Selenium metabolism in plants
Selenium (Se) is not an essential element for plants, although it can benefit their growth and survival in some envionments. Excess tissue Se concentrations are toxic. The ability to sequester Se in vacuoles, synthesise non-toxic Se metabolites, or volatilise Se compounds determines maximum tissue S...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1862; no. 11; pp. 2333 - 2342 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selenium (Se) is not an essential element for plants, although it can benefit their growth and survival in some envionments. Excess tissue Se concentrations are toxic. The ability to sequester Se in vacuoles, synthesise non-toxic Se metabolites, or volatilise Se compounds determines maximum tissue Se concentrations and the ability to colonise seleniferous soils.
This review first classifies plant species on their abilities to accumulate Se in their tissues and to colonise seleniferous soils. It then presents our knowledge of Se uptake by roots and its movement within the plant, the primary and secondary metabolism of Se in plants, effects of Se on sulfur and nitrogen metabolism, and the detoxification of excessive Se by plants. Finally, it presents a current hypothesis for the evolution of seleniferous flora.
Selenium and sulfur share the same primary metabolism. When grown in the same environment, most plant species have similar tissue Se/S quotients. However, Se-hyperaccumulator species, which can have tissue Se concentrations >1 mg g−1 dry matter, have larger Se/S quotients than other species. Secondary Se metabolism determines differences in tissue Se concentration among plant species. Among non-hyperaccumulator species, alliums and brassicas have particularly large tissue Se concentrations. Selenium hyperaccumulation results from the effective metabolic detoxification of Se in tissues.
Differences in Se metabolism determine the maximum Se concentrations in plant tissues, which is important for the delivery of Se to diets of herbivores and for the evolution of plant species to colonise seleniferous soils.
•Selenium (Se) and sulfur (S) share the same primary metabolism in plants.•Most angiosperm (flowering plant) species have similar shoot Se/S quotients.•Secondary Se metabolism determines tissue Se concentration differences among species.•Se hyperaccumulation results from effective metabolic detoxification of Se in tissues.•Se metabolism determines the ecology of seleniferous soils. |
---|---|
AbstractList | Selenium (Se) is not an essential element for plants, although it can benefit their growth and survival in some envionments. Excess tissue Se concentrations are toxic. The ability to sequester Se in vacuoles, synthesise non-toxic Se metabolites, or volatilise Se compounds determines maximum tissue Se concentrations and the ability to colonise seleniferous soils.
This review first classifies plant species on their abilities to accumulate Se in their tissues and to colonise seleniferous soils. It then presents our knowledge of Se uptake by roots and its movement within the plant, the primary and secondary metabolism of Se in plants, effects of Se on sulfur and nitrogen metabolism, and the detoxification of excessive Se by plants. Finally, it presents a current hypothesis for the evolution of seleniferous flora.
Selenium and sulfur share the same primary metabolism. When grown in the same environment, most plant species have similar tissue Se/S quotients. However, Se-hyperaccumulator species, which can have tissue Se concentrations >1 mg g
dry matter, have larger Se/S quotients than other species. Secondary Se metabolism determines differences in tissue Se concentration among plant species. Among non-hyperaccumulator species, alliums and brassicas have particularly large tissue Se concentrations. Selenium hyperaccumulation results from the effective metabolic detoxification of Se in tissues.
Differences in Se metabolism determine the maximum Se concentrations in plant tissues, which is important for the delivery of Se to diets of herbivores and for the evolution of plant species to colonise seleniferous soils. Selenium (Se) is not an essential element for plants, although it can benefit their growth and survival in some envionments. Excess tissue Se concentrations are toxic. The ability to sequester Se in vacuoles, synthesise non-toxic Se metabolites, or volatilise Se compounds determines maximum tissue Se concentrations and the ability to colonise seleniferous soils. This review first classifies plant species on their abilities to accumulate Se in their tissues and to colonise seleniferous soils. It then presents our knowledge of Se uptake by roots and its movement within the plant, the primary and secondary metabolism of Se in plants, effects of Se on sulfur and nitrogen metabolism, and the detoxification of excessive Se by plants. Finally, it presents a current hypothesis for the evolution of seleniferous flora. Selenium and sulfur share the same primary metabolism. When grown in the same environment, most plant species have similar tissue Se/S quotients. However, Se-hyperaccumulator species, which can have tissue Se concentrations >1 mg g−1 dry matter, have larger Se/S quotients than other species. Secondary Se metabolism determines differences in tissue Se concentration among plant species. Among non-hyperaccumulator species, alliums and brassicas have particularly large tissue Se concentrations. Selenium hyperaccumulation results from the effective metabolic detoxification of Se in tissues. Differences in Se metabolism determine the maximum Se concentrations in plant tissues, which is important for the delivery of Se to diets of herbivores and for the evolution of plant species to colonise seleniferous soils. •Selenium (Se) and sulfur (S) share the same primary metabolism in plants.•Most angiosperm (flowering plant) species have similar shoot Se/S quotients.•Secondary Se metabolism determines tissue Se concentration differences among species.•Se hyperaccumulation results from effective metabolic detoxification of Se in tissues.•Se metabolism determines the ecology of seleniferous soils. Selenium (Se) is not an essential element for plants, although it can benefit their growth and survival in some envionments. Excess tissue Se concentrations are toxic. The ability to sequester Se in vacuoles, synthesise non-toxic Se metabolites, or volatilise Se compounds determines maximum tissue Se concentrations and the ability to colonise seleniferous soils.This review first classifies plant species on their abilities to accumulate Se in their tissues and to colonise seleniferous soils. It then presents our knowledge of Se uptake by roots and its movement within the plant, the primary and secondary metabolism of Se in plants, effects of Se on sulfur and nitrogen metabolism, and the detoxification of excessive Se by plants. Finally, it presents a current hypothesis for the evolution of seleniferous flora.Selenium and sulfur share the same primary metabolism. When grown in the same environment, most plant species have similar tissue Se/S quotients. However, Se-hyperaccumulator species, which can have tissue Se concentrations >1 mg g⁻¹ dry matter, have larger Se/S quotients than other species. Secondary Se metabolism determines differences in tissue Se concentration among plant species. Among non-hyperaccumulator species, alliums and brassicas have particularly large tissue Se concentrations. Selenium hyperaccumulation results from the effective metabolic detoxification of Se in tissues.Differences in Se metabolism determine the maximum Se concentrations in plant tissues, which is important for the delivery of Se to diets of herbivores and for the evolution of plant species to colonise seleniferous soils. Selenium (Se) is not an essential element for plants, although it can benefit their growth and survival in some envionments. Excess tissue Se concentrations are toxic. The ability to sequester Se in vacuoles, synthesise non-toxic Se metabolites, or volatilise Se compounds determines maximum tissue Se concentrations and the ability to colonise seleniferous soils.BACKGROUNDSelenium (Se) is not an essential element for plants, although it can benefit their growth and survival in some envionments. Excess tissue Se concentrations are toxic. The ability to sequester Se in vacuoles, synthesise non-toxic Se metabolites, or volatilise Se compounds determines maximum tissue Se concentrations and the ability to colonise seleniferous soils.This review first classifies plant species on their abilities to accumulate Se in their tissues and to colonise seleniferous soils. It then presents our knowledge of Se uptake by roots and its movement within the plant, the primary and secondary metabolism of Se in plants, effects of Se on sulfur and nitrogen metabolism, and the detoxification of excessive Se by plants. Finally, it presents a current hypothesis for the evolution of seleniferous flora.SCOPE OF REVIEWThis review first classifies plant species on their abilities to accumulate Se in their tissues and to colonise seleniferous soils. It then presents our knowledge of Se uptake by roots and its movement within the plant, the primary and secondary metabolism of Se in plants, effects of Se on sulfur and nitrogen metabolism, and the detoxification of excessive Se by plants. Finally, it presents a current hypothesis for the evolution of seleniferous flora.Selenium and sulfur share the same primary metabolism. When grown in the same environment, most plant species have similar tissue Se/S quotients. However, Se-hyperaccumulator species, which can have tissue Se concentrations >1 mg g-1 dry matter, have larger Se/S quotients than other species. Secondary Se metabolism determines differences in tissue Se concentration among plant species. Among non-hyperaccumulator species, alliums and brassicas have particularly large tissue Se concentrations. Selenium hyperaccumulation results from the effective metabolic detoxification of Se in tissues.MAJOR CONCLUSIONSSelenium and sulfur share the same primary metabolism. When grown in the same environment, most plant species have similar tissue Se/S quotients. However, Se-hyperaccumulator species, which can have tissue Se concentrations >1 mg g-1 dry matter, have larger Se/S quotients than other species. Secondary Se metabolism determines differences in tissue Se concentration among plant species. Among non-hyperaccumulator species, alliums and brassicas have particularly large tissue Se concentrations. Selenium hyperaccumulation results from the effective metabolic detoxification of Se in tissues.Differences in Se metabolism determine the maximum Se concentrations in plant tissues, which is important for the delivery of Se to diets of herbivores and for the evolution of plant species to colonise seleniferous soils.GENERAL SIGNIFICANCEDifferences in Se metabolism determine the maximum Se concentrations in plant tissues, which is important for the delivery of Se to diets of herbivores and for the evolution of plant species to colonise seleniferous soils. |
Author | White, Philip J. |
Author_xml | – sequence: 1 givenname: Philip J. surname: White fullname: White, Philip J. email: philip.white@hutton.ac.uk organization: Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29751098$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LxDAQhoMo7of-A5U9emmdNE2aeBBk8QsWPKjnkKZTydKPtUkF_71dunrw4M5l5vC8w8wzI4dN2yAhZxRiClRcreM8N-_YxAlQGQOPAcQBmVKZJZEc5kMyBQZplFLBJ2Tm_RqG4oofk0miMk5BySk5f8EKG9fXixqDydvK-XrhmsWmMk3wJ-SoNJXH012fk7f7u9flY7R6fnha3q4iyxQPkZFpIiDNlCyhKIRRNEsMFZYqSZEVpeAsFYYBFIqmPJXKZEJwyVBmZcZLy-bkcty76dqPHn3QtfMWq-EIbHuvE8q2f9GE7UeBySTjSokBvdihfV5joTedq033pX--H4B0BGzXet9h-YtQ0FvJeq1HyXorWQPXg9ghdv0nZl0wwbVN6Iyr9oVvxjAOPj8ddtpbh43FwnVogy5a9_-Cb4rOldM |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2021_126876 crossref_primary_10_3390_foods12244442 crossref_primary_10_1016_j_jhazmat_2020_124178 crossref_primary_10_3390_su132313423 crossref_primary_10_1016_j_plaphy_2020_11_001 crossref_primary_10_3390_molecules29010136 crossref_primary_10_1016_j_scitotenv_2024_169923 crossref_primary_10_3390_agronomy12102400 crossref_primary_10_3390_agriculture10120584 crossref_primary_10_1021_acssuschemeng_0c02819 crossref_primary_10_1146_annurev_nutr_062320_121834 crossref_primary_10_1007_s11738_020_03113_0 crossref_primary_10_1016_j_anifeedsci_2021_114944 crossref_primary_10_3390_molecules26040881 crossref_primary_10_1186_s12870_024_05161_x crossref_primary_10_1016_j_microc_2021_106962 crossref_primary_10_3390_agronomy14030462 crossref_primary_10_47137_usufedbid_854811 crossref_primary_10_1016_j_indcrop_2023_116436 crossref_primary_10_3390_agronomy14061184 crossref_primary_10_3390_agriculture13051083 crossref_primary_10_3390_foods12061214 crossref_primary_10_1080_21691401_2022_2155660 crossref_primary_10_3390_ijpb15040085 crossref_primary_10_3390_foods12244422 crossref_primary_10_1016_j_jksus_2022_102501 crossref_primary_10_1186_s12870_024_04898_9 crossref_primary_10_3390_molecules28083642 crossref_primary_10_2478_fhort_2019_0016 crossref_primary_10_1007_s11104_024_06535_8 crossref_primary_10_1007_s00374_024_01883_0 crossref_primary_10_1515_ijfe_2024_0001 crossref_primary_10_3390_w15091728 crossref_primary_10_3390_horticulturae8090801 crossref_primary_10_1093_mtomcs_mfad066 crossref_primary_10_1093_mtomcs_mfad067 crossref_primary_10_3390_molecules28073198 crossref_primary_10_1016_j_lwt_2023_114496 crossref_primary_10_1371_journal_pone_0232160 crossref_primary_10_3389_fnut_2022_849928 crossref_primary_10_1071_CP20519 crossref_primary_10_1002_jsfa_10212 crossref_primary_10_1016_j_plaphy_2023_108084 crossref_primary_10_1038_s41598_024_57049_3 crossref_primary_10_1007_s11356_020_10303_3 crossref_primary_10_1016_j_heliyon_2024_e26023 crossref_primary_10_1186_s12917_024_03966_4 crossref_primary_10_1016_j_ecoenv_2020_111016 crossref_primary_10_1007_s12011_019_01771_x crossref_primary_10_1007_s42729_023_01324_1 crossref_primary_10_1016_j_plantsci_2025_112456 crossref_primary_10_1016_j_jhazmat_2022_128763 crossref_primary_10_3390_app12094101 crossref_primary_10_1002_jsfa_9872 crossref_primary_10_1016_j_fochx_2025_102165 crossref_primary_10_1016_j_plaphy_2023_107798 crossref_primary_10_1016_j_scitotenv_2024_174936 crossref_primary_10_1016_j_jfca_2022_105089 crossref_primary_10_3389_fpls_2023_1198847 crossref_primary_10_1016_j_trac_2018_12_011 crossref_primary_10_1093_mtomcs_mfaa004 crossref_primary_10_1007_s10343_022_00826_9 crossref_primary_10_3390_foods13142261 crossref_primary_10_1016_j_foodchem_2024_139123 crossref_primary_10_1016_j_scitotenv_2022_158673 crossref_primary_10_1186_s12870_023_04227_6 crossref_primary_10_1080_03650340_2020_1718112 crossref_primary_10_1007_s11816_019_00560_1 crossref_primary_10_1021_acs_jafc_4c07945 crossref_primary_10_3389_fpls_2022_987935 crossref_primary_10_1002_jsfa_12534 crossref_primary_10_3389_fpls_2022_848349 crossref_primary_10_1007_s11356_020_07751_2 crossref_primary_10_1093_jxb_erae261 crossref_primary_10_3390_antiox12061265 crossref_primary_10_1111_1750_3841_16784 crossref_primary_10_1007_s10653_021_01126_3 crossref_primary_10_3389_fpls_2020_586421 crossref_primary_10_1016_j_plaphy_2023_107976 crossref_primary_10_3390_plants10122733 crossref_primary_10_1016_j_fbio_2024_105614 crossref_primary_10_1007_s11104_024_06537_6 crossref_primary_10_1002_ange_202317558 crossref_primary_10_1186_s40538_024_00672_z crossref_primary_10_3390_agronomy12061301 crossref_primary_10_3390_app142311349 crossref_primary_10_1007_s11240_022_02250_3 crossref_primary_10_1007_s40097_021_00435_4 crossref_primary_10_1016_j_lwt_2020_110819 crossref_primary_10_1016_j_nanoso_2024_101261 crossref_primary_10_1016_j_scitotenv_2024_175033 crossref_primary_10_1016_j_scienta_2024_113521 crossref_primary_10_1021_acs_jafc_3c07504 crossref_primary_10_1111_1541_4337_12748 crossref_primary_10_3389_fnut_2023_1183487 crossref_primary_10_3390_su15086804 crossref_primary_10_1016_j_envexpbot_2023_105591 crossref_primary_10_1111_pce_15278 crossref_primary_10_1016_j_jhazmat_2023_132953 crossref_primary_10_3390_plants11243432 crossref_primary_10_1071_FP21031 crossref_primary_10_1016_j_envpol_2020_115935 crossref_primary_10_1016_j_plana_2025_100144 crossref_primary_10_1021_acs_jafc_0c05594 crossref_primary_10_1016_j_scitotenv_2021_145832 crossref_primary_10_1016_j_jhazmat_2023_131272 crossref_primary_10_3390_ijms26052178 crossref_primary_10_1007_s12011_022_03541_8 crossref_primary_10_3390_agronomy12102492 crossref_primary_10_1007_s11104_020_04635_9 crossref_primary_10_3390_molecules28031398 crossref_primary_10_2131_jts_49_555 crossref_primary_10_3390_plants8110458 crossref_primary_10_1002_anie_202317558 crossref_primary_10_1021_acs_jafc_0c03044 crossref_primary_10_1007_s11104_023_06318_7 crossref_primary_10_1002_fes3_342 crossref_primary_10_1051_bioconf_202412201014 crossref_primary_10_1016_j_foodres_2023_112880 crossref_primary_10_3390_plants12010044 crossref_primary_10_3389_fnut_2023_1263853 crossref_primary_10_3390_foods12173203 crossref_primary_10_1007_s11033_019_04630_z crossref_primary_10_1002_agj2_20802 crossref_primary_10_1016_j_envpol_2021_116503 crossref_primary_10_1080_15226514_2024_2311725 crossref_primary_10_3389_fnut_2022_962312 crossref_primary_10_3389_fpls_2022_881098 crossref_primary_10_3389_fpls_2023_1121605 crossref_primary_10_1016_j_envexpbot_2023_105454 crossref_primary_10_1039_d0mt00216j crossref_primary_10_3390_horticulturae9080935 crossref_primary_10_1016_j_scitotenv_2019_02_451 crossref_primary_10_1016_j_plaphy_2024_108416 crossref_primary_10_3390_agronomy11071305 crossref_primary_10_1080_10408398_2020_1758027 crossref_primary_10_1134_S263516762202015X crossref_primary_10_1016_j_biortech_2024_131768 crossref_primary_10_1016_j_ecoenv_2023_114742 crossref_primary_10_3390_antiox10071031 crossref_primary_10_1016_j_ecoenv_2023_115832 crossref_primary_10_1021_acs_jafc_3c08116 crossref_primary_10_1016_j_jplph_2024_154237 crossref_primary_10_3389_fpls_2022_1000430 crossref_primary_10_1016_j_sajb_2024_05_010 crossref_primary_10_2903_j_efsa_2023_7704 crossref_primary_10_3390_agronomy14071513 crossref_primary_10_3389_fpls_2024_1387460 crossref_primary_10_3390_nu14173530 crossref_primary_10_3390_app10155368 crossref_primary_10_3390_agriculture13020416 crossref_primary_10_1007_s10725_022_00901_1 crossref_primary_10_1007_s00425_022_04017_8 crossref_primary_10_3390_ani12020140 crossref_primary_10_1007_s11356_021_18247_y crossref_primary_10_1007_s40828_021_00137_y crossref_primary_10_1016_j_scienta_2022_111154 crossref_primary_10_1039_d0mt00040j crossref_primary_10_1093_mtomcs_mfac032 crossref_primary_10_32615_ps_2021_032 crossref_primary_10_1007_s11356_021_18125_7 crossref_primary_10_1021_acsagscitech_2c00236 crossref_primary_10_1016_j_ecoenv_2023_115450 crossref_primary_10_1016_j_scienta_2024_113469 crossref_primary_10_3389_fpls_2022_988627 crossref_primary_10_1016_j_ecoenv_2019_110147 crossref_primary_10_1007_s11240_022_02253_0 crossref_primary_10_1016_j_jfca_2023_105652 crossref_primary_10_3390_ijms24032633 crossref_primary_10_1016_j_cclet_2022_107878 crossref_primary_10_1016_j_jfca_2020_103615 crossref_primary_10_1007_s10343_023_00840_5 crossref_primary_10_3390_molecules27227826 crossref_primary_10_1021_acs_est_9b06486 crossref_primary_10_1007_s13762_023_05169_0 crossref_primary_10_1007_s11104_023_06365_0 crossref_primary_10_1590_1807_1929_agriambi_v28n4e279061 crossref_primary_10_1017_S0014479723000261 crossref_primary_10_3390_horticulturae8111037 crossref_primary_10_3390_plants13233435 crossref_primary_10_3390_ijerph19063542 crossref_primary_10_1021_acs_jafc_3c00273 crossref_primary_10_3390_antiox9040272 crossref_primary_10_1134_S1021443724606323 crossref_primary_10_3390_agronomy11051015 crossref_primary_10_1080_10408398_2020_1780193 crossref_primary_10_1016_j_jenvman_2021_113081 crossref_primary_10_1016_j_jtemb_2021_126781 crossref_primary_10_1007_s00425_022_04027_6 crossref_primary_10_3390_plants13131816 crossref_primary_10_1007_s00425_025_04651_y crossref_primary_10_1016_j_ecoenv_2020_110916 crossref_primary_10_1093_jxb_erac021 crossref_primary_10_3390_agronomy13030652 crossref_primary_10_1016_j_ecoenv_2020_111216 crossref_primary_10_1016_j_stress_2023_100329 crossref_primary_10_3390_plants10102086 crossref_primary_10_1007_s10725_023_01107_9 crossref_primary_10_1016_j_scienta_2022_111816 crossref_primary_10_1016_j_fm_2023_104454 |
Cites_doi | 10.1021/jf505963c 10.1111/ppl.12619 10.3390/molecules22040558 10.1007/s10535-016-0698-z 10.1016/j.abb.2014.07.018 10.1093/jxb/eru012 10.1039/C6MT00128A 10.1016/j.geoderma.2017.02.019 10.1016/j.envexpbot.2017.02.011 10.3732/ajb.1400223 10.1007/s12161-013-9728-z 10.1016/j.foodchem.2015.05.098 10.1093/aob/mct163 10.1016/j.foodchem.2017.04.144 10.1021/acschembio.6b00031 10.1016/S0065-2113(02)79003-2 10.1111/j.1469-8137.2011.03670.x 10.1146/annurev-arplant-042110-103921 10.1071/FP05090 10.3389/fpls.2015.00002 10.1016/j.sab.2017.02.004 10.1016/j.envexpbot.2016.01.006 10.1016/j.plaphy.2014.12.006 10.1021/es203871j 10.1007/s11105-015-0960-0 10.3389/fpls.2014.00805 10.1104/pp.106.091462 10.3389/fpls.2017.01365 10.1038/sj.embor.7400036 10.3389/fpls.2016.01371 10.1039/b707348h 10.1104/pp.16.01784 10.3390/nu7064199 10.1104/pp.111.183897 10.3923/jps.2010.354.375 10.3389/fpls.2014.00442 10.1093/aob/mcq085 10.1016/j.pbi.2011.12.002 10.1111/j.1469-8137.2011.03832.x 10.1039/c2mt20085f 10.1104/pp.105.068684 10.1111/j.1469-185X.1982.tb00364.x 10.1007/s00425-013-1996-8 10.1111/j.1469-8137.2008.02738.x 10.1111/j.1469-8137.2007.02343.x 10.1104/pp.106.081158 10.1016/j.chemosphere.2017.03.046 10.1111/j.1469-8137.2007.02078.x 10.1080/15592324.2016.1241935 10.1111/j.1365-3040.2010.02235.x 10.1111/j.1469-8137.2008.02604.x 10.1089/ars.2010.3275 10.1016/j.plantsci.2007.10.004 10.1016/j.jaridenv.2016.10.006 10.1007/s11104-009-0230-8 10.1016/j.envexpbot.2011.12.011 10.1111/nph.13164 10.1104/pp.110.156570 10.1016/j.foodchem.2010.12.079 10.1016/j.foodchem.2007.07.036 10.1039/B205802M 10.1111/nph.12596 10.15835/nsb729491 10.1016/j.envexpbot.2012.09.002 10.1104/pp.001693 10.1111/j.1365-313X.2009.03855.x 10.1007/s00425-013-1983-0 10.1104/pp.110.153759 10.1007/s00217-006-0409-7 10.3390/molecules22060933 10.1111/nph.14378 10.1007/s10653-016-9857-6 10.1007/s11120-005-5222-9 10.1111/j.1399-3054.2007.01002.x 10.1111/nph.14838 10.1105/tpc.104.023960 10.1104/pp.014787 10.1007/s10653-005-8625-9 10.1104/pp.104.056549 10.1046/j.0960-7412.2001.01232.x 10.1021/jf051221x 10.3389/fpls.2014.00750 10.1093/jxb/eru315 10.3389/fpls.2015.01053 10.1104/pp.014712 10.1016/j.plaphy.2016.05.004 10.1016/j.chroma.2003.11.039 10.1111/j.1438-8677.2011.00535.x 10.1111/tpj.12059 10.1093/aob/mcm084 10.3390/molecules18055221 10.1021/jf034835f 10.1016/j.phytochem.2011.11.021 10.1104/pp.108.118612 10.1271/bbb.68.193 10.1104/pp.110.157867 10.1021/jf3037227 10.1111/ppl.12465 10.1046/j.1469-8137.2001.00004.x 10.1111/nph.13071 10.1104/pp.104.045625 10.1039/c3mt00113j 10.1007/s11104-012-1287-3 10.1089/jmf.2005.8.204 10.1093/jxb/erv254 10.1093/jxb/erv063 10.2134/jeq1999.00472425002800030035x 10.1111/j.1365-3040.2011.02400.x 10.3732/ajb.1400041 10.1111/pbi.12897 10.1016/j.copbio.2009.02.001 10.1016/j.jplph.2015.04.003 10.1371/journal.pcbi.1005383 10.1007/978-3-319-95390-8_2 10.2134/jeq1992.00472425002100030006x 10.1016/j.phytochem.2012.02.005 10.1093/jxb/erh192 10.1046/j.1365-313x.2000.00768.x 10.1007/s00425-003-1070-z 10.1016/j.pbi.2009.04.009 10.1111/j.1365-313X.2005.02413.x 10.3389/fpls.2016.02074 10.1093/nar/gks935 10.1104/pp.119.1.123 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2018.05.006 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Ecology |
EISSN | 1872-8006 |
EndPage | 2342 |
ExternalDocumentID | 29751098 10_1016_j_bbagen_2018_05_006 S0304416518301387 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-a842604798f0dd6a9172a16c1981e3df65346a300d9145489a766583e87f75fc3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 11:56:04 EDT 2025 Fri Jul 11 01:38:32 EDT 2025 Wed Feb 19 02:40:52 EST 2025 Thu Apr 24 23:06:36 EDT 2025 Thu Jul 10 08:29:32 EDT 2025 Fri Feb 23 02:45:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Evolution Ecology Selenium Metabolism Nitrogen Sulfur |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-a842604798f0dd6a9172a16c1981e3df65346a300d9145489a766583e87f75fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 29751098 |
PQID | 2038275996 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2131872123 proquest_miscellaneous_2038275996 pubmed_primary_29751098 crossref_primary_10_1016_j_bbagen_2018_05_006 crossref_citationtrail_10_1016_j_bbagen_2018_05_006 elsevier_sciencedirect_doi_10_1016_j_bbagen_2018_05_006 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bielecka, Watanabe, Morcuende, Scheible, Hawkesford, Hesse, Hoefgen (bb0610) 2015; 5 König, Muthuramalingam, Dietz (bb0040) 2012 Malcheska, Ahmad, Batool, Müller, Ludwig-Müller, Kreuzwieser, Randewig, Hänsch, Mendel, Hell, Wirtz, Geiger, Ache, Hedrich, Herschbach, Rennenberg (bb0355) 2017; 174 Freeman, Zhang, Marcus, Fakra, McGrath, Pilon-Smits (bb0490) 2006; 142 Kolbert, Lehotai, Molnár, Feigl (bb0100) 2016; 11 Wang, Cappa, Harris, Edger, Zhou, Pires, Adair, Unruh, Simmons, Schiavon, Pilon-Smits (bb0305) 2018 Schiavon, Lima, Jiang, Hawkesford (bb0625) 2017 Zhao, Mitani, Yamaji, Shen, Ma (bb0320) 2010; 153 Cao, Wang, Wirtz, Hell, Oliver, Xiang (bb0425) 2013; 73 Matich, McKenzie, Lill, McGhie, Chen, Rowan (bb0505) 2015; 63 Agalou, Roussis, Spaink (bb0635) 2005; 32 Barberon, Berthomieu, Clairotte, Shibagaki, Davidian, Gosti (bb0275) 2008; 180 Stroud, Li, Lopez-Bellido, Broadley, Foot, Fairweather-Tait, Hart, Hurst, Knott, Mowat, Norman, Scott, Tucker, White, McGrath, Zhao (bb0560) 2010; 332 Lee, Finley, Harnly (bb0575) 2005; 53 Van Hoewyk, Takahashi, Hess, Tamaoki, Pilon-Smits (bb0370) 2008; 132 Yoshimoto, Inoue, Saito, Yamaya, Takahashi (bb0410) 2003; 131 White, Pongrac (bb0545) 2017 Rouached, Wirtz, Alary, Hell, Arpat, Davidian, Fourcroy, Berthomieu (bb0280) 2008; 147 Van Hoewyk, Garifullina, Ackley, Abdel-Ghany, Marcus, Fakra, Ishiyama, Inoue, Pilon, Takahashi, Pilon-Smits (bb0365) 2005; 139 Birringer, Pilawa, Flohé (bb0485) 2002; 19 Tian, Xu, Liu, Xie, Pan (bb0585) 2016; 190 Matich, McKenzie, Lill, Brummell, McGhie, Chen, Rowan (bb0500) 2012; 75 Huang, Lin, Wu, Yan, Liu, Zhang, Xiao (bb0600) 2016; 34 Yuan, Zhu, Lin, Banuelos, Li, Yin (bb0650) 2013; 8 Schiavon, Pilon-Smits (bb0070) 2017; 213 Pilon-Smits, Quinn, Tapken, Malagoli, Schiavon (bb0050) 2009; 12 Watanabe, Broadley, Jansen, White, Takada, Satake, Takamatsu, Tuah, Osaki (bb0755) 2007; 174 Drahoňovský, Száková, Mestek, Tremlová, Kaňna, Najmanová, Tlustoš (bb0325) 2016; 125 White, Broadley, Bowen, Johnson (bb0195) 2007 Van Hoewyk, Çakir (bb0450) 2017 Pilon-Smits, Hwang, Lytle, Zhu, Tai, Bravo, Chen, Leustek, Terry (bb0440) 1999; 119 Wiesner-Reinhold, Schreiner, Baldermann, Schwarz, Hanschen, Kipp, Rowan, Bentley-Hewitt, McKenzie (bb0520) 2017; 8 Aureli, Ouerdane, Bierla, Szpunar, Prakash, Cubadda (bb0525) 2012; 4 Sors, Martin, Salt (bb0645) 2009; 59 Ogra, Kitaguchi, Ishiwata, Suzuki, Iwashita, Suzuki (bb0655) 2007; 22 Lyi, Heller, Rutzke, Welch, Kochian, Li (bb0695) 2005; 138 Schiavon, Pilon, Malagoli, Pilon-Smits (bb0295) 2015; 6 Corruzzi, Last (bb0630) 2000 Sors, Ellis, Salt (bb0250) 2005; 86 Rennenberg, Herschbach (bb0535) 2014; 65 Van Hoewyk, Pilon, Pilon-Smits (bb0640) 2008; 174 Terry, Carlson, Raab, Zayed (bb0665) 1992; 21 El Mehdawi, Pilon-Smits (bb0055) 2012; 14 Sepúlveda, Barrientos, Mahn, Moenne (bb0595) 2013; 18 Dhillon, Dhillon (bb0115) 2003; 79 Reeves, Baker (bb0180) 2000 Robbins, Keck, Banuelos, Finley (bb0590) 2005; 8 Smrkolj, Osvald, Osvald, Stibilj (bb0470) 2007; 225 Ogra, Ogihara, Anan (bb0660) 2017; 9 Agerbirk, Olsen (bb0515) 2012; 77 Barickman, Kopsell, Sams (bb0565) 2013; 61 Zhang, Lee, Park, Zaman, Avice, Ourry, Kim (bb0615) 2015; 87 Castellano, Novoselov, Kryukov, Lescure, Blanco, Krol, Gladyshev, Guigó (bb0005) 2004; 5 Fisher, Yarmolinsky, Abdel-Ghany, Pilon, Pilon-Smits, Sagi, Van Hoewyk (bb0455) 2016; 106 White, Broadley (bb0225) 2009; 182 Freeman, Tamaoki, Stushnoff, Quinn, Cappa, Devonshire, Fakra, Marcus, McGrath, Van Hoewyk, Pilon-Smits (bb0285) 2010; 153 Feng, Wei, Tud (bb0060) 2013; 87 Ruszczynska, Konopka, Kurek, Elguera, Bulska (bb0710) 2017; 130 Carey, Scheckel, Lombi, Newville, Choi, Norton, Price, Meharg (bb0405) 2012; 46 Wawrzynska, Moniuszko, Sirko (bb0555) 2015; 6 van der Ent, Baker, Reeves, Pollard, Schat (bb0185) 2013; 362 de Souza, Pilon-Smits, Terry (bb0675) 2000 Rosenfeld, Beath (bb0165) 1964 Hart, Fairweather-Tait, Broadley, Dickinson, Foot, Knott, McGrath, Mowat, Norman, Scott, Stroud, Tucker, White, Zhao, Hurst (bb0475) 2011; 126 Van Huysen, Abdel-Ghany, Hale, LeDuc, Terry, Pilon-Smits (bb0690) 2003; 218 Gigolashvili, Kopriva (bb0260) 2014; 5 Sugihara, Kondo, Chihara, Yuji, Hattori, Yoshida (bb0705) 2004; 68 Cappa, Cappa, El Mehdawi, McAleer, Simmons, Pilon-Smits (bb0215) 2014; 101 Sors, Ellis, Na, Lahner, Lee, Leustek, Pickering, Salt (bb0715) 2005; 42 Fordyce (bb0030) 2013 Hawkesford, Horst, Kichey, Lambers, Schjoerring, Skrumsager Møller, White (bb0530) 2012 Van Hoewyk (bb0085) 2013; 112 Reich, Hondal (bb0025) 2016; 11 El Kassis, Cathala, Rouached, Fourcroy, Berthomieu, Terry, Davidian (bb0270) 2007; 143 Tegeder (bb0415) 2014; 65 Harris, Schneberg, Pilon-Smits (bb0570) 2014; 239 Byers, Miller, Williams, Lakin (bb0140) 1938 Wang, Menzies, Lombi, McKenna, James, Tang, Kopittke (bb0335) 2015; 66 Mahn (bb0605) 2017; 233 Rahikainen, Alegre, Trotta, Pascual, Kangasjärvi (bb0550) 2018; 162 Kataoka, Hayashi, Yamaya, Takahashi (bb0345) 2004; 136 Pilbeam, Greathead, Drihem (bb0120) 2015 Sieprawska, Kornaś, Filek (bb0735) 2015; 57 Fairweather-Tait, Bao, Broadley, Collings, Ford, Hesketh, Hurst (bb0465) 2011; 14 Tagmount, Berken, Terry (bb0680) 2002; 130 Hsu, Wirtz, Heppel, Bogs, Krämer, Khan, Bub, Hell, Rausch (bb0375) 2011; 34 Huang, Wang, Wan, Yu, Jiang, Li (bb0340) 2017; 61 Zhang, Hu, Li, Che, Deng, Li, Yu, Ling, Li, Chu (bb0310) 2014; 201 Williams, Lakin, Byers (bb0150) 1941 Duncan, Maher, Jagtap, Krikowa, Roper, O'Sullivan (bb0435) 2017; 39 El Mehdawi, Quinn, Pilon-Smits (bb0760) 2011; 191 Li, McGrath, Zhao (bb0330) 2008; 178 Bohrer, Yoshimoto, Sekiguchi, Rykulski, Saito, Takahashi (bb0430) 2015; 5 Shibagaki, Rose, McDermott, Fujiwara, Hayashi, Yoneyama, Davies (bb0265) 2002; 29 Takahashi, Watanabe-Takahashi, Smith, Blake-Kalff, Hawkesford, Saito (bb0360) 2000; 23 Pivato, Fabrega-Prats, Masi (bb0495) 2014; 560 Zhao, Sun, Zhang, Zhang, Yin (bb0700) 2015; 7 Lakin, Byers (bb0155) 1941 Pilon-Smits, LeDuc (bb0420) 2009; 20 Shinmachi, Buchner, Stroud, Parmar, Zhao, McGrath, Hawkesford (bb0255) 2010; 153 Mostofa, Hossain, Siddiqui, Fujita, Tran (bb0580) 2017; 178 Santesmasses, Mariotti, Guigó (bb0015) 2017; 13 El Mehdawi, Paschke, Pilon-Smits (bb0230) 2015; 206 Dimkovikj, Fisher, Hutchison, Van Hoewyk (bb0090) 2015; 181 Lakin, Byers (bb0160) 1948 Gupta, Gupta (bb0740) 2017; 7 Noctor, Mhamdi, Chaouch, Han, Neukermans, Marquez-Garcia, Queval, Foyer (bb0045) 2012; 35 Brown, Shrift (bb0075) 1982; 57 Takahashi, Kopriva, Giordano, Saito, Hell (bb0350) 2011; 62 Cappa, Pilon-Smits (bb0105) 2014; 239 Grant, Montes-Bayón, LeDuc, Fricke, Terry, Caruso (bb0685) 2004; 1026 Schomburg, Arnér (bb0020) 2017 Byers (bb0125) 1935 Quinn, Prins, Freeman, Gross, Hantzis, Reynolds, Yang, Covey, Bañuelos, Pickering, Pilon-Smits (bb0210) 2011; 192 Boldrin, de Figueiredo, Yang, Luo, Giri, Hart, Faquin, Guilherme, Thannhauser, Li (bb0400) 2016; 158 Shao, Mi, Ouerdane, Lobinski, García-Reyes, Molina-Díaz, Vass, Dernovics (bb0480) 2014; 7 Alford, Lindblom, Pittarello, Freeman, Fakra, Marcus, Broeckling, Pilon-Smits, Paschke (bb0725) 2014; 101 White, Bowen, Parmaguru, Fritz, Spracklen, Spiby, Meacham, Mead, Harriman, Trueman, Smith, Thomas, Broadley (bb0080) 2004; 55 Feist, Parker (bb0220) 2001; 149 Ouerdane, Aureli, Flis, Bierla, Preud'homme, Cubadda, Szpunara (bb0510) 2013; 5 Pilon-Smits, de Souza, Hong, Amini, Bravo, Payabyab, Terry (bb0670) 1999; 28 White, Bowen, Marshall, Broadley (bb0170) 2007; 100 Moxton, Olson, Searight (bb0235) 1939; Vol. 2 Pickering, Wright, Bubner, Ellis, Persans, Yu, George, Prince, Salt (bb0205) 2003; 131 Hernández, Sobrino-Plata, Montero-Palmero, Carrasco-Gil, Flores-Cáceres, Ortega-Villasante, Escobar (bb0540) 2015; 66 Winkel, Vriens, Jones, Schneider, Pilon-Smits, Bañuelos (bb0200) 2015; 7 Ximénez-Embún, Alonso, Madrid-Albarráan, Cámara (bb0385) 2004; 52 White (bb0110) 2017 Li, Liang, Peng, Cui, Huang, Lin (bb0245) 2017; 295 Williams, Lakin, Byers (bb0145) 1940 Hasanuzzaman, Hossain, Fujita (bb0730) 2010; 5 Song, Shao, Huang, Shen, Wang, Wu, Han, Song, Jia (bb0315) 2017; 137 Mazej, Osvald, Stibilj (bb0390) 2008; 107 White (bb0065) 2016; 117 White (bb0035) 2018 Cognat, Pawlak, Duchêne, Daujat, Gigant, Salinas, Michaud, Gutmann, Giegé, Gobert, Maréchal-Drouard (bb0010) 2013; 41 Cabannes, Buchner, Broadley, Hawkesford (bb0290) 2011; 157 Van Hoewyk (bb0095) 2016 El Mehdawi, Jiang, Guignardi, Esmat, Pilon, Pilon-Smits, Schiavon (bb0300) 2018; 217 González-Morales, Pérez-Labrada, García-Enciso, Leija-Martínez, Medrano-Macías, Dávila-Rangel, Juárez-Maldonado, Rivas-Martínez, Benavides-Mendoza (bb0445) 2017; 22 Moreno Rodriguez, Cala Rivero, Jiménez Ballesta (bb0175) 2005; 27 Puccinelli, Malorgio, Pezzarossa (bb0620) 2017; 22 Cappa, Yetter, Fakra, Cappa, DeTar, Landes, Pilon-Smits, Simmons (bb0750) 2015; 205 Schiavon, Berto, Malagoli, Trentin, Sambo, Dall'Acqua, Pilon-Smits (bb0380) 2016; 7 White, Brown (bb0745) 2010; 105 Statwick, Sher (bb0190) 2017; 137 Mikkelsen, Page, Bingham (bb0240) 1989 Lindblom, Valdez-Barillas, Fakra, Marcus, Wangeline, Pilon-Smits (bb0720) 2013; 88 Byers (bb0135) 1936 Kataoka, Watanabe-Takahashi, Hayashi, Ohnishi, Mimura, Buchner, Hawkesford, Yamaya, Takahashi (bb0395) 2004; 16 Beath, Draize, Eppson, Gilbert, McCreary (bb0130) 1934; 23 Crawford, Kahn, Leustek, Long (bb0460) 2000 White (10.1016/j.bbagen.2018.05.006_bb0110) 2017 White (10.1016/j.bbagen.2018.05.006_bb0035) 2018 Smrkolj (10.1016/j.bbagen.2018.05.006_bb0470) 2007; 225 Grant (10.1016/j.bbagen.2018.05.006_bb0685) 2004; 1026 Van Hoewyk (10.1016/j.bbagen.2018.05.006_bb0370) 2008; 132 van der Ent (10.1016/j.bbagen.2018.05.006_bb0185) 2013; 362 Byers (10.1016/j.bbagen.2018.05.006_bb0140) 1938 Takahashi (10.1016/j.bbagen.2018.05.006_bb0360) 2000; 23 White (10.1016/j.bbagen.2018.05.006_bb0170) 2007; 100 Wang (10.1016/j.bbagen.2018.05.006_bb0335) 2015; 66 Cao (10.1016/j.bbagen.2018.05.006_bb0425) 2013; 73 Tagmount (10.1016/j.bbagen.2018.05.006_bb0680) 2002; 130 Takahashi (10.1016/j.bbagen.2018.05.006_bb0350) 2011; 62 Santesmasses (10.1016/j.bbagen.2018.05.006_bb0015) 2017; 13 Cappa (10.1016/j.bbagen.2018.05.006_bb0105) 2014; 239 Pilon-Smits (10.1016/j.bbagen.2018.05.006_bb0420) 2009; 20 Ruszczynska (10.1016/j.bbagen.2018.05.006_bb0710) 2017; 130 Hasanuzzaman (10.1016/j.bbagen.2018.05.006_bb0730) 2010; 5 Schiavon (10.1016/j.bbagen.2018.05.006_bb0070) 2017; 213 Cognat (10.1016/j.bbagen.2018.05.006_bb0010) 2013; 41 Agerbirk (10.1016/j.bbagen.2018.05.006_bb0515) 2012; 77 Gigolashvili (10.1016/j.bbagen.2018.05.006_bb0260) 2014; 5 Moreno Rodriguez (10.1016/j.bbagen.2018.05.006_bb0175) 2005; 27 Mazej (10.1016/j.bbagen.2018.05.006_bb0390) 2008; 107 Mikkelsen (10.1016/j.bbagen.2018.05.006_bb0240) 1989 Pilon-Smits (10.1016/j.bbagen.2018.05.006_bb0050) 2009; 12 Beath (10.1016/j.bbagen.2018.05.006_bb0130) 1934; 23 Tegeder (10.1016/j.bbagen.2018.05.006_bb0415) 2014; 65 Reeves (10.1016/j.bbagen.2018.05.006_bb0180) 2000 El Kassis (10.1016/j.bbagen.2018.05.006_bb0270) 2007; 143 Shao (10.1016/j.bbagen.2018.05.006_bb0480) 2014; 7 Pilbeam (10.1016/j.bbagen.2018.05.006_bb0120) 2015 Stroud (10.1016/j.bbagen.2018.05.006_bb0560) 2010; 332 Pickering (10.1016/j.bbagen.2018.05.006_bb0205) 2003; 131 Tian (10.1016/j.bbagen.2018.05.006_bb0585) 2016; 190 White (10.1016/j.bbagen.2018.05.006_bb0745) 2010; 105 de Souza (10.1016/j.bbagen.2018.05.006_bb0675) 2000 Barickman (10.1016/j.bbagen.2018.05.006_bb0565) 2013; 61 Agalou (10.1016/j.bbagen.2018.05.006_bb0635) 2005; 32 Sors (10.1016/j.bbagen.2018.05.006_bb0645) 2009; 59 Birringer (10.1016/j.bbagen.2018.05.006_bb0485) 2002; 19 El Mehdawi (10.1016/j.bbagen.2018.05.006_bb0760) 2011; 191 Ogra (10.1016/j.bbagen.2018.05.006_bb0660) 2017; 9 Mahn (10.1016/j.bbagen.2018.05.006_bb0605) 2017; 233 Huang (10.1016/j.bbagen.2018.05.006_bb0340) 2017; 61 Ximénez-Embún (10.1016/j.bbagen.2018.05.006_bb0385) 2004; 52 Hawkesford (10.1016/j.bbagen.2018.05.006_bb0530) 2012 Feist (10.1016/j.bbagen.2018.05.006_bb0220) 2001; 149 Noctor (10.1016/j.bbagen.2018.05.006_bb0045) 2012; 35 Shinmachi (10.1016/j.bbagen.2018.05.006_bb0255) 2010; 153 Reich (10.1016/j.bbagen.2018.05.006_bb0025) 2016; 11 Dimkovikj (10.1016/j.bbagen.2018.05.006_bb0090) 2015; 181 Van Hoewyk (10.1016/j.bbagen.2018.05.006_bb0095) 2016 Bohrer (10.1016/j.bbagen.2018.05.006_bb0430) 2015; 5 Fisher (10.1016/j.bbagen.2018.05.006_bb0455) 2016; 106 Lakin (10.1016/j.bbagen.2018.05.006_bb0160) 1948 Gupta (10.1016/j.bbagen.2018.05.006_bb0740) 2017; 7 Lakin (10.1016/j.bbagen.2018.05.006_bb0155) 1941 Alford (10.1016/j.bbagen.2018.05.006_bb0725) 2014; 101 Zhang (10.1016/j.bbagen.2018.05.006_bb0615) 2015; 87 Williams (10.1016/j.bbagen.2018.05.006_bb0145) 1940 White (10.1016/j.bbagen.2018.05.006_bb0195) 2007 Statwick (10.1016/j.bbagen.2018.05.006_bb0190) 2017; 137 Williams (10.1016/j.bbagen.2018.05.006_bb0150) 1941 Kataoka (10.1016/j.bbagen.2018.05.006_bb0345) 2004; 136 Barberon (10.1016/j.bbagen.2018.05.006_bb0275) 2008; 180 White (10.1016/j.bbagen.2018.05.006_bb0225) 2009; 182 Sors (10.1016/j.bbagen.2018.05.006_bb0250) 2005; 86 Pivato (10.1016/j.bbagen.2018.05.006_bb0495) 2014; 560 Wang (10.1016/j.bbagen.2018.05.006_bb0305) 2018 Li (10.1016/j.bbagen.2018.05.006_bb0330) 2008; 178 Freeman (10.1016/j.bbagen.2018.05.006_bb0490) 2006; 142 Aureli (10.1016/j.bbagen.2018.05.006_bb0525) 2012; 4 El Mehdawi (10.1016/j.bbagen.2018.05.006_bb0300) 2018; 217 Hernández (10.1016/j.bbagen.2018.05.006_bb0540) 2015; 66 Zhao (10.1016/j.bbagen.2018.05.006_bb0700) 2015; 7 Lindblom (10.1016/j.bbagen.2018.05.006_bb0720) 2013; 88 Cappa (10.1016/j.bbagen.2018.05.006_bb0215) 2014; 101 Quinn (10.1016/j.bbagen.2018.05.006_bb0210) 2011; 192 Cappa (10.1016/j.bbagen.2018.05.006_bb0750) 2015; 205 Hart (10.1016/j.bbagen.2018.05.006_bb0475) 2011; 126 Winkel (10.1016/j.bbagen.2018.05.006_bb0200) 2015; 7 Ouerdane (10.1016/j.bbagen.2018.05.006_bb0510) 2013; 5 Carey (10.1016/j.bbagen.2018.05.006_bb0405) 2012; 46 Corruzzi (10.1016/j.bbagen.2018.05.006_bb0630) 2000 Freeman (10.1016/j.bbagen.2018.05.006_bb0285) 2010; 153 Puccinelli (10.1016/j.bbagen.2018.05.006_bb0620) 2017; 22 Castellano (10.1016/j.bbagen.2018.05.006_bb0005) 2004; 5 Matich (10.1016/j.bbagen.2018.05.006_bb0505) 2015; 63 Rahikainen (10.1016/j.bbagen.2018.05.006_bb0550) 2018; 162 Lyi (10.1016/j.bbagen.2018.05.006_bb0695) 2005; 138 König (10.1016/j.bbagen.2018.05.006_bb0040) 2012 Wiesner-Reinhold (10.1016/j.bbagen.2018.05.006_bb0520) 2017; 8 Sepúlveda (10.1016/j.bbagen.2018.05.006_bb0595) 2013; 18 Li (10.1016/j.bbagen.2018.05.006_bb0245) 2017; 295 Crawford (10.1016/j.bbagen.2018.05.006_bb0460) 2000 El Mehdawi (10.1016/j.bbagen.2018.05.006_bb0055) 2012; 14 Zhang (10.1016/j.bbagen.2018.05.006_bb0310) 2014; 201 Schiavon (10.1016/j.bbagen.2018.05.006_bb0625) 2017 Pilon-Smits (10.1016/j.bbagen.2018.05.006_bb0670) 1999; 28 Van Hoewyk (10.1016/j.bbagen.2018.05.006_bb0365) 2005; 139 Fordyce (10.1016/j.bbagen.2018.05.006_bb0030) 2013 Song (10.1016/j.bbagen.2018.05.006_bb0315) 2017; 137 Watanabe (10.1016/j.bbagen.2018.05.006_bb0755) 2007; 174 Rennenberg (10.1016/j.bbagen.2018.05.006_bb0535) 2014; 65 Mostofa (10.1016/j.bbagen.2018.05.006_bb0580) 2017; 178 Huang (10.1016/j.bbagen.2018.05.006_bb0600) 2016; 34 Sors (10.1016/j.bbagen.2018.05.006_bb0715) 2005; 42 Van Huysen (10.1016/j.bbagen.2018.05.006_bb0690) 2003; 218 Kataoka (10.1016/j.bbagen.2018.05.006_bb0395) 2004; 16 Terry (10.1016/j.bbagen.2018.05.006_bb0665) 1992; 21 Sugihara (10.1016/j.bbagen.2018.05.006_bb0705) 2004; 68 Harris (10.1016/j.bbagen.2018.05.006_bb0570) 2014; 239 Feng (10.1016/j.bbagen.2018.05.006_bb0060) 2013; 87 Yuan (10.1016/j.bbagen.2018.05.006_bb0650) 2013; 8 Malcheska (10.1016/j.bbagen.2018.05.006_bb0355) 2017; 174 Boldrin (10.1016/j.bbagen.2018.05.006_bb0400) 2016; 158 Ogra (10.1016/j.bbagen.2018.05.006_bb0655) 2007; 22 Duncan (10.1016/j.bbagen.2018.05.006_bb0435) 2017; 39 Van Hoewyk (10.1016/j.bbagen.2018.05.006_bb0640) 2008; 174 Byers (10.1016/j.bbagen.2018.05.006_bb0135) 1936 Van Hoewyk (10.1016/j.bbagen.2018.05.006_bb0085) 2013; 112 Pilon-Smits (10.1016/j.bbagen.2018.05.006_bb0440) 1999; 119 Wawrzynska (10.1016/j.bbagen.2018.05.006_bb0555) 2015; 6 Bielecka (10.1016/j.bbagen.2018.05.006_bb0610) 2015; 5 Lee (10.1016/j.bbagen.2018.05.006_bb0575) 2005; 53 Schiavon (10.1016/j.bbagen.2018.05.006_bb0380) 2016; 7 Rosenfeld (10.1016/j.bbagen.2018.05.006_bb0165) 1964 Drahoňovský (10.1016/j.bbagen.2018.05.006_bb0325) 2016; 125 Schiavon (10.1016/j.bbagen.2018.05.006_bb0295) 2015; 6 El Mehdawi (10.1016/j.bbagen.2018.05.006_bb0230) 2015; 206 Byers (10.1016/j.bbagen.2018.05.006_bb0125) 1935 Robbins (10.1016/j.bbagen.2018.05.006_bb0590) 2005; 8 González-Morales (10.1016/j.bbagen.2018.05.006_bb0445) 2017; 22 Schomburg (10.1016/j.bbagen.2018.05.006_bb0020) 2017 Kolbert (10.1016/j.bbagen.2018.05.006_bb0100) 2016; 11 White (10.1016/j.bbagen.2018.05.006_bb0545) 2017 Rouached (10.1016/j.bbagen.2018.05.006_bb0280) 2008; 147 Cabannes (10.1016/j.bbagen.2018.05.006_bb0290) 2011; 157 Zhao (10.1016/j.bbagen.2018.05.006_bb0320) 2010; 153 Brown (10.1016/j.bbagen.2018.05.006_bb0075) 1982; 57 White (10.1016/j.bbagen.2018.05.006_bb0065) 2016; 117 Van Hoewyk (10.1016/j.bbagen.2018.05.006_bb0450) 2017 Moxton (10.1016/j.bbagen.2018.05.006_bb0235) 1939; Vol. 2 White (10.1016/j.bbagen.2018.05.006_bb0080) 2004; 55 Yoshimoto (10.1016/j.bbagen.2018.05.006_bb0410) 2003; 131 Sieprawska (10.1016/j.bbagen.2018.05.006_bb0735) 2015; 57 Shibagaki (10.1016/j.bbagen.2018.05.006_bb0265) 2002; 29 Hsu (10.1016/j.bbagen.2018.05.006_bb0375) 2011; 34 Dhillon (10.1016/j.bbagen.2018.05.006_bb0115) 2003; 79 Fairweather-Tait (10.1016/j.bbagen.2018.05.006_bb0465) 2011; 14 Matich (10.1016/j.bbagen.2018.05.006_bb0500) 2012; 75 |
References_xml | – volume: 174 start-page: 798 year: 2017 end-page: 814 ident: bb0355 article-title: Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis publication-title: Plant Physiol. – volume: 9 start-page: 61 year: 2017 end-page: 68 ident: bb0660 article-title: Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard publication-title: Metallomics – volume: 66 start-page: 2901 year: 2015 end-page: 2911 ident: bb0540 article-title: Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress publication-title: J. Exp. Bot. – volume: 63 start-page: 1896 year: 2015 end-page: 1905 ident: bb0505 article-title: Distribution of selenoglucosinolates and their metabolites in publication-title: J. Agric. Food Chem. – volume: 142 start-page: 124 year: 2006 end-page: 134 ident: bb0490 article-title: Spatial imaging, speciation and quantification of se in the hyperaccumulator plants publication-title: Plant Physiol. – year: 2018 ident: bb0035 article-title: Selenium in soil and crops publication-title: Molecular and Integrative Toxicology: Selenium – volume: 22 start-page: 1390 year: 2007 end-page: 1396 ident: bb0655 article-title: Identification of selenohomolanthionine in selenium-enriched Japanese pungent radish publication-title: J. Anal. At. Spectrom. – volume: 137 start-page: 158 year: 2017 end-page: 165 ident: bb0315 article-title: Overexpression of the phosphate transporter gene OsPT8 improves the Pi and selenium contents in publication-title: Environ. Exp. Bot. – volume: 147 start-page: 897 year: 2008 end-page: 911 ident: bb0280 article-title: Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis publication-title: Plant Physiol. – volume: 201 start-page: 1183 year: 2014 end-page: 1191 ident: bb0310 article-title: OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice publication-title: New Phytol. – volume: 57 start-page: 59 year: 1982 end-page: 84 ident: bb0075 article-title: Selenium: toxicity and tolerance in higher plants publication-title: Biol. Rev. – volume: 126 start-page: 1771 year: 2011 end-page: 1778 ident: bb0475 article-title: Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of se-enriched food publication-title: Food Chem. – volume: 560 start-page: 83 year: 2014 end-page: 99 ident: bb0495 article-title: Low-molecular-weight thiols in plants: functional and analytical implications publication-title: Arch. Biochem. Biophys. – year: 1935 ident: bb0125 article-title: United States Department of Agriculture Technical Bulletin 482: Selenium Occurrence in Certain Soils in the United States with a Discussion of Related Topics – volume: 28 start-page: 1011 year: 1999 end-page: 1018 ident: bb0670 article-title: Selenium volatilization and accumulation by twenty aquatic plant species publication-title: J. Environ. Qual. – volume: 5 start-page: 1294 year: 2013 end-page: 1304 ident: bb0510 article-title: Comprehensive speciation of low-molecular weight selenium metabolites in mustard seeds using HPLC-electrospray linear trap/orbitrap tandem mass spectrometry publication-title: Metallomics – volume: 139 start-page: 1518 year: 2005 end-page: 1528 ident: bb0365 article-title: Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis publication-title: Plant Physiol. – volume: 23 start-page: 94 year: 1934 end-page: 97 ident: bb0130 article-title: Certain poisonous plants of Wyoming activated by selenium and their association with respect to soil types publication-title: J. Pharm. Sci. – volume: 79 start-page: 119 year: 2003 end-page: 184 ident: bb0115 article-title: Distribution and management of seleniferous soils publication-title: Adv. Agron. – volume: 174 start-page: 516 year: 2007 end-page: 523 ident: bb0755 article-title: Evolutionary control of leaf element composition in plants publication-title: New Phytol. – volume: 153 start-page: 1871 year: 2010 end-page: 1877 ident: bb0320 article-title: Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice publication-title: Plant Physiol. – volume: 34 start-page: 807 year: 2016 end-page: 814 ident: bb0600 article-title: Changes in sulforaphane and selenocysteine methyltransferase transcript levels in broccoli treated with sodium selenite publication-title: Plant Mol. Rep. – start-page: 375 year: 2013 end-page: 416 ident: bb0030 article-title: Essentials of medical geology: revised edition publication-title: Selenium deficiency and toxicity in the environment – volume: 100 start-page: 111 year: 2007 end-page: 118 ident: bb0170 article-title: Extraordinarily high leaf selenium to sulphur ratios define ‘Se-accumulator’ plants publication-title: Ann. Bot. – volume: 61 start-page: 202 year: 2013 end-page: 209 ident: bb0565 article-title: Selenium influences glucosinolate and isothiocyanates and increases sulphur uptake in publication-title: J. Agric. Food Chem. – volume: 66 start-page: 4795 year: 2015 end-page: 4806 ident: bb0335 article-title: Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice publication-title: J. Exp. Bot. – year: 1938 ident: bb0140 article-title: United States Department of Agriculture Technical Bulletin 601: Selenium Occurrence in Certain Soils in the United States with a Discussion of Related Topics, Third Report – volume: 88 start-page: 33 year: 2013 end-page: 42 ident: bb0720 article-title: Influence of microbial associations on selenium localization and speciation in roots of publication-title: Environ. Exp. Bot. – volume: 181 start-page: 50 year: 2015 end-page: 54 ident: bb0090 article-title: Stuck between a ROS and a hard place: analysis of the ubiquitin proteasome pathway in selenocysteine treated publication-title: J. Plant Physiol. – start-page: 143 year: 2017 end-page: 163 ident: bb0110 article-title: The genetics of selenium accumulation in plants publication-title: Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects – year: 1941 ident: bb0150 article-title: United States Department of Agriculture Technical Bulletin 758: Selenium Occurrence in Certain Soils in the United States with a Discussion of Related Topics, Fifth Report – year: 1940 ident: bb0145 article-title: United States Department of Agriculture Technical Bulletin 702: Selenium Occurrence in Certain Soils in the United States with a Discussion of Related Topics, Fourth Report – volume: 87 start-page: 1 year: 2015 end-page: 8 ident: bb0615 article-title: Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived publication-title: Plant Physiol. Biochem. – year: 1936 ident: bb0135 article-title: United States Department of Agriculture Technical Bulletin 530: Selenium Occurrence in Certain Soils in the United States with a Discussion of Related Topics, Second Report – year: 1941 ident: bb0155 article-title: United States Department of Agriculture Technical Bulletin 783: Selenium Occurrence in Certain Soils in the United States with a Discussion of Related Topics, Sixth Report – year: 2018 ident: bb0305 article-title: Transcriptome-wide comparison of selenium hyperaccumulator and non-accumulator publication-title: Plant Biotechnol. J. – volume: 5 year: 2015 ident: bb0610 article-title: Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis publication-title: Front. Plant Sci. – year: 1948 ident: bb0160 article-title: United States Department of Agriculture Technical Bulletin 950: Selenium Occurrence in Certain Soils in the United States with a Discussion of Related Topics – volume: 130 start-page: 7 year: 2017 end-page: 16 ident: bb0710 article-title: Investigation of biotransformation of selenium in plants using spectrometric methods publication-title: Spectrochim. Acta B – volume: 22 year: 2017 ident: bb0445 article-title: Selenium and sulfur to produce publication-title: Molecules – volume: 157 start-page: 2227 year: 2011 end-page: 2239 ident: bb0290 article-title: A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in publication-title: Plant Physiol. – volume: 35 start-page: 454 year: 2012 end-page: 484 ident: bb0045 article-title: Glutathione in plants: an integrated overview publication-title: Plant Cell Environ. – volume: 1026 start-page: 159 year: 2004 end-page: 166 ident: bb0685 article-title: Identification and characterization of Se-methyl selenomethionine in publication-title: J. Chromatogr. A – volume: 7 start-page: 210 year: 2015 end-page: 216 ident: bb0700 article-title: Systematic comparisons of orthologous selenocysteine methyltransferase and homocysteine methyltransferase genes from seven monocots species publication-title: Not. Sci. Biol. – start-page: 171 year: 2000 end-page: 190 ident: bb0675 article-title: The physiology and biochemistry of selenium volatilization by plants publication-title: Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment – volume: 153 start-page: 1630 year: 2010 end-page: 1652 ident: bb0285 article-title: Molecular mechanisms of selenium tolerance and hyperaccumulation in publication-title: Plant Physiol. – volume: 332 start-page: 31 year: 2010 end-page: 40 ident: bb0560 article-title: Impact of sulphur fertilisation on crop response to selenium fertilisation publication-title: Plant Soil – volume: 182 start-page: 49 year: 2009 end-page: 84 ident: bb0225 article-title: Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine publication-title: New Phytol. – volume: 206 start-page: 231 year: 2015 end-page: 242 ident: bb0230 article-title: populations from seleniferous and nonseleniferous soil display striking variation in selenium accumulation publication-title: New Phytol. – volume: 29 start-page: 475 year: 2002 end-page: 486 ident: bb0265 article-title: Selenate-resistant mutants of publication-title: Plant J. – volume: 6 year: 2015 ident: bb0295 article-title: Exploring the importance of sulphate transporters and ATPsulphurylases for selenium hyperaccumulation – comparison of publication-title: Front. Plant Sci. – volume: 153 start-page: 327 year: 2010 end-page: 336 ident: bb0255 article-title: Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat publication-title: Plant Physiol. – volume: 59 start-page: 110 year: 2009 end-page: 122 ident: bb0645 article-title: Characterization of selenocysteine methyltransferases from publication-title: Plant J. – volume: 130 start-page: 847 year: 2002 end-page: 856 ident: bb0680 article-title: An essential role of S-adenosyl-L-methionine: L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-seleniummethionine, the precursor of volatile selenium publication-title: Plant Physiol. – volume: 233 start-page: 492 year: 2017 end-page: 499 ident: bb0605 article-title: Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads publication-title: Food Chem. – volume: 22 year: 2017 ident: bb0620 article-title: Selenium enrichment of horticultural crops publication-title: Molecules – volume: 42 start-page: 785 year: 2005 end-page: 797 ident: bb0715 article-title: Analysis of sulfur and selenium assimilation in publication-title: Plant J. – volume: 13 year: 2017 ident: bb0015 article-title: Computational identification of the selenocysteine tRNA (tRNASec) in genomes publication-title: PLoS Comput. Biol. – volume: 61 start-page: 726 year: 2017 end-page: 732 ident: bb0340 article-title: Application of X-ray absorption near edge spectroscopy to the study of the effect of sulphur on selenium uptake and assimilation in wheat seedlings publication-title: Biol. Plant. – volume: 190 start-page: 374 year: 2016 end-page: 380 ident: bb0585 article-title: Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars publication-title: Food Chem. – volume: 41 start-page: D273 year: 2013 end-page: D279 ident: bb0010 article-title: PlantRNA, a database for tRNAs of photosynthetic eukaryotes publication-title: Nucleic Acids Res. – volume: 7 year: 2016 ident: bb0380 article-title: Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics, and amino acids publication-title: Front. Plant Sci. – volume: Vol. 2 year: 1939 ident: bb0235 article-title: Selenium in rocks, soils and plants publication-title: South Dakota Agricultural Experimental Station Technical Bulletin – volume: 101 start-page: 830 year: 2014 end-page: 839 ident: bb0215 article-title: Characterization of selenium and sulfur accumulation across the genus publication-title: Am. J. Bot. – volume: 5 year: 2015 ident: bb0430 article-title: Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in publication-title: Front. Plant Sci. – volume: 149 start-page: 61 year: 2001 end-page: 69 ident: bb0220 article-title: Ecotypic variation in selenium accumulation among populations of publication-title: New Phytol. – volume: 27 start-page: 513 year: 2005 end-page: 519 ident: bb0175 article-title: Selenium distribution in topsoils and plants of a semi-arid Mediterranean environment publication-title: Environ. Geochem. Health – volume: 138 start-page: 409 year: 2005 end-page: 420 ident: bb0695 article-title: Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli publication-title: Plant Physiol. – volume: 217 start-page: 194 year: 2018 end-page: 205 ident: bb0300 article-title: Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae publication-title: New Phytol. – volume: 136 start-page: 4198 year: 2004 end-page: 4204 ident: bb0345 article-title: Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature publication-title: Plant Physiol. – volume: 75 start-page: 140 year: 2012 end-page: 152 ident: bb0500 article-title: Selenoglucosinolates and their metabolites produced in publication-title: Phytochemistry – volume: 46 start-page: 5557 year: 2012 end-page: 5564 ident: bb0405 article-title: Grain accumulation of selenium species in rice ( publication-title: Environ. Sci. Technol. – volume: 112 start-page: 965 year: 2013 end-page: 972 ident: bb0085 article-title: A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants publication-title: Ann. Bot. – volume: 14 start-page: 1337 year: 2011 end-page: 1383 ident: bb0465 article-title: Selenium in human health and disease publication-title: Antioxid. Redox Signal. – volume: 19 start-page: 693 year: 2002 end-page: 718 ident: bb0485 article-title: Trends in selenium biochemistry publication-title: Nat. Prod. Rep. – volume: 65 start-page: 5711 year: 2014 end-page: 5724 ident: bb0535 article-title: A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses publication-title: J. Exp. Bot. – volume: 73 start-page: 607 year: 2013 end-page: 616 ident: bb0425 article-title: SULTR3;1 is a chloroplast-localized sulphate transporter in publication-title: Plant J. – volume: 4 start-page: 968 year: 2012 end-page: 978 ident: bb0525 article-title: Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops publication-title: Metallomics – volume: 34 start-page: 192 year: 2011 end-page: 207 ident: bb0375 article-title: Generation of Se-fortified broccoli as functional food: impact of Se fertilization on S metabolism publication-title: Plant Cell Environ. – volume: 5 start-page: 354 year: 2010 end-page: 375 ident: bb0730 article-title: Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance publication-title: J. Plant Sci. – volume: 55 start-page: 1927 year: 2004 end-page: 1937 ident: bb0080 article-title: Interactions between selenium and sulphur nutrition in publication-title: J. Exp. Bot. – volume: 180 start-page: 608 year: 2008 end-page: 619 ident: bb0275 article-title: Unequal functional redundancy between the two publication-title: New Phytol. – volume: 77 start-page: 16 year: 2012 end-page: 45 ident: bb0515 article-title: CE, Glucosinolate structures in evolution publication-title: Phytochemistry – start-page: 135 year: 2012 end-page: 189 ident: bb0530 article-title: Functions of Macronutrients publication-title: Marschner's Mineral Nutrition of Higher Plants – start-page: 301 year: 2017 end-page: 331 ident: bb0545 article-title: Heavy-metal toxicity in plants publication-title: Plant Stress Physiology – volume: 21 start-page: 341 year: 1992 end-page: 344 ident: bb0665 article-title: Rates of selenium volatilization among crop species publication-title: J. Environ. Qual. – volume: 39 start-page: 955 year: 2017 end-page: 966 ident: bb0435 article-title: Selenium speciation in wheat grain varies in the presence of nitrogen and sulphur fertilisers publication-title: Environ. Geochem. Health – volume: 12 start-page: 267 year: 2009 end-page: 274 ident: bb0050 article-title: Physiological functions of beneficial elements publication-title: Curr. Opin. Plant Biol. – volume: 158 start-page: 80 year: 2016 end-page: 91 ident: bb0400 article-title: Selenium promotes sulfur accumulation and plant growth in wheat ( publication-title: Physiol. Plant. – volume: 125 start-page: 12 year: 2016 end-page: 19 ident: bb0325 article-title: Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application publication-title: Environ. Exp. Bot. – volume: 86 start-page: 373 year: 2005 end-page: 389 ident: bb0250 article-title: Selenium uptake, translocation, assimilation and metabolic fate in plants publication-title: Photosynth. Res. – volume: 53 start-page: 9105 year: 2005 end-page: 9111 ident: bb0575 article-title: Effect of selenium fertilizer on free amino acid composition of broccoli ( publication-title: J. Agric. Food Chem. – volume: 20 start-page: 207 year: 2009 end-page: 212 ident: bb0420 article-title: Phytoremediation of selenium using transgenic plants publication-title: Curr. Opin. Biotechnol. – volume: 101 start-page: 1895 year: 2014 end-page: 1905 ident: bb0725 article-title: Roles of rhizobial symbionts in selenium hyperaccumulation in publication-title: Am. J. Bot. – volume: 14 start-page: 1 year: 2012 end-page: 10 ident: bb0055 article-title: Ecological aspects of plant selenium hyperaccumulation publication-title: Plant Biol. – volume: 178 start-page: 92 year: 2008 end-page: 102 ident: bb0330 article-title: Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite publication-title: New Phytol. – volume: 62 start-page: 157 year: 2011 end-page: 184 ident: bb0350 article-title: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes publication-title: Annu. Rev. Plant Biol. – volume: 218 start-page: 71 year: 2003 end-page: 78 ident: bb0690 article-title: Overexpression of cystathionine-γ-synthase enhances selenium volatilisation in publication-title: Planta – volume: 178 start-page: 212 year: 2017 end-page: 223 ident: bb0580 article-title: Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants publication-title: Chemosphere – volume: 205 start-page: 583 year: 2015 end-page: 595 ident: bb0750 article-title: Evolution of selenium hyperaccumulation in publication-title: New Phytol. – volume: 5 start-page: 71 year: 2004 end-page: 77 ident: bb0005 article-title: Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution publication-title: EMBO Rep. – year: 2016 ident: bb0095 article-title: Defects in endoplasmic reticulum-associated degradation (ERAD) increase selenate sensitivity in Arabidopsis publication-title: Plant Signal. Behav. – year: 1964 ident: bb0165 article-title: Selenium: Geobotany, Biochemistry, Toxicity, and Nutrition – start-page: 165 year: 2017 end-page: 176 ident: bb0450 article-title: Manipulating selenium metabolism in plants: A simple twist of metabolic fate can alter selenium tolerance and accumulation publication-title: Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects – volume: 7 start-page: 4199 year: 2015 end-page: 4239 ident: bb0200 article-title: Selenium cycling across soil-plant-atmosphere interfaces: a critical review publication-title: Nutrients – volume: 137 start-page: 1 year: 2017 end-page: 6 ident: bb0190 article-title: Selenium in soils of western Colorado publication-title: J. Arid Environ. – start-page: 275 year: 2017 end-page: 357 ident: bb0625 article-title: Effects of selenium on plant metabolism and implications for crops and consumers publication-title: Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects – volume: 106 start-page: 228 year: 2016 end-page: 235 ident: bb0455 article-title: Superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of chloroplastic ferredoxin publication-title: Plant Physiol. Biochem. – volume: 239 start-page: 267 year: 2014 end-page: 275 ident: bb0105 article-title: Evolutionary aspects of elemental hyperaccumulation publication-title: Planta – volume: 7 year: 2017 ident: bb0740 article-title: An overview of selenium uptake, metabolism, and toxicity in plants publication-title: Front. Plant Sci. – volume: 239 start-page: 479 year: 2014 end-page: 491 ident: bb0570 article-title: Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator publication-title: Planta – volume: 11 year: 2016 ident: bb0100 article-title: “The roots” of selenium toxicity: A new concept publication-title: Plant Signal. Behav. – volume: 8 year: 2017 ident: bb0520 article-title: Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health publication-title: Front. Plant Sci. – volume: 162 start-page: 162 year: 2018 end-page: 176 ident: bb0550 article-title: Trans-methylation reactions in plants: focus on the activated methyl cycle publication-title: Physiol. Plant. – volume: 105 start-page: 1073 year: 2010 end-page: 1080 ident: bb0745 article-title: Plant nutrition for sustainable development and global health publication-title: Ann. Bot. – volume: 87 start-page: 58 year: 2013 end-page: 68 ident: bb0060 article-title: The roles of selenium in protecting plants against abiotic stresses publication-title: Environ. Exp. Bot. – volume: 213 start-page: 1582 year: 2017 end-page: 1596 ident: bb0070 article-title: The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology publication-title: New Phytol. – start-page: 65 year: 1989 end-page: 94 ident: bb0240 article-title: Factors affecting selenium accumulation by agricultural crops publication-title: Selenium in Agriculture and the Environment. Soil Science Society of America & American Society of Agronomy – volume: 32 start-page: 881 year: 2005 end-page: 890 ident: bb0635 article-title: The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium publication-title: Funct. Plant Biol. – volume: 11 start-page: 821 year: 2016 end-page: 841 ident: bb0025 article-title: Why nature chose selenium publication-title: ACS Chem. Biol. – start-page: 193 year: 2000 end-page: 229 ident: bb0180 article-title: Metal-accumulating plants publication-title: Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment – start-page: 359 year: 2000 end-page: 410 ident: bb0630 article-title: Aminoacids publication-title: Biochemistry and Molecular Biology of Plants – start-page: 123 year: 2017 end-page: 139 ident: bb0020 article-title: Selenium metabolism in herbivores and higher trophic levels including mammals publication-title: Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects – volume: 52 start-page: 832 year: 2004 end-page: 838 ident: bb0385 article-title: Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants publication-title: J. Agric. Food Chem. – volume: 225 start-page: 233 year: 2007 end-page: 237 ident: bb0470 article-title: Selenium uptake and species distribution in selenium-enriched bean ( publication-title: Eur. Food Res. Technol. – start-page: 165 year: 2015 end-page: 198 ident: bb0120 article-title: Selenium publication-title: A Handbook of Plant Nutrition – volume: 132 start-page: 236 year: 2008 end-page: 253 ident: bb0370 article-title: Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis publication-title: Physiol. Plant. – volume: 174 start-page: 117 year: 2008 end-page: 123 ident: bb0640 article-title: The functions of NifS-like proteins in plant sulfur and selenium metabolism publication-title: Plant Sci. – volume: 119 start-page: 123 year: 1999 end-page: 132 ident: bb0440 article-title: Overexpression of ATPsulphurylase in publication-title: Plant Physiol. – volume: 8 start-page: 204 year: 2005 end-page: 214 ident: bb0590 article-title: Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli publication-title: J. Med. Food – start-page: 225 year: 2007 end-page: 252 ident: bb0195 article-title: Selenium and its Relationship with Sufur publication-title: Sulfur in Plants - an Ecological Perspective – volume: 107 start-page: 75 year: 2008 end-page: 83 ident: bb0390 article-title: Selenium species in leaves of chicory, dandelion, lamb's lettuce and parsley publication-title: Food Chem. – volume: 68 start-page: 193 year: 2004 end-page: 199 ident: bb0705 article-title: Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry publication-title: Biosci. Biotechnol. Biochem. – volume: 295 start-page: 69 year: 2017 end-page: 79 ident: bb0245 article-title: Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review publication-title: Geoderma – volume: 16 start-page: 2693 year: 2004 end-page: 2704 ident: bb0395 article-title: Vacuolar sulphate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis publication-title: Plant Cell – volume: 131 start-page: 1460 year: 2003 end-page: 1467 ident: bb0205 article-title: Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator publication-title: Plant Physiol. – volume: 131 start-page: 1511 year: 2003 end-page: 1517 ident: bb0410 article-title: Phloem localizing sulfate transporter, Sultr1;3, mediates re-distribution of Sulphur from source to sink organs in Arabidopsis publication-title: Plant Physiol. – volume: 362 start-page: 319 year: 2013 end-page: 334 ident: bb0185 article-title: Hyperaccumulators of metal and metalloid trace elements: facts and fiction publication-title: Plant Soil – start-page: 786 year: 2000 end-page: 849 ident: bb0460 article-title: Nitrogen and Sulphur publication-title: Biochemistry and Molecular Biology of Plants, American Society of Plant Physiologists, Rockville – volume: 57 start-page: 9 year: 2015 end-page: 20 ident: bb0735 article-title: Involvement of selenium in protective mechanisms of plants under environmental stress conditions - review publication-title: Acta Biol. Cracov. Ser. Bot. – volume: 6 year: 2015 ident: bb0555 article-title: Links between ethylene and sulfur nutrition - a regulatory interplay or just metabolite association? publication-title: Front. Plant Sci. – start-page: 261 year: 2012 end-page: 268 ident: bb0040 article-title: Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets publication-title: Curr. Opin. Plant Biol. – volume: 117 start-page: 217 year: 2016 end-page: 235 ident: bb0065 article-title: Selenium accumulation by plants publication-title: Ann. Bot. – volume: 5 year: 2014 ident: bb0260 article-title: Transporters in plant sulphur metabolism publication-title: Front. Plant Sci. – volume: 143 start-page: 1231 year: 2007 end-page: 1241 ident: bb0270 article-title: Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenite toxicity publication-title: Plant Physiol. – volume: 65 start-page: 1865 year: 2014 end-page: 1878 ident: bb0415 article-title: Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement publication-title: J. Exp. Bot. – volume: 18 start-page: 5221 year: 2013 end-page: 5234 ident: bb0595 article-title: Changes in SeMSC, glucosinolates and sulforaphane levels, and in proteome profile in broccoli ( publication-title: Molecules – volume: 7 start-page: 1147 year: 2014 end-page: 1157 ident: bb0480 article-title: Quantification of Se-methylselenocysteine and its γ-glutamyl derivative from naturally Se-enriched green bean ( publication-title: Food Anal. Methods – volume: 8 year: 2013 ident: bb0650 article-title: A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China publication-title: PLoS One – volume: 192 start-page: 727 year: 2011 end-page: 737 ident: bb0210 article-title: Selenium accumulation in flowers and its effects on pollination publication-title: New Phytol. – volume: 191 start-page: 120 year: 2011 end-page: 131 ident: bb0760 article-title: Effects of selenium hyperaccumulation on plant-plant interactions: evidence for elemental allelopathy? publication-title: New Phytol. – volume: 23 start-page: 171 year: 2000 end-page: 182 ident: bb0360 article-title: The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in publication-title: Plant J. – year: 1964 ident: 10.1016/j.bbagen.2018.05.006_bb0165 – volume: 63 start-page: 1896 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0505 article-title: Distribution of selenoglucosinolates and their metabolites in Brassica treated with sodium selenate publication-title: J. Agric. Food Chem. doi: 10.1021/jf505963c – volume: 162 start-page: 162 year: 2018 ident: 10.1016/j.bbagen.2018.05.006_bb0550 article-title: Trans-methylation reactions in plants: focus on the activated methyl cycle publication-title: Physiol. Plant. doi: 10.1111/ppl.12619 – volume: 22 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0445 article-title: Selenium and sulfur to produce Allium functional crops publication-title: Molecules doi: 10.3390/molecules22040558 – volume: 61 start-page: 726 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0340 article-title: Application of X-ray absorption near edge spectroscopy to the study of the effect of sulphur on selenium uptake and assimilation in wheat seedlings publication-title: Biol. Plant. doi: 10.1007/s10535-016-0698-z – volume: 560 start-page: 83 year: 2014 ident: 10.1016/j.bbagen.2018.05.006_bb0495 article-title: Low-molecular-weight thiols in plants: functional and analytical implications publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2014.07.018 – volume: 65 start-page: 1865 year: 2014 ident: 10.1016/j.bbagen.2018.05.006_bb0415 article-title: Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru012 – volume: 9 start-page: 61 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0660 article-title: Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard publication-title: Metallomics doi: 10.1039/C6MT00128A – volume: 295 start-page: 69 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0245 article-title: Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2017.02.019 – volume: 137 start-page: 158 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0315 article-title: Overexpression of the phosphate transporter gene OsPT8 improves the Pi and selenium contents in Nicotiana tabacum publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2017.02.011 – start-page: 786 year: 2000 ident: 10.1016/j.bbagen.2018.05.006_bb0460 article-title: Nitrogen and Sulphur – volume: 101 start-page: 1895 year: 2014 ident: 10.1016/j.bbagen.2018.05.006_bb0725 article-title: Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae) publication-title: Am. J. Bot. doi: 10.3732/ajb.1400223 – volume: 7 start-page: 1147 year: 2014 ident: 10.1016/j.bbagen.2018.05.006_bb0480 article-title: Quantification of Se-methylselenocysteine and its γ-glutamyl derivative from naturally Se-enriched green bean (Phaseolus vulgaris vulgaris) after HPLC-ESI-TOF-MS and orbitrap MSn-based identification publication-title: Food Anal. Methods doi: 10.1007/s12161-013-9728-z – volume: 190 start-page: 374 year: 2016 ident: 10.1016/j.bbagen.2018.05.006_bb0585 article-title: Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.05.098 – start-page: 135 year: 2012 ident: 10.1016/j.bbagen.2018.05.006_bb0530 article-title: Functions of Macronutrients – volume: 112 start-page: 965 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0085 article-title: A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants publication-title: Ann. Bot. doi: 10.1093/aob/mct163 – volume: 233 start-page: 492 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0605 article-title: Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.04.144 – volume: 11 start-page: 821 year: 2016 ident: 10.1016/j.bbagen.2018.05.006_bb0025 article-title: Why nature chose selenium publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00031 – volume: 79 start-page: 119 year: 2003 ident: 10.1016/j.bbagen.2018.05.006_bb0115 article-title: Distribution and management of seleniferous soils publication-title: Adv. Agron. doi: 10.1016/S0065-2113(02)79003-2 – year: 1940 ident: 10.1016/j.bbagen.2018.05.006_bb0145 – volume: 191 start-page: 120 year: 2011 ident: 10.1016/j.bbagen.2018.05.006_bb0760 article-title: Effects of selenium hyperaccumulation on plant-plant interactions: evidence for elemental allelopathy? publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03670.x – volume: 62 start-page: 157 year: 2011 ident: 10.1016/j.bbagen.2018.05.006_bb0350 article-title: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103921 – volume: 32 start-page: 881 year: 2005 ident: 10.1016/j.bbagen.2018.05.006_bb0635 article-title: The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium publication-title: Funct. Plant Biol. doi: 10.1071/FP05090 – volume: 6 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0295 article-title: Exploring the importance of sulphate transporters and ATPsulphurylases for selenium hyperaccumulation – comparison of Stanleya pinnata and Brassica juncea (Brassicaceae) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00002 – volume: 130 start-page: 7 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0710 article-title: Investigation of biotransformation of selenium in plants using spectrometric methods publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2017.02.004 – volume: 125 start-page: 12 year: 2016 ident: 10.1016/j.bbagen.2018.05.006_bb0325 article-title: Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.01.006 – year: 1941 ident: 10.1016/j.bbagen.2018.05.006_bb0155 – volume: 87 start-page: 1 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0615 article-title: Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived Brassica napus publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.12.006 – start-page: 275 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0625 article-title: Effects of selenium on plant metabolism and implications for crops and consumers – volume: 46 start-page: 5557 year: 2012 ident: 10.1016/j.bbagen.2018.05.006_bb0405 article-title: Grain accumulation of selenium species in rice (Oryza sativa L.) publication-title: Environ. Sci. Technol. doi: 10.1021/es203871j – year: 1936 ident: 10.1016/j.bbagen.2018.05.006_bb0135 – volume: 34 start-page: 807 year: 2016 ident: 10.1016/j.bbagen.2018.05.006_bb0600 article-title: Changes in sulforaphane and selenocysteine methyltransferase transcript levels in broccoli treated with sodium selenite publication-title: Plant Mol. Rep. doi: 10.1007/s11105-015-0960-0 – volume: 5 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0610 article-title: Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00805 – volume: 143 start-page: 1231 year: 2007 ident: 10.1016/j.bbagen.2018.05.006_bb0270 article-title: Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenite toxicity publication-title: Plant Physiol. doi: 10.1104/pp.106.091462 – volume: 8 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0520 article-title: Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01365 – volume: 5 start-page: 71 year: 2004 ident: 10.1016/j.bbagen.2018.05.006_bb0005 article-title: Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400036 – volume: 7 year: 2016 ident: 10.1016/j.bbagen.2018.05.006_bb0380 article-title: Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics, and amino acids publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01371 – year: 2016 ident: 10.1016/j.bbagen.2018.05.006_bb0095 article-title: Defects in endoplasmic reticulum-associated degradation (ERAD) increase selenate sensitivity in Arabidopsis publication-title: Plant Signal. Behav. – volume: 22 start-page: 1390 year: 2007 ident: 10.1016/j.bbagen.2018.05.006_bb0655 article-title: Identification of selenohomolanthionine in selenium-enriched Japanese pungent radish publication-title: J. Anal. At. Spectrom. doi: 10.1039/b707348h – volume: 174 start-page: 798 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0355 article-title: Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis publication-title: Plant Physiol. doi: 10.1104/pp.16.01784 – year: 1938 ident: 10.1016/j.bbagen.2018.05.006_bb0140 – year: 1941 ident: 10.1016/j.bbagen.2018.05.006_bb0150 – volume: 7 start-page: 4199 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0200 article-title: Selenium cycling across soil-plant-atmosphere interfaces: a critical review publication-title: Nutrients doi: 10.3390/nu7064199 – start-page: 193 year: 2000 ident: 10.1016/j.bbagen.2018.05.006_bb0180 article-title: Metal-accumulating plants – volume: 157 start-page: 2227 year: 2011 ident: 10.1016/j.bbagen.2018.05.006_bb0290 article-title: A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species publication-title: Plant Physiol. doi: 10.1104/pp.111.183897 – volume: 5 start-page: 354 year: 2010 ident: 10.1016/j.bbagen.2018.05.006_bb0730 article-title: Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance publication-title: J. Plant Sci. doi: 10.3923/jps.2010.354.375 – volume: 5 year: 2014 ident: 10.1016/j.bbagen.2018.05.006_bb0260 article-title: Transporters in plant sulphur metabolism publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00442 – volume: 105 start-page: 1073 year: 2010 ident: 10.1016/j.bbagen.2018.05.006_bb0745 article-title: Plant nutrition for sustainable development and global health publication-title: Ann. Bot. doi: 10.1093/aob/mcq085 – start-page: 261 issue: 2012 year: 2012 ident: 10.1016/j.bbagen.2018.05.006_bb0040 article-title: Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2011.12.002 – volume: 192 start-page: 727 year: 2011 ident: 10.1016/j.bbagen.2018.05.006_bb0210 article-title: Selenium accumulation in flowers and its effects on pollination publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03832.x – volume: 4 start-page: 968 year: 2012 ident: 10.1016/j.bbagen.2018.05.006_bb0525 article-title: Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops publication-title: Metallomics doi: 10.1039/c2mt20085f – start-page: 225 year: 2007 ident: 10.1016/j.bbagen.2018.05.006_bb0195 article-title: Selenium and its Relationship with Sufur – volume: 139 start-page: 1518 year: 2005 ident: 10.1016/j.bbagen.2018.05.006_bb0365 article-title: Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.105.068684 – volume: 57 start-page: 59 year: 1982 ident: 10.1016/j.bbagen.2018.05.006_bb0075 article-title: Selenium: toxicity and tolerance in higher plants publication-title: Biol. Rev. doi: 10.1111/j.1469-185X.1982.tb00364.x – volume: 239 start-page: 479 year: 2014 ident: 10.1016/j.bbagen.2018.05.006_bb0570 article-title: Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae) publication-title: Planta doi: 10.1007/s00425-013-1996-8 – volume: 182 start-page: 49 year: 2009 ident: 10.1016/j.bbagen.2018.05.006_bb0225 article-title: Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02738.x – volume: 178 start-page: 92 year: 2008 ident: 10.1016/j.bbagen.2018.05.006_bb0330 article-title: Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02343.x – volume: 142 start-page: 124 year: 2006 ident: 10.1016/j.bbagen.2018.05.006_bb0490 article-title: Spatial imaging, speciation and quantification of se in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata publication-title: Plant Physiol. doi: 10.1104/pp.106.081158 – volume: 178 start-page: 212 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0580 article-title: Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.03.046 – volume: 174 start-page: 516 year: 2007 ident: 10.1016/j.bbagen.2018.05.006_bb0755 article-title: Evolutionary control of leaf element composition in plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02078.x – volume: Vol. 2 year: 1939 ident: 10.1016/j.bbagen.2018.05.006_bb0235 article-title: Selenium in rocks, soils and plants – volume: 11 year: 2016 ident: 10.1016/j.bbagen.2018.05.006_bb0100 article-title: “The roots” of selenium toxicity: A new concept publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2016.1241935 – start-page: 301 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0545 article-title: Heavy-metal toxicity in plants – volume: 34 start-page: 192 year: 2011 ident: 10.1016/j.bbagen.2018.05.006_bb0375 article-title: Generation of Se-fortified broccoli as functional food: impact of Se fertilization on S metabolism publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2010.02235.x – volume: 180 start-page: 608 year: 2008 ident: 10.1016/j.bbagen.2018.05.006_bb0275 article-title: Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02604.x – volume: 14 start-page: 1337 year: 2011 ident: 10.1016/j.bbagen.2018.05.006_bb0465 article-title: Selenium in human health and disease publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3275 – volume: 174 start-page: 117 year: 2008 ident: 10.1016/j.bbagen.2018.05.006_bb0640 article-title: The functions of NifS-like proteins in plant sulfur and selenium metabolism publication-title: Plant Sci. doi: 10.1016/j.plantsci.2007.10.004 – volume: 137 start-page: 1 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0190 article-title: Selenium in soils of western Colorado publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2016.10.006 – start-page: 143 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0110 article-title: The genetics of selenium accumulation in plants – volume: 332 start-page: 31 year: 2010 ident: 10.1016/j.bbagen.2018.05.006_bb0560 article-title: Impact of sulphur fertilisation on crop response to selenium fertilisation publication-title: Plant Soil doi: 10.1007/s11104-009-0230-8 – volume: 88 start-page: 33 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0720 article-title: Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2011.12.011 – volume: 57 start-page: 9 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0735 article-title: Involvement of selenium in protective mechanisms of plants under environmental stress conditions - review publication-title: Acta Biol. Cracov. Ser. Bot. – volume: 206 start-page: 231 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0230 article-title: Symphyotrichum ericoides populations from seleniferous and nonseleniferous soil display striking variation in selenium accumulation publication-title: New Phytol. doi: 10.1111/nph.13164 – volume: 153 start-page: 1630 year: 2010 ident: 10.1016/j.bbagen.2018.05.006_bb0285 article-title: Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata publication-title: Plant Physiol. doi: 10.1104/pp.110.156570 – volume: 126 start-page: 1771 year: 2011 ident: 10.1016/j.bbagen.2018.05.006_bb0475 article-title: Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of se-enriched food publication-title: Food Chem. doi: 10.1016/j.foodchem.2010.12.079 – volume: 107 start-page: 75 year: 2008 ident: 10.1016/j.bbagen.2018.05.006_bb0390 article-title: Selenium species in leaves of chicory, dandelion, lamb's lettuce and parsley publication-title: Food Chem. doi: 10.1016/j.foodchem.2007.07.036 – volume: 19 start-page: 693 year: 2002 ident: 10.1016/j.bbagen.2018.05.006_bb0485 article-title: Trends in selenium biochemistry publication-title: Nat. Prod. Rep. doi: 10.1039/B205802M – volume: 201 start-page: 1183 year: 2014 ident: 10.1016/j.bbagen.2018.05.006_bb0310 article-title: OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice publication-title: New Phytol. doi: 10.1111/nph.12596 – volume: 7 start-page: 210 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0700 article-title: Systematic comparisons of orthologous selenocysteine methyltransferase and homocysteine methyltransferase genes from seven monocots species publication-title: Not. Sci. Biol. doi: 10.15835/nsb729491 – year: 1935 ident: 10.1016/j.bbagen.2018.05.006_bb0125 – volume: 87 start-page: 58 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0060 article-title: The roles of selenium in protecting plants against abiotic stresses publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2012.09.002 – volume: 23 start-page: 94 year: 1934 ident: 10.1016/j.bbagen.2018.05.006_bb0130 article-title: Certain poisonous plants of Wyoming activated by selenium and their association with respect to soil types publication-title: J. Pharm. Sci. – volume: 130 start-page: 847 year: 2002 ident: 10.1016/j.bbagen.2018.05.006_bb0680 article-title: An essential role of S-adenosyl-L-methionine: L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-seleniummethionine, the precursor of volatile selenium publication-title: Plant Physiol. doi: 10.1104/pp.001693 – start-page: 375 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0030 article-title: Essentials of medical geology: revised edition – volume: 117 start-page: 217 year: 2016 ident: 10.1016/j.bbagen.2018.05.006_bb0065 article-title: Selenium accumulation by plants publication-title: Ann. Bot. – volume: 59 start-page: 110 year: 2009 ident: 10.1016/j.bbagen.2018.05.006_bb0645 article-title: Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.03855.x – volume: 239 start-page: 267 year: 2014 ident: 10.1016/j.bbagen.2018.05.006_bb0105 article-title: Evolutionary aspects of elemental hyperaccumulation publication-title: Planta doi: 10.1007/s00425-013-1983-0 – volume: 153 start-page: 327 year: 2010 ident: 10.1016/j.bbagen.2018.05.006_bb0255 article-title: Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat publication-title: Plant Physiol. doi: 10.1104/pp.110.153759 – volume: 225 start-page: 233 year: 2007 ident: 10.1016/j.bbagen.2018.05.006_bb0470 article-title: Selenium uptake and species distribution in selenium-enriched bean (Phasolus vulgaris L.) seeds obtained by two different cultivations publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-006-0409-7 – volume: 22 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0620 article-title: Selenium enrichment of horticultural crops publication-title: Molecules doi: 10.3390/molecules22060933 – volume: 213 start-page: 1582 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0070 article-title: The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology publication-title: New Phytol. doi: 10.1111/nph.14378 – volume: 39 start-page: 955 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0435 article-title: Selenium speciation in wheat grain varies in the presence of nitrogen and sulphur fertilisers publication-title: Environ. Geochem. Health doi: 10.1007/s10653-016-9857-6 – start-page: 359 year: 2000 ident: 10.1016/j.bbagen.2018.05.006_bb0630 article-title: Aminoacids – volume: 86 start-page: 373 year: 2005 ident: 10.1016/j.bbagen.2018.05.006_bb0250 article-title: Selenium uptake, translocation, assimilation and metabolic fate in plants publication-title: Photosynth. Res. doi: 10.1007/s11120-005-5222-9 – volume: 132 start-page: 236 year: 2008 ident: 10.1016/j.bbagen.2018.05.006_bb0370 article-title: Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2007.01002.x – volume: 217 start-page: 194 year: 2018 ident: 10.1016/j.bbagen.2018.05.006_bb0300 article-title: Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae publication-title: New Phytol. doi: 10.1111/nph.14838 – volume: 16 start-page: 2693 year: 2004 ident: 10.1016/j.bbagen.2018.05.006_bb0395 article-title: Vacuolar sulphate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.023960 – volume: 131 start-page: 1460 year: 2003 ident: 10.1016/j.bbagen.2018.05.006_bb0205 article-title: Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus publication-title: Plant Physiol. doi: 10.1104/pp.014787 – volume: 27 start-page: 513 year: 2005 ident: 10.1016/j.bbagen.2018.05.006_bb0175 article-title: Selenium distribution in topsoils and plants of a semi-arid Mediterranean environment publication-title: Environ. Geochem. Health doi: 10.1007/s10653-005-8625-9 – volume: 138 start-page: 409 year: 2005 ident: 10.1016/j.bbagen.2018.05.006_bb0695 article-title: Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli publication-title: Plant Physiol. doi: 10.1104/pp.104.056549 – volume: 29 start-page: 475 year: 2002 ident: 10.1016/j.bbagen.2018.05.006_bb0265 article-title: Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots publication-title: Plant J. doi: 10.1046/j.0960-7412.2001.01232.x – volume: 53 start-page: 9105 year: 2005 ident: 10.1016/j.bbagen.2018.05.006_bb0575 article-title: Effect of selenium fertilizer on free amino acid composition of broccoli (Brassica oleracea cv. Majestic) determined by gas chromatography with flame ionization and mass selective detection publication-title: J. Agric. Food Chem. doi: 10.1021/jf051221x – volume: 5 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0430 article-title: Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00750 – volume: 65 start-page: 5711 year: 2014 ident: 10.1016/j.bbagen.2018.05.006_bb0535 article-title: A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru315 – volume: 6 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0555 article-title: Links between ethylene and sulfur nutrition - a regulatory interplay or just metabolite association? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.01053 – volume: 131 start-page: 1511 year: 2003 ident: 10.1016/j.bbagen.2018.05.006_bb0410 article-title: Phloem localizing sulfate transporter, Sultr1;3, mediates re-distribution of Sulphur from source to sink organs in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.014712 – volume: 106 start-page: 228 year: 2016 ident: 10.1016/j.bbagen.2018.05.006_bb0455 article-title: Superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of chloroplastic ferredoxin publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.05.004 – volume: 1026 start-page: 159 year: 2004 ident: 10.1016/j.bbagen.2018.05.006_bb0685 article-title: Identification and characterization of Se-methyl selenomethionine in Brassica juncea roots publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2003.11.039 – volume: 14 start-page: 1 year: 2012 ident: 10.1016/j.bbagen.2018.05.006_bb0055 article-title: Ecological aspects of plant selenium hyperaccumulation publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2011.00535.x – volume: 73 start-page: 607 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0425 article-title: SULTR3;1 is a chloroplast-localized sulphate transporter in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/tpj.12059 – volume: 100 start-page: 111 year: 2007 ident: 10.1016/j.bbagen.2018.05.006_bb0170 article-title: Extraordinarily high leaf selenium to sulphur ratios define ‘Se-accumulator’ plants publication-title: Ann. Bot. doi: 10.1093/aob/mcm084 – volume: 18 start-page: 5221 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0595 article-title: Changes in SeMSC, glucosinolates and sulforaphane levels, and in proteome profile in broccoli (Brassica oleracea var. italica) fertilized with sodium selenate publication-title: Molecules doi: 10.3390/molecules18055221 – volume: 52 start-page: 832 year: 2004 ident: 10.1016/j.bbagen.2018.05.006_bb0385 article-title: Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants publication-title: J. Agric. Food Chem. doi: 10.1021/jf034835f – volume: 75 start-page: 140 year: 2012 ident: 10.1016/j.bbagen.2018.05.006_bb0500 article-title: Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate publication-title: Phytochemistry doi: 10.1016/j.phytochem.2011.11.021 – volume: 147 start-page: 897 year: 2008 ident: 10.1016/j.bbagen.2018.05.006_bb0280 article-title: Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.108.118612 – volume: 68 start-page: 193 year: 2004 ident: 10.1016/j.bbagen.2018.05.006_bb0705 article-title: Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.68.193 – start-page: 123 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0020 article-title: Selenium metabolism in herbivores and higher trophic levels including mammals – volume: 153 start-page: 1871 year: 2010 ident: 10.1016/j.bbagen.2018.05.006_bb0320 article-title: Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice publication-title: Plant Physiol. doi: 10.1104/pp.110.157867 – volume: 61 start-page: 202 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0565 article-title: Selenium influences glucosinolate and isothiocyanates and increases sulphur uptake in Arabidopsis thaliana and rapid-cycling Brassica oleracea publication-title: J. Agric. Food Chem. doi: 10.1021/jf3037227 – start-page: 165 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0120 article-title: Selenium – volume: 158 start-page: 80 year: 2016 ident: 10.1016/j.bbagen.2018.05.006_bb0400 article-title: Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum) publication-title: Physiol. Plant. doi: 10.1111/ppl.12465 – start-page: 65 year: 1989 ident: 10.1016/j.bbagen.2018.05.006_bb0240 article-title: Factors affecting selenium accumulation by agricultural crops – volume: 149 start-page: 61 year: 2001 ident: 10.1016/j.bbagen.2018.05.006_bb0220 article-title: Ecotypic variation in selenium accumulation among populations of Stanleya pinnata publication-title: New Phytol. doi: 10.1046/j.1469-8137.2001.00004.x – volume: 205 start-page: 583 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0750 article-title: Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny, physiology and X-ray microprobe analysis publication-title: New Phytol. doi: 10.1111/nph.13071 – volume: 136 start-page: 4198 year: 2004 ident: 10.1016/j.bbagen.2018.05.006_bb0345 article-title: Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature publication-title: Plant Physiol. doi: 10.1104/pp.104.045625 – volume: 5 start-page: 1294 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0510 article-title: Comprehensive speciation of low-molecular weight selenium metabolites in mustard seeds using HPLC-electrospray linear trap/orbitrap tandem mass spectrometry publication-title: Metallomics doi: 10.1039/c3mt00113j – volume: 8 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0650 article-title: A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China publication-title: PLoS One – volume: 362 start-page: 319 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0185 article-title: Hyperaccumulators of metal and metalloid trace elements: facts and fiction publication-title: Plant Soil doi: 10.1007/s11104-012-1287-3 – volume: 8 start-page: 204 year: 2005 ident: 10.1016/j.bbagen.2018.05.006_bb0590 article-title: Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli publication-title: J. Med. Food doi: 10.1089/jmf.2005.8.204 – volume: 66 start-page: 4795 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0335 article-title: Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv254 – start-page: 165 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0450 article-title: Manipulating selenium metabolism in plants: A simple twist of metabolic fate can alter selenium tolerance and accumulation – volume: 66 start-page: 2901 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0540 article-title: Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv063 – volume: 28 start-page: 1011 year: 1999 ident: 10.1016/j.bbagen.2018.05.006_bb0670 article-title: Selenium volatilization and accumulation by twenty aquatic plant species publication-title: J. Environ. Qual. doi: 10.2134/jeq1999.00472425002800030035x – volume: 35 start-page: 454 year: 2012 ident: 10.1016/j.bbagen.2018.05.006_bb0045 article-title: Glutathione in plants: an integrated overview publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02400.x – volume: 101 start-page: 830 year: 2014 ident: 10.1016/j.bbagen.2018.05.006_bb0215 article-title: Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): a field survey and common-garden experiment publication-title: Am. J. Bot. doi: 10.3732/ajb.1400041 – year: 2018 ident: 10.1016/j.bbagen.2018.05.006_bb0305 article-title: Transcriptome-wide comparison of selenium hyperaccumulator and non-accumulator Stanleya species provides new insight into key processes mediating the hyperaccumulation syndrome publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12897 – volume: 20 start-page: 207 year: 2009 ident: 10.1016/j.bbagen.2018.05.006_bb0420 article-title: Phytoremediation of selenium using transgenic plants publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2009.02.001 – volume: 181 start-page: 50 year: 2015 ident: 10.1016/j.bbagen.2018.05.006_bb0090 article-title: Stuck between a ROS and a hard place: analysis of the ubiquitin proteasome pathway in selenocysteine treated Brassica napus reveals different toxicities during selenium assimilation publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.04.003 – volume: 13 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0015 article-title: Computational identification of the selenocysteine tRNA (tRNASec) in genomes publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005383 – year: 2018 ident: 10.1016/j.bbagen.2018.05.006_bb0035 article-title: Selenium in soil and crops doi: 10.1007/978-3-319-95390-8_2 – volume: 21 start-page: 341 year: 1992 ident: 10.1016/j.bbagen.2018.05.006_bb0665 article-title: Rates of selenium volatilization among crop species publication-title: J. Environ. Qual. doi: 10.2134/jeq1992.00472425002100030006x – volume: 77 start-page: 16 year: 2012 ident: 10.1016/j.bbagen.2018.05.006_bb0515 article-title: CE, Glucosinolate structures in evolution publication-title: Phytochemistry doi: 10.1016/j.phytochem.2012.02.005 – volume: 55 start-page: 1927 year: 2004 ident: 10.1016/j.bbagen.2018.05.006_bb0080 article-title: Interactions between selenium and sulphur nutrition in Arabidopsis thaliana publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh192 – volume: 23 start-page: 171 year: 2000 ident: 10.1016/j.bbagen.2018.05.006_bb0360 article-title: The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00768.x – volume: 218 start-page: 71 year: 2003 ident: 10.1016/j.bbagen.2018.05.006_bb0690 article-title: Overexpression of cystathionine-γ-synthase enhances selenium volatilisation in Brassica juncea publication-title: Planta doi: 10.1007/s00425-003-1070-z – start-page: 171 year: 2000 ident: 10.1016/j.bbagen.2018.05.006_bb0675 article-title: The physiology and biochemistry of selenium volatilization by plants – volume: 12 start-page: 267 year: 2009 ident: 10.1016/j.bbagen.2018.05.006_bb0050 article-title: Physiological functions of beneficial elements publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2009.04.009 – year: 1948 ident: 10.1016/j.bbagen.2018.05.006_bb0160 – volume: 42 start-page: 785 year: 2005 ident: 10.1016/j.bbagen.2018.05.006_bb0715 article-title: Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02413.x – volume: 7 year: 2017 ident: 10.1016/j.bbagen.2018.05.006_bb0740 article-title: An overview of selenium uptake, metabolism, and toxicity in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.02074 – volume: 41 start-page: D273 year: 2013 ident: 10.1016/j.bbagen.2018.05.006_bb0010 article-title: PlantRNA, a database for tRNAs of photosynthetic eukaryotes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks935 – volume: 119 start-page: 123 year: 1999 ident: 10.1016/j.bbagen.2018.05.006_bb0440 article-title: Overexpression of ATPsulphurylase in Brassica juncea leads to increased selenite uptake, reduction and tolerance publication-title: Plant Physiol. doi: 10.1104/pp.119.1.123 |
SSID | ssj0000595 |
Score | 2.6268194 |
SecondaryResourceType | review_article |
Snippet | Selenium (Se) is not an essential element for plants, although it can benefit their growth and survival in some envionments. Excess tissue Se concentrations... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2333 |
SubjectTerms | diet Ecology Evolution herbivores hyperaccumulators metabolic detoxification Metabolism metabolites Nitrogen nitrogen metabolism plant tissues roots Selenium soil Sulfur toxicity vacuoles |
Title | Selenium metabolism in plants |
URI | https://dx.doi.org/10.1016/j.bbagen.2018.05.006 https://www.ncbi.nlm.nih.gov/pubmed/29751098 https://www.proquest.com/docview/2038275996 https://www.proquest.com/docview/2131872123 |
Volume | 1862 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5EEb2Ib6u2rOA1dneT3STHUixV0UsVvIXdTQIr7bbY9tCLv93MPhTBB3jcMIHwzWRmsvMCuLTaSY2QMaE0E4RlJiQplYJYzVONhZRBhj_07x_i4RO7fY6e16Df1MJgWmWt-yudXmrreqVbo9md5Xl3hEE9505ETigx3IYV5YxxlPKrt880D-c-RFUkgRGkbsrnyhyvNHWXFrugBqLs34lzj743Tz-5n6UZGuzCTu0_er3qiHuwZop92KwmSq72YavfDHBzq9dlR-rVAbRHaFzy5cSbmIXj-jifT7y88GZjzII5hKfB9WN_SOq5CCSjMlqQRGBbecalsL7WceJeXGESxFkgRWCotnFEWZxQ39cyYO5FIhMeO0eDGsEtj2xGj2C9mBbmBDzJbRwmTIc4B10aJn2WRlqaTFvGraQtoA0cKqubhuPsirFqssNeVAWiQhCVHykHYgvIx65Z1TTjD3reIK2-MF85vf7HzouGMcqhi8GOpDDT5dwRURFybD7zC03gNBpH492C44qrH-fFiuPAl-L032c7g238qgoXz2F98bo0befBLNJOKaId2Ojd3A0f3gE2furG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGEIIL4s14FolrtLZpmuSIJtCAsQsgcYvaJpGKtm5i22H_nrgPEBIPiWvqSNFn13Yb-zPApdXOaoSMCaWZIFFmQpJSKYjVPNXYSBlk-EP_YRj3n6O7F_bSgl7TC4NllbXvr3x66a3rlW6NZnea591HvNRz6QRzRonXbXwFVpGdirVh9er2vj_8dMisHL6C8gQ3NB10ZZlXmrr3FolQA1FSeOLoo-8j1E8ZaBmJbrZgs04hvavqlNvQMsUOrFVDJZc7sN5rZri51euSlHq5C6ePGF_yxdgbm7lT_Cifjb288KYjLITZg-eb66den9SjEUhGJZuTRCCzfMSlsL7WceI-usIkiLNAisBQbWNGozihvq9l4EARMuGxyzWoEdxyZjO6D-1iUphD8CS3cZhEOsRR6NJE0o9SpqXJtI24lbQDtIFDZTVvOI6vGKmmQOxVVSAqBFH5TDkQO0A-dk0r3ow_5HmDtPqif-Vc-x87LxrFKIcu3nckhZksZk6IipAj_8wvMoFzahzjdwcOKq1-nBebjgNfiqN_n-0c1vtPDwM1uB3eH8MGPqn6GE-gPX9bmFOX0MzTs9pg3wFSqu13 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selenium+metabolism+in+plants&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=White%2C+Philip+J&rft.date=2018-11-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1862&rft.issue=11&rft.spage=2333&rft_id=info:doi/10.1016%2Fj.bbagen.2018.05.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |