A rapid and efficient strategy for combinatorial repression of multiple genes in Escherichia coli
The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significan...
Saved in:
Published in | Microbial cell factories Vol. 24; no. 1; pp. 74 - 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
28.03.2025
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1475-2859 1475-2859 |
DOI | 10.1186/s12934-025-02697-x |
Cover
Loading…
Abstract | The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge.
In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control.
We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains. |
---|---|
AbstractList | Background The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. Results In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. Conclusion We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains. Keywords: CRISPRi, Inducible promoters, Multiple genes, Combinatorial repression, Metabolic flow The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains. Abstract Background The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. Results In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. Conclusion We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains. The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge.BACKGROUNDThe regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge.In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control.RESULTSIn this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control.We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains.CONCLUSIONWe anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains. The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains. |
ArticleNumber | 74 |
Audience | Academic |
Author | Su, Tianyuan Yuan, Yingbo Qi, Qingsheng Mo, Yuxia Zheng, Yi |
Author_xml | – sequence: 1 givenname: Yi surname: Zheng fullname: Zheng, Yi – sequence: 2 givenname: Yuxia surname: Mo fullname: Mo, Yuxia – sequence: 3 givenname: Yingbo surname: Yuan fullname: Yuan, Yingbo – sequence: 4 givenname: Tianyuan surname: Su fullname: Su, Tianyuan – sequence: 5 givenname: Qingsheng surname: Qi fullname: Qi, Qingsheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40148961$$D View this record in MEDLINE/PubMed |
BookMark | eNptkltr3DAQhU1JaS7tH-hDEfSlfXBq3WzrcQlpuxAo9PIsxvLIUbClrWTD5t9XG6chC0EIieE7h5HmnBcnPngsive0uqS0rb8kyhQXZcVk3rVqyv2r4oyKRpaslerk2f20OE_prqpo0zb8TXEqKipaVdOzAjYkws71BHxP0FpnHPqZpDnCjMM9sSESE6bOeZhDdDCSiLuIKbngSbBkWsbZ7UYkA3pMxHlyncwtRmduHWTl6N4Wry2MCd89nhfFn6_Xv6--lzc_vm2vNjel4UrOpeosr9CKTiGznUDLUFqoaQu8EWBAMQ7cqp7KjlPVopHSSAa8q6ygFdb8otiuvn2AO72LboJ4rwM4_VAIcdAQZ2dG1JzZtu-oVApRICAYxpiQvbCA3HaQvT6tXrsY_i6YZj25ZHAcwWNYkua0ZaJRNZcZ_biiA2Rn523IX2cOuN60nKm6qdpDc5cvUHn1ODmTx2pdrh8JPh8JMjPjfh5gSUlvf_08Zj88drt0E_ZPb_8_5QywFTAxpBTRPiG00oco6TVKOkdJP0RJ7_k_0Fy7DA |
Cites_doi | 10.1016/j.ymben.2018.08.012 10.1186/s12934-024-02331-2 10.1038/nprot.2013.132 10.1073/pnas.80.22.6785 10.1016/j.biortech.2013.09.077 10.1002/bit.27322 10.1038/nmeth.1318 10.1126/science.1060677 10.2144/000112112 10.1038/s41467-019-09985-2 10.1007/s00217-023-04461-0 10.1016/j.tibs.2020.06.003 10.1186/s12934-024-02443-9 10.1371/journal.pone.0003647 10.1016/j.nbt.2023.07.001 10.1128/aem.00065-24 10.1111/j.1574-6976.2010.00242.x 10.15252/msb.20188605 10.1038/s41467-020-19171-4 10.1111/1751-7915.13780 10.1016/j.ymben.2012.09.002 10.1111/j.1574-6976.2010.00226.x 10.1007/s10529-016-2118-z 10.1074/jbc.270.19.11181 10.1038/s41587-019-0286-9 10.1016/j.isci.2020.101067 10.1186/s12934-021-01526-1 10.3389/fmicb.2019.01731 10.1021/acs.jafc.3c08529 10.1093/nar/25.6.1203 10.1016/j.cell.2013.02.022 10.1186/s12934-017-0724-7 10.1007/s12257-019-0107-5 10.1038/nrmicro3238 10.1016/j.cell.2014.09.029 10.1016/j.ymben.2024.02.001 10.1038/s41467-018-05857-3 10.3389/fbioe.2023.1296132 10.1007/s12010-019-03206-8 10.1002/bit.26486 10.1038/s41589-018-0168-3 10.1016/j.ymben.2017.08.001 10.1016/j.synbio.2022.12.005 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. |
Copyright_xml | – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 DOA |
DOI | 10.1186/s12934-025-02697-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1475-2859 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_32f8db1599ee4eaeac22245d4fae3fba A832967086 40148961 10_1186_s12934_025_02697_x |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No. 32200081 – fundername: Young Taishan Scholars Program of Shandong Province grantid: tsqn202312029 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2021QC021 |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M7P MM. M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SCM SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 7X8 PUEGO |
ID | FETCH-LOGICAL-c395t-9bf30ef4b9e2fb4ef2e5fa618a374aca923a3f9d15b3198ec55c52a3b0f410e63 |
IEDL.DBID | DOA |
ISSN | 1475-2859 |
IngestDate | Wed Aug 27 01:20:09 EDT 2025 Fri Jul 11 18:56:53 EDT 2025 Tue Jun 17 22:01:22 EDT 2025 Tue Jun 10 20:57:05 EDT 2025 Fri Jun 27 05:12:35 EDT 2025 Mon Jul 21 06:02:39 EDT 2025 Tue Jul 01 05:14:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Combinatorial repression Multiple genes Inducible promoters CRISPRi Metabolic flow |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-9bf30ef4b9e2fb4ef2e5fa618a374aca923a3f9d15b3198ec55c52a3b0f410e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/32f8db1599ee4eaeac22245d4fae3fba |
PMID | 40148961 |
PQID | 3182479635 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_32f8db1599ee4eaeac22245d4fae3fba proquest_miscellaneous_3182479635 gale_infotracmisc_A832967086 gale_infotracacademiconefile_A832967086 gale_incontextgauss_ISR_A832967086 pubmed_primary_40148961 crossref_primary_10_1186_s12934_025_02697_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-28 |
PublicationDateYYYYMMDD | 2025-03-28 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Microbial cell factories |
PublicationTitleAlternate | Microb Cell Fact |
PublicationYear | 2025 |
Publisher | BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BMC |
References | V Chubukov (2697_CR3) 2014; 12 J Kim (2697_CR12) 2023; 11 AJ Jervis (2697_CR40) 2021; 14 JH Kang (2697_CR29) 2012; 14 LJ Geyman (2697_CR8) 2024; 90 R Lutz (2697_CR26) 1997; 25 LB Zhang (2697_CR4) 2024; 23 LH Yin (2697_CR11) 2024; 72 C Gao (2697_CR15) 2018; 115 MV Rodnina (2697_CR39) 2018; 10 J Zhang (2697_CR32) 2020; 23 B Van Hove (2697_CR42) 2023; 77 RC Joseph (2697_CR9) 2023; 8 LL Chu (2697_CR14) 2020; 190 TY Su (2697_CR31) 2019; 10 D Banerjee (2697_CR10) 2020; 11 LS Qi (2697_CR6) 2013; 152 TL Ruegg (2697_CR18) 2018; 9 YS Zou (2697_CR1) 2024; 82 L Yang (2697_CR37) 2020; 45 F Moser (2697_CR16) 2018; 14 K Kundert (2697_CR41) 2019; 10 YK Li (2697_CR24) 2013; 149 2697_CR33 JP Tian (2697_CR2) 2024; 23 YK Wu (2697_CR36) 2020; 117 MH Larson (2697_CR5) 2013; 8 XG Zhang (2697_CR23) 1995; 270 DG Gibson (2697_CR21) 2009; 6 MJ Giacalone (2697_CR27) 2006; 40 SH Fang (2697_CR13) 2024; 250 R Schleif (2697_CR43) 2010; 34 C Engler (2697_CR22) 2008; 3 AC Reis (2697_CR28) 2019; 37 BX Lin (2697_CR34) 2017; 16 P Yang (2697_CR30) 2017; 43 Y Zheng (2697_CR7) 2019; 24 JR Sadler (2697_CR25) 1983; 80 LA Gilbert (2697_CR44) 2014; 159 YK Wu (2697_CR35) 2018; 49 Y Fujino (2697_CR17) 2016; 38 AJ Meyer (2697_CR19) 2019; 15 CM Arraiano (2697_CR38) 2010; 34 2697_CR20 |
References_xml | – volume: 49 start-page: 232 year: 2018 ident: 2697_CR35 publication-title: Metab Eng doi: 10.1016/j.ymben.2018.08.012 – volume: 23 start-page: 103 year: 2024 ident: 2697_CR2 publication-title: Microb Cell Fact doi: 10.1186/s12934-024-02331-2 – volume: 8 start-page: 2180 year: 2013 ident: 2697_CR5 publication-title: Nat Protoc doi: 10.1038/nprot.2013.132 – volume: 80 start-page: 6785 year: 1983 ident: 2697_CR25 publication-title: P Natl Acad Sci-Biol doi: 10.1073/pnas.80.22.6785 – volume: 149 start-page: 333 year: 2013 ident: 2697_CR24 publication-title: Bioresource Technol doi: 10.1016/j.biortech.2013.09.077 – volume: 117 start-page: 1817 year: 2020 ident: 2697_CR36 publication-title: Biotechnol Bioeng doi: 10.1002/bit.27322 – volume: 6 start-page: 343 year: 2009 ident: 2697_CR21 publication-title: Nat Methods doi: 10.1038/nmeth.1318 – ident: 2697_CR20 doi: 10.1126/science.1060677 – volume: 40 start-page: 355 year: 2006 ident: 2697_CR27 publication-title: Biotechniques doi: 10.2144/000112112 – volume: 10 start-page: 2127 year: 2019 ident: 2697_CR41 publication-title: Nat Commun doi: 10.1038/s41467-019-09985-2 – volume: 250 start-page: 1881 year: 2024 ident: 2697_CR13 publication-title: Eur Food Res Technol doi: 10.1007/s00217-023-04461-0 – volume: 45 start-page: 874 year: 2020 ident: 2697_CR37 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2020.06.003 – volume: 23 start-page: 167 year: 2024 ident: 2697_CR4 publication-title: Microb Cell Fact doi: 10.1186/s12934-024-02443-9 – volume: 3 start-page: e3647 year: 2008 ident: 2697_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0003647 – volume: 77 start-page: 50 year: 2023 ident: 2697_CR42 publication-title: New Biotechnol doi: 10.1016/j.nbt.2023.07.001 – volume: 90 start-page: 6 year: 2024 ident: 2697_CR8 publication-title: Appl Environ Microb doi: 10.1128/aem.00065-24 – volume: 34 start-page: 883 year: 2010 ident: 2697_CR38 publication-title: Fems Microbiol Rev doi: 10.1111/j.1574-6976.2010.00242.x – volume: 14 start-page: e8605 year: 2018 ident: 2697_CR16 publication-title: Mol Syst Biol doi: 10.15252/msb.20188605 – volume: 11 start-page: 5385 year: 2020 ident: 2697_CR10 publication-title: Nat Commun doi: 10.1038/s41467-020-19171-4 – volume: 14 start-page: 1120 year: 2021 ident: 2697_CR40 publication-title: Microb Biotechnol doi: 10.1111/1751-7915.13780 – volume: 14 start-page: 623 year: 2012 ident: 2697_CR29 publication-title: Metab Eng doi: 10.1016/j.ymben.2012.09.002 – volume: 34 start-page: 779 year: 2010 ident: 2697_CR43 publication-title: Fems Microbiol Rev doi: 10.1111/j.1574-6976.2010.00226.x – volume: 10 start-page: a032664 year: 2018 ident: 2697_CR39 publication-title: Csh Perspect Biol – volume: 38 start-page: 1381 year: 2016 ident: 2697_CR17 publication-title: Biotechnol Lett doi: 10.1007/s10529-016-2118-z – volume: 270 start-page: 11181 year: 1995 ident: 2697_CR23 publication-title: J Biol Chem doi: 10.1074/jbc.270.19.11181 – volume: 37 start-page: 1294 year: 2019 ident: 2697_CR28 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0286-9 – volume: 23 start-page: 101067 year: 2020 ident: 2697_CR32 publication-title: Iscience doi: 10.1016/j.isci.2020.101067 – ident: 2697_CR33 doi: 10.1186/s12934-021-01526-1 – volume: 10 start-page: 1731 year: 2019 ident: 2697_CR31 publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01731 – volume: 72 start-page: 3077 year: 2024 ident: 2697_CR11 publication-title: J Agr Food Chem doi: 10.1021/acs.jafc.3c08529 – volume: 25 start-page: 1203 year: 1997 ident: 2697_CR26 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.6.1203 – volume: 152 start-page: 1173 year: 2013 ident: 2697_CR6 publication-title: Cell doi: 10.1016/j.cell.2013.02.022 – volume: 16 start-page: 106 year: 2017 ident: 2697_CR34 publication-title: Microb Cell Fact doi: 10.1186/s12934-017-0724-7 – volume: 24 start-page: 579 year: 2019 ident: 2697_CR7 publication-title: Biotechnol Bioproc E doi: 10.1007/s12257-019-0107-5 – volume: 12 start-page: 327 year: 2014 ident: 2697_CR3 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3238 – volume: 159 start-page: 647 year: 2014 ident: 2697_CR44 publication-title: Cell doi: 10.1016/j.cell.2014.09.029 – volume: 82 start-page: 69 year: 2024 ident: 2697_CR1 publication-title: Metab Eng doi: 10.1016/j.ymben.2024.02.001 – volume: 9 start-page: 3617 year: 2018 ident: 2697_CR18 publication-title: Nat Commun doi: 10.1038/s41467-018-05857-3 – volume: 11 start-page: 1296132 year: 2023 ident: 2697_CR12 publication-title: Front Bioeng Biotech doi: 10.3389/fbioe.2023.1296132 – volume: 190 start-page: 325 year: 2020 ident: 2697_CR14 publication-title: Appl Biochem Biotech doi: 10.1007/s12010-019-03206-8 – volume: 115 start-page: 661 year: 2018 ident: 2697_CR15 publication-title: Biotechnol Bioeng doi: 10.1002/bit.26486 – volume: 15 start-page: 196 year: 2019 ident: 2697_CR19 publication-title: Nat Chem Biol doi: 10.1038/s41589-018-0168-3 – volume: 43 start-page: 21 year: 2017 ident: 2697_CR30 publication-title: Metab Eng doi: 10.1016/j.ymben.2017.08.001 – volume: 8 start-page: 148 year: 2023 ident: 2697_CR9 publication-title: Syn Syst Biotechno doi: 10.1016/j.synbio.2022.12.005 |
SSID | ssj0017873 |
Score | 2.4085598 |
Snippet | The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for... Background The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively... Abstract Background The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 74 |
SubjectTerms | Analysis Biosynthesis Combinatorial repression CRISPR-Cas Systems CRISPRi Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Gene expression Gene Expression Regulation, Bacterial Genetic aspects Identification and classification Inducible promoters Metabolic Engineering - methods Metabolic flow Multiple genes Plasmids - genetics Plasmids - metabolism Promoter Regions, Genetic RNA, Guide, CRISPR-Cas Systems - genetics |
Title | A rapid and efficient strategy for combinatorial repression of multiple genes in Escherichia coli |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40148961 https://www.proquest.com/docview/3182479635 https://doaj.org/article/32f8db1599ee4eaeac22245d4fae3fba |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeBMoK4OQOKCou_ErPqZoq7ISFWqptDfLTsbVSihbbXal8u-ZcZKqCwcunCLFjhXPjOebScafGftIGXIsPeSIZZBL1DL6QShzsg9MxgRiIG1w_namTy_lYqmWd476opqwnh64F9yRwKGagKBrASR49BOIaFI1MnoQMaTQCDFvTKaG_wdohmLcIlPqo45QTeZ0dCvmHNbkN3swlNj6__bJf0SaCXFOnrDHQ6jIq_4Vn7J70D5jj-4QCD5nvuIbf71quG8bDokNAkGEdz3l7C-OESlHk8Lsl3JrNDW-GStfW76OfCwn5Ffk8viq5fOOtLiiCmh88ufqBbs8mf_4cpoPhybktbBqm9sQxRSiDBaKGCTEAlT0elZ6YaSvPQZ0XkTbzFTA1VdCrVStCi_CNMrZFLR4yQ7adQuvGQevCtN4DDi8kRB0CEbRQOXUWBu1zdjnUYbuuufGcCmnKLXrJe5Q4i5J3N1k7JjEfNuTeK3TDdS2G7Tt_qXtjH0gJTlirmipNObK77rOfb04dxX6JqsNpmgZ-zR0imuUd-2HnQY4KyK72ut5uNcTl1a91_x-tAVHTVSP1sJ61zn0hIU06LxUxl71RnI7MUkfaa2evfkfE37LHhbJbEVelIfsYLvZwTsMg7Zhwu6bpZmwB1W1uFjg9Xh-9v18ktbBb8OSCYs |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rapid+and+efficient+strategy+for+combinatorial+repression+of+multiple+genes+in+Escherichia+coli&rft.jtitle=Microbial+cell+factories&rft.au=Zheng%2C+Yi&rft.au=Mo%2C+Yuxia&rft.au=Yuan%2C+Yingbo&rft.au=Su%2C+Tianyuan&rft.date=2025-03-28&rft.issn=1475-2859&rft.eissn=1475-2859&rft.volume=24&rft.issue=1&rft.spage=74&rft_id=info:doi/10.1186%2Fs12934-025-02697-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon |