossref_primary_10_1016_j_cam_2021_113892 crossref_primary_10_3390_biomedicines10112900 crossref_primary_10_1007_s00418_021_01979_w crossref_primary_10_1016_j_cnsns_2022_106966 crossref_primary_10_1007_s11010_016_2831_x crossref_primary_10_3389_fnins_2021_811348 crossref_primary_10_1016_j_jmbbm_2024_106586 crossref_primary_10_1002_advs_202307929 crossref_primary_10_1002_cpz1_1011 crossref_primary_10_3390_mi12050532 crossref_primary_10_1002_smll_202406389 crossref_primary_10_1016_j_nano_2019_102027 crossref_primary_10_1007_s00204_023_03585_2 crossref_primary_10_1016_j_bpj_2024_06_008 crossref_primary_10_1080_1539445X_2019_1706565 crossref_primary_10_1248_cpb_c20_00300 crossref_primary_10_1016_j_mechrescom_2022_103952 crossref_primary_10_1016_j_colsurfa_2023_132506 crossref_primary_10_1038_s41598_022_26337_1 crossref_primary_10_3390_pr11082430 crossref_primary_10_1073_pnas_2021135118 crossref_primary_10_1126_sciadv_abl4895 crossref_primary_10_1038_s41551_021_00826_6 crossref_primary_10_1016_j_yexcr_2017_09_020 crossref_primary_10_1016_j_eml_2019_100526 crossref_primary_10_3390_mi10020131 crossref_primary_10_1016_j_matbio_2024_11_004 crossref_primary_10_1103_PhysRevResearch_3_023129 crossref_primary_10_1186_s11671_019_2941_y crossref_primary_10_1038_s41598_023_33111_4 crossref_primary_10_1016_j_bpj_2022_08_024 crossref_primary_10_3390_ijms20112733 crossref_primary_10_3390_ijms221810034 crossref_primary_10_3390_ijms21082916 crossref_primary_10_3390_cells10020219 crossref_primary_10_1021_acsabm_0c00734 crossref_primary_10_1016_j_heliyon_2024_e32974 crossref_primary_10_1016_j_mtbio_2024_101401 crossref_primary_10_1038_s41598_019_43453_7 crossref_primary_10_1007_s10237_024_01899_3 crossref_primary_10_1038_s41563_022_01323_0 |
Cites_doi | 10.1152/ajpcell.00559.2003 10.1146/annurev-cellbio-101011-155711 10.1016/j.bbrc.2010.10.034 10.1016/j.ceb.2007.08.002 10.1016/j.bbrc.2008.07.078 10.1016/j.tcb.2012.07.001 10.1007/s00253-011-3865-3 10.3390/ijms140816124 10.1186/1476-4598-13-131 10.1016/j.jbiomech.2009.09.003 10.4238/2013.November.22.4 10.1016/j.actamat.2007.04.022 10.1371/journal.pone.0045297 10.1007/s10439-005-3555-3 10.1016/j.bpj.2009.05.010 10.2147/IJN.S5787 10.1016/j.bbrc.2013.10.094 10.1371/journal.pone.0046609 10.1371/journal.pone.0041520 10.1016/S0021-9290(99)00175-X 10.1007/s00432-012-1159-5 10.1016/j.ceb.2010.10.015 10.1111/jcmm.12441 10.1016/j.nano.2011.05.012 10.1083/jcb.201308029 10.1016/S0006-3495(04)74245-9 10.18632/oncotarget.3862 10.1016/j.tcb.2004.02.003 10.1074/jbc.M002377200 10.1006/bbrc.2000.2360 10.1073/pnas.0606150103 10.1002/cm.21150 10.1016/j.bbrc.2011.10.111 10.1529/biophysj.106.083097 10.1371/journal.pone.0126214 10.1109/TBME.2012.2187785 10.1016/j.jmbbm.2011.11.010 10.1186/1754-1611-7-21 10.1002/cm.21194 10.1016/j.yexcr.2014.01.005 10.1007/s12013-012-9449-8 10.3762/bjnano.5.52 10.1007/s00249-011-0761-9 10.1016/j.bpj.2013.08.037 10.1007/s10529-014-1710-3 10.1073/pnas.1300238111 10.1083/jcb.200606007 10.1016/j.jsb.2011.03.011 10.1016/j.nano.2013.07.007 10.1152/physrev.00018.2013 10.1016/j.jmbbm.2015.04.030 10.1016/j.bbagen.2012.02.006 10.12703/P6-54 10.1038/nature08908 10.1088/1478-3975/8/1/015007 10.1111/exd.12731 10.1073/pnas.1310493110 10.1088/1478-3975/10/6/065002 10.1242/jcs.164814 10.1101/cshperspect.a005959 10.1016/j.yexcr.2013.04.023 10.1002/ijc.28582 10.1016/j.jbiomech.2014.08.002 10.1039/C5SM01089F 10.1038/nnano.2007.388 10.1016/S1357-2725(02)00071-7 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2016.06.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1960 |
ExternalDocumentID | 27288584 10_1016_j_bbagen_2016_06_010 S030441651630215X |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM PKN RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-a9445d88ae648b6844a486bd542760c66c022ba339cd05f4c5805d5668b0faf93 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Fri Jul 11 06:20:48 EDT 2025 Fri Jul 11 07:01:28 EDT 2025 Wed Feb 19 02:00:06 EST 2025 Tue Jul 01 00:22:07 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Fri Feb 23 02:34:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Atomic force microscopy Young's modulus Cytoskeleton Stiffness Motility Nuclear stiffness |
Language | English |
License | Copyright © 2016 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-a9445d88ae648b6844a486bd542760c66c022ba339cd05f4c5805d5668b0faf93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 27288584 |
PQID | 1805489231 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1825429806 proquest_miscellaneous_1805489231 pubmed_primary_27288584 crossref_primary_10_1016_j_bbagen_2016_06_010 crossref_citationtrail_10_1016_j_bbagen_2016_06_010 elsevier_sciencedirect_doi_10_1016_j_bbagen_2016_06_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 2016-09-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bastatas, Martinez-Marin, Matthews, Hashem, Lee, Sennoune (bb0065) 2012; 1820 Cross, Jin, Rao, Gimzewski (bb0025) 2007; 2 Mahaffy, Park, Gerde, Kas, Shih (bb0305) 2004; 86 Li, Luo, Sun, Song (bb0085) 2015; 37 Ketene, Schmelz, Roberts, Agah (bb0335) 2012; 8 Jin, Pi, Huang, Huang, Shao, Li (bb0080) 2012; 93 Palmieri, Lucchetti, Maiorana, Papi, Maulucci, Calapa (bb0070) 2015; 11 Etienne-Manneville (bb0255) 2013; 29 Plodinec, Loparic, Suetterlin, Herrmann, Aebi, Schoenenberger (bb0245) 2011; 174 Xu, Mezencev, Kim, Wang, McDonald, Sulchek (bb0340) 2012; 7 Darling, Zauscher, Block, Guilak (bb0165) 2007; 92 Chaki, Barhoumi, Berginski, Sreenivasappa, Trache, Gomez (bb0100) 2013; 126 Takahashi, Watanabe, Mondal, Suzuki, Kurusu-Kanno, Li (bb0090) 2014; 443 Krause, Te Riet, Wolf (bb0280) 2013; 10 Fels, Jeggle, Kusche-Vihrog, Oberleithner (bb0195) 2012; 7 Louise, Etienne, Marie-Pierre (bb0150) 2014; 71 Jalilian, Heu, Cheng, Freittag, Desouza, Stehn (bb0215) 2015; 10 Yu, Chen, Huang, Liu, Chiou, Wang (bb0115) 2015; 19 Li, Lee, Ong, Lim (bb0125) 2008; 374 Gruenbaum, Aebi (bb0235) 2014; 6 Qian, Li, Han, Gao, Di, Zhang (bb0230) 2012; 59 Harn, Wang, Hsu, Ho, Huang, Chiu (bb0045) 2015; 24 Nawaz, Paula, Bodensiek, Li, Simons, Schaap (bb0200) 2012; 7 Harada, Swift, Irianto, Shin, Spinler, Athirasala (bb0295) 2014; 204 Zou, Luo, Qin, Shi, Yang, Ju (bb0035) 2013; 65 Salbreux, Charras, Paluch (bb0185) 2012; 22 Zhao, Zhang, Bao, Chen, Wang, Wang (bb0205) 2013; 12 Fuhrmann, Staunton, Nandakumar, Banyai, Davies, Ros (bb0325) 2011; 8 Suresh (bb0030) 2007; 55 Devreotes, Horwitz (bb0175) 2015; 7 Watanabe, Takahashi, Suzuki, Kurusu-Kanno, Yamaguchi, Fujiki (bb0095) 2014; 134 Xu, Tseng, Wirtz (bb0225) 2000; 275 Friedl, Wolf, Lammerding (bb0290) 2012; 23 Luo, Wu, Zhang, Song (bb0120) 2015; 33 Kirmizis, Logothetides (bb0020) 2010; 5 Guilak, Tedrow, Burgkart (bb0275) 2000; 269 Xu, Chen, Jiang, Xu, Tambe, Zhang (bb0220) 2011; 415 Rathje, Nordgren, Pettersson, Rönnlund, Widengren, Aspenström (bb0110) 2014; 111 Hochmuth (bb0210) 2000; 33 Guo, Ehrlicher, Mahammad, Fabich, Jensen, Moore (bb0240) 2013; 105 Tang, Kuhlenschmidt, Li, Ali, Lezmi, Chen (bb0170) 2014; 13 Pogoda, Jaczewska, Wiltowska-Zuber, Klymenko, Zuber, Fornal (bb0140) 2012; 41 Blanchoin, Boujemaa-Paterski, Sykes, Plastino (bb0135) 2014; 94 Thomas, Burnham, Camesano, Wen (bb0300) 2013 Weder, Hendriks-Balk, Smajda, Rimoldi, Liley, Heinzelmann (bb0075) 2014; 10 Ouyang, Nauman, Shi (bb0265) 2013; 7 Morone, Fujiwara, Murase, Kasai, Ike, Yuasa (bb0180) 2006; 174 Fletcher, Mullins (bb0260) 2010; 463 Wagh, Roan, Chapman, Desai, Rendon, Eckstein (bb0055) 2008; 295 Docheva, Padula, Schieker, Clausen-Schaumann (bb0330) 2010; 402 Lange, Fabry (bb0015) 2013; 319 Watanabe, Kuramochi, Takahashi, Imai, Katsuta, Nakayama (bb0350) 2012; 138 Arnaout, Goodman, Xiong (bb0005) 2007; 19 Ramos, Pabijan, Garcia, Lekka (bb0145) 2014; 5 Wehrle-Haller, Imhof (bb0270) 2003; 35 Hayashi, Iwata (bb0355) 2015; 49 Spedden, Staii (bb0060) 2013; 14 Heidemann, Wirtz (bb0190) 2004; 14 Akhshi, Wernike, Piekny (bb0345) 2014; 71 Liu, Lin, Tang, Wang (bb0105) 2015; 6 Mihai, Bao, Lai, Ghadiali, Knoell (bb0050) 2012; 302 Lu, Franze, Seifert, Steinhäuser, Kirchhoff, Wolburg (bb0310) 2006; 103 Huang, Kamm, Lee (bb0010) 2004; 287 Zhang, Luo, Mao, Xu, Yang, Ju (bb0040) 2014; 322 Takai, Costa, Shaheen, Hung, Guo (bb0285) 2005; 33 Zhou, Ngan, Tang, Wang (bb0315) 2012; 8 Schaefer, te Riet, Ritz, Hoogenboezem, Anthony, Mul (bb0160) 2014; 127 Seltmann, Fritsch, Käs, Magin (bb0250) 2013; 110 Omidvar, Tafazzoli-Shadpour, Shokrgozar, Rostami (bb0130) 2014; 47 Roduit, Sekatski, Dietler, Catsicas, Lafont, Kasas (bb0155) 2009; 97 Stricker, Falzone, Gardel (bb0320) 2010; 43 Weder (10.1016/j.bbagen.2016.06.010_bb0075) 2014; 10 Guilak (10.1016/j.bbagen.2016.06.010_bb0275) 2000; 269 Kirmizis (10.1016/j.bbagen.2016.06.010_bb0020) 2010; 5 Xu (10.1016/j.bbagen.2016.06.010_bb0340) 2012; 7 Omidvar (10.1016/j.bbagen.2016.06.010_bb0130) 2014; 47 Cross (10.1016/j.bbagen.2016.06.010_bb0025) 2007; 2 Friedl (10.1016/j.bbagen.2016.06.010_bb0290) 2012; 23 Lu (10.1016/j.bbagen.2016.06.010_bb0310) 2006; 103 Zhao (10.1016/j.bbagen.2016.06.010_bb0205) 2013; 12 Li (10.1016/j.bbagen.2016.06.010_bb0125) 2008; 374 Ketene (10.1016/j.bbagen.2016.06.010_bb0335) 2012; 8 Watanabe (10.1016/j.bbagen.2016.06.010_bb0095) 2014; 134 Rathje (10.1016/j.bbagen.2016.06.010_bb0110) 2014; 111 Darling (10.1016/j.bbagen.2016.06.010_bb0165) 2007; 92 Schaefer (10.1016/j.bbagen.2016.06.010_bb0160) 2014; 127 Hochmuth (10.1016/j.bbagen.2016.06.010_bb0210) 2000; 33 Wehrle-Haller (10.1016/j.bbagen.2016.06.010_bb0270) 2003; 35 Chaki (10.1016/j.bbagen.2016.06.010_bb0100) 2013; 126 Xu (10.1016/j.bbagen.2016.06.010_bb0220) 2011; 415 Morone (10.1016/j.bbagen.2016.06.010_bb0180) 2006; 174 Tang (10.1016/j.bbagen.2016.06.010_bb0170) 2014; 13 Zou (10.1016/j.bbagen.2016.06.010_bb0035) 2013; 65 Pogoda (10.1016/j.bbagen.2016.06.010_bb0140) 2012; 41 Heidemann (10.1016/j.bbagen.2016.06.010_bb0190) 2004; 14 Harada (10.1016/j.bbagen.2016.06.010_bb0295) 2014; 204 Takai (10.1016/j.bbagen.2016.06.010_bb0285) 2005; 33 Mahaffy (10.1016/j.bbagen.2016.06.010_bb0305) 2004; 86 Docheva (10.1016/j.bbagen.2016.06.010_bb0330) 2010; 402 Hayashi (10.1016/j.bbagen.2016.06.010_bb0355) 2015; 49 Harn (10.1016/j.bbagen.2016.06.010_bb0045) 2015; 24 Liu (10.1016/j.bbagen.2016.06.010_bb0105) 2015; 6 Ramos (10.1016/j.bbagen.2016.06.010_bb0145) 2014; 5 Seltmann (10.1016/j.bbagen.2016.06.010_bb0250) 2013; 110 Wagh (10.1016/j.bbagen.2016.06.010_bb0055) 2008; 295 Salbreux (10.1016/j.bbagen.2016.06.010_bb0185) 2012; 22 Zhang (10.1016/j.bbagen.2016.06.010_bb0040) 2014; 322 Li (10.1016/j.bbagen.2016.06.010_bb0085) 2015; 37 Devreotes (10.1016/j.bbagen.2016.06.010_bb0175) 2015; 7 Stricker (10.1016/j.bbagen.2016.06.010_bb0320) 2010; 43 Thomas (10.1016/j.bbagen.2016.06.010_bb0300) 2013 Luo (10.1016/j.bbagen.2016.06.010_bb0120) 2015; 33 Ouyang (10.1016/j.bbagen.2016.06.010_bb0265) 2013; 7 Guo (10.1016/j.bbagen.2016.06.010_bb0240) 2013; 105 Huang (10.1016/j.bbagen.2016.06.010_bb0010) 2004; 287 Roduit (10.1016/j.bbagen.2016.06.010_bb0155) 2009; 97 Qian (10.1016/j.bbagen.2016.06.010_bb0230) 2012; 59 Louise (10.1016/j.bbagen.2016.06.010_bb0150) 2014; 71 Zhou (10.1016/j.bbagen.2016.06.010_bb0315) 2012; 8 Yu (10.1016/j.bbagen.2016.06.010_bb0115) 2015; 19 Blanchoin (10.1016/j.bbagen.2016.06.010_bb0135) 2014; 94 Jin (10.1016/j.bbagen.2016.06.010_bb0080) 2012; 93 Lange (10.1016/j.bbagen.2016.06.010_bb0015) 2013; 319 Xu (10.1016/j.bbagen.2016.06.010_bb0225) 2000; 275 Akhshi (10.1016/j.bbagen.2016.06.010_bb0345) 2014; 71 Takahashi (10.1016/j.bbagen.2016.06.010_bb0090) 2014; 443 Palmieri (10.1016/j.bbagen.2016.06.010_bb0070) 2015; 11 Fels (10.1016/j.bbagen.2016.06.010_bb0195) 2012; 7 Nawaz (10.1016/j.bbagen.2016.06.010_bb0200) 2012; 7 Etienne-Manneville (10.1016/j.bbagen.2016.06.010_bb0255) 2013; 29 Krause (10.1016/j.bbagen.2016.06.010_bb0280) 2013; 10 Plodinec (10.1016/j.bbagen.2016.06.010_bb0245) 2011; 174 Suresh (10.1016/j.bbagen.2016.06.010_bb0030) 2007; 55 Gruenbaum (10.1016/j.bbagen.2016.06.010_bb0235) 2014; 6 Fletcher (10.1016/j.bbagen.2016.06.010_bb0260) 2010; 463 Bastatas (10.1016/j.bbagen.2016.06.010_bb0065) 2012; 1820 Mihai (10.1016/j.bbagen.2016.06.010_bb0050) 2012; 302 Spedden (10.1016/j.bbagen.2016.06.010_bb0060) 2013; 14 Fuhrmann (10.1016/j.bbagen.2016.06.010_bb0325) 2011; 8 Jalilian (10.1016/j.bbagen.2016.06.010_bb0215) 2015; 10 Watanabe (10.1016/j.bbagen.2016.06.010_bb0350) 2012; 138 Arnaout (10.1016/j.bbagen.2016.06.010_bb0005) 2007; 19 |
References_xml | – volume: 37 start-page: 511 year: 2015 end-page: 521 ident: bb0085 article-title: Conditioned medium from mesenchymal stem cells enhances the migration of hepatoma cells through CXCR4 up-regulation and F-actin remodeling publication-title: Biotechnol. Lett. – volume: 97 start-page: 674 year: 2009 end-page: 677 ident: bb0155 article-title: Stiffness tomography by atomic force microscopy publication-title: Biophys. J. – volume: 138 start-page: 859 year: 2012 end-page: 866 ident: bb0350 article-title: Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (−)-epigallocatechin gallate-treated cells publication-title: J. Cancer Res. Clin. Oncol. – volume: 134 start-page: 2373 year: 2014 end-page: 2382 ident: bb0095 article-title: Epithelial–mesenchymal transition in human gastric cancer celllines induced by TNF-a-inducing protein of Helicobacter pylori publication-title: Int. J. Cancer – volume: 33 start-page: 963 year: 2005 end-page: 971 ident: bb0285 article-title: Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent publication-title: Ann. Biomed. Eng. – volume: 402 start-page: 361 year: 2010 end-page: 366 ident: bb0330 article-title: Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells publication-title: Biochem. Biophys. Res. Commun. – volume: 93 start-page: 1715 year: 2012 end-page: 1723 ident: bb0080 article-title: BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation publication-title: Appl. Microbiol. Biotechnol. – volume: 6 start-page: 15966 year: 2015 end-page: 15983 ident: bb0105 article-title: Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation publication-title: Oncotarget – volume: 8 start-page: 93 year: 2012 end-page: 102 ident: bb0335 article-title: The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures publication-title: Nanomedicine – volume: 71 start-page: 1 year: 2014 end-page: 23 ident: bb0345 article-title: Microtubules and actin crosstalk in cell migration and division publication-title: Cytoskeleton (Hoboken, NJ) – volume: 94 start-page: 235 year: 2014 end-page: 263 ident: bb0135 article-title: Actin dynamics, architecture, and mechanics in cell motility publication-title: Physiol. Rev. – volume: 275 start-page: 35886 year: 2000 end-page: 35892 ident: bb0225 article-title: Strain hardening of actin filament networks: regulation by the dynamic cross-linking protein α-actinin publication-title: J. Biol. Chem. – volume: 5 start-page: 137 year: 2010 end-page: 145 ident: bb0020 article-title: Atomic force microscopy probing in the measurement of cell mechanics publication-title: Int. J. Nanomedicine – volume: 19 start-page: 495 year: 2007 end-page: 507 ident: bb0005 article-title: Structure and mechanics of integrin-based cell adhesion publication-title: Curr. Opin. Cell Biol. – volume: 174 start-page: 476 year: 2011 end-page: 484 ident: bb0245 article-title: The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system publication-title: J. Struct. Biol. – volume: 47 start-page: 3373 year: 2014 end-page: 3379 ident: bb0130 article-title: Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion publication-title: J. Biomech. – volume: 105 start-page: 1562 year: 2013 end-page: 1568 ident: bb0240 article-title: The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics publication-title: Biophys. J. – volume: 55 start-page: 3989 year: 2007 end-page: 4014 ident: bb0030 article-title: Biomechanics and biophysics of cancer cells publication-title: Acta Mater. – volume: 59 start-page: 1374 year: 2012 end-page: 1380 ident: bb0230 article-title: Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D Clinostats publication-title: IEEE Trans. Biomed. Eng. – volume: 322 start-page: 208 year: 2014 end-page: 216 ident: bb0040 article-title: A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway publication-title: Exp. Cell Res. – volume: 7 start-page: e46609 year: 2012 ident: bb0340 article-title: Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells publication-title: PLoS ONE – volume: 35 start-page: 39 year: 2003 end-page: 50 ident: bb0270 article-title: Actin, microtubules and focal adhesion dynamics during cell migration publication-title: Int. J. Biochem. Cell Biol. – volume: 415 start-page: 591 year: 2011 end-page: 596 ident: bb0220 article-title: Effects of micropatterned curvature on the motility and mechanical properties of airway smooth muscle cells publication-title: Biochem. Biophys. Res. Commun. – volume: 14 start-page: 160 year: 2004 end-page: 166 ident: bb0190 article-title: Towards a regional approach to cell mechanics publication-title: Trends Cell Biol. – volume: 23 start-page: 55 year: 2012 end-page: 64 ident: bb0290 article-title: Nuclear mechanics during cell migration publication-title: Curr. Opin. Cell Biol. – volume: 8 start-page: 015007 year: 2011 ident: bb0325 article-title: AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells publication-title: Phys. Biol. – volume: 6 start-page: 54 year: 2014 ident: bb0235 article-title: Intermediate filaments: a dynamic network that controls cell mechanics publication-title: F1000prime Rep. – volume: 24 start-page: 579 year: 2015 end-page: 584 ident: bb0045 article-title: Mechanical coupling of cytoskeletal elasticity and force generation is crucial for understanding the migrating nature of keloid fibroblasts publication-title: Exp. Dermatol. – volume: 33 start-page: 210 year: 2015 end-page: 219 ident: bb0120 article-title: Mechano growth factor E peptide promotes rat bone marrow-derived mesenchymal stem cell migration through CXCR4-ERK1/2 publication-title: Growth Factors – volume: 7 start-page: a005959 year: 2015 ident: bb0175 article-title: Signaling networks that regulate cell migration publication-title: Cold Spring Harb. Perspect. Biol. – volume: 10 start-page: e0126214 year: 2015 ident: bb0215 article-title: Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton publication-title: PLoS ONE – volume: 2 start-page: 780 year: 2007 end-page: 783 ident: bb0025 article-title: Nanomechanical analysis of cells from cancer patients publication-title: Nat. Nanotechnol. – volume: 12 start-page: 5774 year: 2013 end-page: 5785 ident: bb0205 article-title: Physical properties of gastrointestinal stromal tumors based on atomic force microscope analysis publication-title: Genet. Mol. Res. – volume: 86 start-page: 1777 year: 2004 end-page: 1793 ident: bb0305 article-title: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy publication-title: Biophys. J. – volume: 92 start-page: 1784 year: 2007 end-page: 1791 ident: bb0165 article-title: A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? publication-title: Biophys. J. – volume: 65 start-page: 455 year: 2013 end-page: 462 ident: bb0035 article-title: Osteopontin promotes mesenchymal stem cell migration and lessens cell stiffness via Integrin β1, FAK, and ERK pathways publication-title: Cell Biochem. Biophys. – volume: 204 start-page: 669 year: 2014 end-page: 682 ident: bb0295 article-title: Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival publication-title: J. Cell Biol. – volume: 7 start-page: 21 year: 2013 ident: bb0265 article-title: Contribution of cytoskeletal elements to the axonal mechanical properties publication-title: J. Biol. Eng. – volume: 319 start-page: 2418 year: 2013 end-page: 2423 ident: bb0015 article-title: Cell and tissue mechanics in cell migration publication-title: Exp. Cell Res. – volume: 71 start-page: 587 year: 2014 end-page: 594 ident: bb0150 article-title: AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization publication-title: Cytoskeleton (Hoboken, NJ) – start-page: 1 year: 2013 end-page: 8 ident: bb0300 article-title: Measuring the mechanical properties of living cells using atomic force microscopy publication-title: J. Vis. Exp. – volume: 302 start-page: L287 year: 2012 end-page: L299 ident: bb0050 article-title: PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration publication-title: Am. J. Phys. Lung Cell. Mol. Phys. – volume: 13 start-page: 131 year: 2014 ident: bb0170 article-title: A mechanically-induced colon cancer cell population shows increased metastatic potential publication-title: Mol. Cancer – volume: 19 start-page: 934 year: 2015 end-page: 947 ident: bb0115 article-title: β-PIX controls intracellular viscoelasticity to regulate lung cancer cell migration publication-title: J. Cell. Mol. Med. – volume: 5 start-page: 447 year: 2014 end-page: 457 ident: bb0145 article-title: The softening of human bladder cancer cells happens at an early stage of the malignancy process publication-title: Beilstein J. Nanotechnol. – volume: 29 start-page: 471 year: 2013 end-page: 499 ident: bb0255 article-title: Microtubules in cell migration publication-title: Annu. Rev. Cell Dev. Biol. – volume: 43 start-page: 9 year: 2010 end-page: 14 ident: bb0320 article-title: Mechanics of the F-actin cytoskeleton publication-title: J. Biomech. – volume: 14 start-page: 16124 year: 2013 end-page: 16140 ident: bb0060 article-title: Neuron biomechanics probed by atomic force microscopy publication-title: Int. J. Mol. Sci. – volume: 269 start-page: 781 year: 2000 end-page: 786 ident: bb0275 article-title: Viscoelastic properties of the cell nucleus publication-title: Biochem. Biophys. Res. Commun. – volume: 8 start-page: 134 year: 2012 end-page: 142 ident: bb0315 article-title: Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope publication-title: J. Mech. Behav. Biomed. Mater. – volume: 463 start-page: 485 year: 2010 end-page: 492 ident: bb0260 article-title: Cell mechanics and the cytoskeleton publication-title: Nature – volume: 295 start-page: 54 year: 2008 end-page: 60 ident: bb0055 article-title: Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy publication-title: Am. J. Phys. Lung Cell. Mol. Phys. – volume: 10 start-page: 141 year: 2014 end-page: 148 ident: bb0075 article-title: Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties publication-title: Nanomedicine – volume: 110 start-page: 18507 year: 2013 end-page: 18512 ident: bb0250 article-title: Keratins significantly contribute to cell stiffness and impact invasive behavior publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 49 start-page: 105 year: 2015 end-page: 111 ident: bb0355 article-title: Stiffness of cancer cells measured with an AFM indentation method publication-title: J. Mech. Behav. Biomed. Mater. – volume: 374 start-page: 609 year: 2008 end-page: 613 ident: bb0125 article-title: AFM indentation study of breast cancer cells publication-title: Biochem. Biophys. Res. Commun. – volume: 7 start-page: e41520 year: 2012 ident: bb0195 article-title: Cortical actin nanodynamics determines nitric oxide release in vascular endothelium publication-title: PLoS ONE – volume: 11 start-page: 5719 year: 2015 end-page: 5726 ident: bb0070 article-title: Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer publication-title: Soft Matter – volume: 126 start-page: 1637 year: 2013 end-page: 1649 ident: bb0100 article-title: Nck enables directional cell migration through the coordination of polarized membrane protrusion with adhesion dynamics publication-title: J. Cell Sci. – volume: 127 start-page: 4985 year: 2014 ident: bb0160 article-title: Actin-binding proteins differentially regulate endothelial cell stiffness, ICAM-1 function and neutrophil transmigration publication-title: J. Cell Sci. – volume: 443 start-page: 1 year: 2014 end-page: 6 ident: bb0090 article-title: Mechanism-based inhibition of cancer metastasis with (−)-epigallocatechin gallate publication-title: Biochem. Biophys. Res. Commun. – volume: 174 start-page: 851 year: 2006 end-page: 862 ident: bb0180 article-title: Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography publication-title: J. Cell Biol. – volume: 10 start-page: 065002 year: 2013 ident: bb0280 article-title: Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy publication-title: Phys. Biol. – volume: 111 start-page: 1515 year: 2014 end-page: 1520 ident: bb0110 article-title: Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 start-page: e45297 year: 2012 ident: bb0200 article-title: Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations publication-title: PLoS ONE – volume: 103 start-page: 17759 year: 2006 end-page: 17764 ident: bb0310 article-title: Viscoelastic properties of individual glial cells and neurons in the CNS publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1820 start-page: 1111 year: 2012 end-page: 11120 ident: bb0065 article-title: AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential publication-title: Biochim. Biophys. Acta – volume: 41 start-page: 79 year: 2012 end-page: 87 ident: bb0140 article-title: Depth-sensing analysis of cytoskeleton organization based on AFM data publication-title: Eur. Biophys. J. – volume: 287 start-page: 1 year: 2004 end-page: 11 ident: bb0010 article-title: Cell mechanics and mechanotransduction: pathways, probes, and physiology publication-title: Am. J. Phys. – volume: 22 start-page: 536 year: 2012 end-page: 545 ident: bb0185 article-title: Actin cortex mechanics and cellular morphogenesis publication-title: Trends Cell Biol. – volume: 33 start-page: 15 year: 2000 end-page: 22 ident: bb0210 article-title: Micropipette aspiration of living cells publication-title: J. Biomech. – volume: 287 start-page: 1 year: 2004 ident: 10.1016/j.bbagen.2016.06.010_bb0010 article-title: Cell mechanics and mechanotransduction: pathways, probes, and physiology publication-title: Am. J. Phys. doi: 10.1152/ajpcell.00559.2003 – volume: 29 start-page: 471 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0255 article-title: Microtubules in cell migration publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-101011-155711 – volume: 402 start-page: 361 year: 2010 ident: 10.1016/j.bbagen.2016.06.010_bb0330 article-title: Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.10.034 – volume: 19 start-page: 495 year: 2007 ident: 10.1016/j.bbagen.2016.06.010_bb0005 article-title: Structure and mechanics of integrin-based cell adhesion publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2007.08.002 – volume: 374 start-page: 609 year: 2008 ident: 10.1016/j.bbagen.2016.06.010_bb0125 article-title: AFM indentation study of breast cancer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.07.078 – volume: 22 start-page: 536 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0185 article-title: Actin cortex mechanics and cellular morphogenesis publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.07.001 – volume: 93 start-page: 1715 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0080 article-title: BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3865-3 – volume: 14 start-page: 16124 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0060 article-title: Neuron biomechanics probed by atomic force microscopy publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140816124 – volume: 13 start-page: 131 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0170 article-title: A mechanically-induced colon cancer cell population shows increased metastatic potential publication-title: Mol. Cancer doi: 10.1186/1476-4598-13-131 – volume: 43 start-page: 9 year: 2010 ident: 10.1016/j.bbagen.2016.06.010_bb0320 article-title: Mechanics of the F-actin cytoskeleton publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.09.003 – volume: 12 start-page: 5774 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0205 article-title: Physical properties of gastrointestinal stromal tumors based on atomic force microscope analysis publication-title: Genet. Mol. Res. doi: 10.4238/2013.November.22.4 – volume: 55 start-page: 3989 year: 2007 ident: 10.1016/j.bbagen.2016.06.010_bb0030 article-title: Biomechanics and biophysics of cancer cells publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.04.022 – volume: 7 start-page: e45297 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0200 article-title: Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations publication-title: PLoS ONE doi: 10.1371/journal.pone.0045297 – volume: 33 start-page: 963 year: 2005 ident: 10.1016/j.bbagen.2016.06.010_bb0285 article-title: Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-005-3555-3 – volume: 97 start-page: 674 year: 2009 ident: 10.1016/j.bbagen.2016.06.010_bb0155 article-title: Stiffness tomography by atomic force microscopy publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.05.010 – volume: 5 start-page: 137 year: 2010 ident: 10.1016/j.bbagen.2016.06.010_bb0020 article-title: Atomic force microscopy probing in the measurement of cell mechanics publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S5787 – volume: 443 start-page: 1 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0090 article-title: Mechanism-based inhibition of cancer metastasis with (−)-epigallocatechin gallate publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.10.094 – volume: 7 start-page: e46609 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0340 article-title: Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0046609 – volume: 7 start-page: e41520 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0195 article-title: Cortical actin nanodynamics determines nitric oxide release in vascular endothelium publication-title: PLoS ONE doi: 10.1371/journal.pone.0041520 – volume: 295 start-page: 54 year: 2008 ident: 10.1016/j.bbagen.2016.06.010_bb0055 article-title: Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy publication-title: Am. J. Phys. Lung Cell. Mol. Phys. – volume: 126 start-page: 1637 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0100 article-title: Nck enables directional cell migration through the coordination of polarized membrane protrusion with adhesion dynamics publication-title: J. Cell Sci. – volume: 33 start-page: 15 year: 2000 ident: 10.1016/j.bbagen.2016.06.010_bb0210 article-title: Micropipette aspiration of living cells publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00175-X – volume: 138 start-page: 859 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0350 article-title: Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (−)-epigallocatechin gallate-treated cells publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-012-1159-5 – volume: 23 start-page: 55 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0290 article-title: Nuclear mechanics during cell migration publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2010.10.015 – volume: 19 start-page: 934 year: 2015 ident: 10.1016/j.bbagen.2016.06.010_bb0115 article-title: β-PIX controls intracellular viscoelasticity to regulate lung cancer cell migration publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.12441 – volume: 8 start-page: 93 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0335 article-title: The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures publication-title: Nanomedicine doi: 10.1016/j.nano.2011.05.012 – volume: 204 start-page: 669 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0295 article-title: Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival publication-title: J. Cell Biol. doi: 10.1083/jcb.201308029 – volume: 86 start-page: 1777 year: 2004 ident: 10.1016/j.bbagen.2016.06.010_bb0305 article-title: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74245-9 – volume: 6 start-page: 15966 year: 2015 ident: 10.1016/j.bbagen.2016.06.010_bb0105 article-title: Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation publication-title: Oncotarget doi: 10.18632/oncotarget.3862 – volume: 14 start-page: 160 year: 2004 ident: 10.1016/j.bbagen.2016.06.010_bb0190 article-title: Towards a regional approach to cell mechanics publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2004.02.003 – volume: 275 start-page: 35886 year: 2000 ident: 10.1016/j.bbagen.2016.06.010_bb0225 article-title: Strain hardening of actin filament networks: regulation by the dynamic cross-linking protein α-actinin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002377200 – volume: 269 start-page: 781 year: 2000 ident: 10.1016/j.bbagen.2016.06.010_bb0275 article-title: Viscoelastic properties of the cell nucleus publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.2360 – volume: 103 start-page: 17759 year: 2006 ident: 10.1016/j.bbagen.2016.06.010_bb0310 article-title: Viscoelastic properties of individual glial cells and neurons in the CNS publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0606150103 – volume: 71 start-page: 1 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0345 article-title: Microtubules and actin crosstalk in cell migration and division publication-title: Cytoskeleton (Hoboken, NJ) doi: 10.1002/cm.21150 – volume: 415 start-page: 591 year: 2011 ident: 10.1016/j.bbagen.2016.06.010_bb0220 article-title: Effects of micropatterned curvature on the motility and mechanical properties of airway smooth muscle cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.10.111 – volume: 92 start-page: 1784 year: 2007 ident: 10.1016/j.bbagen.2016.06.010_bb0165 article-title: A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? publication-title: Biophys. J. doi: 10.1529/biophysj.106.083097 – volume: 10 start-page: e0126214 year: 2015 ident: 10.1016/j.bbagen.2016.06.010_bb0215 article-title: Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton publication-title: PLoS ONE doi: 10.1371/journal.pone.0126214 – volume: 59 start-page: 1374 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0230 article-title: Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D Clinostats publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2187785 – volume: 8 start-page: 134 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0315 article-title: Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.11.010 – volume: 7 start-page: 21 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0265 article-title: Contribution of cytoskeletal elements to the axonal mechanical properties publication-title: J. Biol. Eng. doi: 10.1186/1754-1611-7-21 – volume: 71 start-page: 587 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0150 article-title: AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization publication-title: Cytoskeleton (Hoboken, NJ) doi: 10.1002/cm.21194 – volume: 322 start-page: 208 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0040 article-title: A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2014.01.005 – volume: 65 start-page: 455 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0035 article-title: Osteopontin promotes mesenchymal stem cell migration and lessens cell stiffness via Integrin β1, FAK, and ERK pathways publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-012-9449-8 – volume: 5 start-page: 447 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0145 article-title: The softening of human bladder cancer cells happens at an early stage of the malignancy process publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.5.52 – volume: 41 start-page: 79 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0140 article-title: Depth-sensing analysis of cytoskeleton organization based on AFM data publication-title: Eur. Biophys. J. doi: 10.1007/s00249-011-0761-9 – volume: 105 start-page: 1562 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0240 article-title: The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.08.037 – volume: 37 start-page: 511 year: 2015 ident: 10.1016/j.bbagen.2016.06.010_bb0085 article-title: Conditioned medium from mesenchymal stem cells enhances the migration of hepatoma cells through CXCR4 up-regulation and F-actin remodeling publication-title: Biotechnol. Lett. doi: 10.1007/s10529-014-1710-3 – volume: 111 start-page: 1515 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0110 article-title: Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1300238111 – volume: 174 start-page: 851 year: 2006 ident: 10.1016/j.bbagen.2016.06.010_bb0180 article-title: Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography publication-title: J. Cell Biol. doi: 10.1083/jcb.200606007 – volume: 174 start-page: 476 year: 2011 ident: 10.1016/j.bbagen.2016.06.010_bb0245 article-title: The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2011.03.011 – volume: 10 start-page: 141 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0075 article-title: Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties publication-title: Nanomedicine doi: 10.1016/j.nano.2013.07.007 – volume: 94 start-page: 235 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0135 article-title: Actin dynamics, architecture, and mechanics in cell motility publication-title: Physiol. Rev. doi: 10.1152/physrev.00018.2013 – volume: 49 start-page: 105 year: 2015 ident: 10.1016/j.bbagen.2016.06.010_bb0355 article-title: Stiffness of cancer cells measured with an AFM indentation method publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.04.030 – volume: 302 start-page: L287 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0050 article-title: PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration publication-title: Am. J. Phys. Lung Cell. Mol. Phys. – volume: 1820 start-page: 1111 year: 2012 ident: 10.1016/j.bbagen.2016.06.010_bb0065 article-title: AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2012.02.006 – volume: 6 start-page: 54 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0235 article-title: Intermediate filaments: a dynamic network that controls cell mechanics publication-title: F1000prime Rep. doi: 10.12703/P6-54 – volume: 463 start-page: 485 year: 2010 ident: 10.1016/j.bbagen.2016.06.010_bb0260 article-title: Cell mechanics and the cytoskeleton publication-title: Nature doi: 10.1038/nature08908 – volume: 8 start-page: 015007 year: 2011 ident: 10.1016/j.bbagen.2016.06.010_bb0325 article-title: AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells publication-title: Phys. Biol. doi: 10.1088/1478-3975/8/1/015007 – volume: 24 start-page: 579 year: 2015 ident: 10.1016/j.bbagen.2016.06.010_bb0045 article-title: Mechanical coupling of cytoskeletal elasticity and force generation is crucial for understanding the migrating nature of keloid fibroblasts publication-title: Exp. Dermatol. doi: 10.1111/exd.12731 – volume: 110 start-page: 18507 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0250 article-title: Keratins significantly contribute to cell stiffness and impact invasive behavior publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1310493110 – volume: 10 start-page: 065002 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0280 article-title: Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy publication-title: Phys. Biol. doi: 10.1088/1478-3975/10/6/065002 – volume: 127 start-page: 4985 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0160 article-title: Actin-binding proteins differentially regulate endothelial cell stiffness, ICAM-1 function and neutrophil transmigration publication-title: J. Cell Sci. doi: 10.1242/jcs.164814 – volume: 7 start-page: a005959 year: 2015 ident: 10.1016/j.bbagen.2016.06.010_bb0175 article-title: Signaling networks that regulate cell migration publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a005959 – volume: 319 start-page: 2418 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0015 article-title: Cell and tissue mechanics in cell migration publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2013.04.023 – volume: 134 start-page: 2373 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0095 article-title: Epithelial–mesenchymal transition in human gastric cancer celllines induced by TNF-a-inducing protein of Helicobacter pylori publication-title: Int. J. Cancer doi: 10.1002/ijc.28582 – volume: 47 start-page: 3373 year: 2014 ident: 10.1016/j.bbagen.2016.06.010_bb0130 article-title: Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.08.002 – start-page: 1 year: 2013 ident: 10.1016/j.bbagen.2016.06.010_bb0300 article-title: Measuring the mechanical properties of living cells using atomic force microscopy publication-title: J. Vis. Exp. – volume: 33 start-page: 210 year: 2015 ident: 10.1016/j.bbagen.2016.06.010_bb0120 article-title: Mechano growth factor E peptide promotes rat bone marrow-derived mesenchymal stem cell migration through CXCR4-ERK1/2 publication-title: Growth Factors – volume: 11 start-page: 5719 year: 2015 ident: 10.1016/j.bbagen.2016.06.010_bb0070 article-title: Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer publication-title: Soft Matter doi: 10.1039/C5SM01089F – volume: 2 start-page: 780 year: 2007 ident: 10.1016/j.bbagen.2016.06.010_bb0025 article-title: Nanomechanical analysis of cells from cancer patients publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.388 – volume: 35 start-page: 39 year: 2003 ident: 10.1016/j.bbagen.2016.06.010_bb0270 article-title: Actin, microtubules and focal adhesion dynamics during cell migration publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(02)00071-7 |
SSID | ssj0000595 ssj0025309 |
Score | 2.5601883 |
SecondaryResourceType | review_article |
Snippet | Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1953 |
SubjectTerms | Animals Atomic force microscopy biomarkers cell movement Cell Movement - physiology Cell Nucleus - physiology Cytoskeleton Cytoskeleton - physiology Elastic Modulus - physiology Humans mechanical properties metastasis Microscopy, Atomic Force - methods modulus of elasticity Motility neoplasm cells neoplasms Nuclear stiffness Stiffness Young's modulus |
Title | Cell stiffness determined by atomic force microscopy and its correlation with cell motility |
URI | https://dx.doi.org/10.1016/j.bbagen.2016.06.010 https://www.ncbi.nlm.nih.gov/pubmed/27288584 https://www.proquest.com/docview/1805489231 https://www.proquest.com/docview/1825429806 |
Volume | 1860 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iSPtSrP06ayWFvqaX3U2y2Uc5lLNHfbBKD_oQ8glXzlXq-eCLf3tnNruKUCv4tGxIIDuZzPw2-c0MIV9kSNwW0TNwL5EJ8MnMRe6ZUikqbnVRR4xG_n6spmfi21zO18hkiIVBWmVv-7NN76x13zLupTm-XCzGP_BSD-CEBESBjmuOEeyiRi3_entP8wD4IPNNgmDYewif6zhezsGmxSyoheqyeGIc7b_d02Pws3NDh1vkVY8f6X6e4muyFtttspkrSt5skxeToYDbG_JrEpdLCls4JbRnNPTMlxiou6Hws32-8BQwq4_0HGl5GKAC7W2gi9UV9Vi2IxPlKB7WUjzip0jdQ-D-lpwdHpxOpqyvpcB81cgVs40QMmhtoxLaKS2EFVq5IEVZK-6V8uDMna2qxgcuk_BScxkA62nHk01N9Y6stxdt_ECo1jKolFztbBDBRxdUnSTAhsZWLqlyRKpBhMb3icax3sXSDIyy3yYL3qDgDRLrCj4i7G7UZU608UT_elgd80BhDPiCJ0Z-HhbTwIqg9GwbL66vTAHfLDRC3v_1KbHEl-ZqRN5nTbibb1mXIBwtdp49t4_kJb5lEtsuWV_9uY6fAPWs3F6n1ntkY_9oNj3G5-zk5-wvj08DUw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDSW9lDZ9bZ8q9CpWtiVZPoalYdMke2kCCz0IPWHLxgnN5pB_3xk_UgptA73KEsgjaeaz_M18AJ9UzMIVKXAML4lLjMncJxG41jlp4UxRJ8pGPl3qxbn8slKrHZiPuTBEqxx8f-_TO289tMwGa86u1uvZV_qph3BCIaKgwLV6ALtUnUpNYPfg6Hix_OWQVSe-Qv05DRgz6Dqal_d4bqkQaqG7Qp6USvvnCPU3BNpFosMn8HiAkOygn-VT2EntPjzsRSVv92FvPmq4PYNv87TZMDzFOZNLY3Egv6TI_C3D7-2LdWAIW0NiF8TMoxwVbG8jW2-vWSDljp4rx-i-ltEtPyP2HmH353B--PlsvuCDnAIPVaO23DVSqmiMS1oar42UThrto5JlrUXQOmA8966qmhCFyjIoI1REuGe8yC431QuYtJdtegXMGBV1zr72LsoYko-6zgqRQ-Mqn3U5hWo0oQ1DrXGSvNjYkVT23faGt2R4S9y6QkyB34266mtt3NO_HlfH_rZnLIaDe0Z-HBfT4oqQ9VybLm-ubYHvLA2h3n_1KUnlywg9hZf9Tribb1mXaBwjX__33D7A3uLs9MSeHC2P38AjetJz2t7CZPvjJr1DELT174dN_hNLRQRh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+stiffness+determined+by+atomic+force+microscopy+and+its+correlation+with+cell+motility&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Luo%2C+Qing&rft.au=Kuang%2C+Dongdong&rft.au=Zhang%2C+Bingyu&rft.au=Song%2C+Guanbin&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1860&rft.issue=9&rft.spage=1953&rft.epage=1960&rft_id=info:doi/10.1016%2Fj.bbagen.2016.06.010&rft.externalDocID=S030441651630215X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |