Macromolecular crowding: Macromolecules friend or foe
Cellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the total cellular volume. This results in altered biological properties of macromolecules. Macromolecular crowding is observed to have both positive and nega...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1850; no. 9; pp. 1822 - 1831 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the total cellular volume. This results in altered biological properties of macromolecules.
Macromolecular crowding is observed to have both positive and negative effects on protein folding, structure, stability and function. Significant data has been accumulated so far on both the aspects. However, most of the review articles so far have focused on the positive aspect of macromolecular crowding and not much attention has been paid on the deleterious aspect of crowding on macromolecules. In order to have a complete knowledge of the effect of macromolecular crowding on proteins and enzymes, it is important to look into both the aspects of crowding to determine its precise role under physiological conditions. To fill the gap in the understanding of the effect of macromolecular crowding on proteins and enzymes, this review article focuses on the deleterious influence of crowding on macromolecules.
Macromolecular crowding is not always good but also has several deleterious effects on various macromolecular properties. Taken together, the properties of biological macromolecules in vivo appears to be finely regulated by the nature and level of the intracellular crowdedness in order to perform their biological functions appropriately.
The information provided here gives an understanding of the role played by the nature and level of cellular crowdedness in intensifying and/or alleviating the burden of various proteopathies.
•Macromolecular crowding has both good and deleterious effects on macromolecules.•Macromolecular properties are sensitive to nature and level of cellular crowding.•House-keeping chaperones exist as a consequence of stress induced by crowding. |
---|---|
AbstractList | Cellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the total cellular volume. This results in altered biological properties of macromolecules.
Macromolecular crowding is observed to have both positive and negative effects on protein folding, structure, stability and function. Significant data has been accumulated so far on both the aspects. However, most of the review articles so far have focused on the positive aspect of macromolecular crowding and not much attention has been paid on the deleterious aspect of crowding on macromolecules. In order to have a complete knowledge of the effect of macromolecular crowding on proteins and enzymes, it is important to look into both the aspects of crowding to determine its precise role under physiological conditions. To fill the gap in the understanding of the effect of macromolecular crowding on proteins and enzymes, this review article focuses on the deleterious influence of crowding on macromolecules.
Macromolecular crowding is not always good but also has several deleterious effects on various macromolecular properties. Taken together, the properties of biological macromolecules in vivo appears to be finely regulated by the nature and level of the intracellular crowdedness in order to perform their biological functions appropriately.
The information provided here gives an understanding of the role played by the nature and level of cellular crowdedness in intensifying and/or alleviating the burden of various proteopathies. Cellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the total cellular volume. This results in altered biological properties of macromolecules.Macromolecular crowding is observed to have both positive and negative effects on protein folding, structure, stability and function. Significant data has been accumulated so far on both the aspects. However, most of the review articles so far have focused on the positive aspect of macromolecular crowding and not much attention has been paid on the deleterious aspect of crowding on macromolecules. In order to have a complete knowledge of the effect of macromolecular crowding on proteins and enzymes, it is important to look into both the aspects of crowding to determine its precise role under physiological conditions. To fill the gap in the understanding of the effect of macromolecular crowding on proteins and enzymes, this review article focuses on the deleterious influence of crowding on macromolecules.Macromolecular crowding is not always good but also has several deleterious effects on various macromolecular properties. Taken together, the properties of biological macromolecules in vivo appears to be finely regulated by the nature and level of the intracellular crowdedness in order to perform their biological functions appropriately.The information provided here gives an understanding of the role played by the nature and level of cellular crowdedness in intensifying and/or alleviating the burden of various proteopathies. BACKGROUNDCellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the total cellular volume. This results in altered biological properties of macromolecules.SCOPE OF REVIEWMacromolecular crowding is observed to have both positive and negative effects on protein folding, structure, stability and function. Significant data has been accumulated so far on both the aspects. However, most of the review articles so far have focused on the positive aspect of macromolecular crowding and not much attention has been paid on the deleterious aspect of crowding on macromolecules. In order to have a complete knowledge of the effect of macromolecular crowding on proteins and enzymes, it is important to look into both the aspects of crowding to determine its precise role under physiological conditions. To fill the gap in the understanding of the effect of macromolecular crowding on proteins and enzymes, this review article focuses on the deleterious influence of crowding on macromolecules.MAJOR CONCLUSIONSMacromolecular crowding is not always good but also has several deleterious effects on various macromolecular properties. Taken together, the properties of biological macromolecules in vivo appears to be finely regulated by the nature and level of the intracellular crowdedness in order to perform their biological functions appropriately.GENERAL SIGNIFICANCEThe information provided here gives an understanding of the role played by the nature and level of cellular crowdedness in intensifying and/or alleviating the burden of various proteopathies. Cellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the total cellular volume. This results in altered biological properties of macromolecules. Macromolecular crowding is observed to have both positive and negative effects on protein folding, structure, stability and function. Significant data has been accumulated so far on both the aspects. However, most of the review articles so far have focused on the positive aspect of macromolecular crowding and not much attention has been paid on the deleterious aspect of crowding on macromolecules. In order to have a complete knowledge of the effect of macromolecular crowding on proteins and enzymes, it is important to look into both the aspects of crowding to determine its precise role under physiological conditions. To fill the gap in the understanding of the effect of macromolecular crowding on proteins and enzymes, this review article focuses on the deleterious influence of crowding on macromolecules. Macromolecular crowding is not always good but also has several deleterious effects on various macromolecular properties. Taken together, the properties of biological macromolecules in vivo appears to be finely regulated by the nature and level of the intracellular crowdedness in order to perform their biological functions appropriately. The information provided here gives an understanding of the role played by the nature and level of cellular crowdedness in intensifying and/or alleviating the burden of various proteopathies. •Macromolecular crowding has both good and deleterious effects on macromolecules.•Macromolecular properties are sensitive to nature and level of cellular crowding.•House-keeping chaperones exist as a consequence of stress induced by crowding. |
Author | Mittal, Shruti Singh, Laishram Rajendrakumar Chowhan, Rimpy Kaur |
Author_xml | – sequence: 1 givenname: Shruti surname: Mittal fullname: Mittal, Shruti email: shrutimittal4@gmail.com – sequence: 2 givenname: Rimpy Kaur surname: Chowhan fullname: Chowhan, Rimpy Kaur email: rimpy_1989@yahoo.co.in – sequence: 3 givenname: Laishram Rajendrakumar surname: Singh fullname: Singh, Laishram Rajendrakumar email: lrsingh@acbr.du.ac.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25960386$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LAzEQhoMoWj_-gcgevWydJJts04Mg4hdUvOg5ZJNZSdluarJV_PemVEU86DAwhDzvwDz7ZLsPPRJyTGFMgcqz-bhpzDP2YwZUjCE3sC0yopOalRMAuU1GwKEqKyrFHtlPaQ65hBK7ZI8JJYFP5IiIe2NjWIQO7aozsciPN-f752nx8wNT0UaPvStCLNqAh2SnNV3Co895QJ6urx4vb8vZw83d5cWstFyJoTSAnDuhHK-lUbatmTHYmtoJUaFprDO1pNa1DqBBik3tZMUq6ahqKucU8ANyutm7jOFlhWnQC58sdp3pMaySZvkizqlg6l-USqUqBaLmGT35RFfNAp1eRr8w8V1_WclAtQGygZQitt8IBb2Wr-d6I1-v5WvIDSzHpr9i1g9m8KEfovHdf-HzTRizz1ePUSebjVt0PqIdtAv-7wUfaP2hcA |
CitedBy_id | crossref_primary_10_3390_ijms21144940 crossref_primary_10_1073_pnas_1817564116 crossref_primary_10_1016_j_jphotochem_2018_10_006 crossref_primary_10_1016_j_biotechadv_2020_107512 crossref_primary_10_1016_j_nantod_2022_101749 crossref_primary_10_1016_j_tca_2018_12_015 crossref_primary_10_1177_2041731417730467 crossref_primary_10_1242_jcs_243931 crossref_primary_10_1021_acs_biochem_5b00533 crossref_primary_10_1515_zpch_2018_1110 crossref_primary_10_1021_acs_jpcb_9b09478 crossref_primary_10_1021_acs_jpcb_3c00253 crossref_primary_10_1039_C7MB00436B crossref_primary_10_1016_j_ijbiomac_2018_12_170 crossref_primary_10_1155_2017_6909163 crossref_primary_10_1016_j_foodhyd_2021_106745 crossref_primary_10_1038_s41598_017_18874_x crossref_primary_10_3389_fbioe_2023_1136827 crossref_primary_10_1002_jsfa_12137 crossref_primary_10_1080_15257770_2019_1687909 crossref_primary_10_1016_j_foodchem_2019_125164 crossref_primary_10_1109_TMBMC_2017_2655025 crossref_primary_10_1021_acs_jchemed_0c01473 crossref_primary_10_3390_biom8040106 crossref_primary_10_1063_5_0025640 crossref_primary_10_1021_acs_biomac_2c01534 crossref_primary_10_1002_jccs_202200365 crossref_primary_10_1021_acs_jpcb_7b03570 crossref_primary_10_1111_brv_12615 crossref_primary_10_1016_j_biomaterials_2020_120610 crossref_primary_10_1016_j_polymertesting_2019_106316 crossref_primary_10_1021_acs_langmuir_7b04308 crossref_primary_10_1039_C8CS00034D crossref_primary_10_1080_17425255_2021_1908262 crossref_primary_10_3390_catal11040497 crossref_primary_10_3390_molecules26092807 crossref_primary_10_1002_jmr_3099 crossref_primary_10_1039_D0SM00544D crossref_primary_10_3390_membranes12060593 crossref_primary_10_1021_jacs_2c00203 crossref_primary_10_1063_1_5043434 crossref_primary_10_1038_s41467_022_31828_w crossref_primary_10_1039_C7CS00820A crossref_primary_10_1021_acsomega_2c06199 crossref_primary_10_3390_polym8060238 crossref_primary_10_1016_j_foodhyd_2015_12_036 crossref_primary_10_1016_j_bbrc_2018_10_188 crossref_primary_10_1016_j_freeradbiomed_2018_03_032 crossref_primary_10_7717_peerj_6707 crossref_primary_10_1016_j_coelec_2020_100654 crossref_primary_10_1021_acs_jpcb_3c06405 crossref_primary_10_3390_ijms232315392 crossref_primary_10_1002_wrna_1867 crossref_primary_10_1007_s10867_018_9505_8 crossref_primary_10_1016_j_ijbiomac_2016_05_080 crossref_primary_10_1016_j_bbapap_2016_07_012 crossref_primary_10_3390_polym14224808 crossref_primary_10_3390_molecules25163600 crossref_primary_10_1515_zpch_2017_1047 crossref_primary_10_1039_D3NR02968A crossref_primary_10_1016_j_bbrep_2021_100956 crossref_primary_10_1016_j_talanta_2019_120136 crossref_primary_10_1021_acs_biochem_0c00073 crossref_primary_10_1038_s41567_018_0186_9 crossref_primary_10_1021_acs_jpclett_9b01556 crossref_primary_10_1007_s00239_018_9862_8 crossref_primary_10_1515_bmc_2025_0053 crossref_primary_10_1021_acs_jpcb_0c07175 crossref_primary_10_1038_s41598_018_22944_z crossref_primary_10_1021_acs_jpcb_9b09596 crossref_primary_10_1038_s41579_022_00791_0 crossref_primary_10_1080_07391102_2018_1498391 crossref_primary_10_1016_j_bpc_2017_04_013 crossref_primary_10_1021_acs_jpcb_7b01120 crossref_primary_10_1021_acs_biochem_2c00166 crossref_primary_10_1371_journal_pone_0174183 crossref_primary_10_1007_s10895_022_03082_2 crossref_primary_10_15252_embj_2021108533 crossref_primary_10_1021_acschembio_4c00365 crossref_primary_10_1021_acs_chemrev_3c00615 crossref_primary_10_1016_j_jmro_2022_100060 crossref_primary_10_1038_nmicrobiol_2016_107 crossref_primary_10_1089_ten_tea_2023_0290 crossref_primary_10_1039_C9NR08348K crossref_primary_10_1016_j_bbapap_2021_140699 crossref_primary_10_1039_C9MH00835G crossref_primary_10_1021_acs_biochem_6b00257 crossref_primary_10_1007_s00216_020_02659_9 |
Cites_doi | 10.1016/0022-2836(91)90499-V 10.1016/j.febslet.2013.01.030 10.1111/j.1471-4159.1993.tb03639.x 10.1016/j.bbapap.2009.11.013 10.1111/j.1742-4658.2009.07317.x 10.1016/j.bbrc.2011.01.037 10.3390/ijms141121339 10.1016/j.febslet.2005.01.072 10.1371/journal.pone.0036288 10.1021/ja061267m 10.1038/nature04716 10.1096/fj.09-150987 10.1074/jbc.M802393200 10.1073/pnas.1006760107 10.1021/bi8008399 10.1021/jp306873v 10.1016/j.bbapap.2006.01.005 10.1016/0968-0004(80)90051-1 10.1126/science.181.4096.223 10.1074/jbc.R100005200 10.1016/S0065-3233(08)60197-7 10.1016/S0959-440X(99)00045-7 10.1007/BF03246197 10.1038/embor.2012.204 10.1073/pnas.0803672105 10.1074/jbc.M705157200 10.1023/B:JOPC.0000005458.08802.11 10.1073/pnas.85.9.2984 10.1042/bj0890253 10.1093/emboj/18.24.6927 10.1007/978-0-387-39975-1_1 10.1007/978-3-642-68507-1_15 10.1016/S0006-3495(93)81145-7 10.1016/S0006-3495(99)77154-7 10.1017/S0033583503003883 10.1021/ja201206t 10.2174/1871527313666140917121943 10.1073/pnas.0705127104 10.1038/sj.emboj.7600016 10.1159/000016371 10.1073/pnas.1312678110 10.1007/s10930-010-9247-3 10.1021/j100698a032 10.1016/S0014-5793(02)02446-8 10.1021/la900198h 10.1039/B805506H 10.1093/emboj/19.15.3870 10.1021/ja211115q 10.1016/j.molcel.2006.07.016 10.1103/PhysRevE.79.031910 10.1002/bip.20578 10.1016/0092-8674(82)90231-8 10.1016/0531-5565(81)90018-8 10.1016/j.tibs.2011.11.005 10.1016/S0968-0004(01)01938-7 10.1371/journal.pone.0114029 10.1529/biophysj.107.104513 10.1016/j.jmb.2013.08.024 10.1021/ja034298f 10.1021/jp105296c 10.1002/jmr.699 10.1093/jb/mvu039 10.1021/bi015925l 10.1016/j.tca.2006.06.019 10.1074/jbc.M409086200 10.1529/biophysj.106.097717 10.1016/j.cub.2006.03.047 10.1074/jbc.M006861200 10.1016/0005-2795(81)90103-3 10.1021/ja805972a 10.1016/j.ijbiomac.2012.11.008 10.1073/pnas.0409630102 10.1021/bi048778a 10.1002/(SICI)1097-0134(20000701)40:1<58::AID-PROT80>3.0.CO;2-M 10.1093/abbs/gms052 10.1136/jcp.2004.017293 10.1021/bi00520a003 10.1111/j.1432-1033.1978.tb20959.x 10.1016/j.biochi.2011.04.017 10.1002/bip.20665 10.1074/jbc.M110429200 10.1529/biophysj.104.050351 10.1046/j.1432-1327.1998.2540172.x 10.1016/S0959-440X(00)00172-X 10.1371/journal.pone.0078936 10.1038/nm1066 10.1038/nature07839 10.1021/ja200067p 10.1021/ja0463029 10.1021/ja065064+ 10.1021/bi4016346 10.1371/journal.pone.0018250 10.1021/bi0120906 10.1016/j.jmb.2006.09.018 10.1016/0968-0004(91)90083-8 10.1007/s00018-004-4464-6 10.1073/pnas.0304533101 10.1042/bj0890249 10.1074/jbc.M109.002832 10.2174/092986608786071102 10.1016/S1357-2725(01)00058-9 10.1021/ar0302282 10.1111/j.1432-1033.1971.tb01495.x 10.1016/j.ijbiomac.2012.04.014 10.1016/S0076-6879(98)95038-8 10.1021/ed067p857 10.1038/nchembio.546 10.1042/bj2130651 10.1093/nar/gkm445 10.1016/0011-2240(83)90048-2 10.1039/c3cc39205h 10.1021/ja3126992 10.1016/j.ymeth.2013.03.028 10.1146/annurev.biophys.37.032807.125817 10.1016/0014-5793(80)80292-4 10.1016/j.febslet.2007.09.049 10.1021/bi900212j 10.1016/0531-5565(79)90010-X |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2015.05.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1831 |
ExternalDocumentID | 25960386 10_1016_j_bbagen_2015_05_002 S0304416515001270 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-a0e33d59d376a9cf72aaefa7d554eabcda761cdfd00be1eb7d64246d19b4dd903 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Fri Jul 11 10:29:17 EDT 2025 Fri Jul 11 04:52:02 EDT 2025 Thu Apr 03 07:10:32 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 Tue Jul 01 00:22:05 EDT 2025 Fri Feb 23 02:34:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Protein stability Protein aggregation Enzyme activity Protein folding Excluded volume effect |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-a0e33d59d376a9cf72aaefa7d554eabcda761cdfd00be1eb7d64246d19b4dd903 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 25960386 |
PQID | 1699490573 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000331529 proquest_miscellaneous_1699490573 pubmed_primary_25960386 crossref_primary_10_1016_j_bbagen_2015_05_002 crossref_citationtrail_10_1016_j_bbagen_2015_05_002 elsevier_sciencedirect_doi_10_1016_j_bbagen_2015_05_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ogston (bb0040) 1970; 74 Minton (bb0175) 2005; 88 Roque, Ponte, Suau (bb0070) 2007; 93 Du, Zhou, Mo, Shi, Chen (bb0455) 2006; 364 Mansell, Clegg (bb0375) 1983; 20 Zimmerman, Trach (bb0005) 1991; 222 Harada, Sugita, Feig (bb0380) 2012; 134 Muramatsu, Minton (bb0080) 1988; 85 Zs-Nagy, Nagy, Zs-Nagy, Kalmar, Nagy (bb0535) 1981; 16 Laurent, Ogston (bb0035) 1963; 89 Cheung, Klimov, Thirumalai (bb0195) 2005; 102 Chowhan, Warepam, Dar, Singh (bb0420) 2013; 4 Pozdnyakova, Wittung-Stafshede (bb0320) 2010; 1804 Minton (bb0050) 2006; 16 Herzog, Weber (bb0115) 1978; 91 Zhou (bb0190) 2004; 37 Miyoshi, Nakamura, Tateishi-Karimata, Ohmichi, Sugimoto (bb0300) 2009; 131 Basha, O'Neill, Vierling (bb0600) 2012; 37 Ali, Roe, Vaughan, Meyer, Panaretou (bb0585) 2006; 440 Frolich, Gabel, Jasnin, Lehnert, Oesterhelt (bb0370) 2009; 141 Anfinsen (bb0395) 1973; 181 Harding (bb0015) 1991 Gellerich, Laterveer, Korzeniewski, Zierz, Nicolay (bb0345) 1998; 254 Mittal, Singh (bb0060) 2013; 8 Rupley, Careri (bb0365) 1991; 41 Hoffmann, Linke, Graf, Lilie, Jakob (bb0590) 2004; 23 Milles, Huy Bui, Koehler, Eltsov, Beck (bb0525) 2013; 14 Bosma, Voordouw, De Kok, Veeger (bb0130) 1980; 120 Chowhan, Mittal, Dar, Kamal, Singh (bb0425) 2014; 13 Uversky, Cooper, Bower, Li, Fink (bb0510) 2002; 515 Minton (bb0165) 2000; 10 Minton (bb0090) 1998; 295 Ross, Poirier (bb0400) 2004; 10 Miyoshi, Karimata, Sugimoto (bb0295) 2006; 128 Munishkina, Fink, Uversky (bb0520) 2008; 15 Zhou, Liang, Du, Zhou, Chen (bb0460) 2004; 279 Ignatova, Krishnan, Bombardier, Marcelino, Hong (bb0250) 2007; 88 Wilf, Minton (bb0120) 1981; 670 Huang, Jin, Li, Luo, Huang (bb0200) 2010; 24 Mittal, Singh (bb0205) 2014; 9 Galan, Sot, Llorca, Carrascosa, Valpuesta (bb0450) 2001; 276 Takahashi, Arjunan, Tomita (bb0565) 2005; 579 Jamal, Poddar, Singh, Dar, Rishi (bb0610) 2009; 276 Laurent (bb0030) 1963; 89 Goodsell (bb0440) 1991; 16 Zs-Nagy, Nagy, Lustyik (bb0540) 1982; 5 Jiang, Guo (bb0105) 2007; 129 Takaoka, Kioi, Morito, Otani, Arita (bb0240) 2013; 49 Harada, Tochio, Kigawa, Sugita, Feig (bb0215) 2013; 135 Monterroso, Minton (bb0305) 2007; 282 Verma, Rakshit, Mitra, Pal (bb0385) 2011; 93 Dhar, Samiotakis, Ebbinghaus, Nienhaus, Homouz (bb0095) 2010; 107 Ma, Fan, Zhou, Zhou, Meng (bb0475) 2012; 7 Pastor, Vilaseca, Madurga, Garces, Cascante (bb0350) 2011; 115 Munishkina, Ahmad, Fink, Uversky (bb0500) 2008; 47 Yamin, Munishkina, Karymov, Lyubchenko, Uversky (bb0505) 2005; 44 Kulothungan, Das, Johnson, Ganesh, Varadarajan (bb0485) 2009; 25 Hatters, Minton, Howlett (bb0490) 2002; 277 Ignatova, Gierasch (bb0245) 2004; 101 Yaku, Murashima, Tateishi-Karimata, Nakano, Miyoshi (bb0390) 2013 Asaad, Engberts (bb0315) 2003; 125 Homouz, Perham, Samiotakis, Cheung, Wittung-Stafshede (bb0330) 2008; 105 Munishkina, Cooper, Uversky, Fink (bb0465) 2004; 17 Burg (bb0280) 2000; 10 Sarkar, Lu, Pielak (bb0270) 2014; 53 Miklos, Sarkar, Wang, Pielak (bb0210) 2011; 133 Singh, Poddar, Dar, Rahman, Kumar (bb0605) 2011; 8 Martin (bb0615) 2002; 41 Mittal, Singh (bb0135) 2014; 156 Perham, Stagg, Wittung-Stafshede (bb0075) 2007; 581 Derham, Harding (bb0100) 2006; 1764 Fan, Liu, Li, Luan, Yang (bb0355) 2012 Zhang, Wu, Chen, Liang (bb0225) 2012; 44 Vaughan, Gohlke, Sobott, Good, Ali (bb0580) 2006; 23 Laurent (bb0045) 1971; 21 Zhou, Rivas, Minton (bb0170) 2008; 37 Fenton, Horwich (bb0570) 2003; 36 Inomata, Ohno, Tochio, Isogai, Tenno (bb0235) 2009; 458 Olsen (bb0325) 2006; 448 Itkin, Dupres, Dufrêne, Bechinger, Ruysschaert (bb0550) 2011; 6 Nakano, Karimata, Ohmichi, Kawakami, Sugimoto (bb0290) 2004; 126 Zhou (bb0275) 2013; 587 Tellam, Sculley, Nichol, Wills (bb0125) 1983; 213 Wenner, Bloomfield (bb0340) 1999; 77 Han, Herzfeld (bb0085) 1993; 65 Xu, Reumers, Couceiro, De Smet, Gallardo (bb0415) 2011; 7 Mantyh, Ghilardi, Rogers, DeMaster, Allen (bb0545) 1993; 61 Naber, Korte, Krack (bb0530) 1979; 14 Sasaki, Miyoshi, Sugimoto (bb0310) 2007; 35 Coeur, Deme, Longeville (bb0185) 2009; 79 Fulton (bb0435) 1982; 30 van den Berg, Ellis, Dobson (bb0155) 1999; 18 Schlesinger, Wang, Tadeo, Millet, Pielak (bb0265) 2011; 133 Homchaudhuri, Sarma, Swaminathan (bb0335) 2006; 83 Zhou, Fan, Zhu, Shewmaker, Yan (bb0470) 2009; 284 Malik, Kundu, Mukherjee, Chowdhury (bb0145) 2012; 116 Sarkar, Smith, Pielak (bb0220) 2013; 110 Minton (bb0255) 2001; 276 Minton, Wilf (bb0055) 1981; 20 Ren, Lin, Tsou, Wang (bb0360) 2003; 22 Ghahghaei, Divsalar, Faridi (bb0495) 2010; 29 Guzman, Gelman, Tai, Gruebele (bb0230) 2014; 426 Plaza del Pino, Ibarra-Molero, Sanchez-Ruiz (bb0260) 2000 Fan, Liu, Li, Luan, Yang (bb0150) 2012; 51 Norris, Malys (bb0110) 2011; 405 Ma, Hu, Chen, Liang (bb0480) 2013; 14 Ellis (bb0555) 2007; 594 van den Berg, Wain, Dobson, Ellis (bb0160) 2000; 19 Kholova, Niessen (bb0405) 2005; 58 Stagg, Zhang, Cheung, Wittung-Stafshede (bb0065) 2007; 104 Williams, Mamotte, Burnett (bb0410) 2008; 29 Mayer, Bukau (bb0575) 2005; 62 Ralston (bb0180) 1990; 67 McHaourab, Godar, Stewart (bb0595) 2009; 48 Ma, Xie, Wei, Li (bb0140) 2013; 53 Shtilerman, Ding, Lansbury (bb0515) 2002; 41 Al-Habori (bb0560) 2001; 33 Ellis (bb0020) 2001; 11 Chowhan, Singh (bb0430) 2013; 3 Kozer, Kuttner, Haran, Schreiber (bb0285) 2007; 92 Engel, Westphal, Huberts, Nabuurs, Lindhoud (bb0445) 2008; 283 Ellis (bb0010) 2001; 26 Srere (bb0025) 1980; 5 Laurent (10.1016/j.bbagen.2015.05.002_bb0045) 1971; 21 Han (10.1016/j.bbagen.2015.05.002_bb0085) 1993; 65 Miyoshi (10.1016/j.bbagen.2015.05.002_bb0295) 2006; 128 Ma (10.1016/j.bbagen.2015.05.002_bb0140) 2013; 53 Schlesinger (10.1016/j.bbagen.2015.05.002_bb0265) 2011; 133 Minton (10.1016/j.bbagen.2015.05.002_bb0255) 2001; 276 Fulton (10.1016/j.bbagen.2015.05.002_bb0435) 1982; 30 Wilf (10.1016/j.bbagen.2015.05.002_bb0120) 1981; 670 van den Berg (10.1016/j.bbagen.2015.05.002_bb0155) 1999; 18 Olsen (10.1016/j.bbagen.2015.05.002_bb0325) 2006; 448 Mittal (10.1016/j.bbagen.2015.05.002_bb0060) 2013; 8 Stagg (10.1016/j.bbagen.2015.05.002_bb0065) 2007; 104 Naber (10.1016/j.bbagen.2015.05.002_bb0530) 1979; 14 Minton (10.1016/j.bbagen.2015.05.002_bb0050) 2006; 16 Ignatova (10.1016/j.bbagen.2015.05.002_bb0250) 2007; 88 Takaoka (10.1016/j.bbagen.2015.05.002_bb0240) 2013; 49 Ren (10.1016/j.bbagen.2015.05.002_bb0360) 2003; 22 Al-Habori (10.1016/j.bbagen.2015.05.002_bb0560) 2001; 33 Coeur (10.1016/j.bbagen.2015.05.002_bb0185) 2009; 79 Muramatsu (10.1016/j.bbagen.2015.05.002_bb0080) 1988; 85 Sarkar (10.1016/j.bbagen.2015.05.002_bb0270) 2014; 53 Sarkar (10.1016/j.bbagen.2015.05.002_bb0220) 2013; 110 van den Berg (10.1016/j.bbagen.2015.05.002_bb0160) 2000; 19 Uversky (10.1016/j.bbagen.2015.05.002_bb0510) 2002; 515 Minton (10.1016/j.bbagen.2015.05.002_bb0175) 2005; 88 Basha (10.1016/j.bbagen.2015.05.002_bb0600) 2012; 37 Jiang (10.1016/j.bbagen.2015.05.002_bb0105) 2007; 129 Zs-Nagy (10.1016/j.bbagen.2015.05.002_bb0535) 1981; 16 Pastor (10.1016/j.bbagen.2015.05.002_bb0350) 2011; 115 Mayer (10.1016/j.bbagen.2015.05.002_bb0575) 2005; 62 Ralston (10.1016/j.bbagen.2015.05.002_bb0180) 1990; 67 Pozdnyakova (10.1016/j.bbagen.2015.05.002_bb0320) 2010; 1804 Derham (10.1016/j.bbagen.2015.05.002_bb0100) 2006; 1764 Laurent (10.1016/j.bbagen.2015.05.002_bb0030) 1963; 89 Mittal (10.1016/j.bbagen.2015.05.002_bb0135) 2014; 156 Harada (10.1016/j.bbagen.2015.05.002_bb0215) 2013; 135 Nakano (10.1016/j.bbagen.2015.05.002_bb0290) 2004; 126 Du (10.1016/j.bbagen.2015.05.002_bb0455) 2006; 364 Gellerich (10.1016/j.bbagen.2015.05.002_bb0345) 1998; 254 Shtilerman (10.1016/j.bbagen.2015.05.002_bb0515) 2002; 41 Fan (10.1016/j.bbagen.2015.05.002_bb0355) 2012 McHaourab (10.1016/j.bbagen.2015.05.002_bb0595) 2009; 48 Zhou (10.1016/j.bbagen.2015.05.002_bb0190) 2004; 37 Zhou (10.1016/j.bbagen.2015.05.002_bb0460) 2004; 279 Zhou (10.1016/j.bbagen.2015.05.002_bb0170) 2008; 37 Burg (10.1016/j.bbagen.2015.05.002_bb0280) 2000; 10 Vaughan (10.1016/j.bbagen.2015.05.002_bb0580) 2006; 23 Munishkina (10.1016/j.bbagen.2015.05.002_bb0500) 2008; 47 Frolich (10.1016/j.bbagen.2015.05.002_bb0370) 2009; 141 Munishkina (10.1016/j.bbagen.2015.05.002_bb0520) 2008; 15 Dhar (10.1016/j.bbagen.2015.05.002_bb0095) 2010; 107 Harada (10.1016/j.bbagen.2015.05.002_bb0380) 2012; 134 Homchaudhuri (10.1016/j.bbagen.2015.05.002_bb0335) 2006; 83 Bosma (10.1016/j.bbagen.2015.05.002_bb0130) 1980; 120 Anfinsen (10.1016/j.bbagen.2015.05.002_bb0395) 1973; 181 Xu (10.1016/j.bbagen.2015.05.002_bb0415) 2011; 7 Hatters (10.1016/j.bbagen.2015.05.002_bb0490) 2002; 277 Yaku (10.1016/j.bbagen.2015.05.002_bb0390) 2013 Yamin (10.1016/j.bbagen.2015.05.002_bb0505) 2005; 44 Verma (10.1016/j.bbagen.2015.05.002_bb0385) 2011; 93 Kholova (10.1016/j.bbagen.2015.05.002_bb0405) 2005; 58 Munishkina (10.1016/j.bbagen.2015.05.002_bb0465) 2004; 17 Mantyh (10.1016/j.bbagen.2015.05.002_bb0545) 1993; 61 Monterroso (10.1016/j.bbagen.2015.05.002_bb0305) 2007; 282 Roque (10.1016/j.bbagen.2015.05.002_bb0070) 2007; 93 Guzman (10.1016/j.bbagen.2015.05.002_bb0230) 2014; 426 Martin (10.1016/j.bbagen.2015.05.002_bb0615) 2002; 41 Laurent (10.1016/j.bbagen.2015.05.002_bb0035) 1963; 89 Ellis (10.1016/j.bbagen.2015.05.002_bb0555) 2007; 594 Chowhan (10.1016/j.bbagen.2015.05.002_bb0430) 2013; 3 Sasaki (10.1016/j.bbagen.2015.05.002_bb0310) 2007; 35 Ignatova (10.1016/j.bbagen.2015.05.002_bb0245) 2004; 101 Perham (10.1016/j.bbagen.2015.05.002_bb0075) 2007; 581 Hoffmann (10.1016/j.bbagen.2015.05.002_bb0590) 2004; 23 Wenner (10.1016/j.bbagen.2015.05.002_bb0340) 1999; 77 Srere (10.1016/j.bbagen.2015.05.002_bb0025) 1980; 5 Zhou (10.1016/j.bbagen.2015.05.002_bb0470) 2009; 284 Milles (10.1016/j.bbagen.2015.05.002_bb0525) 2013; 14 Williams (10.1016/j.bbagen.2015.05.002_bb0410) 2008; 29 Zhou (10.1016/j.bbagen.2015.05.002_bb0275) 2013; 587 Ogston (10.1016/j.bbagen.2015.05.002_bb0040) 1970; 74 Kozer (10.1016/j.bbagen.2015.05.002_bb0285) 2007; 92 Chowhan (10.1016/j.bbagen.2015.05.002_bb0420) 2013; 4 Ma (10.1016/j.bbagen.2015.05.002_bb0475) 2012; 7 Ross (10.1016/j.bbagen.2015.05.002_bb0400) 2004; 10 Galan (10.1016/j.bbagen.2015.05.002_bb0450) 2001; 276 Norris (10.1016/j.bbagen.2015.05.002_bb0110) 2011; 405 Huang (10.1016/j.bbagen.2015.05.002_bb0200) 2010; 24 Goodsell (10.1016/j.bbagen.2015.05.002_bb0440) 1991; 16 Itkin (10.1016/j.bbagen.2015.05.002_bb0550) 2011; 6 Mittal (10.1016/j.bbagen.2015.05.002_bb0205) 2014; 9 Asaad (10.1016/j.bbagen.2015.05.002_bb0315) 2003; 125 Harding (10.1016/j.bbagen.2015.05.002_bb0015) 1991 Tellam (10.1016/j.bbagen.2015.05.002_bb0125) 1983; 213 Zs-Nagy (10.1016/j.bbagen.2015.05.002_bb0540) 1982; 5 Inomata (10.1016/j.bbagen.2015.05.002_bb0235) 2009; 458 Jamal (10.1016/j.bbagen.2015.05.002_bb0610) 2009; 276 Takahashi (10.1016/j.bbagen.2015.05.002_bb0565) 2005; 579 Rupley (10.1016/j.bbagen.2015.05.002_bb0365) 1991; 41 Singh (10.1016/j.bbagen.2015.05.002_bb0605) 2011; 8 Herzog (10.1016/j.bbagen.2015.05.002_bb0115) 1978; 91 Ellis (10.1016/j.bbagen.2015.05.002_bb0020) 2001; 11 Minton (10.1016/j.bbagen.2015.05.002_bb0055) 1981; 20 Malik (10.1016/j.bbagen.2015.05.002_bb0145) 2012; 116 Miyoshi (10.1016/j.bbagen.2015.05.002_bb0300) 2009; 131 Mansell (10.1016/j.bbagen.2015.05.002_bb0375) 1983; 20 Ma (10.1016/j.bbagen.2015.05.002_bb0480) 2013; 14 Zhang (10.1016/j.bbagen.2015.05.002_bb0225) 2012; 44 Fenton (10.1016/j.bbagen.2015.05.002_bb0570) 2003; 36 Fan (10.1016/j.bbagen.2015.05.002_bb0150) 2012; 51 Plaza del Pino (10.1016/j.bbagen.2015.05.002_bb0260) 2000 Cheung (10.1016/j.bbagen.2015.05.002_bb0195) 2005; 102 Ellis (10.1016/j.bbagen.2015.05.002_bb0010) 2001; 26 Minton (10.1016/j.bbagen.2015.05.002_bb0165) 2000; 10 Miklos (10.1016/j.bbagen.2015.05.002_bb0210) 2011; 133 Zimmerman (10.1016/j.bbagen.2015.05.002_bb0005) 1991; 222 Kulothungan (10.1016/j.bbagen.2015.05.002_bb0485) 2009; 25 Ali (10.1016/j.bbagen.2015.05.002_bb0585) 2006; 440 Homouz (10.1016/j.bbagen.2015.05.002_bb0330) 2008; 105 Engel (10.1016/j.bbagen.2015.05.002_bb0445) 2008; 283 Chowhan (10.1016/j.bbagen.2015.05.002_bb0425) 2014; 13 Minton (10.1016/j.bbagen.2015.05.002_bb0090) 1998; 295 Ghahghaei (10.1016/j.bbagen.2015.05.002_bb0495) 2010; 29 |
References_xml | – volume: 104 start-page: 18976 year: 2007 end-page: 18981 ident: bb0065 article-title: Molecular crowding enhances native structure and stability of alpha/beta protein flavodoxin publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 92 start-page: 2139 year: 2007 end-page: 2149 ident: bb0285 article-title: Protein–protein association in polymer solutions: from dilute to semidilute to concentrated publication-title: Biophys. J. – volume: 515 start-page: 99 year: 2002 end-page: 103 ident: bb0510 article-title: Accelerated alpha-synuclein fibrillation in crowded milieu publication-title: FEBS Lett. – volume: 295 start-page: 127 year: 1998 end-page: 149 ident: bb0090 article-title: Molecular crowding: analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion publication-title: Methods Enzymol. – volume: 129 start-page: 730 year: 2007 end-page: 731 ident: bb0105 article-title: Effects of macromolecular crowding on the intrinsic catalytic efficiency and structure of enterobactin-specific isochorismate synthase publication-title: J. Am. Chem. Soc. – start-page: 1 year: 1991 end-page: 333 ident: bb0015 article-title: Cataract: Biochemistry, Epidemiology and Pharmacology – volume: 10 start-page: S10 year: 2004 end-page: S17 ident: bb0400 article-title: Protein aggregation and neurodegenerative disease publication-title: Nat. Med. – volume: 3 year: 2013 ident: bb0430 article-title: Polyamines in modulating protein aggregation publication-title: J. Proteins Proteomics – volume: 47 start-page: 8993 year: 2008 end-page: 9006 ident: bb0500 article-title: Guiding protein aggregation with macromolecular crowding publication-title: Biochemistry – volume: 11 start-page: 114 year: 2001 end-page: 119 ident: bb0020 article-title: Macromolecular crowding: an important but neglected aspect of the intracellular environment publication-title: Curr. Opin. Struct. Biol. – volume: 16 start-page: R269 year: 2006 end-page: R271 ident: bb0050 article-title: Macromolecular crowding publication-title: Curr. Biol. – volume: 254 start-page: 172 year: 1998 end-page: 180 ident: bb0345 article-title: Dextran strongly increases the Michaelis constants of oxidative phosphorylation and of mitochondrial creatine kinase in heart mitochondria publication-title: Eur. J. Biochem. – volume: 14 start-page: 21414 year: 2013 end-page: 21427 ident: bb0480 article-title: The role of crowded physiological environments in prion and prion-like protein aggregation publication-title: Int. J. Mol. Sci. – volume: 276 start-page: 6024 year: 2009 end-page: 6032 ident: bb0610 article-title: Relationship between functional activity and protein stability in the presence of all classes of stabilizing osmolytes publication-title: FEBS J. – volume: 77 start-page: 3234 year: 1999 end-page: 3241 ident: bb0340 article-title: Crowding effects on EcoRV kinetics and binding publication-title: Biophys. J. – volume: 7 start-page: e36288 year: 2012 ident: bb0475 article-title: The contrasting effect of macromolecular crowding on amyloid fibril formation publication-title: PLoS One – volume: 21 start-page: 498 year: 1971 end-page: 506 ident: bb0045 article-title: Enzyme reactions in polymer media publication-title: Eur. J. Biochem. – volume: 133 start-page: 8082 year: 2011 end-page: 8085 ident: bb0265 article-title: Macromolecular crowding fails to fold a globular protein in cells publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 37 year: 1991 end-page: 172 ident: bb0365 article-title: Protein hydration and function publication-title: Adv. Protein Chem. – volume: 23 start-page: 160 year: 2004 end-page: 168 ident: bb0590 article-title: Identification of a redox-regulated chaperone network publication-title: EMBO J. – volume: 670 start-page: 316 year: 1981 end-page: 322 ident: bb0120 article-title: Evidence for protein self-association induced by excluded volume. Myoglobin in the presence of globular proteins publication-title: Biochim. Biophys. Acta – volume: 10 start-page: 34 year: 2000 end-page: 39 ident: bb0165 article-title: Implications of macromolecular crowding for protein assembly publication-title: Curr. Opin. Struct. Biol. – volume: 10 start-page: 251 year: 2000 end-page: 256 ident: bb0280 article-title: Macromolecular crowding as a cell volume sensor publication-title: Cell. Physiol. Biochem. – volume: 107 start-page: 17586 year: 2010 end-page: 17591 ident: bb0095 article-title: Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 49 start-page: 2801 year: 2013 end-page: 2803 ident: bb0240 article-title: Quantitative comparison of protein dynamics in live cells and in vitro by in-cell (19)F-NMR publication-title: Chem. Commun. (Camb.) – volume: 279 start-page: 55109 year: 2004 end-page: 55116 ident: bb0460 article-title: Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme: implications for protein folding in intracellular environments publication-title: J. Biol. Chem. – volume: 9 start-page: e114029 year: 2014 ident: bb0205 article-title: Macromolecular crowding induces holo α-lactalbumin aggregation by converting to its apo form publication-title: PLoS One – volume: 110 start-page: 19342 year: 2013 end-page: 19347 ident: bb0220 article-title: Impact of reconstituted cytosol on protein stability publication-title: Proc. Natl. Acad. Sci. – volume: 276 start-page: 957 year: 2001 end-page: 964 ident: bb0450 article-title: Excluded volume effects on the refolding and assembly of an oligomeric protein. GroEL, a case study publication-title: J. Biol. Chem. – volume: 134 start-page: 4842 year: 2012 end-page: 4849 ident: bb0380 article-title: Protein crowding affects hydration structure and dynamics publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 375 year: 2008 end-page: 397 ident: bb0170 article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences publication-title: Annu. Rev. Biophys. – volume: 35 start-page: 4086 year: 2007 end-page: 4093 ident: bb0310 article-title: Regulation of DNA nucleases by molecular crowding publication-title: Nucleic Acids Res. – volume: 105 start-page: 11754 year: 2008 end-page: 11759 ident: bb0330 article-title: Crowded, cell-like environment induces shape changes in aspherical protein publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 16 start-page: 229 year: 1981 end-page: 240 ident: bb0535 article-title: Alterations in total content and solubility characteristics of proteins in rat brain and liver during aging and centrophenoxine treatment publication-title: Exp. Gerontol. – volume: 22 start-page: 431 year: 2003 end-page: 439 ident: bb0360 article-title: Effects of macromolecular crowding on the unfolding and the refolding of D-glyceraldehyde-3-phosophospate dehydrogenase publication-title: J. Protein Chem. – volume: 44 start-page: 9096 year: 2005 end-page: 9107 ident: bb0505 article-title: Forcing nonamyloidogenic beta-synuclein to fibrillate publication-title: Biochemistry – volume: 156 start-page: 273 year: 2014 end-page: 282 ident: bb0135 article-title: Macromolecular crowding decelerates aggregation of a β-rich protein, bovine carbonic anhydrase: a case study publication-title: J. Biochem. – volume: 14 start-page: 59 year: 1979 end-page: 63 ident: bb0530 article-title: Content of water-soluble and total proteins in the aging human brain publication-title: Exp. Gerontol. – volume: 284 start-page: 30148 year: 2009 end-page: 30158 ident: bb0470 article-title: Crowded cell-like environment accelerates the nucleation step of amyloidogenic protein misfolding publication-title: J. Biol. Chem. – volume: 6 start-page: e18250 year: 2011 ident: bb0550 article-title: Calcium ions promote formation of amyloid β-peptide (1–40) oligomers causally implicated in neuronal toxicity of Alzheimer's disease publication-title: PLoS One – volume: 458 start-page: 106 year: 2009 end-page: 109 ident: bb0235 article-title: High-resolution multi-dimensional NMR spectroscopy of proteins in human cells publication-title: Nature – volume: 25 start-page: 6637 year: 2009 end-page: 6648 ident: bb0485 article-title: Effect of crowding agents, signal peptide, and chaperone SecB on the folding and aggregation of publication-title: Langmuir – volume: 1764 start-page: 1000 year: 2006 end-page: 1006 ident: bb0100 article-title: The effect of the presence of globular proteins and elongated polymers on enzyme activity publication-title: Biochim. Biophys. Acta – volume: 126 start-page: 14330 year: 2004 end-page: 14331 ident: bb0290 article-title: The effect of molecular crowding with nucleotide length and cosolute structure on DNA duplex stability publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 4753 year: 2005 end-page: 4758 ident: bb0195 article-title: Molecular crowding enhances native state stability and refolding rates of globular proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 58 year: 2000 end-page: 70 ident: bb0260 article-title: Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases publication-title: Proteins – volume: 19 start-page: 3870 year: 2000 end-page: 3875 ident: bb0160 article-title: Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell publication-title: EMBO J. – volume: 29 start-page: 31 year: 2008 end-page: 41 ident: bb0410 article-title: Phenylketonuria: an inborn error of phenylalanine metabolism publication-title: Clin. Biochem. Rev. – volume: 213 start-page: 651 year: 1983 end-page: 659 ident: bb0125 article-title: The influence of poly(ethylene glycol) 6000 on the properties of skeletal-muscle actin publication-title: Biochem. J. – volume: 65 start-page: 1155 year: 1993 end-page: 1161 ident: bb0085 article-title: Macromolecular diffusion in crowded solutions publication-title: Biophys. J. – volume: 37 start-page: 123 year: 2004 end-page: 130 ident: bb0190 article-title: Loops, linkages, rings, catenanes, cages, and crowders: entropy-based strategies for stabilizing proteins publication-title: Acc. Chem. Res. – volume: 579 start-page: 1783 year: 2005 end-page: 1788 ident: bb0565 article-title: Space in systems biology of signaling pathways—towards intracellular molecular crowding in silico publication-title: FEBS Lett. – volume: 88 start-page: 157 year: 2007 end-page: 163 ident: bb0250 article-title: From the test tube to the cell: exploring the folding and aggregation of a beta-clam protein publication-title: Biopolymers – volume: 16 start-page: 203 year: 1991 end-page: 206 ident: bb0440 article-title: Inside a living cell publication-title: Trends Biochem. Sci. – volume: 125 start-page: 6874 year: 2003 end-page: 6875 ident: bb0315 article-title: Cytosol-mimetic chemistry: kinetics of the trypsin-catalyzed hydrolysis of p-nitrophenyl acetate upon addition of polyethylene glycol and N-tert-butyl acetoacetamide publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 82 year: 2013 end-page: 87 ident: bb0140 article-title: Macromolecular crowding modulates the kinetics and morphology of amyloid self-assembly by beta-lactoglobulin publication-title: Int. J. Biol. Macromol. – volume: 8 start-page: e78936 year: 2013 ident: bb0060 article-title: Denatured state structural property determines protein stabilization by macromolecular crowding: a thermodynamic and structural approach publication-title: PLoS One – volume: 44 start-page: 703 year: 2012 end-page: 711 ident: bb0225 article-title: Effects of macromolecular crowding on the structural stability of human alpha-lactalbumin publication-title: Acta Biochim. Biophys. Sin. (Shanghai) – volume: 18 start-page: 6927 year: 1999 end-page: 6933 ident: bb0155 article-title: Effects of macromolecular crowding on protein folding and aggregation publication-title: EMBO J. – volume: 405 start-page: 388 year: 2011 end-page: 392 ident: bb0110 article-title: What is the true enzyme kinetics in the biological system? An investigation of macromolecular crowding effect upon enzyme kinetics of glucose-6-phosphate dehydrogenase publication-title: Biochem. Biophys. Res. Commun. – volume: 135 start-page: 3696 year: 2013 end-page: 3701 ident: bb0215 article-title: Reduced native state stability in crowded cellular environment due to protein–protein interactions publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 697 year: 2006 end-page: 707 ident: bb0580 article-title: Structure of an hsp90-cdc37-cdk4 complex publication-title: Mol. Cell – volume: 7 start-page: 285 year: 2011 end-page: 295 ident: bb0415 article-title: Gain of function of mutant p53 by coaggregation with multiple tumor suppressors publication-title: Nat. Chem. Biol. – volume: 89 start-page: 253 year: 1963 end-page: 257 ident: bb0030 article-title: The interaction between polysaccharides and other macromolecules. 5. The solubility of proteins in the presence of dextran publication-title: Biochem. J. – volume: 14 start-page: 178 year: 2013 end-page: 183 ident: bb0525 article-title: Facilitated aggregation of FG nucleoporins under molecular crowding conditions publication-title: EMBO Rep. – volume: 74 start-page: 668 year: 1970 end-page: 669 ident: bb0040 article-title: On the interaction of solute molecules with porous networks publication-title: J. Phys. Chem. – volume: 13 start-page: 1246 year: 2014 end-page: 1257 ident: bb0425 article-title: Ignored Avenues in Alpha-Synuclein Associated Proteopathy. CNS & Neurological Disorders-Drug Targets publication-title: CNS Neurol. Disord. Drug Targets – volume: 581 start-page: 5065 year: 2007 end-page: 5069 ident: bb0075 article-title: Macromolecular crowding increases structural content of folded proteins publication-title: FEBS Lett. – volume: 33 start-page: 844 year: 2001 end-page: 864 ident: bb0560 article-title: Macromolecular crowding and its role as intracellular signalling of cell volume regulation publication-title: Int. J. Biochem. Cell Biol. – volume: 5 start-page: 118 year: 1982 end-page: 122 ident: bb0540 article-title: Protein and water contents of aging brain publication-title: Exp. Brain Res. Suppl. – volume: 101 start-page: 523 year: 2004 end-page: 528 ident: bb0245 article-title: Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 79 start-page: 031910 year: 2009 end-page: 031913 ident: bb0185 article-title: Compression of random coils due to macromolecular crowding publication-title: Phys. Rev. E – volume: 58 start-page: 125 year: 2005 end-page: 133 ident: bb0405 article-title: Amyloid in the cardiovascular system: a review publication-title: J. Clin. Pathol. – volume: 37 start-page: 106 year: 2012 end-page: 117 ident: bb0600 article-title: Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions publication-title: Trends Biochem. Sci. – volume: 62 start-page: 670 year: 2005 end-page: 684 ident: bb0575 article-title: Hsp70 chaperones: cellular functions and molecular mechanism publication-title: Cell. Mol. Life Sci. – volume: 133 start-page: 7116 year: 2011 end-page: 7120 ident: bb0210 article-title: Protein crowding tunes protein stability publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 117 year: 2009 end-page: 130 ident: bb0370 article-title: From shell to cell: neutron scattering studies of biological water dynamics and coupling to activity publication-title: Faraday Discuss. – volume: 283 start-page: 27383 year: 2008 end-page: 27394 ident: bb0445 article-title: Macromolecular crowding compacts unfolded apoflavodoxin and causes severe aggregation of the off-pathway intermediate during apoflavodoxin folding publication-title: J. Biol. Chem. – volume: 67 start-page: 857 year: 1990 end-page: 860 ident: bb0180 article-title: Effect of “crowding” in protein solutions publication-title: J. Chem. Educ. – volume: 426 start-page: 11 year: 2014 end-page: 20 ident: bb0230 article-title: The extracellular protein VlsE is destabilized inside cells publication-title: J. Mol. Biol. – volume: 1804 start-page: 740 year: 2010 end-page: 744 ident: bb0320 article-title: Non-linear effects of macromolecular crowding on enzymatic activity of multi-copper oxidase publication-title: Biochim. Biophys. Acta – volume: 30 start-page: 345 year: 1982 end-page: 347 ident: bb0435 article-title: How crowded is the cytoplasm? publication-title: Cell – volume: 115 start-page: 1115 year: 2011 end-page: 1121 ident: bb0350 article-title: Effect of crowding by dextrans on the hydrolysis of N-Succinyl-L-phenyl-Ala-p-nitroanilide catalyzed by alpha-chymotrypsin publication-title: J. Phys. Chem. B – volume: 29 start-page: 257 year: 2010 end-page: 264 ident: bb0495 article-title: The effects of molecular crowding on the amyloid fibril formation of alpha-lactalbumin and the chaperone action of alpha-casein publication-title: Protein J. – volume: 53 start-page: 1601 year: 2014 end-page: 1606 ident: bb0270 article-title: Protein crowder charge and protein stability publication-title: Biochemistry – volume: 131 start-page: 3522 year: 2009 end-page: 3531 ident: bb0300 article-title: Hydration of Watson–Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 229 year: 2003 end-page: 256 ident: bb0570 article-title: Chaperonin-mediated protein folding: fate of substrate polypeptide publication-title: Q. Rev. Biophys. – volume: 88 start-page: 971 year: 2005 end-page: 985 ident: bb0175 article-title: Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited publication-title: Biophys. J. – volume: 51 start-page: 113 year: 2012 end-page: 118 ident: bb0150 article-title: Effects of macromolecular crowding on refolding of recombinant human brain-type creatine kinase publication-title: Int. J. Biol. Macromol. – volume: 41 start-page: 5050 year: 2002 end-page: 5055 ident: bb0615 article-title: Requirement for GroEL/GroES-dependent protein folding under nonpermissive conditions of macromolecular crowding publication-title: Biochemistry – volume: 128 start-page: 7957 year: 2006 end-page: 7963 ident: bb0295 article-title: Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions publication-title: J. Am. Chem. Soc. – volume: 222 start-page: 599 year: 1991 end-page: 620 ident: bb0005 article-title: Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of publication-title: J. Mol. Biol. – volume: 5 start-page: 120 year: 1980 end-page: 122 ident: bb0025 article-title: The infrastructure of the mitochondrial matrix publication-title: Trends Biochem. Sci. – volume: 61 start-page: 1171 year: 1993 end-page: 1174 ident: bb0545 article-title: Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide publication-title: J. Neurochem. – volume: 93 start-page: 1424 year: 2011 end-page: 1433 ident: bb0385 article-title: Role of hydration on the functionality of a proteolytic enzyme alpha-chymotrypsin under crowded environment publication-title: Biochimie – volume: 20 start-page: 4821 year: 1981 end-page: 4826 ident: bb0055 article-title: Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase publication-title: Biochemistry – volume: 91 start-page: 249 year: 1978 end-page: 254 ident: bb0115 article-title: Microtubule formation by pure brain tubulin in vitro. The influence of dextran and poly(ethylene glycol) publication-title: Eur. J. Biochem. – volume: 448 start-page: 12 year: 2006 end-page: 18 ident: bb0325 article-title: Applications of isothermal titration calorimetry to measure enzyme kinetics and activity in complex solutions publication-title: Thermochim. Acta – start-page: 268 year: 2012 end-page: 280 ident: bb0355 article-title: Inactivation of recombinant human brain-type creatine kinase during denaturation by guanidine hydrochloride in a macromolecular crowding system publication-title: Appl. Biochem. Biotechnol. – volume: 181 start-page: 223 year: 1973 end-page: 230 ident: bb0395 article-title: Principles that govern the folding of protein chains publication-title: Science – volume: 24 start-page: 3536 year: 2010 end-page: 3543 ident: bb0200 article-title: Macromolecular crowding converts the human recombinant PrPC to the soluble neurotoxic beta-oligomers publication-title: FASEB J. – volume: 15 start-page: 1079 year: 2008 end-page: 1085 ident: bb0520 article-title: Concerted action of metals and macromolecular crowding on the fibrillation of alpha-synuclein publication-title: Protein Pept. Lett. – volume: 440 start-page: 1013 year: 2006 end-page: 1017 ident: bb0585 article-title: Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex publication-title: Nature – volume: 116 start-page: 12895 year: 2012 end-page: 12904 ident: bb0145 article-title: Myoglobin unfolding in crowding and confinement publication-title: J. Phys. Chem. B – volume: 4 start-page: 139 year: 2013 end-page: 148 ident: bb0420 article-title: Recent trends in treating neuronal proteinopathies publication-title: J. Proteins Proteomics – volume: 120 start-page: 179 year: 1980 end-page: 182 ident: bb0130 article-title: Self-association of the pyruvate dehydrogenase complex from publication-title: FEBS Lett. – volume: 276 start-page: 10577 year: 2001 end-page: 10580 ident: bb0255 article-title: The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media publication-title: J. Biol. Chem. – volume: 282 start-page: 33452 year: 2007 end-page: 33458 ident: bb0305 article-title: Effect of high concentration of inert cosolutes on the refolding of an enzyme: carbonic anhydrase B in sucrose and ficoll 70 publication-title: J. Biol. Chem. – volume: 364 start-page: 469 year: 2006 end-page: 482 ident: bb0455 article-title: Mixed macromolecular crowding accelerates the refolding of rabbit muscle creatine kinase: implications for protein folding in physiological environments publication-title: J. Mol. Biol. – volume: 41 start-page: 3855 year: 2002 end-page: 3860 ident: bb0515 article-title: Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease? publication-title: Biochemistry – volume: 48 start-page: 3828 year: 2009 end-page: 3837 ident: bb0595 article-title: Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins publication-title: Biochemistry – volume: 587 start-page: 394 year: 2013 end-page: 397 ident: bb0275 article-title: Polymer crowders and protein crowders act similarly on protein folding stability publication-title: FEBS Lett. – volume: 17 start-page: 456 year: 2004 end-page: 464 ident: bb0465 article-title: The effect of macromolecular crowding on protein aggregation and amyloid fibril formation publication-title: J. Mol. Recognit. – volume: 89 start-page: 249 year: 1963 end-page: 253 ident: bb0035 article-title: The interaction between polysaccharides and other macromolecules. 4. The osmotic pressure of mixtures of serum albumin and hyaluronic acid publication-title: Biochem. J. – volume: 85 start-page: 2984 year: 1988 end-page: 2988 ident: bb0080 article-title: Tracer diffusion of globular proteins in concentrated protein solutions publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 26 start-page: 597 year: 2001 end-page: 604 ident: bb0010 article-title: Macromolecular crowding: obvious but underappreciated publication-title: Trends Biochem. Sci. – volume: 93 start-page: 2170 year: 2007 end-page: 2177 ident: bb0070 article-title: Macromolecular crowding induces a molten globule state in the C-terminal domain of histone H1 publication-title: Biophys. J. – volume: 8 start-page: 1 year: 2011 end-page: 23 ident: bb0605 article-title: Forty years of research on osmolyte-induced protein folding and stability publication-title: J. Iran. Chem. Soc. – volume: 83 start-page: 477 year: 2006 end-page: 486 ident: bb0335 article-title: Effect of crowding by dextrans and Ficolls on the rate of alkaline phosphatase-catalyzed hydrolysis: a size-dependent investigation publication-title: Biopolymers – volume: 277 start-page: 7824 year: 2002 end-page: 7830 ident: bb0490 article-title: Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II publication-title: J. Biol. Chem. – volume: 20 start-page: 591 year: 1983 end-page: 612 ident: bb0375 article-title: Cellular and molecular consequences of reduced cell water content publication-title: Cryobiology – volume: 594 start-page: 1 year: 2007 end-page: 13 ident: bb0555 article-title: Protein misassembly: macromolecular crowding and molecular chaperones publication-title: Adv. Exp. Med. Biol. – start-page: 19 year: 2013 end-page: 27 ident: bb0390 article-title: Study on effects of molecular crowding on G-quadruplex-ligand binding and ligand-mediated telomerase inhibition publication-title: Methods – volume: 222 start-page: 599 year: 1991 ident: 10.1016/j.bbagen.2015.05.002_bb0005 article-title: Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(91)90499-V – volume: 587 start-page: 394 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0275 article-title: Polymer crowders and protein crowders act similarly on protein folding stability publication-title: FEBS Lett. doi: 10.1016/j.febslet.2013.01.030 – volume: 29 start-page: 31 year: 2008 ident: 10.1016/j.bbagen.2015.05.002_bb0410 article-title: Phenylketonuria: an inborn error of phenylalanine metabolism publication-title: Clin. Biochem. Rev. – volume: 61 start-page: 1171 year: 1993 ident: 10.1016/j.bbagen.2015.05.002_bb0545 article-title: Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1993.tb03639.x – volume: 1804 start-page: 740 year: 2010 ident: 10.1016/j.bbagen.2015.05.002_bb0320 article-title: Non-linear effects of macromolecular crowding on enzymatic activity of multi-copper oxidase publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2009.11.013 – volume: 276 start-page: 6024 year: 2009 ident: 10.1016/j.bbagen.2015.05.002_bb0610 article-title: Relationship between functional activity and protein stability in the presence of all classes of stabilizing osmolytes publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.07317.x – volume: 405 start-page: 388 year: 2011 ident: 10.1016/j.bbagen.2015.05.002_bb0110 article-title: What is the true enzyme kinetics in the biological system? An investigation of macromolecular crowding effect upon enzyme kinetics of glucose-6-phosphate dehydrogenase publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.01.037 – volume: 14 start-page: 21414 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0480 article-title: The role of crowded physiological environments in prion and prion-like protein aggregation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms141121339 – volume: 579 start-page: 1783 year: 2005 ident: 10.1016/j.bbagen.2015.05.002_bb0565 article-title: Space in systems biology of signaling pathways—towards intracellular molecular crowding in silico publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.01.072 – volume: 7 start-page: e36288 year: 2012 ident: 10.1016/j.bbagen.2015.05.002_bb0475 article-title: The contrasting effect of macromolecular crowding on amyloid fibril formation publication-title: PLoS One doi: 10.1371/journal.pone.0036288 – volume: 128 start-page: 7957 year: 2006 ident: 10.1016/j.bbagen.2015.05.002_bb0295 article-title: Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061267m – volume: 440 start-page: 1013 year: 2006 ident: 10.1016/j.bbagen.2015.05.002_bb0585 article-title: Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex publication-title: Nature doi: 10.1038/nature04716 – volume: 24 start-page: 3536 year: 2010 ident: 10.1016/j.bbagen.2015.05.002_bb0200 article-title: Macromolecular crowding converts the human recombinant PrPC to the soluble neurotoxic beta-oligomers publication-title: FASEB J. doi: 10.1096/fj.09-150987 – volume: 283 start-page: 27383 year: 2008 ident: 10.1016/j.bbagen.2015.05.002_bb0445 article-title: Macromolecular crowding compacts unfolded apoflavodoxin and causes severe aggregation of the off-pathway intermediate during apoflavodoxin folding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802393200 – volume: 107 start-page: 17586 year: 2010 ident: 10.1016/j.bbagen.2015.05.002_bb0095 article-title: Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1006760107 – volume: 47 start-page: 8993 year: 2008 ident: 10.1016/j.bbagen.2015.05.002_bb0500 article-title: Guiding protein aggregation with macromolecular crowding publication-title: Biochemistry doi: 10.1021/bi8008399 – volume: 116 start-page: 12895 year: 2012 ident: 10.1016/j.bbagen.2015.05.002_bb0145 article-title: Myoglobin unfolding in crowding and confinement publication-title: J. Phys. Chem. B doi: 10.1021/jp306873v – volume: 1764 start-page: 1000 year: 2006 ident: 10.1016/j.bbagen.2015.05.002_bb0100 article-title: The effect of the presence of globular proteins and elongated polymers on enzyme activity publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2006.01.005 – volume: 5 start-page: 120 year: 1980 ident: 10.1016/j.bbagen.2015.05.002_bb0025 article-title: The infrastructure of the mitochondrial matrix publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(80)90051-1 – volume: 181 start-page: 223 year: 1973 ident: 10.1016/j.bbagen.2015.05.002_bb0395 article-title: Principles that govern the folding of protein chains publication-title: Science doi: 10.1126/science.181.4096.223 – volume: 276 start-page: 10577 year: 2001 ident: 10.1016/j.bbagen.2015.05.002_bb0255 article-title: The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media publication-title: J. Biol. Chem. doi: 10.1074/jbc.R100005200 – volume: 41 start-page: 37 year: 1991 ident: 10.1016/j.bbagen.2015.05.002_bb0365 article-title: Protein hydration and function publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(08)60197-7 – volume: 3 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0430 article-title: Polyamines in modulating protein aggregation publication-title: J. Proteins Proteomics – volume: 10 start-page: 34 year: 2000 ident: 10.1016/j.bbagen.2015.05.002_bb0165 article-title: Implications of macromolecular crowding for protein assembly publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(99)00045-7 – volume: 8 start-page: 1 year: 2011 ident: 10.1016/j.bbagen.2015.05.002_bb0605 article-title: Forty years of research on osmolyte-induced protein folding and stability publication-title: J. Iran. Chem. Soc. doi: 10.1007/BF03246197 – volume: 14 start-page: 178 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0525 article-title: Facilitated aggregation of FG nucleoporins under molecular crowding conditions publication-title: EMBO Rep. doi: 10.1038/embor.2012.204 – volume: 105 start-page: 11754 year: 2008 ident: 10.1016/j.bbagen.2015.05.002_bb0330 article-title: Crowded, cell-like environment induces shape changes in aspherical protein publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0803672105 – volume: 282 start-page: 33452 year: 2007 ident: 10.1016/j.bbagen.2015.05.002_bb0305 article-title: Effect of high concentration of inert cosolutes on the refolding of an enzyme: carbonic anhydrase B in sucrose and ficoll 70 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M705157200 – volume: 22 start-page: 431 year: 2003 ident: 10.1016/j.bbagen.2015.05.002_bb0360 article-title: Effects of macromolecular crowding on the unfolding and the refolding of D-glyceraldehyde-3-phosophospate dehydrogenase publication-title: J. Protein Chem. doi: 10.1023/B:JOPC.0000005458.08802.11 – volume: 85 start-page: 2984 year: 1988 ident: 10.1016/j.bbagen.2015.05.002_bb0080 article-title: Tracer diffusion of globular proteins in concentrated protein solutions publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.85.9.2984 – volume: 89 start-page: 253 year: 1963 ident: 10.1016/j.bbagen.2015.05.002_bb0030 article-title: The interaction between polysaccharides and other macromolecules. 5. The solubility of proteins in the presence of dextran publication-title: Biochem. J. doi: 10.1042/bj0890253 – volume: 18 start-page: 6927 year: 1999 ident: 10.1016/j.bbagen.2015.05.002_bb0155 article-title: Effects of macromolecular crowding on protein folding and aggregation publication-title: EMBO J. doi: 10.1093/emboj/18.24.6927 – volume: 594 start-page: 1 year: 2007 ident: 10.1016/j.bbagen.2015.05.002_bb0555 article-title: Protein misassembly: macromolecular crowding and molecular chaperones publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-0-387-39975-1_1 – volume: 5 start-page: 118 year: 1982 ident: 10.1016/j.bbagen.2015.05.002_bb0540 article-title: Protein and water contents of aging brain publication-title: Exp. Brain Res. Suppl. doi: 10.1007/978-3-642-68507-1_15 – volume: 65 start-page: 1155 year: 1993 ident: 10.1016/j.bbagen.2015.05.002_bb0085 article-title: Macromolecular diffusion in crowded solutions publication-title: Biophys. J. doi: 10.1016/S0006-3495(93)81145-7 – volume: 77 start-page: 3234 year: 1999 ident: 10.1016/j.bbagen.2015.05.002_bb0340 article-title: Crowding effects on EcoRV kinetics and binding publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77154-7 – volume: 36 start-page: 229 year: 2003 ident: 10.1016/j.bbagen.2015.05.002_bb0570 article-title: Chaperonin-mediated protein folding: fate of substrate polypeptide publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583503003883 – volume: 133 start-page: 8082 year: 2011 ident: 10.1016/j.bbagen.2015.05.002_bb0265 article-title: Macromolecular crowding fails to fold a globular protein in cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201206t – volume: 13 start-page: 1246 year: 2014 ident: 10.1016/j.bbagen.2015.05.002_bb0425 article-title: Ignored Avenues in Alpha-Synuclein Associated Proteopathy. CNS & Neurological Disorders-Drug Targets publication-title: CNS Neurol. Disord. Drug Targets doi: 10.2174/1871527313666140917121943 – volume: 104 start-page: 18976 year: 2007 ident: 10.1016/j.bbagen.2015.05.002_bb0065 article-title: Molecular crowding enhances native structure and stability of alpha/beta protein flavodoxin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0705127104 – volume: 23 start-page: 160 year: 2004 ident: 10.1016/j.bbagen.2015.05.002_bb0590 article-title: Identification of a redox-regulated chaperone network publication-title: EMBO J. doi: 10.1038/sj.emboj.7600016 – volume: 10 start-page: 251 year: 2000 ident: 10.1016/j.bbagen.2015.05.002_bb0280 article-title: Macromolecular crowding as a cell volume sensor publication-title: Cell. Physiol. Biochem. doi: 10.1159/000016371 – volume: 110 start-page: 19342 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0220 article-title: Impact of reconstituted cytosol on protein stability publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1312678110 – volume: 29 start-page: 257 year: 2010 ident: 10.1016/j.bbagen.2015.05.002_bb0495 article-title: The effects of molecular crowding on the amyloid fibril formation of alpha-lactalbumin and the chaperone action of alpha-casein publication-title: Protein J. doi: 10.1007/s10930-010-9247-3 – volume: 74 start-page: 668 year: 1970 ident: 10.1016/j.bbagen.2015.05.002_bb0040 article-title: On the interaction of solute molecules with porous networks publication-title: J. Phys. Chem. doi: 10.1021/j100698a032 – volume: 515 start-page: 99 year: 2002 ident: 10.1016/j.bbagen.2015.05.002_bb0510 article-title: Accelerated alpha-synuclein fibrillation in crowded milieu publication-title: FEBS Lett. doi: 10.1016/S0014-5793(02)02446-8 – volume: 25 start-page: 6637 year: 2009 ident: 10.1016/j.bbagen.2015.05.002_bb0485 article-title: Effect of crowding agents, signal peptide, and chaperone SecB on the folding and aggregation of E. coli maltose binding protein publication-title: Langmuir doi: 10.1021/la900198h – volume: 141 start-page: 117 year: 2009 ident: 10.1016/j.bbagen.2015.05.002_bb0370 article-title: From shell to cell: neutron scattering studies of biological water dynamics and coupling to activity publication-title: Faraday Discuss. doi: 10.1039/B805506H – volume: 19 start-page: 3870 year: 2000 ident: 10.1016/j.bbagen.2015.05.002_bb0160 article-title: Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell publication-title: EMBO J. doi: 10.1093/emboj/19.15.3870 – volume: 134 start-page: 4842 year: 2012 ident: 10.1016/j.bbagen.2015.05.002_bb0380 article-title: Protein crowding affects hydration structure and dynamics publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211115q – volume: 23 start-page: 697 year: 2006 ident: 10.1016/j.bbagen.2015.05.002_bb0580 article-title: Structure of an hsp90-cdc37-cdk4 complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.07.016 – volume: 79 start-page: 031910 year: 2009 ident: 10.1016/j.bbagen.2015.05.002_bb0185 article-title: Compression of random coils due to macromolecular crowding publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.031910 – volume: 83 start-page: 477 year: 2006 ident: 10.1016/j.bbagen.2015.05.002_bb0335 article-title: Effect of crowding by dextrans and Ficolls on the rate of alkaline phosphatase-catalyzed hydrolysis: a size-dependent investigation publication-title: Biopolymers doi: 10.1002/bip.20578 – volume: 30 start-page: 345 year: 1982 ident: 10.1016/j.bbagen.2015.05.002_bb0435 article-title: How crowded is the cytoplasm? publication-title: Cell doi: 10.1016/0092-8674(82)90231-8 – volume: 16 start-page: 229 year: 1981 ident: 10.1016/j.bbagen.2015.05.002_bb0535 article-title: Alterations in total content and solubility characteristics of proteins in rat brain and liver during aging and centrophenoxine treatment publication-title: Exp. Gerontol. doi: 10.1016/0531-5565(81)90018-8 – volume: 37 start-page: 106 year: 2012 ident: 10.1016/j.bbagen.2015.05.002_bb0600 article-title: Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2011.11.005 – volume: 26 start-page: 597 year: 2001 ident: 10.1016/j.bbagen.2015.05.002_bb0010 article-title: Macromolecular crowding: obvious but underappreciated publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(01)01938-7 – volume: 9 start-page: e114029 year: 2014 ident: 10.1016/j.bbagen.2015.05.002_bb0205 article-title: Macromolecular crowding induces holo α-lactalbumin aggregation by converting to its apo form publication-title: PLoS One doi: 10.1371/journal.pone.0114029 – volume: 93 start-page: 2170 year: 2007 ident: 10.1016/j.bbagen.2015.05.002_bb0070 article-title: Macromolecular crowding induces a molten globule state in the C-terminal domain of histone H1 publication-title: Biophys. J. doi: 10.1529/biophysj.107.104513 – start-page: 1 year: 1991 ident: 10.1016/j.bbagen.2015.05.002_bb0015 – volume: 426 start-page: 11 year: 2014 ident: 10.1016/j.bbagen.2015.05.002_bb0230 article-title: The extracellular protein VlsE is destabilized inside cells publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2013.08.024 – volume: 125 start-page: 6874 year: 2003 ident: 10.1016/j.bbagen.2015.05.002_bb0315 article-title: Cytosol-mimetic chemistry: kinetics of the trypsin-catalyzed hydrolysis of p-nitrophenyl acetate upon addition of polyethylene glycol and N-tert-butyl acetoacetamide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034298f – volume: 115 start-page: 1115 year: 2011 ident: 10.1016/j.bbagen.2015.05.002_bb0350 article-title: Effect of crowding by dextrans on the hydrolysis of N-Succinyl-L-phenyl-Ala-p-nitroanilide catalyzed by alpha-chymotrypsin publication-title: J. Phys. Chem. B doi: 10.1021/jp105296c – volume: 17 start-page: 456 year: 2004 ident: 10.1016/j.bbagen.2015.05.002_bb0465 article-title: The effect of macromolecular crowding on protein aggregation and amyloid fibril formation publication-title: J. Mol. Recognit. doi: 10.1002/jmr.699 – volume: 156 start-page: 273 year: 2014 ident: 10.1016/j.bbagen.2015.05.002_bb0135 article-title: Macromolecular crowding decelerates aggregation of a β-rich protein, bovine carbonic anhydrase: a case study publication-title: J. Biochem. doi: 10.1093/jb/mvu039 – volume: 41 start-page: 5050 year: 2002 ident: 10.1016/j.bbagen.2015.05.002_bb0615 article-title: Requirement for GroEL/GroES-dependent protein folding under nonpermissive conditions of macromolecular crowding publication-title: Biochemistry doi: 10.1021/bi015925l – volume: 448 start-page: 12 year: 2006 ident: 10.1016/j.bbagen.2015.05.002_bb0325 article-title: Applications of isothermal titration calorimetry to measure enzyme kinetics and activity in complex solutions publication-title: Thermochim. Acta doi: 10.1016/j.tca.2006.06.019 – volume: 279 start-page: 55109 year: 2004 ident: 10.1016/j.bbagen.2015.05.002_bb0460 article-title: Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme: implications for protein folding in intracellular environments publication-title: J. Biol. Chem. doi: 10.1074/jbc.M409086200 – volume: 92 start-page: 2139 year: 2007 ident: 10.1016/j.bbagen.2015.05.002_bb0285 article-title: Protein–protein association in polymer solutions: from dilute to semidilute to concentrated publication-title: Biophys. J. doi: 10.1529/biophysj.106.097717 – volume: 16 start-page: R269 year: 2006 ident: 10.1016/j.bbagen.2015.05.002_bb0050 article-title: Macromolecular crowding publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.03.047 – volume: 276 start-page: 957 year: 2001 ident: 10.1016/j.bbagen.2015.05.002_bb0450 article-title: Excluded volume effects on the refolding and assembly of an oligomeric protein. GroEL, a case study publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006861200 – volume: 670 start-page: 316 year: 1981 ident: 10.1016/j.bbagen.2015.05.002_bb0120 article-title: Evidence for protein self-association induced by excluded volume. Myoglobin in the presence of globular proteins publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2795(81)90103-3 – volume: 131 start-page: 3522 year: 2009 ident: 10.1016/j.bbagen.2015.05.002_bb0300 article-title: Hydration of Watson–Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805972a – volume: 53 start-page: 82 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0140 article-title: Macromolecular crowding modulates the kinetics and morphology of amyloid self-assembly by beta-lactoglobulin publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2012.11.008 – volume: 102 start-page: 4753 year: 2005 ident: 10.1016/j.bbagen.2015.05.002_bb0195 article-title: Molecular crowding enhances native state stability and refolding rates of globular proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0409630102 – volume: 44 start-page: 9096 year: 2005 ident: 10.1016/j.bbagen.2015.05.002_bb0505 article-title: Forcing nonamyloidogenic beta-synuclein to fibrillate publication-title: Biochemistry doi: 10.1021/bi048778a – start-page: 58 year: 2000 ident: 10.1016/j.bbagen.2015.05.002_bb0260 article-title: Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases publication-title: Proteins doi: 10.1002/(SICI)1097-0134(20000701)40:1<58::AID-PROT80>3.0.CO;2-M – volume: 44 start-page: 703 year: 2012 ident: 10.1016/j.bbagen.2015.05.002_bb0225 article-title: Effects of macromolecular crowding on the structural stability of human alpha-lactalbumin publication-title: Acta Biochim. Biophys. Sin. (Shanghai) doi: 10.1093/abbs/gms052 – volume: 58 start-page: 125 year: 2005 ident: 10.1016/j.bbagen.2015.05.002_bb0405 article-title: Amyloid in the cardiovascular system: a review publication-title: J. Clin. Pathol. doi: 10.1136/jcp.2004.017293 – volume: 20 start-page: 4821 year: 1981 ident: 10.1016/j.bbagen.2015.05.002_bb0055 article-title: Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase publication-title: Biochemistry doi: 10.1021/bi00520a003 – volume: 91 start-page: 249 year: 1978 ident: 10.1016/j.bbagen.2015.05.002_bb0115 article-title: Microtubule formation by pure brain tubulin in vitro. The influence of dextran and poly(ethylene glycol) publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1978.tb20959.x – volume: 93 start-page: 1424 year: 2011 ident: 10.1016/j.bbagen.2015.05.002_bb0385 article-title: Role of hydration on the functionality of a proteolytic enzyme alpha-chymotrypsin under crowded environment publication-title: Biochimie doi: 10.1016/j.biochi.2011.04.017 – volume: 88 start-page: 157 year: 2007 ident: 10.1016/j.bbagen.2015.05.002_bb0250 article-title: From the test tube to the cell: exploring the folding and aggregation of a beta-clam protein publication-title: Biopolymers doi: 10.1002/bip.20665 – volume: 277 start-page: 7824 year: 2002 ident: 10.1016/j.bbagen.2015.05.002_bb0490 article-title: Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110429200 – volume: 88 start-page: 971 year: 2005 ident: 10.1016/j.bbagen.2015.05.002_bb0175 article-title: Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited publication-title: Biophys. J. doi: 10.1529/biophysj.104.050351 – volume: 254 start-page: 172 year: 1998 ident: 10.1016/j.bbagen.2015.05.002_bb0345 article-title: Dextran strongly increases the Michaelis constants of oxidative phosphorylation and of mitochondrial creatine kinase in heart mitochondria publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1998.2540172.x – volume: 11 start-page: 114 year: 2001 ident: 10.1016/j.bbagen.2015.05.002_bb0020 article-title: Macromolecular crowding: an important but neglected aspect of the intracellular environment publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(00)00172-X – start-page: 268 year: 2012 ident: 10.1016/j.bbagen.2015.05.002_bb0355 article-title: Inactivation of recombinant human brain-type creatine kinase during denaturation by guanidine hydrochloride in a macromolecular crowding system publication-title: Appl. Biochem. Biotechnol. – volume: 8 start-page: e78936 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0060 article-title: Denatured state structural property determines protein stabilization by macromolecular crowding: a thermodynamic and structural approach publication-title: PLoS One doi: 10.1371/journal.pone.0078936 – volume: 10 start-page: S10 issue: Suppl. year: 2004 ident: 10.1016/j.bbagen.2015.05.002_bb0400 article-title: Protein aggregation and neurodegenerative disease publication-title: Nat. Med. doi: 10.1038/nm1066 – volume: 458 start-page: 106 year: 2009 ident: 10.1016/j.bbagen.2015.05.002_bb0235 article-title: High-resolution multi-dimensional NMR spectroscopy of proteins in human cells publication-title: Nature doi: 10.1038/nature07839 – volume: 133 start-page: 7116 year: 2011 ident: 10.1016/j.bbagen.2015.05.002_bb0210 article-title: Protein crowding tunes protein stability publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200067p – volume: 126 start-page: 14330 year: 2004 ident: 10.1016/j.bbagen.2015.05.002_bb0290 article-title: The effect of molecular crowding with nucleotide length and cosolute structure on DNA duplex stability publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0463029 – volume: 129 start-page: 730 year: 2007 ident: 10.1016/j.bbagen.2015.05.002_bb0105 article-title: Effects of macromolecular crowding on the intrinsic catalytic efficiency and structure of enterobactin-specific isochorismate synthase publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065064+ – volume: 53 start-page: 1601 year: 2014 ident: 10.1016/j.bbagen.2015.05.002_bb0270 article-title: Protein crowder charge and protein stability publication-title: Biochemistry doi: 10.1021/bi4016346 – volume: 6 start-page: e18250 year: 2011 ident: 10.1016/j.bbagen.2015.05.002_bb0550 article-title: Calcium ions promote formation of amyloid β-peptide (1–40) oligomers causally implicated in neuronal toxicity of Alzheimer's disease publication-title: PLoS One doi: 10.1371/journal.pone.0018250 – volume: 41 start-page: 3855 year: 2002 ident: 10.1016/j.bbagen.2015.05.002_bb0515 article-title: Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease? publication-title: Biochemistry doi: 10.1021/bi0120906 – volume: 364 start-page: 469 year: 2006 ident: 10.1016/j.bbagen.2015.05.002_bb0455 article-title: Mixed macromolecular crowding accelerates the refolding of rabbit muscle creatine kinase: implications for protein folding in physiological environments publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.09.018 – volume: 16 start-page: 203 year: 1991 ident: 10.1016/j.bbagen.2015.05.002_bb0440 article-title: Inside a living cell publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(91)90083-8 – volume: 62 start-page: 670 year: 2005 ident: 10.1016/j.bbagen.2015.05.002_bb0575 article-title: Hsp70 chaperones: cellular functions and molecular mechanism publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-004-4464-6 – volume: 101 start-page: 523 year: 2004 ident: 10.1016/j.bbagen.2015.05.002_bb0245 article-title: Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0304533101 – volume: 89 start-page: 249 year: 1963 ident: 10.1016/j.bbagen.2015.05.002_bb0035 article-title: The interaction between polysaccharides and other macromolecules. 4. The osmotic pressure of mixtures of serum albumin and hyaluronic acid publication-title: Biochem. J. doi: 10.1042/bj0890249 – volume: 284 start-page: 30148 year: 2009 ident: 10.1016/j.bbagen.2015.05.002_bb0470 article-title: Crowded cell-like environment accelerates the nucleation step of amyloidogenic protein misfolding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.002832 – volume: 15 start-page: 1079 year: 2008 ident: 10.1016/j.bbagen.2015.05.002_bb0520 article-title: Concerted action of metals and macromolecular crowding on the fibrillation of alpha-synuclein publication-title: Protein Pept. Lett. doi: 10.2174/092986608786071102 – volume: 33 start-page: 844 year: 2001 ident: 10.1016/j.bbagen.2015.05.002_bb0560 article-title: Macromolecular crowding and its role as intracellular signalling of cell volume regulation publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(01)00058-9 – volume: 37 start-page: 123 year: 2004 ident: 10.1016/j.bbagen.2015.05.002_bb0190 article-title: Loops, linkages, rings, catenanes, cages, and crowders: entropy-based strategies for stabilizing proteins publication-title: Acc. Chem. Res. doi: 10.1021/ar0302282 – volume: 21 start-page: 498 year: 1971 ident: 10.1016/j.bbagen.2015.05.002_bb0045 article-title: Enzyme reactions in polymer media publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1971.tb01495.x – volume: 51 start-page: 113 year: 2012 ident: 10.1016/j.bbagen.2015.05.002_bb0150 article-title: Effects of macromolecular crowding on refolding of recombinant human brain-type creatine kinase publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2012.04.014 – volume: 295 start-page: 127 year: 1998 ident: 10.1016/j.bbagen.2015.05.002_bb0090 article-title: Molecular crowding: analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(98)95038-8 – volume: 67 start-page: 857 year: 1990 ident: 10.1016/j.bbagen.2015.05.002_bb0180 article-title: Effect of “crowding” in protein solutions publication-title: J. Chem. Educ. doi: 10.1021/ed067p857 – volume: 7 start-page: 285 year: 2011 ident: 10.1016/j.bbagen.2015.05.002_bb0415 article-title: Gain of function of mutant p53 by coaggregation with multiple tumor suppressors publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.546 – volume: 213 start-page: 651 year: 1983 ident: 10.1016/j.bbagen.2015.05.002_bb0125 article-title: The influence of poly(ethylene glycol) 6000 on the properties of skeletal-muscle actin publication-title: Biochem. J. doi: 10.1042/bj2130651 – volume: 35 start-page: 4086 year: 2007 ident: 10.1016/j.bbagen.2015.05.002_bb0310 article-title: Regulation of DNA nucleases by molecular crowding publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm445 – volume: 4 start-page: 139 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0420 article-title: Recent trends in treating neuronal proteinopathies publication-title: J. Proteins Proteomics – volume: 20 start-page: 591 year: 1983 ident: 10.1016/j.bbagen.2015.05.002_bb0375 article-title: Cellular and molecular consequences of reduced cell water content publication-title: Cryobiology doi: 10.1016/0011-2240(83)90048-2 – volume: 49 start-page: 2801 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0240 article-title: Quantitative comparison of protein dynamics in live cells and in vitro by in-cell (19)F-NMR publication-title: Chem. Commun. (Camb.) doi: 10.1039/c3cc39205h – volume: 135 start-page: 3696 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0215 article-title: Reduced native state stability in crowded cellular environment due to protein–protein interactions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3126992 – start-page: 19 year: 2013 ident: 10.1016/j.bbagen.2015.05.002_bb0390 article-title: Study on effects of molecular crowding on G-quadruplex-ligand binding and ligand-mediated telomerase inhibition publication-title: Methods doi: 10.1016/j.ymeth.2013.03.028 – volume: 37 start-page: 375 year: 2008 ident: 10.1016/j.bbagen.2015.05.002_bb0170 article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.37.032807.125817 – volume: 120 start-page: 179 year: 1980 ident: 10.1016/j.bbagen.2015.05.002_bb0130 article-title: Self-association of the pyruvate dehydrogenase complex from Azotobacter vinelandii in the presence of polyethylene glycol publication-title: FEBS Lett. doi: 10.1016/0014-5793(80)80292-4 – volume: 581 start-page: 5065 year: 2007 ident: 10.1016/j.bbagen.2015.05.002_bb0075 article-title: Macromolecular crowding increases structural content of folded proteins publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.09.049 – volume: 48 start-page: 3828 year: 2009 ident: 10.1016/j.bbagen.2015.05.002_bb0595 article-title: Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins publication-title: Biochemistry doi: 10.1021/bi900212j – volume: 14 start-page: 59 year: 1979 ident: 10.1016/j.bbagen.2015.05.002_bb0530 article-title: Content of water-soluble and total proteins in the aging human brain publication-title: Exp. Gerontol. doi: 10.1016/0531-5565(79)90010-X |
SSID | ssj0000595 ssj0025309 |
Score | 2.4620788 |
SecondaryResourceType | review_article |
Snippet | Cellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the total... BACKGROUNDCellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1822 |
SubjectTerms | adverse effects Enzyme activity enzymes Excluded volume effect Genetic Diseases, Inborn - etiology Macromolecular Substances - chemistry Neurodegenerative Diseases - etiology Protein Aggregates Protein aggregation Protein Conformation Protein Folding Protein Stability proteins Viscosity |
Title | Macromolecular crowding: Macromolecules friend or foe |
URI | https://dx.doi.org/10.1016/j.bbagen.2015.05.002 https://www.ncbi.nlm.nih.gov/pubmed/25960386 https://www.proquest.com/docview/1699490573 https://www.proquest.com/docview/2000331529 |
Volume | 1850 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-GIvoiOr_mFxV87ZY2Sdv4JkOZjvngB-4tJE0KE9lEJ-KLf7uXptUJykAolLZJOS7J3S-5L4Bj1Ml5IjgNdWJZyFisQk2FDjNbcJ0RQ61y5x2Dq6R3xy6HfNiAbh0L49wqK9nvZXopras3nYqbnafRqHPjjHoIJ1Ahe_upi2BnqZvl7Y9vNw-ED9xbEpAUbF2Hz5U-XlrjonVZUCPenjlc-UU9_QU_SzV0vgarFX4MTj2J69Cw4yYs-YqS701Y7tYF3DaAD1TpbFfVvw3w4c1pqpNg9oN9CQqX69gEk-egmNhNuDs_u-32wqpKQphTwaehIpZSw4VBUaFEXqSxUrZQqUGgYJXOjUqTKDeFIUTbyOrU4JaDJSYSmhkjCN2ChfFkbHcgoLHOtFvSuOtjBY8F_origJFCZFpkeQtozRyZVynEXSWLR1n7ij1Iz1LpWCoJXiRuQfjV68mn0JjTPq35Ln9MBYlSfk7Po3qYJPLamT7U2E5eX2SUCMGES_74dxsXtEQp4hnRgm0_xl_04iYxITRLdv9N2x6suCfvnrYPC9PnV3uAeGaqD8sJewiLpxf93pW796_v-5_1fPTM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB5qReqLeFvPFXyNzW42uxvfSrHUo31RoW8h2WRBkVZ6IP57J3tUBaUg7MtuMsswSWa-JHMAXKBNTiPBGdGRDUkYBopoJjRJbMZ1Qg2zyp139AdR7ym8HfJhDTpVLIxzqyx1f6HTc21dfmmV0my9PT-3HtylHsIJNMjF_ekKrLrsVLwOq-2bu97gSyHzvPiK608cQRVBl7t5aY3r1iVC9fnlt_OVXyzUXwg0t0TdTdgoIaTXLrjcgpodbcNaUVTyYxsanaqG2w7wvsr97coSuB6-vDtjdeV9b7BTL3Ppjo03nnjZ2O7CU_f6sdMjZaEEkjLBZ0RRy5jhwqC2UCLN4kApm6nYIFawSqdGxZGfmsxQqq1vdWxw1xFGxhc6NEZQtgf10XhkD8BjgU60W9W48QszHgj8FcMxo5lItEjSJrBKODIts4i7YhavsnIXe5GFSKUTqaT40KAJZEH1VmTRWNI_ruQuf8wGiYp-CeV5NUwSZe1uP9TIjudT6UdChMLlf_y7j4tbYgwhjWjCfjHGC35xnxhRlkSH_-btDBq9x_69vL8Z3B3BumspvNWOoT6bzO0JwpuZPi2n7yev0fXa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macromolecular+crowding%3A+Macromolecules+friend+or+foe&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Mittal%2C+Shruti&rft.au=Chowhan%2C+Rimpy+Kaur&rft.au=Singh%2C+Laishram+Rajendrakumar&rft.date=2015-09-01&rft.issn=0304-4165&rft.volume=1850+p.1822-1831&rft.spage=1822&rft.epage=1831&rft_id=info:doi/10.1016%2Fj.bbagen.2015.05.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |