Screening of differentially methylated genes in skeletal fluorosis of rats with different types and involvement of aberrant methylation of Cthrc1
Fluoride is a widespread pollutant in the environment. There is a high risk of developing skeletal fluorosis from excessive fluoride exposure. Skeletal fluorosis has different phenotypes (including osteosclerotic, osteoporotic and osteomalacic) under the same fluoride exposure and depends on dietary...
Saved in:
Published in | Environmental pollution (1987) Vol. 332; p. 121931 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fluoride is a widespread pollutant in the environment. There is a high risk of developing skeletal fluorosis from excessive fluoride exposure. Skeletal fluorosis has different phenotypes (including osteosclerotic, osteoporotic and osteomalacic) under the same fluoride exposure and depends on dietary nutrition. However, the existing mechanistic hypothesis of skeletal fluorosis cannot well explain the condition's different pathological manifestations and their logical relation with nutritional factors. Recent studies have shown that DNA methylation is involved in the occurrence and development of skeletal fluorosis. DNA methylation is dynamic throughout life and may be affected by nutrition and environmental factors. We speculated that fluoride exposure leads to the abnormal methylation of genes related to bone homeostasis under different nutritional statuses, resulting in different skeletal fluorosis phenotypes. The mRNA-Seq and target bisulfite sequencing (TBS) result showed differentially methylated genes in rats with different skeletal fluorosis types. The role of the differentially methylated gene Cthrc1 in the formation of different skeletal fluorosis types was explored in vivo and in vitro. Under normal nutritional conditions, fluoride exposure led to hypomethylation and high expression of Cthrc1 in osteoblasts through TET2 demethylase, which promoted osteoblast differentiation by activating Wnt3a/β-catenin signalling pathway, and participated in the occurrence of osteosclerotic skeletal fluorosis. Meanwhile, the high CTHRC1 protein expression also inhibited osteoclast differentiation. Under poor dietary conditions, fluoride exposure led to hypermethylation and low expression of Cthrc1 in osteoblasts through DNMT1 methyltransferase, and increased the RANKL/OPG ratio, which promoted the osteoclast differentiation and participated in the occurrence of osteoporotic/osteomalacic skeletal fluorosis. Our study expands the understanding of the role of DNA methylation in regulating the formation of different skeletal fluorosis types and provides insights into new prevention and treatment strategies for patients with skeletal fluorosis.
[Display omitted]
•Cthrc1 was differentially methylated in different skeletal fluorosis types.•Fluoride caused Cthrc1 hypomethylation and promoted osteogenesis with normal nutrition.•Fluoride caused Cthrc1 hypermethylation and promoted osteolysis with poor nutrition.•CTHRC1 inhibited osteoclast differentiation regardless of normal or low nutrition. |
---|---|
AbstractList | Fluoride is a widespread pollutant in the environment. There is a high risk of developing skeletal fluorosis from excessive fluoride exposure. Skeletal fluorosis has different phenotypes (including osteosclerotic, osteoporotic and osteomalacic) under the same fluoride exposure and depends on dietary nutrition. However, the existing mechanistic hypothesis of skeletal fluorosis cannot well explain the condition's different pathological manifestations and their logical relation with nutritional factors. Recent studies have shown that DNA methylation is involved in the occurrence and development of skeletal fluorosis. DNA methylation is dynamic throughout life and may be affected by nutrition and environmental factors. We speculated that fluoride exposure leads to the abnormal methylation of genes related to bone homeostasis under different nutritional statuses, resulting in different skeletal fluorosis phenotypes. The mRNA-Seq and target bisulfite sequencing (TBS) result showed differentially methylated genes in rats with different skeletal fluorosis types. The role of the differentially methylated gene Cthrc1 in the formation of different skeletal fluorosis types was explored in vivo and in vitro. Under normal nutritional conditions, fluoride exposure led to hypomethylation and high expression of Cthrc1 in osteoblasts through TET2 demethylase, which promoted osteoblast differentiation by activating Wnt3a/β-catenin signalling pathway, and participated in the occurrence of osteosclerotic skeletal fluorosis. Meanwhile, the high CTHRC1 protein expression also inhibited osteoclast differentiation. Under poor dietary conditions, fluoride exposure led to hypermethylation and low expression of Cthrc1 in osteoblasts through DNMT1 methyltransferase, and increased the RANKL/OPG ratio, which promoted the osteoclast differentiation and participated in the occurrence of osteoporotic/osteomalacic skeletal fluorosis. Our study expands the understanding of the role of DNA methylation in regulating the formation of different skeletal fluorosis types and provides insights into new prevention and treatment strategies for patients with skeletal fluorosis.Fluoride is a widespread pollutant in the environment. There is a high risk of developing skeletal fluorosis from excessive fluoride exposure. Skeletal fluorosis has different phenotypes (including osteosclerotic, osteoporotic and osteomalacic) under the same fluoride exposure and depends on dietary nutrition. However, the existing mechanistic hypothesis of skeletal fluorosis cannot well explain the condition's different pathological manifestations and their logical relation with nutritional factors. Recent studies have shown that DNA methylation is involved in the occurrence and development of skeletal fluorosis. DNA methylation is dynamic throughout life and may be affected by nutrition and environmental factors. We speculated that fluoride exposure leads to the abnormal methylation of genes related to bone homeostasis under different nutritional statuses, resulting in different skeletal fluorosis phenotypes. The mRNA-Seq and target bisulfite sequencing (TBS) result showed differentially methylated genes in rats with different skeletal fluorosis types. The role of the differentially methylated gene Cthrc1 in the formation of different skeletal fluorosis types was explored in vivo and in vitro. Under normal nutritional conditions, fluoride exposure led to hypomethylation and high expression of Cthrc1 in osteoblasts through TET2 demethylase, which promoted osteoblast differentiation by activating Wnt3a/β-catenin signalling pathway, and participated in the occurrence of osteosclerotic skeletal fluorosis. Meanwhile, the high CTHRC1 protein expression also inhibited osteoclast differentiation. Under poor dietary conditions, fluoride exposure led to hypermethylation and low expression of Cthrc1 in osteoblasts through DNMT1 methyltransferase, and increased the RANKL/OPG ratio, which promoted the osteoclast differentiation and participated in the occurrence of osteoporotic/osteomalacic skeletal fluorosis. Our study expands the understanding of the role of DNA methylation in regulating the formation of different skeletal fluorosis types and provides insights into new prevention and treatment strategies for patients with skeletal fluorosis. Fluoride is a widespread pollutant in the environment. There is a high risk of developing skeletal fluorosis from excessive fluoride exposure. Skeletal fluorosis has different phenotypes (including osteosclerotic, osteoporotic and osteomalacic) under the same fluoride exposure and depends on dietary nutrition. However, the existing mechanistic hypothesis of skeletal fluorosis cannot well explain the condition's different pathological manifestations and their logical relation with nutritional factors. Recent studies have shown that DNA methylation is involved in the occurrence and development of skeletal fluorosis. DNA methylation is dynamic throughout life and may be affected by nutrition and environmental factors. We speculated that fluoride exposure leads to the abnormal methylation of genes related to bone homeostasis under different nutritional statuses, resulting in different skeletal fluorosis phenotypes. The mRNA-Seq and target bisulfite sequencing (TBS) result showed differentially methylated genes in rats with different skeletal fluorosis types. The role of the differentially methylated gene Cthrc1 in the formation of different skeletal fluorosis types was explored in vivo and in vitro. Under normal nutritional conditions, fluoride exposure led to hypomethylation and high expression of Cthrc1 in osteoblasts through TET2 demethylase, which promoted osteoblast differentiation by activating Wnt3a/β-catenin signalling pathway, and participated in the occurrence of osteosclerotic skeletal fluorosis. Meanwhile, the high CTHRC1 protein expression also inhibited osteoclast differentiation. Under poor dietary conditions, fluoride exposure led to hypermethylation and low expression of Cthrc1 in osteoblasts through DNMT1 methyltransferase, and increased the RANKL/OPG ratio, which promoted the osteoclast differentiation and participated in the occurrence of osteoporotic/osteomalacic skeletal fluorosis. Our study expands the understanding of the role of DNA methylation in regulating the formation of different skeletal fluorosis types and provides insights into new prevention and treatment strategies for patients with skeletal fluorosis. Fluoride is a widespread pollutant in the environment. There is a high risk of developing skeletal fluorosis from excessive fluoride exposure. Skeletal fluorosis has different phenotypes (including osteosclerotic, osteoporotic and osteomalacic) under the same fluoride exposure and depends on dietary nutrition. However, the existing mechanistic hypothesis of skeletal fluorosis cannot well explain the condition's different pathological manifestations and their logical relation with nutritional factors. Recent studies have shown that DNA methylation is involved in the occurrence and development of skeletal fluorosis. DNA methylation is dynamic throughout life and may be affected by nutrition and environmental factors. We speculated that fluoride exposure leads to the abnormal methylation of genes related to bone homeostasis under different nutritional statuses, resulting in different skeletal fluorosis phenotypes. The mRNA-Seq and target bisulfite sequencing (TBS) result showed differentially methylated genes in rats with different skeletal fluorosis types. The role of the differentially methylated gene Cthrc1 in the formation of different skeletal fluorosis types was explored in vivo and in vitro. Under normal nutritional conditions, fluoride exposure led to hypomethylation and high expression of Cthrc1 in osteoblasts through TET2 demethylase, which promoted osteoblast differentiation by activating Wnt3a/β-catenin signalling pathway, and participated in the occurrence of osteosclerotic skeletal fluorosis. Meanwhile, the high CTHRC1 protein expression also inhibited osteoclast differentiation. Under poor dietary conditions, fluoride exposure led to hypermethylation and low expression of Cthrc1 in osteoblasts through DNMT1 methyltransferase, and increased the RANKL/OPG ratio, which promoted the osteoclast differentiation and participated in the occurrence of osteoporotic/osteomalacic skeletal fluorosis. Our study expands the understanding of the role of DNA methylation in regulating the formation of different skeletal fluorosis types and provides insights into new prevention and treatment strategies for patients with skeletal fluorosis. [Display omitted] •Cthrc1 was differentially methylated in different skeletal fluorosis types.•Fluoride caused Cthrc1 hypomethylation and promoted osteogenesis with normal nutrition.•Fluoride caused Cthrc1 hypermethylation and promoted osteolysis with poor nutrition.•CTHRC1 inhibited osteoclast differentiation regardless of normal or low nutrition. |
ArticleNumber | 121931 |
Author | Pan, Xueli Yin, Congyu Ding, Hongwei Zhou, Ruiqi Wang, Xilan Yang, Menglan |
Author_xml | – sequence: 1 givenname: Hongwei surname: Ding fullname: Ding, Hongwei – sequence: 2 givenname: Congyu surname: Yin fullname: Yin, Congyu – sequence: 3 givenname: Menglan surname: Yang fullname: Yang, Menglan – sequence: 4 givenname: Ruiqi surname: Zhou fullname: Zhou, Ruiqi – sequence: 5 givenname: Xilan surname: Wang fullname: Wang, Xilan – sequence: 6 givenname: Xueli surname: Pan fullname: Pan, Xueli email: xuelipan@gmc.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37268221$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAYRS3Uik4Lb4BQlmwy-G-chAUSGtGCVIlFu7cc-0vHg2MPtmeqeQzeuE7TgsSCbmzLOucu7j1HJz54QOgdwUuCifi4XYI_7IJbUkzZklDSMfIKLUjbsFpwyk_QAlPR1Q3vyBk6T2mLMeaMsdfojDVUtJSSBfp9oyOAt_6uCkNl7DBABJ-tcu5YjZA3R6cymOoOPKTK-ir9BAdZuWpw-xBDsmkSo8qpurd58zeiysddUZQ3RTsEd4Bx-i2w6iFGVd7P-Tb46X-dN1GTN-h0UC7B26f7At1efr1df6uvf1x9X3-5rjXrVrnuABTvhSCMg9Gm71eqoeUQzAjBWuiUoc0gFAwUlOKdWYHhRJt2wO2KG3aBPsyxuxh-7SFlOdqkwTnlIeyTZJhjTpsWixdRWqpkLaYYF_T9E7rvRzByF-2o4lE-F14APgO6dJciDH8QguW0q9zKeVc57SrnXYv26R9N2_xYXI7Kupfkz7MMpc6DhSiTtuA1GBtBZ2mC_X_AA3bFxH4 |
CitedBy_id | crossref_primary_10_1007_s10653_024_01970_z crossref_primary_10_1007_s12011_024_04327_w crossref_primary_10_1002_elps_202400055 crossref_primary_10_1016_j_jtemb_2024_127419 crossref_primary_10_1016_j_ecoenv_2024_117519 crossref_primary_10_1016_j_scitotenv_2024_174916 crossref_primary_10_3390_nu16152500 |
Cites_doi | 10.1016/S0092-8674(00)81656-6 10.4103/ijmr.IJMR_1775_18 10.1038/s41580-019-0159-6 10.1056/NEJMra1402513 10.1158/0008-5472.CAN-05-1980 10.1002/tox.22655 10.1038/nature07713 10.1016/j.bone.2017.01.022 10.1016/j.cmet.2006.05.012 10.1038/nature09934 10.1038/cdd.2015.14 10.3390/biom11040506 10.2174/187152812800392670 10.1007/s40572-020-00270-9 10.1038/nm1593 10.1016/j.ecoenv.2018.11.035 10.1155/2022/8862278 10.1093/advances/nmab038 10.1172/JCI69493 10.1080/10408444.2022.2122771 10.3389/fcell.2020.619301 10.3945/an.111.001008 10.3390/ijms222111932 10.1016/j.abb.2008.03.018 10.1016/j.cbpb.2015.07.007 10.1016/j.scitotenv.2015.09.085 10.1007/s12011-013-9633-8 10.1038/nm1514 10.1073/pnas.2037852100 10.1002/jbmr.2187 10.1016/j.envpol.2022.119241 10.1371/journal.pone.0003174 10.1038/nm.2489 10.1016/S0140-6736(18)31268-6 10.3945/an.114.005868 10.1016/j.scitotenv.2021.150601 10.1074/jbc.M413246200 10.1016/j.cbi.2019.108875 10.1159/000260743 10.1128/MCB.26.8.2955-2964.2006 10.1016/j.jphotobiol.2016.05.027 10.3390/ijms22052426 10.3390/jpm12040533 10.1016/j.etap.2017.09.008 10.1146/annurev.biochem.74.010904.153721 10.1111/jcmm.14185 10.1007/s12011-011-9130-x 10.1007/BF02761130 10.1007/s12011-015-0555-5 10.1016/j.tox.2014.07.006 10.1016/j.etap.2016.08.001 10.1016/S0070-2153(04)60003-2 10.1016/j.toxlet.2018.02.014 10.1093/hmg/ddm179 10.1016/j.stem.2011.07.010 10.1146/annurev-publhealth-040617-014629 10.1371/journal.pone.0220934 10.1038/nn.2514 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023. Published by Elsevier Ltd. Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023. Published by Elsevier Ltd. – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2023.121931 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 37268221 10_1016_j_envpol_2023_121931 S0269749123009338 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- RIG SEN SSH VH1 WUQ XJT XOL EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-9eea4b66134edcdbb5a72b5a63d6638e9ad27f6aef2eaa49d5ed41cd8f0854d3 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Tue Aug 05 10:21:10 EDT 2025 Fri Jul 11 13:05:37 EDT 2025 Mon Jul 21 05:50:01 EDT 2025 Tue Jul 01 02:26:34 EDT 2025 Thu Apr 24 23:13:19 EDT 2025 Fri Feb 23 02:37:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | LN RANKL DNMT1 M-CSF LNF rBMSCs mRNA-Seq N NaF MC DNA methylation KEGG Skeletal fluorosis Cthrc1 OP OS TBS rBMMs Different nutrition GO TET2 DAPI NC TRACP NF |
Language | English |
License | Copyright © 2023. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-9eea4b66134edcdbb5a72b5a63d6638e9ad27f6aef2eaa49d5ed41cd8f0854d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 37268221 |
PQID | 2822380200 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3040427806 proquest_miscellaneous_2822380200 pubmed_primary_37268221 crossref_primary_10_1016_j_envpol_2023_121931 crossref_citationtrail_10_1016_j_envpol_2023_121931 elsevier_sciencedirect_doi_10_1016_j_envpol_2023_121931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wei, Pang, Sun (bib53) 2019; 23 Takeshita, Fumoto, Matsuoka, Park, Aburatani, Kato (bib49) 2013; 123 Jin, Stohn, Wang, Nagano, Baron, Bouxsein (bib24) 2017; 97 Solanki, Agarwal, Gupta, Gupta, Shukla (bib45) 2022; 807 Xu, Li, Yang, Na, Chen, Liu (bib57) 2021; 8 Pei, Li, Gao, Jiaxun, Darko, Sun (bib39) 2016; 46 Srivastava, Flora (bib46) 2020; 7 Liu, Wang, Deng, Schmidt, Qin, Leonhardt (bib30) 2013; 8 Li, Qi (bib28) 2022; 12 Zhang, Qin, Qin, Yu (bib62) 2015; 31 Hooshiar, Tobeiha, Jafarnejad (bib20) 2022; 2022 Dodge, Okano, Dick, Tsujimoto, Chen, Wang (bib12) 2005; 280 Negishi-Koga, Shinohara, Komatsu, Bito, Kodama, Friedel (bib35) 2011; 17 Blatch, Stabler, Harrison (bib5) 2015; 189 Balasubramanian, Perumal (bib4) 2022; 52 Myngbay, Manarbek, Ludbrook, Kunz (bib34) 2021; 22 Yu, Gao, Sun (bib58) 2013; 152 Daiwile, Tarale, Sivanesan, Naoghare, Bafana, Parmar (bib10) 2019; 169 Wu, Wang, Iqbal, Mehmood, Li, Tang (bib56) 2022; 304 Guan (bib19) 2021 Matsuoka, Park, Ito, Ikeda, Takeshita (bib32) 2014; 29 Fan, Zhang, Yu, Zhou, Wei, Xie (bib14) 2006; 33 Tamma, Zallone (bib50) 2012; 11 Dawlaty, Ganz, Powell, Hu, Markoulaki, Cheng (bib11) 2011; 9 Cai, Quan, Yang, Chen, Ye, Wang (bib7) 2021; 12 Goll, Bestor (bib18) 2005; 74 Si, Kang, Luu, Park, Luo, Song (bib44) 2006; 26 Ishii, Egen, Klauschen, Meier-Schellersheim, Saeki, Vacher (bib22) 2009; 458 Kato, Kaneda, Hata, Kumaki, Hisano, Kohara (bib25) 2007; 16 Zhao, Irie, Takada, Shimoda, Miyamoto, Nishiwaki (bib63) 2006; 4 Kimura, Kwan, Zhang, Deng, Darnay, Behringer (bib26) 2008; 3 Ayuk, Abrahamse, Houreld (bib3) 2016; 161 Lee, Rho, Jeong, Sul, Kim, Kim (bib27) 2006; 12 Sun, Li, Yang, Lv, Li, Xu (bib47) 2014; 325 Susheela, Toteja (bib48) 2018; 148 Chen, Li (bib8) 2004; 60 Wang, Liu, Zhao, Liu, Liu, Chen (bib52) 2015; 22 Parle-McDermott, Ozaki (bib38) 2011; 2 Qiao, Liu, He, Zhang, Huang, Bian (bib41) 2021; 22 Yu, Yu, Jiang, Zhang, Zhang, Xu (bib59) 2018; 288 Li, Li, Mao, Du, Chan, Murray (bib29) 2016; 6 Liu, Liu, Yu, Wang, Yang, Xu (bib31) 2016; 171 Pan, Yan, Qiu, Liao, Liao, Wu (bib37) 2020; 315 Wu, D'Alessio, Ito, Xia, Wang, Cui (bib54) 2011; 473 Ciosek, Kot, Kosik-Bogacka, Łanocha-Arendarczyk, Rotter (bib9) 2021; 11 Feltus, Lee, Costello, Plass, Vertino (bib16) 2003; 100 Feng, Zhou, Campbell, Le, Li, Sweatt (bib17) 2010; 13 Okano, Bell, Haber, Li (bib36) 1999; 99 Pramanik, Saha (bib40) 2017; 56 Zaidi (bib61) 2007; 13 Yuval, Howard (bib60) 2018; 392 Angmar-Månsson, Whitford (bib2) 1984; 18 Boyce, Xing (bib6) 2008; 473 Jair, Bachman, Suzuki, Ting, Rhee, Yen (bib23) 2006; 66 Teotia, Teotia, Singh (bib51) 1998; 65 Wu, Yan, Qiu, Liao, Gu, Wei (bib55) 2019; 34 Ren, Wang, Chang, Su, Wang, Su (bib42) 2011; 144 Feinberg (bib15) 2018; 378 Maxim, Deborah (bib33) 2019; 20 Irigoyen-Camacho, García Pérez, Mejía González, Huizar Alvarez (bib21) 2016; 541 Adam, Lie, Whatmore, Jakt, Moren, Skjærven (bib1) 2019; 14 Elizabeth, Rebecca (bib13) 2018; 39 Romagnolo, Zempleni, Selmin (bib43) 2014; 5 Ciosek (10.1016/j.envpol.2023.121931_bib9) 2021; 11 Jin (10.1016/j.envpol.2023.121931_bib24) 2017; 97 Si (10.1016/j.envpol.2023.121931_bib44) 2006; 26 Ayuk (10.1016/j.envpol.2023.121931_bib3) 2016; 161 Irigoyen-Camacho (10.1016/j.envpol.2023.121931_bib21) 2016; 541 Wu (10.1016/j.envpol.2023.121931_bib54) 2011; 473 Angmar-Månsson (10.1016/j.envpol.2023.121931_bib2) 1984; 18 Elizabeth (10.1016/j.envpol.2023.121931_bib13) 2018; 39 Zhao (10.1016/j.envpol.2023.121931_bib63) 2006; 4 Cai (10.1016/j.envpol.2023.121931_bib7) 2021; 12 Liu (10.1016/j.envpol.2023.121931_bib31) 2016; 171 Feinberg (10.1016/j.envpol.2023.121931_bib15) 2018; 378 Yu (10.1016/j.envpol.2023.121931_bib58) 2013; 152 Balasubramanian (10.1016/j.envpol.2023.121931_bib4) 2022; 52 Li (10.1016/j.envpol.2023.121931_bib28) 2022; 12 Feng (10.1016/j.envpol.2023.121931_bib17) 2010; 13 Takeshita (10.1016/j.envpol.2023.121931_bib49) 2013; 123 Wu (10.1016/j.envpol.2023.121931_bib56) 2022; 304 Chen (10.1016/j.envpol.2023.121931_bib8) 2004; 60 Matsuoka (10.1016/j.envpol.2023.121931_bib32) 2014; 29 Tamma (10.1016/j.envpol.2023.121931_bib50) 2012; 11 Negishi-Koga (10.1016/j.envpol.2023.121931_bib35) 2011; 17 Pramanik (10.1016/j.envpol.2023.121931_bib40) 2017; 56 Wang (10.1016/j.envpol.2023.121931_bib52) 2015; 22 Yu (10.1016/j.envpol.2023.121931_bib59) 2018; 288 Ren (10.1016/j.envpol.2023.121931_bib42) 2011; 144 Hooshiar (10.1016/j.envpol.2023.121931_bib20) 2022; 2022 Sun (10.1016/j.envpol.2023.121931_bib47) 2014; 325 Solanki (10.1016/j.envpol.2023.121931_bib45) 2022; 807 Ishii (10.1016/j.envpol.2023.121931_bib22) 2009; 458 Wu (10.1016/j.envpol.2023.121931_bib55) 2019; 34 Maxim (10.1016/j.envpol.2023.121931_bib33) 2019; 20 Parle-McDermott (10.1016/j.envpol.2023.121931_bib38) 2011; 2 Kato (10.1016/j.envpol.2023.121931_bib25) 2007; 16 Xu (10.1016/j.envpol.2023.121931_bib57) 2021; 8 Liu (10.1016/j.envpol.2023.121931_bib30) 2013; 8 Fan (10.1016/j.envpol.2023.121931_bib14) 2006; 33 Daiwile (10.1016/j.envpol.2023.121931_bib10) 2019; 169 Dodge (10.1016/j.envpol.2023.121931_bib12) 2005; 280 Pan (10.1016/j.envpol.2023.121931_bib37) 2020; 315 Jair (10.1016/j.envpol.2023.121931_bib23) 2006; 66 Susheela (10.1016/j.envpol.2023.121931_bib48) 2018; 148 Blatch (10.1016/j.envpol.2023.121931_bib5) 2015; 189 Boyce (10.1016/j.envpol.2023.121931_bib6) 2008; 473 Kimura (10.1016/j.envpol.2023.121931_bib26) 2008; 3 Teotia (10.1016/j.envpol.2023.121931_bib51) 1998; 65 Lee (10.1016/j.envpol.2023.121931_bib27) 2006; 12 Qiao (10.1016/j.envpol.2023.121931_bib41) 2021; 22 Adam (10.1016/j.envpol.2023.121931_bib1) 2019; 14 Yuval (10.1016/j.envpol.2023.121931_bib60) 2018; 392 Zaidi (10.1016/j.envpol.2023.121931_bib61) 2007; 13 Myngbay (10.1016/j.envpol.2023.121931_bib34) 2021; 22 Li (10.1016/j.envpol.2023.121931_bib29) 2016; 6 Srivastava (10.1016/j.envpol.2023.121931_bib46) 2020; 7 Goll (10.1016/j.envpol.2023.121931_bib18) 2005; 74 Guan (10.1016/j.envpol.2023.121931_bib19) 2021 Romagnolo (10.1016/j.envpol.2023.121931_bib43) 2014; 5 Okano (10.1016/j.envpol.2023.121931_bib36) 1999; 99 Zhang (10.1016/j.envpol.2023.121931_bib62) 2015; 31 Pei (10.1016/j.envpol.2023.121931_bib39) 2016; 46 Wei (10.1016/j.envpol.2023.121931_bib53) 2019; 23 Dawlaty (10.1016/j.envpol.2023.121931_bib11) 2011; 9 Feltus (10.1016/j.envpol.2023.121931_bib16) 2003; 100 |
References_xml | – volume: 99 start-page: 247 year: 1999 end-page: 257 ident: bib36 article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development publication-title: Cell – volume: 33 start-page: 2100 year: 2006 end-page: 2102 ident: bib14 article-title: Replication of the animal model of different style skeletal fluorosis caused by coal-burning publication-title: Mod. Prev. Med. – volume: 8 year: 2013 ident: bib30 article-title: Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules publication-title: PLoS One – volume: 12 start-page: 1403 year: 2006 end-page: 1409 ident: bib27 article-title: v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation publication-title: Nat. Med. – volume: 304 year: 2022 ident: bib56 article-title: Challenges of fluoride pollution in environment: mechanisms and pathological significance of toxicity - a review publication-title: Environ. Pollut. – volume: 8 year: 2021 ident: bib57 article-title: The roles of epigenetics regulation in bone metabolism and osteoporosis publication-title: Front. Cell Dev. Biol. – volume: 20 start-page: 590 year: 2019 end-page: 607 ident: bib33 article-title: The diverse roles of DNA methylation in mammalian development and disease publication-title: Nat. Rev. Mol. Cell Biol. – volume: 161 start-page: 368 year: 2016 end-page: 374 ident: bib3 article-title: The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro publication-title: J. Photochem. Photobiol., B – volume: 97 start-page: 153 year: 2017 end-page: 167 ident: bib24 article-title: Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1 publication-title: Bone – volume: 56 start-page: 157 year: 2017 end-page: 162 ident: bib40 article-title: The genetic influence in fluorosis publication-title: Environ. Toxicol. Pharmacol. – volume: 152 start-page: 387 year: 2013 end-page: 395 ident: bib58 article-title: Effect of fluoride and low versus high levels of dietary calcium on mRNA expression of osteoprotegerin and osteoprotegerin ligand in the bone of rats publication-title: Biol. Trace Elem. Res. – volume: 22 start-page: 2426 year: 2021 ident: bib34 article-title: The role of collagen triple helix repeat-containing 1 protein (CTHRC1) in rheumatoid arthritis publication-title: Int. J. Mol. Sci. – volume: 144 start-page: 1437 year: 2011 end-page: 1448 ident: bib42 article-title: Simultaneous administration of fluoride and selenite regulates proliferation and apoptosis in murine osteoblast-like MC3T3-E1 cells by altering osteoprotegerin publication-title: Biol. Trace Elem. Res. – volume: 5 start-page: 373 year: 2014 end-page: 385 ident: bib43 article-title: Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention publication-title: Adv. Nutr. – volume: 807 year: 2022 ident: bib45 article-title: Fluoride occurrences, health problems, detection, and remediation methods for drinking water: a comprehensive review publication-title: Sci. Total Environ. – volume: 280 start-page: 17986 year: 2005 end-page: 17991 ident: bib12 article-title: Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization publication-title: J. Biol. Chem. – volume: 14 year: 2019 ident: bib1 article-title: Profiling DNA methylation patterns of zebrafish liver associated with parental high dietary arachidonic acid publication-title: PLoS One – volume: 171 start-page: 380 year: 2016 end-page: 390 ident: bib31 article-title: Analysis of the role of insulin signaling in bone turnover induced by fluoride publication-title: Biol. Trace Elem. Res. – volume: 2 start-page: 463 year: 2011 end-page: 471 ident: bib38 article-title: The impact of nutrition on differential methylated regions of the genome publication-title: Adv. Nutr. – volume: 74 start-page: 481 year: 2005 end-page: 514 ident: bib18 article-title: Eukaryotic cytosine methyltransferases publication-title: Annu. Rev. Biochem. – volume: 541 start-page: 512 year: 2016 end-page: 519 ident: bib21 article-title: Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico publication-title: Sci. Total Environ. – volume: 22 start-page: 1654 year: 2015 end-page: 1664 ident: bib52 article-title: Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass publication-title: Cell Death Differ. – volume: 46 start-page: 241 year: 2016 end-page: 245 ident: bib39 article-title: Relationship between fluoride exposure and osteoclast markers during RANKL-induced osteoclast differentiation publication-title: Environ. Toxicol. Pharmacol. – volume: 12 start-page: 1877 year: 2021 end-page: 1892 ident: bib7 article-title: Nutritional status impacts epigenetic regulation in early embryo development: a scoping review publication-title: Adv. Nutr. – volume: 31 start-page: 70 year: 2015 end-page: 73 ident: bib62 article-title: Morphological changes of bone in progress of coal-burning fluorosis of rat publication-title: Chin. J. Public Health – volume: 325 start-page: 52 year: 2014 end-page: 66 ident: bib47 article-title: A role for PERK in the mechanism underlying fluoride-induced bone turnover publication-title: Toxicology – volume: 473 start-page: 139 year: 2008 end-page: 146 ident: bib6 article-title: Functions of RANKL/RANK/OPG in bone modeling and remodeling publication-title: Arch. Biochem. Biophys. – volume: 13 start-page: 423 year: 2010 end-page: 430 ident: bib17 article-title: Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons publication-title: Nat. Neurosci. – volume: 9 start-page: 166 year: 2011 end-page: 175 ident: bib11 article-title: Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development publication-title: Cell Stem Cell – volume: 29 start-page: 1522 year: 2014 end-page: 1530 ident: bib32 article-title: Osteoclast-derived complement component 3a stimulates osteoblast differentiation publication-title: J Bone Miner Res Off J Am Soc Bone Miner Res – volume: 22 year: 2021 ident: bib41 article-title: Progress of signaling pathways, stress pathways and epigenetics in the pathogenesis of skeletal fluorosis publication-title: Int. J. Mol. Sci. – volume: 6 year: 2016 ident: bib29 article-title: Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers publication-title: Sci. Rep. – volume: 148 start-page: 539 year: 2018 end-page: 547 ident: bib48 article-title: Prevention & control of fluorosis & linked disorders: developments in the 21 publication-title: Indian J. Med. Res. – volume: 66 start-page: 682 year: 2006 end-page: 692 ident: bib23 article-title: De novo CpG island methylation in human cancer cells publication-title: Cancer Res. – volume: 7 start-page: 140 year: 2020 end-page: 146 ident: bib46 article-title: Fluoride in drinking water and skeletal fluorosis: a review of the global impact publication-title: Curr Environ Health Rep – volume: 315 year: 2020 ident: bib37 article-title: Aberrant DNA methylation of Cyclind-CDK4-p21 is associated with chronic fluoride poisoning publication-title: Chem. Biol. Interact. – volume: 52 start-page: 449 year: 2022 end-page: 468 ident: bib4 article-title: A systematic review on fluoride-induced epigenetic toxicity in mammals publication-title: Crit. Rev. Toxicol. – volume: 189 start-page: 34 year: 2015 end-page: 39 ident: bib5 article-title: The effects of folate intake on DNA and single-carbon pathway metabolism in the fruit fly Drosophila melanogaster compared to mammals publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol. – volume: 378 start-page: 1323 year: 2018 end-page: 1334 ident: bib15 article-title: The key role of epigenetics in human disease prevention and mitigation publication-title: N. Engl. J. Med. – volume: 23 start-page: 2333 year: 2019 end-page: 2342 ident: bib53 article-title: The pathogenesis of endemic fluorosis: research progress in the last 5 years publication-title: J. Cell Mol. Med. – volume: 13 start-page: 791 year: 2007 end-page: 801 ident: bib61 article-title: Skeletal remodeling in health and disease publication-title: Nat. Med. – volume: 169 start-page: 410 year: 2019 end-page: 417 ident: bib10 article-title: Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis publication-title: Ecotoxicol. Environ. Saf. – volume: 11 start-page: 196 year: 2012 end-page: 200 ident: bib50 article-title: Osteoblast and osteoclast crosstalks: from OAF to Ephrin publication-title: Inflamm. Allergy - Drug Targets – volume: 100 start-page: 12253 year: 2003 end-page: 12258 ident: bib16 article-title: Predicting aberrant CpG island methylation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 65 start-page: 371 year: 1998 end-page: 381 ident: bib51 article-title: Endemic chronic fluoride toxicity and dietary calcium deficiency interaction syndromes of metabolic bone disease and deformities in India: year 2000 publication-title: Indian J. Pediatr. – volume: 12 start-page: 533 year: 2022 ident: bib28 article-title: Epigenetics in precision nutrition publication-title: J. Personalized Med. – volume: 18 start-page: 25 year: 1984 end-page: 32 ident: bib2 article-title: Enamel fluorosis related to plasma F levels in the rat publication-title: Caries Res. – volume: 3 start-page: e3174 year: 2008 ident: bib26 article-title: Cthrc1 is a positive regulator of osteoblastic bone formation publication-title: PLoS One – year: 2021 ident: bib19 article-title: Coal-burning Type of Endemic Fluorosis – volume: 26 start-page: 2955 year: 2006 end-page: 2964 ident: bib44 article-title: CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells publication-title: Mol. Cell Biol. – volume: 2022 year: 2022 ident: bib20 article-title: Soy isoflavones and bone health: focus on the RANKL/RANK/OPG pathway publication-title: BioMed Res. Int. – volume: 288 start-page: 25 year: 2018 end-page: 34 ident: bib59 article-title: PTH (1–34) affects bone turnover governed by osteocytes exposed to fluoride publication-title: Toxicol. Lett. – volume: 458 start-page: 524 year: 2009 end-page: 528 ident: bib22 article-title: Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis publication-title: Nature – volume: 34 start-page: 37 year: 2019 end-page: 47 ident: bib55 article-title: Aberrant methylation-induced dysfunction of p16 is associated with osteoblast activation caused by fluoride publication-title: Environ. Toxicol. – volume: 123 start-page: 3914 year: 2013 end-page: 3924 ident: bib49 article-title: Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation publication-title: J. Clin. Invest. – volume: 473 start-page: 389 year: 2011 end-page: 393 ident: bib54 article-title: Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells publication-title: Nature – volume: 39 start-page: 309 year: 2018 end-page: 333 ident: bib13 article-title: Environmental influences on the epigenome: exposure- associated DNA methylation in human populations publication-title: Annu. Rev. Publ. Health – volume: 11 start-page: 506 year: 2021 ident: bib9 article-title: The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue publication-title: Biomolecules – volume: 392 start-page: 777 year: 2018 end-page: 786 ident: bib60 article-title: Principles of DNA methylation and their implications for biology and medicine publication-title: Lancet – volume: 17 start-page: 1473 year: 2011 end-page: 1480 ident: bib35 article-title: Suppression of bone formation by osteoclastic expression of semaphorin 4D publication-title: Nat. Med. – volume: 16 start-page: 2272 year: 2007 end-page: 2280 ident: bib25 article-title: Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse publication-title: Hum. Mol. Genet. – volume: 4 start-page: 111 year: 2006 end-page: 121 ident: bib63 article-title: Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis publication-title: Cell Metabol. – volume: 60 start-page: 55 year: 2004 end-page: 89 ident: bib8 article-title: Structure and function of eukaryotic DNA methyltransferases publication-title: Curr. Top. Dev. Biol. – volume: 99 start-page: 247 year: 1999 ident: 10.1016/j.envpol.2023.121931_bib36 article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development publication-title: Cell doi: 10.1016/S0092-8674(00)81656-6 – volume: 148 start-page: 539 year: 2018 ident: 10.1016/j.envpol.2023.121931_bib48 article-title: Prevention & control of fluorosis & linked disorders: developments in the 21 st Century - reaching out to patients in the community & hospital settings for recovery publication-title: Indian J. Med. Res. doi: 10.4103/ijmr.IJMR_1775_18 – volume: 20 start-page: 590 year: 2019 ident: 10.1016/j.envpol.2023.121931_bib33 article-title: The diverse roles of DNA methylation in mammalian development and disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0159-6 – volume: 378 start-page: 1323 year: 2018 ident: 10.1016/j.envpol.2023.121931_bib15 article-title: The key role of epigenetics in human disease prevention and mitigation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1402513 – volume: 66 start-page: 682 year: 2006 ident: 10.1016/j.envpol.2023.121931_bib23 article-title: De novo CpG island methylation in human cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-1980 – volume: 34 start-page: 37 year: 2019 ident: 10.1016/j.envpol.2023.121931_bib55 article-title: Aberrant methylation-induced dysfunction of p16 is associated with osteoblast activation caused by fluoride publication-title: Environ. Toxicol. doi: 10.1002/tox.22655 – volume: 458 start-page: 524 year: 2009 ident: 10.1016/j.envpol.2023.121931_bib22 article-title: Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis publication-title: Nature doi: 10.1038/nature07713 – volume: 97 start-page: 153 year: 2017 ident: 10.1016/j.envpol.2023.121931_bib24 article-title: Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1 publication-title: Bone doi: 10.1016/j.bone.2017.01.022 – volume: 4 start-page: 111 year: 2006 ident: 10.1016/j.envpol.2023.121931_bib63 article-title: Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis publication-title: Cell Metabol. doi: 10.1016/j.cmet.2006.05.012 – volume: 473 start-page: 389 year: 2011 ident: 10.1016/j.envpol.2023.121931_bib54 article-title: Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells publication-title: Nature doi: 10.1038/nature09934 – volume: 22 start-page: 1654 year: 2015 ident: 10.1016/j.envpol.2023.121931_bib52 article-title: Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.14 – volume: 11 start-page: 506 year: 2021 ident: 10.1016/j.envpol.2023.121931_bib9 article-title: The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue publication-title: Biomolecules doi: 10.3390/biom11040506 – volume: 11 start-page: 196 year: 2012 ident: 10.1016/j.envpol.2023.121931_bib50 article-title: Osteoblast and osteoclast crosstalks: from OAF to Ephrin publication-title: Inflamm. Allergy - Drug Targets doi: 10.2174/187152812800392670 – volume: 7 start-page: 140 year: 2020 ident: 10.1016/j.envpol.2023.121931_bib46 article-title: Fluoride in drinking water and skeletal fluorosis: a review of the global impact publication-title: Curr Environ Health Rep doi: 10.1007/s40572-020-00270-9 – volume: 13 start-page: 791 year: 2007 ident: 10.1016/j.envpol.2023.121931_bib61 article-title: Skeletal remodeling in health and disease publication-title: Nat. Med. doi: 10.1038/nm1593 – volume: 169 start-page: 410 year: 2019 ident: 10.1016/j.envpol.2023.121931_bib10 article-title: Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.11.035 – volume: 2022 year: 2022 ident: 10.1016/j.envpol.2023.121931_bib20 article-title: Soy isoflavones and bone health: focus on the RANKL/RANK/OPG pathway publication-title: BioMed Res. Int. doi: 10.1155/2022/8862278 – volume: 6 year: 2016 ident: 10.1016/j.envpol.2023.121931_bib29 article-title: Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers publication-title: Sci. Rep. – volume: 12 start-page: 1877 year: 2021 ident: 10.1016/j.envpol.2023.121931_bib7 article-title: Nutritional status impacts epigenetic regulation in early embryo development: a scoping review publication-title: Adv. Nutr. doi: 10.1093/advances/nmab038 – year: 2021 ident: 10.1016/j.envpol.2023.121931_bib19 – volume: 123 start-page: 3914 year: 2013 ident: 10.1016/j.envpol.2023.121931_bib49 article-title: Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation publication-title: J. Clin. Invest. doi: 10.1172/JCI69493 – volume: 52 start-page: 449 year: 2022 ident: 10.1016/j.envpol.2023.121931_bib4 article-title: A systematic review on fluoride-induced epigenetic toxicity in mammals publication-title: Crit. Rev. Toxicol. doi: 10.1080/10408444.2022.2122771 – volume: 8 year: 2021 ident: 10.1016/j.envpol.2023.121931_bib57 article-title: The roles of epigenetics regulation in bone metabolism and osteoporosis publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.619301 – volume: 2 start-page: 463 year: 2011 ident: 10.1016/j.envpol.2023.121931_bib38 article-title: The impact of nutrition on differential methylated regions of the genome publication-title: Adv. Nutr. doi: 10.3945/an.111.001008 – volume: 22 year: 2021 ident: 10.1016/j.envpol.2023.121931_bib41 article-title: Progress of signaling pathways, stress pathways and epigenetics in the pathogenesis of skeletal fluorosis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222111932 – volume: 473 start-page: 139 year: 2008 ident: 10.1016/j.envpol.2023.121931_bib6 article-title: Functions of RANKL/RANK/OPG in bone modeling and remodeling publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2008.03.018 – volume: 189 start-page: 34 year: 2015 ident: 10.1016/j.envpol.2023.121931_bib5 article-title: The effects of folate intake on DNA and single-carbon pathway metabolism in the fruit fly Drosophila melanogaster compared to mammals publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol. doi: 10.1016/j.cbpb.2015.07.007 – volume: 541 start-page: 512 year: 2016 ident: 10.1016/j.envpol.2023.121931_bib21 article-title: Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.085 – volume: 33 start-page: 2100 year: 2006 ident: 10.1016/j.envpol.2023.121931_bib14 article-title: Replication of the animal model of different style skeletal fluorosis caused by coal-burning publication-title: Mod. Prev. Med. – volume: 152 start-page: 387 year: 2013 ident: 10.1016/j.envpol.2023.121931_bib58 article-title: Effect of fluoride and low versus high levels of dietary calcium on mRNA expression of osteoprotegerin and osteoprotegerin ligand in the bone of rats publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-013-9633-8 – volume: 12 start-page: 1403 year: 2006 ident: 10.1016/j.envpol.2023.121931_bib27 article-title: v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation publication-title: Nat. Med. doi: 10.1038/nm1514 – volume: 100 start-page: 12253 year: 2003 ident: 10.1016/j.envpol.2023.121931_bib16 article-title: Predicting aberrant CpG island methylation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2037852100 – volume: 29 start-page: 1522 year: 2014 ident: 10.1016/j.envpol.2023.121931_bib32 article-title: Osteoclast-derived complement component 3a stimulates osteoblast differentiation publication-title: J Bone Miner Res Off J Am Soc Bone Miner Res doi: 10.1002/jbmr.2187 – volume: 304 year: 2022 ident: 10.1016/j.envpol.2023.121931_bib56 article-title: Challenges of fluoride pollution in environment: mechanisms and pathological significance of toxicity - a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.119241 – volume: 3 start-page: e3174 year: 2008 ident: 10.1016/j.envpol.2023.121931_bib26 article-title: Cthrc1 is a positive regulator of osteoblastic bone formation publication-title: PLoS One doi: 10.1371/journal.pone.0003174 – volume: 17 start-page: 1473 year: 2011 ident: 10.1016/j.envpol.2023.121931_bib35 article-title: Suppression of bone formation by osteoclastic expression of semaphorin 4D publication-title: Nat. Med. doi: 10.1038/nm.2489 – volume: 392 start-page: 777 year: 2018 ident: 10.1016/j.envpol.2023.121931_bib60 article-title: Principles of DNA methylation and their implications for biology and medicine publication-title: Lancet doi: 10.1016/S0140-6736(18)31268-6 – volume: 5 start-page: 373 year: 2014 ident: 10.1016/j.envpol.2023.121931_bib43 article-title: Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention publication-title: Adv. Nutr. doi: 10.3945/an.114.005868 – volume: 807 year: 2022 ident: 10.1016/j.envpol.2023.121931_bib45 article-title: Fluoride occurrences, health problems, detection, and remediation methods for drinking water: a comprehensive review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150601 – volume: 8 year: 2013 ident: 10.1016/j.envpol.2023.121931_bib30 article-title: Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules publication-title: PLoS One – volume: 31 start-page: 70 year: 2015 ident: 10.1016/j.envpol.2023.121931_bib62 article-title: Morphological changes of bone in progress of coal-burning fluorosis of rat publication-title: Chin. J. Public Health – volume: 280 start-page: 17986 year: 2005 ident: 10.1016/j.envpol.2023.121931_bib12 article-title: Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization publication-title: J. Biol. Chem. doi: 10.1074/jbc.M413246200 – volume: 315 year: 2020 ident: 10.1016/j.envpol.2023.121931_bib37 article-title: Aberrant DNA methylation of Cyclind-CDK4-p21 is associated with chronic fluoride poisoning publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2019.108875 – volume: 18 start-page: 25 year: 1984 ident: 10.1016/j.envpol.2023.121931_bib2 article-title: Enamel fluorosis related to plasma F levels in the rat publication-title: Caries Res. doi: 10.1159/000260743 – volume: 26 start-page: 2955 year: 2006 ident: 10.1016/j.envpol.2023.121931_bib44 article-title: CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells publication-title: Mol. Cell Biol. doi: 10.1128/MCB.26.8.2955-2964.2006 – volume: 161 start-page: 368 year: 2016 ident: 10.1016/j.envpol.2023.121931_bib3 article-title: The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2016.05.027 – volume: 22 start-page: 2426 year: 2021 ident: 10.1016/j.envpol.2023.121931_bib34 article-title: The role of collagen triple helix repeat-containing 1 protein (CTHRC1) in rheumatoid arthritis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22052426 – volume: 12 start-page: 533 year: 2022 ident: 10.1016/j.envpol.2023.121931_bib28 article-title: Epigenetics in precision nutrition publication-title: J. Personalized Med. doi: 10.3390/jpm12040533 – volume: 56 start-page: 157 year: 2017 ident: 10.1016/j.envpol.2023.121931_bib40 article-title: The genetic influence in fluorosis publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2017.09.008 – volume: 74 start-page: 481 year: 2005 ident: 10.1016/j.envpol.2023.121931_bib18 article-title: Eukaryotic cytosine methyltransferases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.010904.153721 – volume: 23 start-page: 2333 year: 2019 ident: 10.1016/j.envpol.2023.121931_bib53 article-title: The pathogenesis of endemic fluorosis: research progress in the last 5 years publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.14185 – volume: 144 start-page: 1437 year: 2011 ident: 10.1016/j.envpol.2023.121931_bib42 article-title: Simultaneous administration of fluoride and selenite regulates proliferation and apoptosis in murine osteoblast-like MC3T3-E1 cells by altering osteoprotegerin publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-011-9130-x – volume: 65 start-page: 371 year: 1998 ident: 10.1016/j.envpol.2023.121931_bib51 article-title: Endemic chronic fluoride toxicity and dietary calcium deficiency interaction syndromes of metabolic bone disease and deformities in India: year 2000 publication-title: Indian J. Pediatr. doi: 10.1007/BF02761130 – volume: 171 start-page: 380 year: 2016 ident: 10.1016/j.envpol.2023.121931_bib31 article-title: Analysis of the role of insulin signaling in bone turnover induced by fluoride publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-015-0555-5 – volume: 325 start-page: 52 year: 2014 ident: 10.1016/j.envpol.2023.121931_bib47 article-title: A role for PERK in the mechanism underlying fluoride-induced bone turnover publication-title: Toxicology doi: 10.1016/j.tox.2014.07.006 – volume: 46 start-page: 241 year: 2016 ident: 10.1016/j.envpol.2023.121931_bib39 article-title: Relationship between fluoride exposure and osteoclast markers during RANKL-induced osteoclast differentiation publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2016.08.001 – volume: 60 start-page: 55 year: 2004 ident: 10.1016/j.envpol.2023.121931_bib8 article-title: Structure and function of eukaryotic DNA methyltransferases publication-title: Curr. Top. Dev. Biol. doi: 10.1016/S0070-2153(04)60003-2 – volume: 288 start-page: 25 year: 2018 ident: 10.1016/j.envpol.2023.121931_bib59 article-title: PTH (1–34) affects bone turnover governed by osteocytes exposed to fluoride publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2018.02.014 – volume: 16 start-page: 2272 year: 2007 ident: 10.1016/j.envpol.2023.121931_bib25 article-title: Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm179 – volume: 9 start-page: 166 year: 2011 ident: 10.1016/j.envpol.2023.121931_bib11 article-title: Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.07.010 – volume: 39 start-page: 309 year: 2018 ident: 10.1016/j.envpol.2023.121931_bib13 article-title: Environmental influences on the epigenome: exposure- associated DNA methylation in human populations publication-title: Annu. Rev. Publ. Health doi: 10.1146/annurev-publhealth-040617-014629 – volume: 14 year: 2019 ident: 10.1016/j.envpol.2023.121931_bib1 article-title: Profiling DNA methylation patterns of zebrafish liver associated with parental high dietary arachidonic acid publication-title: PLoS One doi: 10.1371/journal.pone.0220934 – volume: 13 start-page: 423 year: 2010 ident: 10.1016/j.envpol.2023.121931_bib17 article-title: Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons publication-title: Nat. Neurosci. doi: 10.1038/nn.2514 |
SSID | ssj0004333 |
Score | 2.4645228 |
Snippet | Fluoride is a widespread pollutant in the environment. There is a high risk of developing skeletal fluorosis from excessive fluoride exposure. Skeletal... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121931 |
SubjectTerms | bisulfites Cthrc1 Different nutrition DNA methylation fluorides fluorosis genes homeostasis methyltransferases osteoblasts osteoclasts pollutants pollution protein synthesis risk Skeletal fluorosis |
Title | Screening of differentially methylated genes in skeletal fluorosis of rats with different types and involvement of aberrant methylation of Cthrc1 |
URI | https://dx.doi.org/10.1016/j.envpol.2023.121931 https://www.ncbi.nlm.nih.gov/pubmed/37268221 https://www.proquest.com/docview/2822380200 https://www.proquest.com/docview/3040427806 |
Volume | 332 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5V5QIHBCmFUKgWCXEzib3r1zGKWgWQemmRelvtyxBw7Sh2kHLhP_QfM7O2EzhElbisZGt2tPbMzny7OzsD8N4hJMh57ILQZQkuUKY60NokAQVgGGN5yLXP9nmVLL6Kz7fx7RHMh7swFFbZ2_7Opntr3b-Z9H9zslouJ9e4ekAwnKPp9ctyuvArREpa_vH3PsxD8K6cPBIHRD1cn_MxXq76tarpACLilGYh5-Eh93QIfno3dPkMnvb4kc26IT6HI1eN4GRW4dr5bss-MB_R6bfKR_Dkr2SDIzi92N9pQw79pG5O4P7aUPANErG6YEPFFJz5ZbllVGF6WyIgtewbmUW2rFjzE30V8SjKTY2fsWyoI6pSw2hbd8-C0QZvw1RlsRvaQZ-bvCVipd0avWS744_qQe_n7fe1CV_AzeXFzXwR9JUaAsPzuA1y55TQ6Oq5cNZYrWOVRtgk3CKiyVyubJQWiXJF5JQSuY2dFaGxWYGIT1h-CsdVXblXwHiacpVFghtsKLMMZc9JioxSniLyjMfAB_lI02cxp2IapRzC1X7ITqqSpCo7qY4h2PVadVk8HqBPB9HLf7RRoqN5oOe7QVMkTlQ6fVGVqzeNpHhdniE6nx6m4WhSqfbJNBnDy07NduPlaZQgi_D1f4_tDB7TUxch9waO2_XGvUVI1epzP2fO4dHs05fF1R_9siNm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAeEKSUhvJYJOBmEnvXrwOHqrRKaemlQepttd5dl7TGjmKHKhf-A3-FX8iMHwkcokpIvfjg7I42nvE3M-tvZwDeWgwJYu5bx7VRgAnKMHGSRAcOETC0NtzlSV3t8ywYfRWfL_yLDfjdnYUhWmWL_Q2m12jd3hm0T3MwnUwG55g9YDAcI_TWaXnUMitP7OIG87by4_EnVPI7zzs6HB-MnLa1gKN57FdObK0SCfomLqzRJkl8FXp4CbhBFxzZWBkvTANlU88qJWLjWyNcbaIUQxRhOIq9B_cFogV1Tfjwc0UrEbxpX4-Lc2h13XG9mlNm8x_Tgj54eJzKOsTcXecO14W7tds7egyP2niV7TeP5Als2LwH2_s55urfF-w9qxmk9dZ8D7b-Km7Yg53D1Rk6lNCCSLkNv841kX1wECtS1nVoQaTJsgWjjtaLDANgwy4JhtkkZ-U1-kaSkWbzAv_GpKSJaLolo23klQhGG8olU7nBaYi7dS30igarxM7QK1dL-WiOdP-g-jbT7lMY34X6dmAzL3K7C4yHIVeRJ7jGC1WyoWo9QRpRiVWMdP0-8E4_UrdV06l5RyY7etyVbLQqSauy0WofnOWsaVM15JbxYad6-Y_1S3Rst8x801mKRGCgrz0qt8W8lMQP5hFmA8P1YzhCOPVaGQZ9eNaY2XK9PPQCFOE-_--1vYYHo_GXU3l6fHayBw_pl4ad9wI2q9ncvsRwrkpe1e8PA3nH7-sf6VJhGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+of+differentially+methylated+genes+in+skeletal+fluorosis+of+rats+with+different+types+and+involvement+of+aberrant+methylation+of+Cthrc1&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Ding%2C+Hongwei&rft.au=Yin%2C+Congyu&rft.au=Yang%2C+Menglan&rft.au=Zhou%2C+Ruiqi&rft.date=2023-09-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=332&rft.spage=121931&rft_id=info:doi/10.1016%2Fj.envpol.2023.121931&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |