Cell stiffness determined by atomic force microscopy and its correlation with cell motility

Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially i...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1860; no. 9; pp. 1953 - 1960
Main Authors Luo, Qing, Kuang, Dongdong, Zhang, Bingyu, Song, Guanbin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate. In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence. The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility. This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters. •Conflicting reports about correlation between motility and stiffness are summarized.•The determinants of the AFM-determined stiffness are discussed.•Crucial methodological issues in the AFM detection are suggested.•The possible reasons for the existence of the conflicting reports are proposed.
AbstractList Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate.In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence.The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility.This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters.
Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate. In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence. The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility. This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters. •Conflicting reports about correlation between motility and stiffness are summarized.•The determinants of the AFM-determined stiffness are discussed.•Crucial methodological issues in the AFM detection are suggested.•The possible reasons for the existence of the conflicting reports are proposed.
Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate. In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence. The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility. This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters.
Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate.BACKGROUNDCell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate.In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence.SCOPE OF REVIEWIn this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence.The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility.MAJOR CONCLUSIONSThe AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility.This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters.GENERAL SIGNIFICANCEThis review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters.
Author Kuang, Dongdong
Song, Guanbin
Zhang, Bingyu
Luo, Qing
Author_xml – sequence: 1
  givenname: Qing
  surname: Luo
  fullname: Luo, Qing
  email: qing.luo@cqu.edu.cn
– sequence: 2
  givenname: Dongdong
  surname: Kuang
  fullname: Kuang, Dongdong
– sequence: 3
  givenname: Bingyu
  surname: Zhang
  fullname: Zhang, Bingyu
– sequence: 4
  givenname: Guanbin
  surname: Song
  fullname: Song, Guanbin
  email: song@cqu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27288584$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rFDEYxoNU7Lb6DURy9DLrm0ySzXgQZKmtUPCiJw8hk7yjWWYma5JV9ts341YPHmzDC_nD73kIz3NBzuY4IyEvGawZMPVmt-57-w3nNa-3NdRh8ISsmN7wRgOoM7KCFkQjmJLn5CLnHdQlO_mMnPMN11pqsSJftziONJcwDDPmTD0WTFOY0dP-SG2JU3B0iMkhracUs4v7-j57GkqmLqaEoy0hzvRXKN-pW9ymWMIYyvE5eTrYMeOL-_2SfPlw9Xl709x-uv64fX_buLaTpbGdENJrbVEJ3SsthBVa9V4KvlHglHLAeW_btnMe5CCc1CC9VEr3MNihay_J65PvPsUfB8zFTCEvP7EzxkM2TPPq1WlQj0BBCt3xllX01T166Cf0Zp_CZNPR_MmuAuIELLHkhMNfhIFZKjI7c6rILBUZqMOgyt7-I3Oh_I6wJBvGh8TvTmKsef4MmEx2AWeHPiR0xfgY_m9wB3Zirh0
CitedBy_id crossref_primary_10_1016_j_isci_2023_106393
crossref_primary_10_1021_acsbiomaterials_8b01206
crossref_primary_10_1098_rsif_2022_0857
crossref_primary_10_1016_j_bbrc_2017_03_009
crossref_primary_10_1016_j_micron_2017_09_002
crossref_primary_10_1109_TNB_2021_3096056
crossref_primary_10_1038_s41536_023_00306_2
crossref_primary_10_1146_annurev_biophys_030822_030629
crossref_primary_10_1016_j_isci_2025_112150
crossref_primary_10_1042_BCJ20210806
crossref_primary_10_1515_bmc_2022_0024
crossref_primary_10_3389_fnmol_2024_1501874
crossref_primary_10_3390_biomedicines10092239
crossref_primary_10_1039_C8AY02711K
crossref_primary_10_3390_ijms19102912
crossref_primary_10_1038_s41422_021_00558_x
crossref_primary_10_1016_j_bioactmat_2023_05_007
crossref_primary_10_1016_j_biomaterials_2019_119300
crossref_primary_10_35848_1882_0786_abaeb5
crossref_primary_10_1038_s41540_023_00265_w
crossref_primary_10_3390_ijms23147708
crossref_primary_10_3390_biology10040259
crossref_primary_10_1038_s41598_019_45578_1
crossref_primary_10_3390_ijms26072876
crossref_primary_10_1002_advs_202202282
crossref_primary_10_1242_jcs_258513
crossref_primary_10_3390_cimb43030089
crossref_primary_10_1007_s10103_020_03092_1
crossref_primary_10_2142_biophys_64_132
crossref_primary_10_1186_s12862_024_02221_6
crossref_primary_10_1039_C7RA01868A
crossref_primary_10_3390_mi10110738
crossref_primary_10_1016_j_bbagen_2020_129683
crossref_primary_10_3390_ijms26062767
crossref_primary_10_1021_acsnano_2c02980
crossref_primary_10_1186_s40164_024_00591_7
crossref_primary_10_1007_s11626_024_00925_z
crossref_primary_10_1155_2016_7260562
crossref_primary_10_3390_ma13204495
crossref_primary_10_3390_cancers15194834
crossref_primary_10_1098_rsif_2018_0826
crossref_primary_10_1039_D1CB00235J
crossref_primary_10_1063_5_0021592
crossref_primary_10_1186_s40648_020_0154_x
crossref_primary_10_3390_jcm9040924
crossref_primary_10_1083_jcb_202105147
crossref_primary_10_1016_j_bbagen_2021_129891
crossref_primary_10_1016_j_yexcr_2021_112765
crossref_primary_10_3390_cells12141871
crossref_primary_10_1021_acsbiomaterials_9b01640
crossref_primary_10_3390_ijms21176248
crossref_primary_10_1134_S1068162021010143
crossref_primary_10_1016_j_bpj_2019_09_012
crossref_primary_10_1021_acsbiomaterials_8b01019
crossref_primary_10_1038_s41467_024_46189_9
crossref_primary_10_1016_j_jbiomech_2019_06_028
crossref_primary_10_1016_j_mtbio_2025_101506
crossref_primary_10_3390_cimb45050278
crossref_primary_10_1016_j_ijsolstr_2024_112938
crossref_primary_10_1021_acschemneuro_9b00401
crossref_primary_10_1038_s41598_017_18120_4
crossref_primary_10_3390_life14101260
crossref_primary_10_1021_acs_analchem_9b01569
crossref_primary_10_1109_TUFFC_2022_3170074
crossref_primary_10_32604_cmes_2022_019376
crossref_primary_10_1088_1361_6439_aaabf7
crossref_primary_10_1016_j_ejcb_2022_151241
crossref_primary_10_1042_ETLS20200254
crossref_primary_10_1016_j_heliyon_2024_e31848
crossref_primary_10_1016_j_jmbbm_2023_105828
crossref_primary_10_1088_1742_6596_1777_1_012019
crossref_primary_10_1016_j_micron_2019_102822
crossref_primary_10_1126_sciadv_adl0515
crossref_primary_10_1128_mmbr_00094_20
crossref_primary_10_1016_j_bbamem_2019_07_005
crossref_primary_10_1038_s42003_022_04320_w
crossref_primary_10_1016_j_nano_2022_102582
crossref_primary_10_1002_adma_201704463
crossref_primary_10_3390_ma16082980
crossref_primary_10_1016_j_compbiomed_2024_108744
crossref_primary_10_1093_rb_rbae004
crossref_primary_10_1016_j_jmps_2021_104630
crossref_primary_10_1038_s41598_018_38199_7
crossref_primary_10_1039_c9mt00049f
crossref_primary_10_1115_1_4062299
crossref_primary_10_1063_5_0190994
crossref_primary_10_1186_s12964_024_01707_6
crossref_primary_10_3390_cells12192401
crossref_primary_10_1039_D3BM00363A
crossref_primary_10_1002_hep4_1966
crossref_primary_10_1002_VIW_20220049
crossref_primary_10_1080_19336918_2022_2154732
crossref_primary_10_1016_j_jmbbm_2019_03_018
crossref_primary_10_1021_acsami_8b01990
crossref_primary_10_1007_s11010_022_04459_4
crossref_primary_10_1007_s13204_021_01674_1
crossref_primary_10_3390_cancers11071008
crossref_primary_10_1021_acs_langmuir_9b00372
crossref_primary_10_4251_wjgo_v16_i6_2727
crossref_primary_10_1088_2515_7647_ad3d1a
crossref_primary_10_3389_fncel_2017_00104
crossref_primary_10_1002_jbm_a_36670
crossref_primary_10_3389_fcell_2022_932510
crossref_primary_10_3390_cells10030663
crossref_primary_10_1109_TNB_2023_3312754
crossref_primary_10_1016_j_jncc_2021_11_007
crossref_primary_10_1186_s12885_023_11375_3
crossref_primary_10_3389_fcell_2021_652791
crossref_primary_10_3389_fimmu_2020_01097
crossref_primary_10_3390_ijms221810098
crossref_primary_10_1016_j_bone_2024_117055
crossref_primary_10_1016_j_bbagen_2018_01_001
crossref_primary_10_3390_nano13232999
crossref_primary_10_1016_j_cam_2021_113892
crossref_primary_10_3390_biomedicines10112900
crossref_primary_10_1007_s00418_021_01979_w
crossref_primary_10_1016_j_cnsns_2022_106966
crossref_primary_10_1007_s11010_016_2831_x
crossref_primary_10_3389_fnins_2021_811348
crossref_primary_10_1016_j_jmbbm_2024_106586
crossref_primary_10_1002_advs_202307929
crossref_primary_10_1002_cpz1_1011
crossref_primary_10_3390_mi12050532
crossref_primary_10_1002_smll_202406389
crossref_primary_10_1016_j_nano_2019_102027
crossref_primary_10_1007_s00204_023_03585_2
crossref_primary_10_1016_j_bpj_2024_06_008
crossref_primary_10_1080_1539445X_2019_1706565
crossref_primary_10_1248_cpb_c20_00300
crossref_primary_10_1016_j_mechrescom_2022_103952
crossref_primary_10_1016_j_colsurfa_2023_132506
crossref_primary_10_1038_s41598_022_26337_1
crossref_primary_10_3390_pr11082430
crossref_primary_10_1073_pnas_2021135118
crossref_primary_10_1126_sciadv_abl4895
crossref_primary_10_1038_s41551_021_00826_6
crossref_primary_10_1016_j_yexcr_2017_09_020
crossref_primary_10_1016_j_eml_2019_100526
crossref_primary_10_3390_mi10020131
crossref_primary_10_1016_j_matbio_2024_11_004
crossref_primary_10_1103_PhysRevResearch_3_023129
crossref_primary_10_1186_s11671_019_2941_y
crossref_primary_10_1038_s41598_023_33111_4
crossref_primary_10_1016_j_bpj_2022_08_024
crossref_primary_10_3390_ijms20112733
crossref_primary_10_3390_ijms221810034
crossref_primary_10_3390_ijms21082916
crossref_primary_10_3390_cells10020219
crossref_primary_10_1021_acsabm_0c00734
crossref_primary_10_1016_j_heliyon_2024_e32974
crossref_primary_10_1016_j_mtbio_2024_101401
crossref_primary_10_1038_s41598_019_43453_7
crossref_primary_10_1007_s10237_024_01899_3
crossref_primary_10_1038_s41563_022_01323_0
Cites_doi 10.1152/ajpcell.00559.2003
10.1146/annurev-cellbio-101011-155711
10.1016/j.bbrc.2010.10.034
10.1016/j.ceb.2007.08.002
10.1016/j.bbrc.2008.07.078
10.1016/j.tcb.2012.07.001
10.1007/s00253-011-3865-3
10.3390/ijms140816124
10.1186/1476-4598-13-131
10.1016/j.jbiomech.2009.09.003
10.4238/2013.November.22.4
10.1016/j.actamat.2007.04.022
10.1371/journal.pone.0045297
10.1007/s10439-005-3555-3
10.1016/j.bpj.2009.05.010
10.2147/IJN.S5787
10.1016/j.bbrc.2013.10.094
10.1371/journal.pone.0046609
10.1371/journal.pone.0041520
10.1016/S0021-9290(99)00175-X
10.1007/s00432-012-1159-5
10.1016/j.ceb.2010.10.015
10.1111/jcmm.12441
10.1016/j.nano.2011.05.012
10.1083/jcb.201308029
10.1016/S0006-3495(04)74245-9
10.18632/oncotarget.3862
10.1016/j.tcb.2004.02.003
10.1074/jbc.M002377200
10.1006/bbrc.2000.2360
10.1073/pnas.0606150103
10.1002/cm.21150
10.1016/j.bbrc.2011.10.111
10.1529/biophysj.106.083097
10.1371/journal.pone.0126214
10.1109/TBME.2012.2187785
10.1016/j.jmbbm.2011.11.010
10.1186/1754-1611-7-21
10.1002/cm.21194
10.1016/j.yexcr.2014.01.005
10.1007/s12013-012-9449-8
10.3762/bjnano.5.52
10.1007/s00249-011-0761-9
10.1016/j.bpj.2013.08.037
10.1007/s10529-014-1710-3
10.1073/pnas.1300238111
10.1083/jcb.200606007
10.1016/j.jsb.2011.03.011
10.1016/j.nano.2013.07.007
10.1152/physrev.00018.2013
10.1016/j.jmbbm.2015.04.030
10.1016/j.bbagen.2012.02.006
10.12703/P6-54
10.1038/nature08908
10.1088/1478-3975/8/1/015007
10.1111/exd.12731
10.1073/pnas.1310493110
10.1088/1478-3975/10/6/065002
10.1242/jcs.164814
10.1101/cshperspect.a005959
10.1016/j.yexcr.2013.04.023
10.1002/ijc.28582
10.1016/j.jbiomech.2014.08.002
10.1039/C5SM01089F
10.1038/nnano.2007.388
10.1016/S1357-2725(02)00071-7
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2016.06.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 1960
ExternalDocumentID 27288584
10_1016_j_bbagen_2016_06_010
S030441651630215X
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
PKN
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-a9445d88ae648b6844a486bd542760c66c022ba339cd05f4c5805d5668b0faf93
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Fri Jul 11 06:20:48 EDT 2025
Fri Jul 11 07:01:28 EDT 2025
Wed Feb 19 02:00:06 EST 2025
Tue Jul 01 00:22:07 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Fri Feb 23 02:34:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Atomic force microscopy
Young's modulus
Cytoskeleton
Stiffness
Motility
Nuclear stiffness
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-a9445d88ae648b6844a486bd542760c66c022ba339cd05f4c5805d5668b0faf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 27288584
PQID 1805489231
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1825429806
proquest_miscellaneous_1805489231
pubmed_primary_27288584
crossref_primary_10_1016_j_bbagen_2016_06_010
crossref_citationtrail_10_1016_j_bbagen_2016_06_010
elsevier_sciencedirect_doi_10_1016_j_bbagen_2016_06_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bastatas, Martinez-Marin, Matthews, Hashem, Lee, Sennoune (bb0065) 2012; 1820
Cross, Jin, Rao, Gimzewski (bb0025) 2007; 2
Mahaffy, Park, Gerde, Kas, Shih (bb0305) 2004; 86
Li, Luo, Sun, Song (bb0085) 2015; 37
Ketene, Schmelz, Roberts, Agah (bb0335) 2012; 8
Jin, Pi, Huang, Huang, Shao, Li (bb0080) 2012; 93
Palmieri, Lucchetti, Maiorana, Papi, Maulucci, Calapa (bb0070) 2015; 11
Etienne-Manneville (bb0255) 2013; 29
Plodinec, Loparic, Suetterlin, Herrmann, Aebi, Schoenenberger (bb0245) 2011; 174
Xu, Mezencev, Kim, Wang, McDonald, Sulchek (bb0340) 2012; 7
Darling, Zauscher, Block, Guilak (bb0165) 2007; 92
Chaki, Barhoumi, Berginski, Sreenivasappa, Trache, Gomez (bb0100) 2013; 126
Takahashi, Watanabe, Mondal, Suzuki, Kurusu-Kanno, Li (bb0090) 2014; 443
Krause, Te Riet, Wolf (bb0280) 2013; 10
Fels, Jeggle, Kusche-Vihrog, Oberleithner (bb0195) 2012; 7
Louise, Etienne, Marie-Pierre (bb0150) 2014; 71
Jalilian, Heu, Cheng, Freittag, Desouza, Stehn (bb0215) 2015; 10
Yu, Chen, Huang, Liu, Chiou, Wang (bb0115) 2015; 19
Li, Lee, Ong, Lim (bb0125) 2008; 374
Gruenbaum, Aebi (bb0235) 2014; 6
Qian, Li, Han, Gao, Di, Zhang (bb0230) 2012; 59
Harn, Wang, Hsu, Ho, Huang, Chiu (bb0045) 2015; 24
Nawaz, Paula, Bodensiek, Li, Simons, Schaap (bb0200) 2012; 7
Harada, Swift, Irianto, Shin, Spinler, Athirasala (bb0295) 2014; 204
Zou, Luo, Qin, Shi, Yang, Ju (bb0035) 2013; 65
Salbreux, Charras, Paluch (bb0185) 2012; 22
Zhao, Zhang, Bao, Chen, Wang, Wang (bb0205) 2013; 12
Fuhrmann, Staunton, Nandakumar, Banyai, Davies, Ros (bb0325) 2011; 8
Suresh (bb0030) 2007; 55
Devreotes, Horwitz (bb0175) 2015; 7
Watanabe, Takahashi, Suzuki, Kurusu-Kanno, Yamaguchi, Fujiki (bb0095) 2014; 134
Xu, Tseng, Wirtz (bb0225) 2000; 275
Friedl, Wolf, Lammerding (bb0290) 2012; 23
Luo, Wu, Zhang, Song (bb0120) 2015; 33
Kirmizis, Logothetides (bb0020) 2010; 5
Guilak, Tedrow, Burgkart (bb0275) 2000; 269
Xu, Chen, Jiang, Xu, Tambe, Zhang (bb0220) 2011; 415
Rathje, Nordgren, Pettersson, Rönnlund, Widengren, Aspenström (bb0110) 2014; 111
Hochmuth (bb0210) 2000; 33
Guo, Ehrlicher, Mahammad, Fabich, Jensen, Moore (bb0240) 2013; 105
Tang, Kuhlenschmidt, Li, Ali, Lezmi, Chen (bb0170) 2014; 13
Pogoda, Jaczewska, Wiltowska-Zuber, Klymenko, Zuber, Fornal (bb0140) 2012; 41
Blanchoin, Boujemaa-Paterski, Sykes, Plastino (bb0135) 2014; 94
Thomas, Burnham, Camesano, Wen (bb0300) 2013
Weder, Hendriks-Balk, Smajda, Rimoldi, Liley, Heinzelmann (bb0075) 2014; 10
Ouyang, Nauman, Shi (bb0265) 2013; 7
Morone, Fujiwara, Murase, Kasai, Ike, Yuasa (bb0180) 2006; 174
Fletcher, Mullins (bb0260) 2010; 463
Wagh, Roan, Chapman, Desai, Rendon, Eckstein (bb0055) 2008; 295
Docheva, Padula, Schieker, Clausen-Schaumann (bb0330) 2010; 402
Lange, Fabry (bb0015) 2013; 319
Watanabe, Kuramochi, Takahashi, Imai, Katsuta, Nakayama (bb0350) 2012; 138
Arnaout, Goodman, Xiong (bb0005) 2007; 19
Ramos, Pabijan, Garcia, Lekka (bb0145) 2014; 5
Wehrle-Haller, Imhof (bb0270) 2003; 35
Hayashi, Iwata (bb0355) 2015; 49
Spedden, Staii (bb0060) 2013; 14
Heidemann, Wirtz (bb0190) 2004; 14
Akhshi, Wernike, Piekny (bb0345) 2014; 71
Liu, Lin, Tang, Wang (bb0105) 2015; 6
Mihai, Bao, Lai, Ghadiali, Knoell (bb0050) 2012; 302
Lu, Franze, Seifert, Steinhäuser, Kirchhoff, Wolburg (bb0310) 2006; 103
Huang, Kamm, Lee (bb0010) 2004; 287
Zhang, Luo, Mao, Xu, Yang, Ju (bb0040) 2014; 322
Takai, Costa, Shaheen, Hung, Guo (bb0285) 2005; 33
Zhou, Ngan, Tang, Wang (bb0315) 2012; 8
Schaefer, te Riet, Ritz, Hoogenboezem, Anthony, Mul (bb0160) 2014; 127
Seltmann, Fritsch, Käs, Magin (bb0250) 2013; 110
Omidvar, Tafazzoli-Shadpour, Shokrgozar, Rostami (bb0130) 2014; 47
Roduit, Sekatski, Dietler, Catsicas, Lafont, Kasas (bb0155) 2009; 97
Stricker, Falzone, Gardel (bb0320) 2010; 43
Weder (10.1016/j.bbagen.2016.06.010_bb0075) 2014; 10
Guilak (10.1016/j.bbagen.2016.06.010_bb0275) 2000; 269
Kirmizis (10.1016/j.bbagen.2016.06.010_bb0020) 2010; 5
Xu (10.1016/j.bbagen.2016.06.010_bb0340) 2012; 7
Omidvar (10.1016/j.bbagen.2016.06.010_bb0130) 2014; 47
Cross (10.1016/j.bbagen.2016.06.010_bb0025) 2007; 2
Friedl (10.1016/j.bbagen.2016.06.010_bb0290) 2012; 23
Lu (10.1016/j.bbagen.2016.06.010_bb0310) 2006; 103
Zhao (10.1016/j.bbagen.2016.06.010_bb0205) 2013; 12
Li (10.1016/j.bbagen.2016.06.010_bb0125) 2008; 374
Ketene (10.1016/j.bbagen.2016.06.010_bb0335) 2012; 8
Watanabe (10.1016/j.bbagen.2016.06.010_bb0095) 2014; 134
Rathje (10.1016/j.bbagen.2016.06.010_bb0110) 2014; 111
Darling (10.1016/j.bbagen.2016.06.010_bb0165) 2007; 92
Schaefer (10.1016/j.bbagen.2016.06.010_bb0160) 2014; 127
Hochmuth (10.1016/j.bbagen.2016.06.010_bb0210) 2000; 33
Wehrle-Haller (10.1016/j.bbagen.2016.06.010_bb0270) 2003; 35
Chaki (10.1016/j.bbagen.2016.06.010_bb0100) 2013; 126
Xu (10.1016/j.bbagen.2016.06.010_bb0220) 2011; 415
Morone (10.1016/j.bbagen.2016.06.010_bb0180) 2006; 174
Tang (10.1016/j.bbagen.2016.06.010_bb0170) 2014; 13
Zou (10.1016/j.bbagen.2016.06.010_bb0035) 2013; 65
Pogoda (10.1016/j.bbagen.2016.06.010_bb0140) 2012; 41
Heidemann (10.1016/j.bbagen.2016.06.010_bb0190) 2004; 14
Harada (10.1016/j.bbagen.2016.06.010_bb0295) 2014; 204
Takai (10.1016/j.bbagen.2016.06.010_bb0285) 2005; 33
Mahaffy (10.1016/j.bbagen.2016.06.010_bb0305) 2004; 86
Docheva (10.1016/j.bbagen.2016.06.010_bb0330) 2010; 402
Hayashi (10.1016/j.bbagen.2016.06.010_bb0355) 2015; 49
Harn (10.1016/j.bbagen.2016.06.010_bb0045) 2015; 24
Liu (10.1016/j.bbagen.2016.06.010_bb0105) 2015; 6
Ramos (10.1016/j.bbagen.2016.06.010_bb0145) 2014; 5
Seltmann (10.1016/j.bbagen.2016.06.010_bb0250) 2013; 110
Wagh (10.1016/j.bbagen.2016.06.010_bb0055) 2008; 295
Salbreux (10.1016/j.bbagen.2016.06.010_bb0185) 2012; 22
Zhang (10.1016/j.bbagen.2016.06.010_bb0040) 2014; 322
Li (10.1016/j.bbagen.2016.06.010_bb0085) 2015; 37
Devreotes (10.1016/j.bbagen.2016.06.010_bb0175) 2015; 7
Stricker (10.1016/j.bbagen.2016.06.010_bb0320) 2010; 43
Thomas (10.1016/j.bbagen.2016.06.010_bb0300) 2013
Luo (10.1016/j.bbagen.2016.06.010_bb0120) 2015; 33
Ouyang (10.1016/j.bbagen.2016.06.010_bb0265) 2013; 7
Guo (10.1016/j.bbagen.2016.06.010_bb0240) 2013; 105
Huang (10.1016/j.bbagen.2016.06.010_bb0010) 2004; 287
Roduit (10.1016/j.bbagen.2016.06.010_bb0155) 2009; 97
Qian (10.1016/j.bbagen.2016.06.010_bb0230) 2012; 59
Louise (10.1016/j.bbagen.2016.06.010_bb0150) 2014; 71
Zhou (10.1016/j.bbagen.2016.06.010_bb0315) 2012; 8
Yu (10.1016/j.bbagen.2016.06.010_bb0115) 2015; 19
Blanchoin (10.1016/j.bbagen.2016.06.010_bb0135) 2014; 94
Jin (10.1016/j.bbagen.2016.06.010_bb0080) 2012; 93
Lange (10.1016/j.bbagen.2016.06.010_bb0015) 2013; 319
Xu (10.1016/j.bbagen.2016.06.010_bb0225) 2000; 275
Akhshi (10.1016/j.bbagen.2016.06.010_bb0345) 2014; 71
Takahashi (10.1016/j.bbagen.2016.06.010_bb0090) 2014; 443
Palmieri (10.1016/j.bbagen.2016.06.010_bb0070) 2015; 11
Fels (10.1016/j.bbagen.2016.06.010_bb0195) 2012; 7
Nawaz (10.1016/j.bbagen.2016.06.010_bb0200) 2012; 7
Etienne-Manneville (10.1016/j.bbagen.2016.06.010_bb0255) 2013; 29
Krause (10.1016/j.bbagen.2016.06.010_bb0280) 2013; 10
Plodinec (10.1016/j.bbagen.2016.06.010_bb0245) 2011; 174
Suresh (10.1016/j.bbagen.2016.06.010_bb0030) 2007; 55
Gruenbaum (10.1016/j.bbagen.2016.06.010_bb0235) 2014; 6
Fletcher (10.1016/j.bbagen.2016.06.010_bb0260) 2010; 463
Bastatas (10.1016/j.bbagen.2016.06.010_bb0065) 2012; 1820
Mihai (10.1016/j.bbagen.2016.06.010_bb0050) 2012; 302
Spedden (10.1016/j.bbagen.2016.06.010_bb0060) 2013; 14
Fuhrmann (10.1016/j.bbagen.2016.06.010_bb0325) 2011; 8
Jalilian (10.1016/j.bbagen.2016.06.010_bb0215) 2015; 10
Watanabe (10.1016/j.bbagen.2016.06.010_bb0350) 2012; 138
Arnaout (10.1016/j.bbagen.2016.06.010_bb0005) 2007; 19
References_xml – volume: 37
  start-page: 511
  year: 2015
  end-page: 521
  ident: bb0085
  article-title: Conditioned medium from mesenchymal stem cells enhances the migration of hepatoma cells through CXCR4 up-regulation and F-actin remodeling
  publication-title: Biotechnol. Lett.
– volume: 97
  start-page: 674
  year: 2009
  end-page: 677
  ident: bb0155
  article-title: Stiffness tomography by atomic force microscopy
  publication-title: Biophys. J.
– volume: 138
  start-page: 859
  year: 2012
  end-page: 866
  ident: bb0350
  article-title: Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (−)-epigallocatechin gallate-treated cells
  publication-title: J. Cancer Res. Clin. Oncol.
– volume: 134
  start-page: 2373
  year: 2014
  end-page: 2382
  ident: bb0095
  article-title: Epithelial–mesenchymal transition in human gastric cancer celllines induced by TNF-a-inducing protein of Helicobacter pylori
  publication-title: Int. J. Cancer
– volume: 33
  start-page: 963
  year: 2005
  end-page: 971
  ident: bb0285
  article-title: Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent
  publication-title: Ann. Biomed. Eng.
– volume: 402
  start-page: 361
  year: 2010
  end-page: 366
  ident: bb0330
  article-title: Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 93
  start-page: 1715
  year: 2012
  end-page: 1723
  ident: bb0080
  article-title: BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 6
  start-page: 15966
  year: 2015
  end-page: 15983
  ident: bb0105
  article-title: Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation
  publication-title: Oncotarget
– volume: 8
  start-page: 93
  year: 2012
  end-page: 102
  ident: bb0335
  article-title: The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures
  publication-title: Nanomedicine
– volume: 71
  start-page: 1
  year: 2014
  end-page: 23
  ident: bb0345
  article-title: Microtubules and actin crosstalk in cell migration and division
  publication-title: Cytoskeleton (Hoboken, NJ)
– volume: 94
  start-page: 235
  year: 2014
  end-page: 263
  ident: bb0135
  article-title: Actin dynamics, architecture, and mechanics in cell motility
  publication-title: Physiol. Rev.
– volume: 275
  start-page: 35886
  year: 2000
  end-page: 35892
  ident: bb0225
  article-title: Strain hardening of actin filament networks: regulation by the dynamic cross-linking protein α-actinin
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 137
  year: 2010
  end-page: 145
  ident: bb0020
  article-title: Atomic force microscopy probing in the measurement of cell mechanics
  publication-title: Int. J. Nanomedicine
– volume: 19
  start-page: 495
  year: 2007
  end-page: 507
  ident: bb0005
  article-title: Structure and mechanics of integrin-based cell adhesion
  publication-title: Curr. Opin. Cell Biol.
– volume: 174
  start-page: 476
  year: 2011
  end-page: 484
  ident: bb0245
  article-title: The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system
  publication-title: J. Struct. Biol.
– volume: 47
  start-page: 3373
  year: 2014
  end-page: 3379
  ident: bb0130
  article-title: Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion
  publication-title: J. Biomech.
– volume: 105
  start-page: 1562
  year: 2013
  end-page: 1568
  ident: bb0240
  article-title: The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics
  publication-title: Biophys. J.
– volume: 55
  start-page: 3989
  year: 2007
  end-page: 4014
  ident: bb0030
  article-title: Biomechanics and biophysics of cancer cells
  publication-title: Acta Mater.
– volume: 59
  start-page: 1374
  year: 2012
  end-page: 1380
  ident: bb0230
  article-title: Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D Clinostats
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 322
  start-page: 208
  year: 2014
  end-page: 216
  ident: bb0040
  article-title: A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway
  publication-title: Exp. Cell Res.
– volume: 7
  start-page: e46609
  year: 2012
  ident: bb0340
  article-title: Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells
  publication-title: PLoS ONE
– volume: 35
  start-page: 39
  year: 2003
  end-page: 50
  ident: bb0270
  article-title: Actin, microtubules and focal adhesion dynamics during cell migration
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 415
  start-page: 591
  year: 2011
  end-page: 596
  ident: bb0220
  article-title: Effects of micropatterned curvature on the motility and mechanical properties of airway smooth muscle cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 14
  start-page: 160
  year: 2004
  end-page: 166
  ident: bb0190
  article-title: Towards a regional approach to cell mechanics
  publication-title: Trends Cell Biol.
– volume: 23
  start-page: 55
  year: 2012
  end-page: 64
  ident: bb0290
  article-title: Nuclear mechanics during cell migration
  publication-title: Curr. Opin. Cell Biol.
– volume: 8
  start-page: 015007
  year: 2011
  ident: bb0325
  article-title: AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells
  publication-title: Phys. Biol.
– volume: 6
  start-page: 54
  year: 2014
  ident: bb0235
  article-title: Intermediate filaments: a dynamic network that controls cell mechanics
  publication-title: F1000prime Rep.
– volume: 24
  start-page: 579
  year: 2015
  end-page: 584
  ident: bb0045
  article-title: Mechanical coupling of cytoskeletal elasticity and force generation is crucial for understanding the migrating nature of keloid fibroblasts
  publication-title: Exp. Dermatol.
– volume: 33
  start-page: 210
  year: 2015
  end-page: 219
  ident: bb0120
  article-title: Mechano growth factor E peptide promotes rat bone marrow-derived mesenchymal stem cell migration through CXCR4-ERK1/2
  publication-title: Growth Factors
– volume: 7
  start-page: a005959
  year: 2015
  ident: bb0175
  article-title: Signaling networks that regulate cell migration
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 10
  start-page: e0126214
  year: 2015
  ident: bb0215
  article-title: Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton
  publication-title: PLoS ONE
– volume: 2
  start-page: 780
  year: 2007
  end-page: 783
  ident: bb0025
  article-title: Nanomechanical analysis of cells from cancer patients
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 5774
  year: 2013
  end-page: 5785
  ident: bb0205
  article-title: Physical properties of gastrointestinal stromal tumors based on atomic force microscope analysis
  publication-title: Genet. Mol. Res.
– volume: 86
  start-page: 1777
  year: 2004
  end-page: 1793
  ident: bb0305
  article-title: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy
  publication-title: Biophys. J.
– volume: 92
  start-page: 1784
  year: 2007
  end-page: 1791
  ident: bb0165
  article-title: A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential?
  publication-title: Biophys. J.
– volume: 65
  start-page: 455
  year: 2013
  end-page: 462
  ident: bb0035
  article-title: Osteopontin promotes mesenchymal stem cell migration and lessens cell stiffness via Integrin β1, FAK, and ERK pathways
  publication-title: Cell Biochem. Biophys.
– volume: 204
  start-page: 669
  year: 2014
  end-page: 682
  ident: bb0295
  article-title: Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival
  publication-title: J. Cell Biol.
– volume: 7
  start-page: 21
  year: 2013
  ident: bb0265
  article-title: Contribution of cytoskeletal elements to the axonal mechanical properties
  publication-title: J. Biol. Eng.
– volume: 319
  start-page: 2418
  year: 2013
  end-page: 2423
  ident: bb0015
  article-title: Cell and tissue mechanics in cell migration
  publication-title: Exp. Cell Res.
– volume: 71
  start-page: 587
  year: 2014
  end-page: 594
  ident: bb0150
  article-title: AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization
  publication-title: Cytoskeleton (Hoboken, NJ)
– start-page: 1
  year: 2013
  end-page: 8
  ident: bb0300
  article-title: Measuring the mechanical properties of living cells using atomic force microscopy
  publication-title: J. Vis. Exp.
– volume: 302
  start-page: L287
  year: 2012
  end-page: L299
  ident: bb0050
  article-title: PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration
  publication-title: Am. J. Phys. Lung Cell. Mol. Phys.
– volume: 13
  start-page: 131
  year: 2014
  ident: bb0170
  article-title: A mechanically-induced colon cancer cell population shows increased metastatic potential
  publication-title: Mol. Cancer
– volume: 19
  start-page: 934
  year: 2015
  end-page: 947
  ident: bb0115
  article-title: β-PIX controls intracellular viscoelasticity to regulate lung cancer cell migration
  publication-title: J. Cell. Mol. Med.
– volume: 5
  start-page: 447
  year: 2014
  end-page: 457
  ident: bb0145
  article-title: The softening of human bladder cancer cells happens at an early stage of the malignancy process
  publication-title: Beilstein J. Nanotechnol.
– volume: 29
  start-page: 471
  year: 2013
  end-page: 499
  ident: bb0255
  article-title: Microtubules in cell migration
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 43
  start-page: 9
  year: 2010
  end-page: 14
  ident: bb0320
  article-title: Mechanics of the F-actin cytoskeleton
  publication-title: J. Biomech.
– volume: 14
  start-page: 16124
  year: 2013
  end-page: 16140
  ident: bb0060
  article-title: Neuron biomechanics probed by atomic force microscopy
  publication-title: Int. J. Mol. Sci.
– volume: 269
  start-page: 781
  year: 2000
  end-page: 786
  ident: bb0275
  article-title: Viscoelastic properties of the cell nucleus
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 8
  start-page: 134
  year: 2012
  end-page: 142
  ident: bb0315
  article-title: Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 463
  start-page: 485
  year: 2010
  end-page: 492
  ident: bb0260
  article-title: Cell mechanics and the cytoskeleton
  publication-title: Nature
– volume: 295
  start-page: 54
  year: 2008
  end-page: 60
  ident: bb0055
  article-title: Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy
  publication-title: Am. J. Phys. Lung Cell. Mol. Phys.
– volume: 10
  start-page: 141
  year: 2014
  end-page: 148
  ident: bb0075
  article-title: Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties
  publication-title: Nanomedicine
– volume: 110
  start-page: 18507
  year: 2013
  end-page: 18512
  ident: bb0250
  article-title: Keratins significantly contribute to cell stiffness and impact invasive behavior
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 49
  start-page: 105
  year: 2015
  end-page: 111
  ident: bb0355
  article-title: Stiffness of cancer cells measured with an AFM indentation method
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 374
  start-page: 609
  year: 2008
  end-page: 613
  ident: bb0125
  article-title: AFM indentation study of breast cancer cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 7
  start-page: e41520
  year: 2012
  ident: bb0195
  article-title: Cortical actin nanodynamics determines nitric oxide release in vascular endothelium
  publication-title: PLoS ONE
– volume: 11
  start-page: 5719
  year: 2015
  end-page: 5726
  ident: bb0070
  article-title: Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer
  publication-title: Soft Matter
– volume: 126
  start-page: 1637
  year: 2013
  end-page: 1649
  ident: bb0100
  article-title: Nck enables directional cell migration through the coordination of polarized membrane protrusion with adhesion dynamics
  publication-title: J. Cell Sci.
– volume: 127
  start-page: 4985
  year: 2014
  ident: bb0160
  article-title: Actin-binding proteins differentially regulate endothelial cell stiffness, ICAM-1 function and neutrophil transmigration
  publication-title: J. Cell Sci.
– volume: 443
  start-page: 1
  year: 2014
  end-page: 6
  ident: bb0090
  article-title: Mechanism-based inhibition of cancer metastasis with (−)-epigallocatechin gallate
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 174
  start-page: 851
  year: 2006
  end-page: 862
  ident: bb0180
  article-title: Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography
  publication-title: J. Cell Biol.
– volume: 10
  start-page: 065002
  year: 2013
  ident: bb0280
  article-title: Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy
  publication-title: Phys. Biol.
– volume: 111
  start-page: 1515
  year: 2014
  end-page: 1520
  ident: bb0110
  article-title: Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 7
  start-page: e45297
  year: 2012
  ident: bb0200
  article-title: Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations
  publication-title: PLoS ONE
– volume: 103
  start-page: 17759
  year: 2006
  end-page: 17764
  ident: bb0310
  article-title: Viscoelastic properties of individual glial cells and neurons in the CNS
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1820
  start-page: 1111
  year: 2012
  end-page: 11120
  ident: bb0065
  article-title: AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential
  publication-title: Biochim. Biophys. Acta
– volume: 41
  start-page: 79
  year: 2012
  end-page: 87
  ident: bb0140
  article-title: Depth-sensing analysis of cytoskeleton organization based on AFM data
  publication-title: Eur. Biophys. J.
– volume: 287
  start-page: 1
  year: 2004
  end-page: 11
  ident: bb0010
  article-title: Cell mechanics and mechanotransduction: pathways, probes, and physiology
  publication-title: Am. J. Phys.
– volume: 22
  start-page: 536
  year: 2012
  end-page: 545
  ident: bb0185
  article-title: Actin cortex mechanics and cellular morphogenesis
  publication-title: Trends Cell Biol.
– volume: 33
  start-page: 15
  year: 2000
  end-page: 22
  ident: bb0210
  article-title: Micropipette aspiration of living cells
  publication-title: J. Biomech.
– volume: 287
  start-page: 1
  year: 2004
  ident: 10.1016/j.bbagen.2016.06.010_bb0010
  article-title: Cell mechanics and mechanotransduction: pathways, probes, and physiology
  publication-title: Am. J. Phys.
  doi: 10.1152/ajpcell.00559.2003
– volume: 29
  start-page: 471
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0255
  article-title: Microtubules in cell migration
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-101011-155711
– volume: 402
  start-page: 361
  year: 2010
  ident: 10.1016/j.bbagen.2016.06.010_bb0330
  article-title: Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.10.034
– volume: 19
  start-page: 495
  year: 2007
  ident: 10.1016/j.bbagen.2016.06.010_bb0005
  article-title: Structure and mechanics of integrin-based cell adhesion
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2007.08.002
– volume: 374
  start-page: 609
  year: 2008
  ident: 10.1016/j.bbagen.2016.06.010_bb0125
  article-title: AFM indentation study of breast cancer cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.07.078
– volume: 22
  start-page: 536
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0185
  article-title: Actin cortex mechanics and cellular morphogenesis
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.07.001
– volume: 93
  start-page: 1715
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0080
  article-title: BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3865-3
– volume: 14
  start-page: 16124
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0060
  article-title: Neuron biomechanics probed by atomic force microscopy
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms140816124
– volume: 13
  start-page: 131
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0170
  article-title: A mechanically-induced colon cancer cell population shows increased metastatic potential
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-13-131
– volume: 43
  start-page: 9
  year: 2010
  ident: 10.1016/j.bbagen.2016.06.010_bb0320
  article-title: Mechanics of the F-actin cytoskeleton
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.09.003
– volume: 12
  start-page: 5774
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0205
  article-title: Physical properties of gastrointestinal stromal tumors based on atomic force microscope analysis
  publication-title: Genet. Mol. Res.
  doi: 10.4238/2013.November.22.4
– volume: 55
  start-page: 3989
  year: 2007
  ident: 10.1016/j.bbagen.2016.06.010_bb0030
  article-title: Biomechanics and biophysics of cancer cells
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.04.022
– volume: 7
  start-page: e45297
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0200
  article-title: Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0045297
– volume: 33
  start-page: 963
  year: 2005
  ident: 10.1016/j.bbagen.2016.06.010_bb0285
  article-title: Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-005-3555-3
– volume: 97
  start-page: 674
  year: 2009
  ident: 10.1016/j.bbagen.2016.06.010_bb0155
  article-title: Stiffness tomography by atomic force microscopy
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.05.010
– volume: 5
  start-page: 137
  year: 2010
  ident: 10.1016/j.bbagen.2016.06.010_bb0020
  article-title: Atomic force microscopy probing in the measurement of cell mechanics
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S5787
– volume: 443
  start-page: 1
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0090
  article-title: Mechanism-based inhibition of cancer metastasis with (−)-epigallocatechin gallate
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2013.10.094
– volume: 7
  start-page: e46609
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0340
  article-title: Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0046609
– volume: 7
  start-page: e41520
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0195
  article-title: Cortical actin nanodynamics determines nitric oxide release in vascular endothelium
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0041520
– volume: 295
  start-page: 54
  year: 2008
  ident: 10.1016/j.bbagen.2016.06.010_bb0055
  article-title: Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy
  publication-title: Am. J. Phys. Lung Cell. Mol. Phys.
– volume: 126
  start-page: 1637
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0100
  article-title: Nck enables directional cell migration through the coordination of polarized membrane protrusion with adhesion dynamics
  publication-title: J. Cell Sci.
– volume: 33
  start-page: 15
  year: 2000
  ident: 10.1016/j.bbagen.2016.06.010_bb0210
  article-title: Micropipette aspiration of living cells
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00175-X
– volume: 138
  start-page: 859
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0350
  article-title: Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (−)-epigallocatechin gallate-treated cells
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-012-1159-5
– volume: 23
  start-page: 55
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0290
  article-title: Nuclear mechanics during cell migration
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2010.10.015
– volume: 19
  start-page: 934
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.010_bb0115
  article-title: β-PIX controls intracellular viscoelasticity to regulate lung cancer cell migration
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.12441
– volume: 8
  start-page: 93
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0335
  article-title: The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2011.05.012
– volume: 204
  start-page: 669
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0295
  article-title: Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201308029
– volume: 86
  start-page: 1777
  year: 2004
  ident: 10.1016/j.bbagen.2016.06.010_bb0305
  article-title: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74245-9
– volume: 6
  start-page: 15966
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.010_bb0105
  article-title: Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3862
– volume: 14
  start-page: 160
  year: 2004
  ident: 10.1016/j.bbagen.2016.06.010_bb0190
  article-title: Towards a regional approach to cell mechanics
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2004.02.003
– volume: 275
  start-page: 35886
  year: 2000
  ident: 10.1016/j.bbagen.2016.06.010_bb0225
  article-title: Strain hardening of actin filament networks: regulation by the dynamic cross-linking protein α-actinin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002377200
– volume: 269
  start-page: 781
  year: 2000
  ident: 10.1016/j.bbagen.2016.06.010_bb0275
  article-title: Viscoelastic properties of the cell nucleus
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.2360
– volume: 103
  start-page: 17759
  year: 2006
  ident: 10.1016/j.bbagen.2016.06.010_bb0310
  article-title: Viscoelastic properties of individual glial cells and neurons in the CNS
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0606150103
– volume: 71
  start-page: 1
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0345
  article-title: Microtubules and actin crosstalk in cell migration and division
  publication-title: Cytoskeleton (Hoboken, NJ)
  doi: 10.1002/cm.21150
– volume: 415
  start-page: 591
  year: 2011
  ident: 10.1016/j.bbagen.2016.06.010_bb0220
  article-title: Effects of micropatterned curvature on the motility and mechanical properties of airway smooth muscle cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.10.111
– volume: 92
  start-page: 1784
  year: 2007
  ident: 10.1016/j.bbagen.2016.06.010_bb0165
  article-title: A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential?
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.083097
– volume: 10
  start-page: e0126214
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.010_bb0215
  article-title: Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126214
– volume: 59
  start-page: 1374
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0230
  article-title: Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D Clinostats
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2187785
– volume: 8
  start-page: 134
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0315
  article-title: Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.11.010
– volume: 7
  start-page: 21
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0265
  article-title: Contribution of cytoskeletal elements to the axonal mechanical properties
  publication-title: J. Biol. Eng.
  doi: 10.1186/1754-1611-7-21
– volume: 71
  start-page: 587
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0150
  article-title: AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization
  publication-title: Cytoskeleton (Hoboken, NJ)
  doi: 10.1002/cm.21194
– volume: 322
  start-page: 208
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0040
  article-title: A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2014.01.005
– volume: 65
  start-page: 455
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0035
  article-title: Osteopontin promotes mesenchymal stem cell migration and lessens cell stiffness via Integrin β1, FAK, and ERK pathways
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-012-9449-8
– volume: 5
  start-page: 447
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0145
  article-title: The softening of human bladder cancer cells happens at an early stage of the malignancy process
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.5.52
– volume: 41
  start-page: 79
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0140
  article-title: Depth-sensing analysis of cytoskeleton organization based on AFM data
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-011-0761-9
– volume: 105
  start-page: 1562
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0240
  article-title: The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.08.037
– volume: 37
  start-page: 511
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.010_bb0085
  article-title: Conditioned medium from mesenchymal stem cells enhances the migration of hepatoma cells through CXCR4 up-regulation and F-actin remodeling
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-014-1710-3
– volume: 111
  start-page: 1515
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0110
  article-title: Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1300238111
– volume: 174
  start-page: 851
  year: 2006
  ident: 10.1016/j.bbagen.2016.06.010_bb0180
  article-title: Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200606007
– volume: 174
  start-page: 476
  year: 2011
  ident: 10.1016/j.bbagen.2016.06.010_bb0245
  article-title: The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2011.03.011
– volume: 10
  start-page: 141
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0075
  article-title: Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2013.07.007
– volume: 94
  start-page: 235
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0135
  article-title: Actin dynamics, architecture, and mechanics in cell motility
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00018.2013
– volume: 49
  start-page: 105
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.010_bb0355
  article-title: Stiffness of cancer cells measured with an AFM indentation method
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.04.030
– volume: 302
  start-page: L287
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0050
  article-title: PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration
  publication-title: Am. J. Phys. Lung Cell. Mol. Phys.
– volume: 1820
  start-page: 1111
  year: 2012
  ident: 10.1016/j.bbagen.2016.06.010_bb0065
  article-title: AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2012.02.006
– volume: 6
  start-page: 54
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0235
  article-title: Intermediate filaments: a dynamic network that controls cell mechanics
  publication-title: F1000prime Rep.
  doi: 10.12703/P6-54
– volume: 463
  start-page: 485
  year: 2010
  ident: 10.1016/j.bbagen.2016.06.010_bb0260
  article-title: Cell mechanics and the cytoskeleton
  publication-title: Nature
  doi: 10.1038/nature08908
– volume: 8
  start-page: 015007
  year: 2011
  ident: 10.1016/j.bbagen.2016.06.010_bb0325
  article-title: AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3975/8/1/015007
– volume: 24
  start-page: 579
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.010_bb0045
  article-title: Mechanical coupling of cytoskeletal elasticity and force generation is crucial for understanding the migrating nature of keloid fibroblasts
  publication-title: Exp. Dermatol.
  doi: 10.1111/exd.12731
– volume: 110
  start-page: 18507
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0250
  article-title: Keratins significantly contribute to cell stiffness and impact invasive behavior
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1310493110
– volume: 10
  start-page: 065002
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0280
  article-title: Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3975/10/6/065002
– volume: 127
  start-page: 4985
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0160
  article-title: Actin-binding proteins differentially regulate endothelial cell stiffness, ICAM-1 function and neutrophil transmigration
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.164814
– volume: 7
  start-page: a005959
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.010_bb0175
  article-title: Signaling networks that regulate cell migration
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a005959
– volume: 319
  start-page: 2418
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0015
  article-title: Cell and tissue mechanics in cell migration
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2013.04.023
– volume: 134
  start-page: 2373
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0095
  article-title: Epithelial–mesenchymal transition in human gastric cancer celllines induced by TNF-a-inducing protein of Helicobacter pylori
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28582
– volume: 47
  start-page: 3373
  year: 2014
  ident: 10.1016/j.bbagen.2016.06.010_bb0130
  article-title: Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.08.002
– start-page: 1
  year: 2013
  ident: 10.1016/j.bbagen.2016.06.010_bb0300
  article-title: Measuring the mechanical properties of living cells using atomic force microscopy
  publication-title: J. Vis. Exp.
– volume: 33
  start-page: 210
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.010_bb0120
  article-title: Mechano growth factor E peptide promotes rat bone marrow-derived mesenchymal stem cell migration through CXCR4-ERK1/2
  publication-title: Growth Factors
– volume: 11
  start-page: 5719
  year: 2015
  ident: 10.1016/j.bbagen.2016.06.010_bb0070
  article-title: Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer
  publication-title: Soft Matter
  doi: 10.1039/C5SM01089F
– volume: 2
  start-page: 780
  year: 2007
  ident: 10.1016/j.bbagen.2016.06.010_bb0025
  article-title: Nanomechanical analysis of cells from cancer patients
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.388
– volume: 35
  start-page: 39
  year: 2003
  ident: 10.1016/j.bbagen.2016.06.010_bb0270
  article-title: Actin, microtubules and focal adhesion dynamics during cell migration
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(02)00071-7
SSID ssj0000595
ssj0025309
Score 2.5601883
SecondaryResourceType review_article
Snippet Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1953
SubjectTerms Animals
Atomic force microscopy
biomarkers
cell movement
Cell Movement - physiology
Cell Nucleus - physiology
Cytoskeleton
Cytoskeleton - physiology
Elastic Modulus - physiology
Humans
mechanical properties
metastasis
Microscopy, Atomic Force - methods
modulus of elasticity
Motility
neoplasm cells
neoplasms
Nuclear stiffness
Stiffness
Young's modulus
Title Cell stiffness determined by atomic force microscopy and its correlation with cell motility
URI https://dx.doi.org/10.1016/j.bbagen.2016.06.010
https://www.ncbi.nlm.nih.gov/pubmed/27288584
https://www.proquest.com/docview/1805489231
https://www.proquest.com/docview/1825429806
Volume 1860
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iSPtSrP06ayWFvqaX3U2y2Uc5lLNHfbBKD_oQ8glXzlXq-eCLf3tnNruKUCv4tGxIIDuZzPw2-c0MIV9kSNwW0TNwL5EJ8MnMRe6ZUikqbnVRR4xG_n6spmfi21zO18hkiIVBWmVv-7NN76x13zLupTm-XCzGP_BSD-CEBESBjmuOEeyiRi3_entP8wD4IPNNgmDYewif6zhezsGmxSyoheqyeGIc7b_d02Pws3NDh1vkVY8f6X6e4muyFtttspkrSt5skxeToYDbG_JrEpdLCls4JbRnNPTMlxiou6Hws32-8BQwq4_0HGl5GKAC7W2gi9UV9Vi2IxPlKB7WUjzip0jdQ-D-lpwdHpxOpqyvpcB81cgVs40QMmhtoxLaKS2EFVq5IEVZK-6V8uDMna2qxgcuk_BScxkA62nHk01N9Y6stxdt_ECo1jKolFztbBDBRxdUnSTAhsZWLqlyRKpBhMb3icax3sXSDIyy3yYL3qDgDRLrCj4i7G7UZU608UT_elgd80BhDPiCJ0Z-HhbTwIqg9GwbL66vTAHfLDRC3v_1KbHEl-ZqRN5nTbibb1mXIBwtdp49t4_kJb5lEtsuWV_9uY6fAPWs3F6n1ntkY_9oNj3G5-zk5-wvj08DUw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDSW9lDZ9bZ8q9CpWtiVZPoalYdMke2kCCz0IPWHLxgnN5pB_3xk_UgptA73KEsgjaeaz_M18AJ9UzMIVKXAML4lLjMncJxG41jlp4UxRJ8pGPl3qxbn8slKrHZiPuTBEqxx8f-_TO289tMwGa86u1uvZV_qph3BCIaKgwLV6ALtUnUpNYPfg6Hix_OWQVSe-Qv05DRgz6Dqal_d4bqkQaqG7Qp6USvvnCPU3BNpFosMn8HiAkOygn-VT2EntPjzsRSVv92FvPmq4PYNv87TZMDzFOZNLY3Egv6TI_C3D7-2LdWAIW0NiF8TMoxwVbG8jW2-vWSDljp4rx-i-ltEtPyP2HmH353B--PlsvuCDnAIPVaO23DVSqmiMS1oar42UThrto5JlrUXQOmA8966qmhCFyjIoI1REuGe8yC431QuYtJdtegXMGBV1zr72LsoYko-6zgqRQ-Mqn3U5hWo0oQ1DrXGSvNjYkVT23faGt2R4S9y6QkyB34266mtt3NO_HlfH_rZnLIaDe0Z-HBfT4oqQ9VybLm-ubYHvLA2h3n_1KUnlywg9hZf9Tribb1mXaBwjX__33D7A3uLs9MSeHC2P38AjetJz2t7CZPvjJr1DELT174dN_hNLRQRh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+stiffness+determined+by+atomic+force+microscopy+and+its+correlation+with+cell+motility&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Luo%2C+Qing&rft.au=Kuang%2C+Dongdong&rft.au=Zhang%2C+Bingyu&rft.au=Song%2C+Guanbin&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1860&rft.issue=9&rft.spage=1953&rft.epage=1960&rft_id=info:doi/10.1016%2Fj.bbagen.2016.06.010&rft.externalDocID=S030441651630215X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon