BECT Spike Detection Based on Novel EEG Sequence Features and LSTM Algorithms
The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously threaten the nervous system development of children. The most obvious feature of BECT is the existence of a large number of electroencephalogram...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1734 - 1743 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously threaten the nervous system development of children. The most obvious feature of BECT is the existence of a large number of electroencephalogram (EEG) spikes in the Rolandic area during the interictal period, that is an important basis to assist neurologists in BECT diagnosis. With this regard, the paper proposes a novel BECT spike detection algorithm based on time domain EEG sequence features and the long short-term memory (LSTM) neural network. Three time domain sequence features, that can obviously characterize the spikes of BECT, are extracted for EEG representation. The synthetic minority oversampling technique (SMOTE) is applied to address the spike imbalance issue in EEGs, and the bi-directional LSTM (BiLSTM) is trained for spike detection. The algorithm is evaluated using the EEG data of 15 BECT patients recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). The experiment shows that the proposed algorithm can obtained an average of 88.54% F1 score, 92.04% sensitivity, and 85.75% precision, that generally outperforms several state-of-the-art spike detection methods. |
---|---|
AbstractList | The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously threaten the nervous system development of children. The most obvious feature of BECT is the existence of a large number of electroencephalogram (EEG) spikes in the Rolandic area during the interictal period, that is an important basis to assist neurologists in BECT diagnosis. With this regard, the paper proposes a novel BECT spike detection algorithm based on time domain EEG sequence features and the long short-term memory (LSTM) neural network. Three time domain sequence features, that can obviously characterize the spikes of BECT, are extracted for EEG representation. The synthetic minority oversampling technique (SMOTE) is applied to address the spike imbalance issue in EEGs, and the bi-directional LSTM (BiLSTM) is trained for spike detection. The algorithm is evaluated using the EEG data of 15 BECT patients recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). The experiment shows that the proposed algorithm can obtained an average of 88.54% F1 score, 92.04% sensitivity, and 85.75% precision, that generally outperforms several state-of-the-art spike detection methods. The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously threaten the nervous system development of children. The most obvious feature of BECT is the existence of a large number of electroencephalogram (EEG) spikes in the Rolandic area during the interictal period, that is an important basis to assist neurologists in BECT diagnosis. With this regard, the paper proposes a novel BECT spike detection algorithm based on time domain EEG sequence features and the long short-term memory (LSTM) neural network. Three time domain sequence features, that can obviously characterize the spikes of BECT, are extracted for EEG representation. The synthetic minority oversampling technique (SMOTE) is applied to address the spike imbalance issue in EEGs, and the bi-directional LSTM (BiLSTM) is trained for spike detection. The algorithm is evaluated using the EEG data of 15 BECT patients recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). The experiment shows that the proposed algorithm can obtained an average of 88.54% F1 score, 92.04% sensitivity, and 85.75% precision, that generally outperforms several state-of-the-art spike detection methods.The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously threaten the nervous system development of children. The most obvious feature of BECT is the existence of a large number of electroencephalogram (EEG) spikes in the Rolandic area during the interictal period, that is an important basis to assist neurologists in BECT diagnosis. With this regard, the paper proposes a novel BECT spike detection algorithm based on time domain EEG sequence features and the long short-term memory (LSTM) neural network. Three time domain sequence features, that can obviously characterize the spikes of BECT, are extracted for EEG representation. The synthetic minority oversampling technique (SMOTE) is applied to address the spike imbalance issue in EEGs, and the bi-directional LSTM (BiLSTM) is trained for spike detection. The algorithm is evaluated using the EEG data of 15 BECT patients recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). The experiment shows that the proposed algorithm can obtained an average of 88.54% F1 score, 92.04% sensitivity, and 85.75% precision, that generally outperforms several state-of-the-art spike detection methods. |
Author | Bao, Zihang Xu, Zhendi Gao, Feng Wang, Tianlei Cao, Jiuwen Jiang, Tiejia |
Author_xml | – sequence: 1 givenname: Zhendi surname: Xu fullname: Xu, Zhendi email: 954401521@qq.com organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, and Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China – sequence: 2 givenname: Tianlei orcidid: 0000-0002-4498-4326 surname: Wang fullname: Wang, Tianlei email: tianlei.wang.cn@gmail.com organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, and Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China – sequence: 3 givenname: Jiuwen orcidid: 0000-0002-6480-5794 surname: Cao fullname: Cao, Jiuwen email: jwcao@hdu.edu.cn organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, and Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China – sequence: 4 givenname: Zihang orcidid: 0000-0003-0776-0531 surname: Bao fullname: Bao, Zihang email: 863273751@qq.com organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, and Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China – sequence: 5 givenname: Tiejia surname: Jiang fullname: Jiang, Tiejia email: jiangyouze@zju.edu.cn organization: Department of Neurology, The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China – sequence: 6 givenname: Feng orcidid: 0000-0003-4907-7212 surname: Gao fullname: Gao, Feng email: epilepsy@zju.edu.cn organization: Department of Neurology, The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34428145$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1Lw0AQhhdR1Kp_QEEWvHhJ3a_sZo-2pipUBVvPyyaZaDRN6m4i-O9NbOuhB08zDM8zDPMO0G5VV4DQKSVDSom-mj_OnuMhI4wOOSWKCraDDmkYRkE3Irt9z0UgOCMHaOD9OyFUyVDtowMuBIuoCA_Rwygez_FsWXwAvoEG0qaoKzyyHjLcNY_1F5Q4jm_xDD5bqFLAE7BN68BjW2V4Ops_4OvytXZF87bwx2gvt6WHk3U9Qi-TeD6-C6ZPt_fj62mQch02gaWWMq5TlQvIlcp0LiTwhNlMRlqKRFASKam0TsKMSZkrqniSEJ5GLCM8B36ELld7l67uzvKNWRQ-hbK0FdStNyyUQuiIcN6hF1voe926qruupyKiCBWko87XVJssIDNLVyys-zabR3VAtAJSV3vvIDdp0dj-WY2zRWkoMX0m5jcT02di1pl0KttSN9v_lc5WUgEAf4IOGWVC8h8hepN1 |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106594 crossref_primary_10_1007_s11045_022_00839_7 crossref_primary_10_1016_j_knosys_2022_108856 crossref_primary_10_1109_TCDS_2023_3285771 crossref_primary_10_3389_fnins_2023_1150668 crossref_primary_10_1016_j_bspc_2023_104831 crossref_primary_10_1109_TNSRE_2022_3229066 crossref_primary_10_1109_TNSRE_2022_3193666 crossref_primary_10_3389_fnetp_2024_1462672 crossref_primary_10_1109_TIM_2023_3307724 crossref_primary_10_1109_TIM_2023_3248101 crossref_primary_10_1038_s41598_023_33906_5 crossref_primary_10_1016_j_neunet_2024_106136 crossref_primary_10_3390_s23187694 crossref_primary_10_1109_TETCI_2024_3372387 crossref_primary_10_1109_TNSRE_2022_3215526 crossref_primary_10_1016_j_artmed_2023_102663 crossref_primary_10_1142_S0129065723500016 crossref_primary_10_1109_TCSII_2022_3192827 crossref_primary_10_1016_j_neures_2024_07_005 crossref_primary_10_1109_TIM_2022_3220287 crossref_primary_10_1093_braincomms_fcac218 crossref_primary_10_1109_TNSRE_2022_3164126 crossref_primary_10_1109_ACCESS_2024_3496721 crossref_primary_10_1109_TCDS_2022_3175636 crossref_primary_10_1088_1741_2552_adaef3 crossref_primary_10_1016_j_neunet_2022_05_029 crossref_primary_10_1088_1741_2552_ac9644 crossref_primary_10_1109_COMST_2023_3256323 crossref_primary_10_1016_j_neunet_2022_03_014 |
Cites_doi | 10.1109/TNSRE.2020.3040627 10.1109/ICASSP.2016.7471776 10.1109/TNSRE.2021.3079505 10.1109/TNSRE.2021.3064665 10.1109/TBME.2011.2160639 10.1006/cbmr.1998.1475 10.1109/10.661266 10.1109/ICASSP.1990.115702 10.1109/TCSII.2020.2992285 10.1016/j.cmpb.2006.10.003 10.1109/JBHI.2020.2972286 10.1016/j.jneumeth.2012.07.015 10.1016/j.yebeh.2016.05.014 10.1038/s41598-019-55861-w 10.1109/TCSII.2020.3031399 10.1016/0013-4694(94)90069-8 10.1109/10.1331 10.1109/ACCESS.2016.2602354 10.1613/jair.953 10.1001/archneur.1972.00490110043004 10.1016/j.compbiomed.2011.05.007 10.1109/TNSRE.2021.3051958 10.1109/TCDS.2019.2936441 10.1142/S0218488598000094 10.1088/1741-2552/ab4896 10.1109/TNSRE.2013.2282153 10.1109/TCDS.2021.3064228 10.1016/j.seizure.2008.11.011 10.1016/j.clinph.2009.03.020 10.1016/j.jneumeth.2012.07.012 10.1590/S0004-282X2007000400004 10.1109/JBHI.2021.3057891 10.1016/j.neucom.2013.12.006 10.1016/j.neucom.2011.10.016 10.1088/1741-2552/ab1e63 10.1109/TNSRE.2021.3083548 10.1109/TNSRE.2021.3099232 10.1109/TCDS.2020.3009020 10.1016/0734-189X(86)90002-2 10.1016/0013-4694(92)90127-4 10.1111/j.1528-1157.1989.tb05452.x 10.1016/j.jneumeth.2014.12.016 10.1109/TNSRE.2021.3071785 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2021.3107142 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1743 |
ExternalDocumentID | 34428145 10_1109_TNSRE_2021_3107142 9521246 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Open Research Projects of Zhejiang Lab grantid: 2021MC0AB04 – fundername: Key Research and Development Program of Zhejiang Province grantid: 2020C03038 – fundername: National Natural Science Foundation of China grantid: U1909209 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2021YFE0100100; 2021YFE0205400 funderid: 10.13039/501100012166 – fundername: Zhejiang Provincial Natural Science Foundation grantid: LBY21H090002 funderid: 10.13039/501100004731 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c395t-a1a1239c7f4ef77d9f46e3b2ad68964b410876799b5d266f7173bb03c82d03fe3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 08:48:11 EDT 2025 Mon Jul 14 10:44:06 EDT 2025 Mon Jul 21 05:46:01 EDT 2025 Tue Jul 01 00:43:23 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Wed Aug 27 02:27:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-a1a1239c7f4ef77d9f46e3b2ad68964b410876799b5d266f7173bb03c82d03fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4498-4326 0000-0003-4907-7212 0000-0003-0776-0531 0000-0002-6480-5794 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9521246 |
PMID | 34428145 |
PQID | 2568070140 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_34428145 crossref_citationtrail_10_1109_TNSRE_2021_3107142 proquest_journals_2568070140 ieee_primary_9521246 crossref_primary_10_1109_TNSRE_2021_3107142 proquest_miscellaneous_2564498033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ebersole (ref3) 2003 ref36 ref14 (ref5) 2012 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref39 ref17 ref38 ref16 ref19 ref18 santanelli (ref1) 1989; 30 ref46 ref24 ref45 ref23 ref26 ref25 hao (ref4) 2021; 31 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref6 ref40 |
References_xml | – ident: ref20 doi: 10.1109/TNSRE.2020.3040627 – ident: ref36 doi: 10.1109/ICASSP.2016.7471776 – year: 2003 ident: ref3 publication-title: Current Practice of Clinical Electroencephalography – ident: ref34 doi: 10.1109/TNSRE.2021.3079505 – ident: ref21 doi: 10.1109/TNSRE.2021.3064665 – ident: ref22 doi: 10.1109/TBME.2011.2160639 – ident: ref31 doi: 10.1006/cbmr.1998.1475 – volume: 31 year: 2021 ident: ref4 article-title: Roles of very fast ripple (500-1000 Hz) in the hippocampal network during status epilepticus publication-title: Int J Neural Syst – ident: ref44 doi: 10.1109/10.661266 – ident: ref43 doi: 10.1109/ICASSP.1990.115702 – ident: ref39 doi: 10.1109/TCSII.2020.2992285 – ident: ref14 doi: 10.1016/j.cmpb.2006.10.003 – ident: ref18 doi: 10.1109/JBHI.2020.2972286 – ident: ref19 doi: 10.1016/j.jneumeth.2012.07.015 – ident: ref8 doi: 10.1016/j.yebeh.2016.05.014 – ident: ref32 doi: 10.1038/s41598-019-55861-w – ident: ref28 doi: 10.1109/TCSII.2020.3031399 – ident: ref30 doi: 10.1016/0013-4694(94)90069-8 – ident: ref12 doi: 10.1109/10.1331 – ident: ref17 doi: 10.1109/ACCESS.2016.2602354 – ident: ref42 doi: 10.1613/jair.953 – ident: ref10 doi: 10.1001/archneur.1972.00490110043004 – ident: ref15 doi: 10.1016/j.compbiomed.2011.05.007 – ident: ref35 doi: 10.1109/TNSRE.2021.3051958 – ident: ref27 doi: 10.1109/TCDS.2019.2936441 – ident: ref46 doi: 10.1142/S0218488598000094 – ident: ref38 doi: 10.1088/1741-2552/ab4896 – ident: ref9 doi: 10.1109/TNSRE.2013.2282153 – year: 2012 ident: ref5 publication-title: 10/20 System Positioning Manual – ident: ref26 doi: 10.1109/TCDS.2021.3064228 – ident: ref2 doi: 10.1016/j.seizure.2008.11.011 – ident: ref23 doi: 10.1016/j.clinph.2009.03.020 – ident: ref25 doi: 10.1016/j.jneumeth.2012.07.012 – ident: ref6 doi: 10.1590/S0004-282X2007000400004 – ident: ref40 doi: 10.1109/JBHI.2021.3057891 – ident: ref16 doi: 10.1016/j.neucom.2013.12.006 – ident: ref13 doi: 10.1016/j.neucom.2011.10.016 – ident: ref37 doi: 10.1088/1741-2552/ab1e63 – ident: ref33 doi: 10.1109/TNSRE.2021.3083548 – ident: ref41 doi: 10.1109/TNSRE.2021.3099232 – ident: ref29 doi: 10.1109/TCDS.2020.3009020 – ident: ref45 doi: 10.1016/0734-189X(86)90002-2 – ident: ref11 doi: 10.1016/0013-4694(92)90127-4 – volume: 30 start-page: 182 year: 1989 ident: ref1 article-title: Benign partial epilepsy with centrotemporal (or rolandic) spikes and brain lesion publication-title: Epilepsia doi: 10.1111/j.1528-1157.1989.tb05452.x – ident: ref24 doi: 10.1016/j.jneumeth.2014.12.016 – ident: ref7 doi: 10.1109/TNSRE.2021.3071785 |
SSID | ssj0017657 |
Score | 2.483674 |
Snippet | The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1734 |
SubjectTerms | Algorithms BECT Brain modeling Child Children EEG Electroencephalography Epilepsy Epilepsy - diagnosis Feature extraction Frequency-domain analysis Humans Long short-term memory LSTM model Nervous system Neural networks Neural Networks, Computer Oversampling Pediatrics spike detection Temporal Lobe Time domain analysis time domain EEG sequence features |
Title | BECT Spike Detection Based on Novel EEG Sequence Features and LSTM Algorithms |
URI | https://ieeexplore.ieee.org/document/9521246 https://www.ncbi.nlm.nih.gov/pubmed/34428145 https://www.proquest.com/docview/2568070140 https://www.proquest.com/docview/2564498033 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXHhVR6hpTIScIFsk9ibxMe2pFSI3UM3lXqLHHtSqi5J1SY98OsZOw8VBIibpUwSWzP2zOd5AbytlKazMTU-pkr7Qs2VT3oG_SqMkex1rkOX9b5Yxidn4sv5_HwDPk65MIjogs9wZofOl28a3dmrsn1pE01FvAmbBNz6XK3JY5DErqonbWDhCx4FY4JMIPfz5eo0IygYhYRQbcKObWHDBRneoc1iuqePXIOVv9uaTuccP4LFONs-1ORq1rXlTP_4rZDj_y7nMTwcjE920EvLE9jA-im8u19omOV9lQH2np3-UsN7GxaH2VHOVteXV8g-YetCuGp2SFrQMBosmztcsyz7zFZDdDaz5mVHcJ6p2rCvq3zBDtYXzc1l--377TM4O87yoxN_aMbgay7nra9CRUpO6qQSWCWJkZWIkZeRMnEqY1GK0Ba3S6Qs54aUfmW9-2UZcJ1GJuAV8uewVTc1vgQmbbOsig4aoZSIAq40gVQijIWOTIrKg3BkSaGHVdqGGevCIZZAFo6jheVoMXDUgw_TO9d9nY5_Um9bdkyUAyc82B05Xwxb-bYgmzClc5GAqAdvpse0Ca1nRdXYdI5GCJkGnHvwopeY6dujoL368z934IGdWX-rswtb7U2Hr8nOacs9dz-w58T8J5NU9Ko |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLfGOMCFr8HoGBAk4AJ9a5v0I8dtdDzg9R32Omm3Kk1SmPbWTlvLgb8eJ_3QQIC4RarbJrIT27F_NsDrSkg8GxPl6kRIl4lQuKhntFv5kUZ7nUrfot6zZTQ_YZ9Pw9MNeD9hYbTWNvlMz8zQxvJVIztzVbbHDdCURbfgNur90O_RWlPMII5sXU_cwsxlNPBGiIzH9_Ll6jhFZzDw0Uc1kB3TxIYyNL19g2O6oZFsi5W_W5tW6xzdh2ycb59scj7r2nImf_xWyvF_F_QA7g3mJ9nv5eUhbOj6Eby5WWqY5H2dAfKWHP9SxXsLsoP0MCery7NzTT7o1iZx1eQA9aAiOFg23_WapOlHshrys4kxMDt06ImoFVms8ozsr782V2ftt4vrx3BylOaHc3dox-BKysPWFb5ANcdlXDFdxbHiFYs0LQOhooRHrGS-KW8Xc16GCtV-ZeL7ZelRmQTKo5WmT2Czbmr9FAg37bIqPGqYECzwqJDopiJhxGSgEi0c8EeWFHJYpWmZsS6sz-LxwnK0MBwtBo468G5657Kv1PFP6i3Djoly4IQDuyPni2EzXxdoFSZ4MqIr6sCr6TFuQxNbEbVuOkvDGE88Sh3Y7iVm-vYoaDt__udLuDPPs0Wx-LT88gzumln2dzy7sNledfo5Wj1t-cIK-0-7Wfb- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BECT+Spike+Detection+Based+on+Novel+EEG+Sequence+Features+and+LSTM+Algorithms&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Xu%2C+Zhendi&rft.au=Wang%2C+Tianlei&rft.au=Cao%2C+Jiuwen&rft.au=Bao%2C+Zihang&rft.date=2021&rft.eissn=1558-0210&rft.volume=29&rft.spage=1734&rft_id=info:doi/10.1109%2FTNSRE.2021.3107142&rft_id=info%3Apmid%2F34428145&rft.externalDocID=34428145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |