BECT Spike Detection Based on Novel EEG Sequence Features and LSTM Algorithms

The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously threaten the nervous system development of children. The most obvious feature of BECT is the existence of a large number of electroencephalogram...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1734 - 1743
Main Authors Xu, Zhendi, Wang, Tianlei, Cao, Jiuwen, Bao, Zihang, Jiang, Tiejia, Gao, Feng
Format Journal Article
LanguageEnglish
Published United States IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously threaten the nervous system development of children. The most obvious feature of BECT is the existence of a large number of electroencephalogram (EEG) spikes in the Rolandic area during the interictal period, that is an important basis to assist neurologists in BECT diagnosis. With this regard, the paper proposes a novel BECT spike detection algorithm based on time domain EEG sequence features and the long short-term memory (LSTM) neural network. Three time domain sequence features, that can obviously characterize the spikes of BECT, are extracted for EEG representation. The synthetic minority oversampling technique (SMOTE) is applied to address the spike imbalance issue in EEGs, and the bi-directional LSTM (BiLSTM) is trained for spike detection. The algorithm is evaluated using the EEG data of 15 BECT patients recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). The experiment shows that the proposed algorithm can obtained an average of 88.54% F1 score, 92.04% sensitivity, and 85.75% precision, that generally outperforms several state-of-the-art spike detection methods.
AbstractList The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously threaten the nervous system development of children. The most obvious feature of BECT is the existence of a large number of electroencephalogram (EEG) spikes in the Rolandic area during the interictal period, that is an important basis to assist neurologists in BECT diagnosis. With this regard, the paper proposes a novel BECT spike detection algorithm based on time domain EEG sequence features and the long short-term memory (LSTM) neural network. Three time domain sequence features, that can obviously characterize the spikes of BECT, are extracted for EEG representation. The synthetic minority oversampling technique (SMOTE) is applied to address the spike imbalance issue in EEGs, and the bi-directional LSTM (BiLSTM) is trained for spike detection. The algorithm is evaluated using the EEG data of 15 BECT patients recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). The experiment shows that the proposed algorithm can obtained an average of 88.54% F1 score, 92.04% sensitivity, and 85.75% precision, that generally outperforms several state-of-the-art spike detection methods.
The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously threaten the nervous system development of children. The most obvious feature of BECT is the existence of a large number of electroencephalogram (EEG) spikes in the Rolandic area during the interictal period, that is an important basis to assist neurologists in BECT diagnosis. With this regard, the paper proposes a novel BECT spike detection algorithm based on time domain EEG sequence features and the long short-term memory (LSTM) neural network. Three time domain sequence features, that can obviously characterize the spikes of BECT, are extracted for EEG representation. The synthetic minority oversampling technique (SMOTE) is applied to address the spike imbalance issue in EEGs, and the bi-directional LSTM (BiLSTM) is trained for spike detection. The algorithm is evaluated using the EEG data of 15 BECT patients recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). The experiment shows that the proposed algorithm can obtained an average of 88.54% F1 score, 92.04% sensitivity, and 85.75% precision, that generally outperforms several state-of-the-art spike detection methods.The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously threaten the nervous system development of children. The most obvious feature of BECT is the existence of a large number of electroencephalogram (EEG) spikes in the Rolandic area during the interictal period, that is an important basis to assist neurologists in BECT diagnosis. With this regard, the paper proposes a novel BECT spike detection algorithm based on time domain EEG sequence features and the long short-term memory (LSTM) neural network. Three time domain sequence features, that can obviously characterize the spikes of BECT, are extracted for EEG representation. The synthetic minority oversampling technique (SMOTE) is applied to address the spike imbalance issue in EEGs, and the bi-directional LSTM (BiLSTM) is trained for spike detection. The algorithm is evaluated using the EEG data of 15 BECT patients recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). The experiment shows that the proposed algorithm can obtained an average of 88.54% F1 score, 92.04% sensitivity, and 85.75% precision, that generally outperforms several state-of-the-art spike detection methods.
Author Bao, Zihang
Xu, Zhendi
Gao, Feng
Wang, Tianlei
Cao, Jiuwen
Jiang, Tiejia
Author_xml – sequence: 1
  givenname: Zhendi
  surname: Xu
  fullname: Xu, Zhendi
  email: 954401521@qq.com
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, and Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China
– sequence: 2
  givenname: Tianlei
  orcidid: 0000-0002-4498-4326
  surname: Wang
  fullname: Wang, Tianlei
  email: tianlei.wang.cn@gmail.com
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, and Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China
– sequence: 3
  givenname: Jiuwen
  orcidid: 0000-0002-6480-5794
  surname: Cao
  fullname: Cao, Jiuwen
  email: jwcao@hdu.edu.cn
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, and Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China
– sequence: 4
  givenname: Zihang
  orcidid: 0000-0003-0776-0531
  surname: Bao
  fullname: Bao, Zihang
  email: 863273751@qq.com
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, and Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China
– sequence: 5
  givenname: Tiejia
  surname: Jiang
  fullname: Jiang, Tiejia
  email: jiangyouze@zju.edu.cn
  organization: Department of Neurology, The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
– sequence: 6
  givenname: Feng
  orcidid: 0000-0003-4907-7212
  surname: Gao
  fullname: Gao, Feng
  email: epilepsy@zju.edu.cn
  organization: Department of Neurology, The Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34428145$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1Lw0AQhhdR1Kp_QEEWvHhJ3a_sZo-2pipUBVvPyyaZaDRN6m4i-O9NbOuhB08zDM8zDPMO0G5VV4DQKSVDSom-mj_OnuMhI4wOOSWKCraDDmkYRkE3Irt9z0UgOCMHaOD9OyFUyVDtowMuBIuoCA_Rwygez_FsWXwAvoEG0qaoKzyyHjLcNY_1F5Q4jm_xDD5bqFLAE7BN68BjW2V4Ops_4OvytXZF87bwx2gvt6WHk3U9Qi-TeD6-C6ZPt_fj62mQch02gaWWMq5TlQvIlcp0LiTwhNlMRlqKRFASKam0TsKMSZkrqniSEJ5GLCM8B36ELld7l67uzvKNWRQ-hbK0FdStNyyUQuiIcN6hF1voe926qruupyKiCBWko87XVJssIDNLVyys-zabR3VAtAJSV3vvIDdp0dj-WY2zRWkoMX0m5jcT02di1pl0KttSN9v_lc5WUgEAf4IOGWVC8h8hepN1
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106594
crossref_primary_10_1007_s11045_022_00839_7
crossref_primary_10_1016_j_knosys_2022_108856
crossref_primary_10_1109_TCDS_2023_3285771
crossref_primary_10_3389_fnins_2023_1150668
crossref_primary_10_1016_j_bspc_2023_104831
crossref_primary_10_1109_TNSRE_2022_3229066
crossref_primary_10_1109_TNSRE_2022_3193666
crossref_primary_10_3389_fnetp_2024_1462672
crossref_primary_10_1109_TIM_2023_3307724
crossref_primary_10_1109_TIM_2023_3248101
crossref_primary_10_1038_s41598_023_33906_5
crossref_primary_10_1016_j_neunet_2024_106136
crossref_primary_10_3390_s23187694
crossref_primary_10_1109_TETCI_2024_3372387
crossref_primary_10_1109_TNSRE_2022_3215526
crossref_primary_10_1016_j_artmed_2023_102663
crossref_primary_10_1142_S0129065723500016
crossref_primary_10_1109_TCSII_2022_3192827
crossref_primary_10_1016_j_neures_2024_07_005
crossref_primary_10_1109_TIM_2022_3220287
crossref_primary_10_1093_braincomms_fcac218
crossref_primary_10_1109_TNSRE_2022_3164126
crossref_primary_10_1109_ACCESS_2024_3496721
crossref_primary_10_1109_TCDS_2022_3175636
crossref_primary_10_1088_1741_2552_adaef3
crossref_primary_10_1016_j_neunet_2022_05_029
crossref_primary_10_1088_1741_2552_ac9644
crossref_primary_10_1109_COMST_2023_3256323
crossref_primary_10_1016_j_neunet_2022_03_014
Cites_doi 10.1109/TNSRE.2020.3040627
10.1109/ICASSP.2016.7471776
10.1109/TNSRE.2021.3079505
10.1109/TNSRE.2021.3064665
10.1109/TBME.2011.2160639
10.1006/cbmr.1998.1475
10.1109/10.661266
10.1109/ICASSP.1990.115702
10.1109/TCSII.2020.2992285
10.1016/j.cmpb.2006.10.003
10.1109/JBHI.2020.2972286
10.1016/j.jneumeth.2012.07.015
10.1016/j.yebeh.2016.05.014
10.1038/s41598-019-55861-w
10.1109/TCSII.2020.3031399
10.1016/0013-4694(94)90069-8
10.1109/10.1331
10.1109/ACCESS.2016.2602354
10.1613/jair.953
10.1001/archneur.1972.00490110043004
10.1016/j.compbiomed.2011.05.007
10.1109/TNSRE.2021.3051958
10.1109/TCDS.2019.2936441
10.1142/S0218488598000094
10.1088/1741-2552/ab4896
10.1109/TNSRE.2013.2282153
10.1109/TCDS.2021.3064228
10.1016/j.seizure.2008.11.011
10.1016/j.clinph.2009.03.020
10.1016/j.jneumeth.2012.07.012
10.1590/S0004-282X2007000400004
10.1109/JBHI.2021.3057891
10.1016/j.neucom.2013.12.006
10.1016/j.neucom.2011.10.016
10.1088/1741-2552/ab1e63
10.1109/TNSRE.2021.3083548
10.1109/TNSRE.2021.3099232
10.1109/TCDS.2020.3009020
10.1016/0734-189X(86)90002-2
10.1016/0013-4694(92)90127-4
10.1111/j.1528-1157.1989.tb05452.x
10.1016/j.jneumeth.2014.12.016
10.1109/TNSRE.2021.3071785
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2021.3107142
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1743
ExternalDocumentID 34428145
10_1109_TNSRE_2021_3107142
9521246
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Open Research Projects of Zhejiang Lab
  grantid: 2021MC0AB04
– fundername: Key Research and Development Program of Zhejiang Province
  grantid: 2020C03038
– fundername: National Natural Science Foundation of China
  grantid: U1909209
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2021YFE0100100; 2021YFE0205400
  funderid: 10.13039/501100012166
– fundername: Zhejiang Provincial Natural Science Foundation
  grantid: LBY21H090002
  funderid: 10.13039/501100004731
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c395t-a1a1239c7f4ef77d9f46e3b2ad68964b410876799b5d266f7173bb03c82d03fe3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 08:48:11 EDT 2025
Mon Jul 14 10:44:06 EDT 2025
Mon Jul 21 05:46:01 EDT 2025
Tue Jul 01 00:43:23 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Wed Aug 27 02:27:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-a1a1239c7f4ef77d9f46e3b2ad68964b410876799b5d266f7173bb03c82d03fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4498-4326
0000-0003-4907-7212
0000-0003-0776-0531
0000-0002-6480-5794
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9521246
PMID 34428145
PQID 2568070140
PQPubID 85423
PageCount 10
ParticipantIDs pubmed_primary_34428145
crossref_citationtrail_10_1109_TNSRE_2021_3107142
proquest_journals_2568070140
ieee_primary_9521246
crossref_primary_10_1109_TNSRE_2021_3107142
proquest_miscellaneous_2564498033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ebersole (ref3) 2003
ref36
ref14
(ref5) 2012
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref39
ref17
ref38
ref16
ref19
ref18
santanelli (ref1) 1989; 30
ref46
ref24
ref45
ref23
ref26
ref25
hao (ref4) 2021; 31
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref6
ref40
References_xml – ident: ref20
  doi: 10.1109/TNSRE.2020.3040627
– ident: ref36
  doi: 10.1109/ICASSP.2016.7471776
– year: 2003
  ident: ref3
  publication-title: Current Practice of Clinical Electroencephalography
– ident: ref34
  doi: 10.1109/TNSRE.2021.3079505
– ident: ref21
  doi: 10.1109/TNSRE.2021.3064665
– ident: ref22
  doi: 10.1109/TBME.2011.2160639
– ident: ref31
  doi: 10.1006/cbmr.1998.1475
– volume: 31
  year: 2021
  ident: ref4
  article-title: Roles of very fast ripple (500-1000 Hz) in the hippocampal network during status epilepticus
  publication-title: Int J Neural Syst
– ident: ref44
  doi: 10.1109/10.661266
– ident: ref43
  doi: 10.1109/ICASSP.1990.115702
– ident: ref39
  doi: 10.1109/TCSII.2020.2992285
– ident: ref14
  doi: 10.1016/j.cmpb.2006.10.003
– ident: ref18
  doi: 10.1109/JBHI.2020.2972286
– ident: ref19
  doi: 10.1016/j.jneumeth.2012.07.015
– ident: ref8
  doi: 10.1016/j.yebeh.2016.05.014
– ident: ref32
  doi: 10.1038/s41598-019-55861-w
– ident: ref28
  doi: 10.1109/TCSII.2020.3031399
– ident: ref30
  doi: 10.1016/0013-4694(94)90069-8
– ident: ref12
  doi: 10.1109/10.1331
– ident: ref17
  doi: 10.1109/ACCESS.2016.2602354
– ident: ref42
  doi: 10.1613/jair.953
– ident: ref10
  doi: 10.1001/archneur.1972.00490110043004
– ident: ref15
  doi: 10.1016/j.compbiomed.2011.05.007
– ident: ref35
  doi: 10.1109/TNSRE.2021.3051958
– ident: ref27
  doi: 10.1109/TCDS.2019.2936441
– ident: ref46
  doi: 10.1142/S0218488598000094
– ident: ref38
  doi: 10.1088/1741-2552/ab4896
– ident: ref9
  doi: 10.1109/TNSRE.2013.2282153
– year: 2012
  ident: ref5
  publication-title: 10/20 System Positioning Manual
– ident: ref26
  doi: 10.1109/TCDS.2021.3064228
– ident: ref2
  doi: 10.1016/j.seizure.2008.11.011
– ident: ref23
  doi: 10.1016/j.clinph.2009.03.020
– ident: ref25
  doi: 10.1016/j.jneumeth.2012.07.012
– ident: ref6
  doi: 10.1590/S0004-282X2007000400004
– ident: ref40
  doi: 10.1109/JBHI.2021.3057891
– ident: ref16
  doi: 10.1016/j.neucom.2013.12.006
– ident: ref13
  doi: 10.1016/j.neucom.2011.10.016
– ident: ref37
  doi: 10.1088/1741-2552/ab1e63
– ident: ref33
  doi: 10.1109/TNSRE.2021.3083548
– ident: ref41
  doi: 10.1109/TNSRE.2021.3099232
– ident: ref29
  doi: 10.1109/TCDS.2020.3009020
– ident: ref45
  doi: 10.1016/0734-189X(86)90002-2
– ident: ref11
  doi: 10.1016/0013-4694(92)90127-4
– volume: 30
  start-page: 182
  year: 1989
  ident: ref1
  article-title: Benign partial epilepsy with centrotemporal (or rolandic) spikes and brain lesion
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1989.tb05452.x
– ident: ref24
  doi: 10.1016/j.jneumeth.2014.12.016
– ident: ref7
  doi: 10.1109/TNSRE.2021.3071785
SSID ssj0017657
Score 2.483674
Snippet The benign epilepsy with spinous waves in the central temporal region (BECT) is the one of the most common epileptic syndromes in children, that seriously...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1734
SubjectTerms Algorithms
BECT
Brain modeling
Child
Children
EEG
Electroencephalography
Epilepsy
Epilepsy - diagnosis
Feature extraction
Frequency-domain analysis
Humans
Long short-term memory
LSTM model
Nervous system
Neural networks
Neural Networks, Computer
Oversampling
Pediatrics
spike detection
Temporal Lobe
Time domain analysis
time domain EEG sequence features
Title BECT Spike Detection Based on Novel EEG Sequence Features and LSTM Algorithms
URI https://ieeexplore.ieee.org/document/9521246
https://www.ncbi.nlm.nih.gov/pubmed/34428145
https://www.proquest.com/docview/2568070140
https://www.proquest.com/docview/2564498033
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXHhVR6hpTIScIFsk9ibxMe2pFSI3UM3lXqLHHtSqi5J1SY98OsZOw8VBIibpUwSWzP2zOd5AbytlKazMTU-pkr7Qs2VT3oG_SqMkex1rkOX9b5Yxidn4sv5_HwDPk65MIjogs9wZofOl28a3dmrsn1pE01FvAmbBNz6XK3JY5DErqonbWDhCx4FY4JMIPfz5eo0IygYhYRQbcKObWHDBRneoc1iuqePXIOVv9uaTuccP4LFONs-1ORq1rXlTP_4rZDj_y7nMTwcjE920EvLE9jA-im8u19omOV9lQH2np3-UsN7GxaH2VHOVteXV8g-YetCuGp2SFrQMBosmztcsyz7zFZDdDaz5mVHcJ6p2rCvq3zBDtYXzc1l--377TM4O87yoxN_aMbgay7nra9CRUpO6qQSWCWJkZWIkZeRMnEqY1GK0Ba3S6Qs54aUfmW9-2UZcJ1GJuAV8uewVTc1vgQmbbOsig4aoZSIAq40gVQijIWOTIrKg3BkSaGHVdqGGevCIZZAFo6jheVoMXDUgw_TO9d9nY5_Um9bdkyUAyc82B05Xwxb-bYgmzClc5GAqAdvpse0Ca1nRdXYdI5GCJkGnHvwopeY6dujoL368z934IGdWX-rswtb7U2Hr8nOacs9dz-w58T8J5NU9Ko
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLfGOMCFr8HoGBAk4AJ9a5v0I8dtdDzg9R32Omm3Kk1SmPbWTlvLgb8eJ_3QQIC4RarbJrIT27F_NsDrSkg8GxPl6kRIl4lQuKhntFv5kUZ7nUrfot6zZTQ_YZ9Pw9MNeD9hYbTWNvlMz8zQxvJVIztzVbbHDdCURbfgNur90O_RWlPMII5sXU_cwsxlNPBGiIzH9_Ll6jhFZzDw0Uc1kB3TxIYyNL19g2O6oZFsi5W_W5tW6xzdh2ycb59scj7r2nImf_xWyvF_F_QA7g3mJ9nv5eUhbOj6Eby5WWqY5H2dAfKWHP9SxXsLsoP0MCery7NzTT7o1iZx1eQA9aAiOFg23_WapOlHshrys4kxMDt06ImoFVms8ozsr782V2ftt4vrx3BylOaHc3dox-BKysPWFb5ANcdlXDFdxbHiFYs0LQOhooRHrGS-KW8Xc16GCtV-ZeL7ZelRmQTKo5WmT2Czbmr9FAg37bIqPGqYECzwqJDopiJhxGSgEi0c8EeWFHJYpWmZsS6sz-LxwnK0MBwtBo468G5657Kv1PFP6i3Djoly4IQDuyPni2EzXxdoFSZ4MqIr6sCr6TFuQxNbEbVuOkvDGE88Sh3Y7iVm-vYoaDt__udLuDPPs0Wx-LT88gzumln2dzy7sNledfo5Wj1t-cIK-0-7Wfb-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BECT+Spike+Detection+Based+on+Novel+EEG+Sequence+Features+and+LSTM+Algorithms&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Xu%2C+Zhendi&rft.au=Wang%2C+Tianlei&rft.au=Cao%2C+Jiuwen&rft.au=Bao%2C+Zihang&rft.date=2021&rft.eissn=1558-0210&rft.volume=29&rft.spage=1734&rft_id=info:doi/10.1109%2FTNSRE.2021.3107142&rft_id=info%3Apmid%2F34428145&rft.externalDocID=34428145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon