A rapid and efficient strategy for combinatorial repression of multiple genes in Escherichia coli

The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significan...

Full description

Saved in:
Bibliographic Details
Published inMicrobial cell factories Vol. 24; no. 1; pp. 74 - 12
Main Authors Zheng, Yi, Mo, Yuxia, Yuan, Yingbo, Su, Tianyuan, Qi, Qingsheng
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 28.03.2025
BMC
Subjects
Online AccessGet full text
ISSN1475-2859
1475-2859
DOI10.1186/s12934-025-02697-x

Cover

Loading…
Abstract The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains.
AbstractList Background The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. Results In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. Conclusion We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains. Keywords: CRISPRi, Inducible promoters, Multiple genes, Combinatorial repression, Metabolic flow
The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains.
Abstract Background The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. Results In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. Conclusion We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains.
The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge.BACKGROUNDThe regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge.In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control.RESULTSIn this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control.We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains.CONCLUSIONWe anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains.
The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains.
ArticleNumber 74
Audience Academic
Author Su, Tianyuan
Yuan, Yingbo
Qi, Qingsheng
Mo, Yuxia
Zheng, Yi
Author_xml – sequence: 1
  givenname: Yi
  surname: Zheng
  fullname: Zheng, Yi
– sequence: 2
  givenname: Yuxia
  surname: Mo
  fullname: Mo, Yuxia
– sequence: 3
  givenname: Yingbo
  surname: Yuan
  fullname: Yuan, Yingbo
– sequence: 4
  givenname: Tianyuan
  surname: Su
  fullname: Su, Tianyuan
– sequence: 5
  givenname: Qingsheng
  surname: Qi
  fullname: Qi, Qingsheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40148961$$D View this record in MEDLINE/PubMed
BookMark eNptkltr3DAQhU1JaS7tH-hDEfSlfXBq3WzrcQlpuxAo9PIsxvLIUbClrWTD5t9XG6chC0EIieE7h5HmnBcnPngsive0uqS0rb8kyhQXZcVk3rVqyv2r4oyKRpaslerk2f20OE_prqpo0zb8TXEqKipaVdOzAjYkws71BHxP0FpnHPqZpDnCjMM9sSESE6bOeZhDdDCSiLuIKbngSbBkWsbZ7UYkA3pMxHlyncwtRmduHWTl6N4Wry2MCd89nhfFn6_Xv6--lzc_vm2vNjel4UrOpeosr9CKTiGznUDLUFqoaQu8EWBAMQ7cqp7KjlPVopHSSAa8q6ygFdb8otiuvn2AO72LboJ4rwM4_VAIcdAQZ2dG1JzZtu-oVApRICAYxpiQvbCA3HaQvT6tXrsY_i6YZj25ZHAcwWNYkua0ZaJRNZcZ_biiA2Rn523IX2cOuN60nKm6qdpDc5cvUHn1ODmTx2pdrh8JPh8JMjPjfh5gSUlvf_08Zj88drt0E_ZPb_8_5QywFTAxpBTRPiG00oco6TVKOkdJP0RJ7_k_0Fy7DA
Cites_doi 10.1016/j.ymben.2018.08.012
10.1186/s12934-024-02331-2
10.1038/nprot.2013.132
10.1073/pnas.80.22.6785
10.1016/j.biortech.2013.09.077
10.1002/bit.27322
10.1038/nmeth.1318
10.1126/science.1060677
10.2144/000112112
10.1038/s41467-019-09985-2
10.1007/s00217-023-04461-0
10.1016/j.tibs.2020.06.003
10.1186/s12934-024-02443-9
10.1371/journal.pone.0003647
10.1016/j.nbt.2023.07.001
10.1128/aem.00065-24
10.1111/j.1574-6976.2010.00242.x
10.15252/msb.20188605
10.1038/s41467-020-19171-4
10.1111/1751-7915.13780
10.1016/j.ymben.2012.09.002
10.1111/j.1574-6976.2010.00226.x
10.1007/s10529-016-2118-z
10.1074/jbc.270.19.11181
10.1038/s41587-019-0286-9
10.1016/j.isci.2020.101067
10.1186/s12934-021-01526-1
10.3389/fmicb.2019.01731
10.1021/acs.jafc.3c08529
10.1093/nar/25.6.1203
10.1016/j.cell.2013.02.022
10.1186/s12934-017-0724-7
10.1007/s12257-019-0107-5
10.1038/nrmicro3238
10.1016/j.cell.2014.09.029
10.1016/j.ymben.2024.02.001
10.1038/s41467-018-05857-3
10.3389/fbioe.2023.1296132
10.1007/s12010-019-03206-8
10.1002/bit.26486
10.1038/s41589-018-0168-3
10.1016/j.ymben.2017.08.001
10.1016/j.synbio.2022.12.005
ContentType Journal Article
Copyright 2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
Copyright_xml – notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
DOA
DOI 10.1186/s12934-025-02697-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1475-2859
EndPage 12
ExternalDocumentID oai_doaj_org_article_32f8db1599ee4eaeac22245d4fae3fba
A832967086
40148961
10_1186_s12934_025_02697_x
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 32200081
– fundername: Young Taishan Scholars Program of Shandong Province
  grantid: tsqn202312029
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021QC021
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SCM
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
PUEGO
ID FETCH-LOGICAL-c395t-9bf30ef4b9e2fb4ef2e5fa618a374aca923a3f9d15b3198ec55c52a3b0f410e63
IEDL.DBID DOA
ISSN 1475-2859
IngestDate Wed Aug 27 01:20:09 EDT 2025
Fri Jul 11 18:56:53 EDT 2025
Tue Jun 17 22:01:22 EDT 2025
Tue Jun 10 20:57:05 EDT 2025
Fri Jun 27 05:12:35 EDT 2025
Mon Jul 21 06:02:39 EDT 2025
Tue Jul 01 05:14:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Combinatorial repression
Multiple genes
Inducible promoters
CRISPRi
Metabolic flow
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-9bf30ef4b9e2fb4ef2e5fa618a374aca923a3f9d15b3198ec55c52a3b0f410e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/32f8db1599ee4eaeac22245d4fae3fba
PMID 40148961
PQID 3182479635
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_32f8db1599ee4eaeac22245d4fae3fba
proquest_miscellaneous_3182479635
gale_infotracmisc_A832967086
gale_infotracacademiconefile_A832967086
gale_incontextgauss_ISR_A832967086
pubmed_primary_40148961
crossref_primary_10_1186_s12934_025_02697_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-28
PublicationDateYYYYMMDD 2025-03-28
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Microbial cell factories
PublicationTitleAlternate Microb Cell Fact
PublicationYear 2025
Publisher BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BMC
References V Chubukov (2697_CR3) 2014; 12
J Kim (2697_CR12) 2023; 11
AJ Jervis (2697_CR40) 2021; 14
JH Kang (2697_CR29) 2012; 14
LJ Geyman (2697_CR8) 2024; 90
R Lutz (2697_CR26) 1997; 25
LB Zhang (2697_CR4) 2024; 23
LH Yin (2697_CR11) 2024; 72
C Gao (2697_CR15) 2018; 115
MV Rodnina (2697_CR39) 2018; 10
J Zhang (2697_CR32) 2020; 23
B Van Hove (2697_CR42) 2023; 77
RC Joseph (2697_CR9) 2023; 8
LL Chu (2697_CR14) 2020; 190
TY Su (2697_CR31) 2019; 10
D Banerjee (2697_CR10) 2020; 11
LS Qi (2697_CR6) 2013; 152
TL Ruegg (2697_CR18) 2018; 9
YS Zou (2697_CR1) 2024; 82
L Yang (2697_CR37) 2020; 45
F Moser (2697_CR16) 2018; 14
K Kundert (2697_CR41) 2019; 10
YK Li (2697_CR24) 2013; 149
2697_CR33
JP Tian (2697_CR2) 2024; 23
YK Wu (2697_CR36) 2020; 117
MH Larson (2697_CR5) 2013; 8
XG Zhang (2697_CR23) 1995; 270
DG Gibson (2697_CR21) 2009; 6
MJ Giacalone (2697_CR27) 2006; 40
SH Fang (2697_CR13) 2024; 250
R Schleif (2697_CR43) 2010; 34
C Engler (2697_CR22) 2008; 3
AC Reis (2697_CR28) 2019; 37
BX Lin (2697_CR34) 2017; 16
P Yang (2697_CR30) 2017; 43
Y Zheng (2697_CR7) 2019; 24
JR Sadler (2697_CR25) 1983; 80
LA Gilbert (2697_CR44) 2014; 159
YK Wu (2697_CR35) 2018; 49
Y Fujino (2697_CR17) 2016; 38
AJ Meyer (2697_CR19) 2019; 15
CM Arraiano (2697_CR38) 2010; 34
2697_CR20
References_xml – volume: 49
  start-page: 232
  year: 2018
  ident: 2697_CR35
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2018.08.012
– volume: 23
  start-page: 103
  year: 2024
  ident: 2697_CR2
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-024-02331-2
– volume: 8
  start-page: 2180
  year: 2013
  ident: 2697_CR5
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2013.132
– volume: 80
  start-page: 6785
  year: 1983
  ident: 2697_CR25
  publication-title: P Natl Acad Sci-Biol
  doi: 10.1073/pnas.80.22.6785
– volume: 149
  start-page: 333
  year: 2013
  ident: 2697_CR24
  publication-title: Bioresource Technol
  doi: 10.1016/j.biortech.2013.09.077
– volume: 117
  start-page: 1817
  year: 2020
  ident: 2697_CR36
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.27322
– volume: 6
  start-page: 343
  year: 2009
  ident: 2697_CR21
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1318
– ident: 2697_CR20
  doi: 10.1126/science.1060677
– volume: 40
  start-page: 355
  year: 2006
  ident: 2697_CR27
  publication-title: Biotechniques
  doi: 10.2144/000112112
– volume: 10
  start-page: 2127
  year: 2019
  ident: 2697_CR41
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09985-2
– volume: 250
  start-page: 1881
  year: 2024
  ident: 2697_CR13
  publication-title: Eur Food Res Technol
  doi: 10.1007/s00217-023-04461-0
– volume: 45
  start-page: 874
  year: 2020
  ident: 2697_CR37
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2020.06.003
– volume: 23
  start-page: 167
  year: 2024
  ident: 2697_CR4
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-024-02443-9
– volume: 3
  start-page: e3647
  year: 2008
  ident: 2697_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003647
– volume: 77
  start-page: 50
  year: 2023
  ident: 2697_CR42
  publication-title: New Biotechnol
  doi: 10.1016/j.nbt.2023.07.001
– volume: 90
  start-page: 6
  year: 2024
  ident: 2697_CR8
  publication-title: Appl Environ Microb
  doi: 10.1128/aem.00065-24
– volume: 34
  start-page: 883
  year: 2010
  ident: 2697_CR38
  publication-title: Fems Microbiol Rev
  doi: 10.1111/j.1574-6976.2010.00242.x
– volume: 14
  start-page: e8605
  year: 2018
  ident: 2697_CR16
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20188605
– volume: 11
  start-page: 5385
  year: 2020
  ident: 2697_CR10
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19171-4
– volume: 14
  start-page: 1120
  year: 2021
  ident: 2697_CR40
  publication-title: Microb Biotechnol
  doi: 10.1111/1751-7915.13780
– volume: 14
  start-page: 623
  year: 2012
  ident: 2697_CR29
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2012.09.002
– volume: 34
  start-page: 779
  year: 2010
  ident: 2697_CR43
  publication-title: Fems Microbiol Rev
  doi: 10.1111/j.1574-6976.2010.00226.x
– volume: 10
  start-page: a032664
  year: 2018
  ident: 2697_CR39
  publication-title: Csh Perspect Biol
– volume: 38
  start-page: 1381
  year: 2016
  ident: 2697_CR17
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-016-2118-z
– volume: 270
  start-page: 11181
  year: 1995
  ident: 2697_CR23
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.19.11181
– volume: 37
  start-page: 1294
  year: 2019
  ident: 2697_CR28
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0286-9
– volume: 23
  start-page: 101067
  year: 2020
  ident: 2697_CR32
  publication-title: Iscience
  doi: 10.1016/j.isci.2020.101067
– ident: 2697_CR33
  doi: 10.1186/s12934-021-01526-1
– volume: 10
  start-page: 1731
  year: 2019
  ident: 2697_CR31
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.01731
– volume: 72
  start-page: 3077
  year: 2024
  ident: 2697_CR11
  publication-title: J Agr Food Chem
  doi: 10.1021/acs.jafc.3c08529
– volume: 25
  start-page: 1203
  year: 1997
  ident: 2697_CR26
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.6.1203
– volume: 152
  start-page: 1173
  year: 2013
  ident: 2697_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.022
– volume: 16
  start-page: 106
  year: 2017
  ident: 2697_CR34
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-017-0724-7
– volume: 24
  start-page: 579
  year: 2019
  ident: 2697_CR7
  publication-title: Biotechnol Bioproc E
  doi: 10.1007/s12257-019-0107-5
– volume: 12
  start-page: 327
  year: 2014
  ident: 2697_CR3
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3238
– volume: 159
  start-page: 647
  year: 2014
  ident: 2697_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.029
– volume: 82
  start-page: 69
  year: 2024
  ident: 2697_CR1
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2024.02.001
– volume: 9
  start-page: 3617
  year: 2018
  ident: 2697_CR18
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05857-3
– volume: 11
  start-page: 1296132
  year: 2023
  ident: 2697_CR12
  publication-title: Front Bioeng Biotech
  doi: 10.3389/fbioe.2023.1296132
– volume: 190
  start-page: 325
  year: 2020
  ident: 2697_CR14
  publication-title: Appl Biochem Biotech
  doi: 10.1007/s12010-019-03206-8
– volume: 115
  start-page: 661
  year: 2018
  ident: 2697_CR15
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.26486
– volume: 15
  start-page: 196
  year: 2019
  ident: 2697_CR19
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-018-0168-3
– volume: 43
  start-page: 21
  year: 2017
  ident: 2697_CR30
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2017.08.001
– volume: 8
  start-page: 148
  year: 2023
  ident: 2697_CR9
  publication-title: Syn Syst Biotechno
  doi: 10.1016/j.synbio.2022.12.005
SSID ssj0017873
Score 2.4085598
Snippet The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for...
Background The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively...
Abstract Background The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 74
SubjectTerms Analysis
Biosynthesis
Combinatorial repression
CRISPR-Cas Systems
CRISPRi
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Gene expression
Gene Expression Regulation, Bacterial
Genetic aspects
Identification and classification
Inducible promoters
Metabolic Engineering - methods
Metabolic flow
Multiple genes
Plasmids - genetics
Plasmids - metabolism
Promoter Regions, Genetic
RNA, Guide, CRISPR-Cas Systems - genetics
Title A rapid and efficient strategy for combinatorial repression of multiple genes in Escherichia coli
URI https://www.ncbi.nlm.nih.gov/pubmed/40148961
https://www.proquest.com/docview/3182479635
https://doaj.org/article/32f8db1599ee4eaeac22245d4fae3fba
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeBMoK4OQOKCou_ErPqZoq7ISFWqptDfLTsbVSihbbXal8u-ZcZKqCwcunCLFjhXPjOebScafGftIGXIsPeSIZZBL1DL6QShzsg9MxgRiIG1w_namTy_lYqmWd476opqwnh64F9yRwKGagKBrASR49BOIaFI1MnoQMaTQCDFvTKaG_wdohmLcIlPqo45QTeZ0dCvmHNbkN3swlNj6__bJf0SaCXFOnrDHQ6jIq_4Vn7J70D5jj-4QCD5nvuIbf71quG8bDokNAkGEdz3l7C-OESlHk8Lsl3JrNDW-GStfW76OfCwn5Ffk8viq5fOOtLiiCmh88ufqBbs8mf_4cpoPhybktbBqm9sQxRSiDBaKGCTEAlT0elZ6YaSvPQZ0XkTbzFTA1VdCrVStCi_CNMrZFLR4yQ7adQuvGQevCtN4DDi8kRB0CEbRQOXUWBu1zdjnUYbuuufGcCmnKLXrJe5Q4i5J3N1k7JjEfNuTeK3TDdS2G7Tt_qXtjH0gJTlirmipNObK77rOfb04dxX6JqsNpmgZ-zR0imuUd-2HnQY4KyK72ut5uNcTl1a91_x-tAVHTVSP1sJ61zn0hIU06LxUxl71RnI7MUkfaa2evfkfE37LHhbJbEVelIfsYLvZwTsMg7Zhwu6bpZmwB1W1uFjg9Xh-9v18ktbBb8OSCYs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rapid+and+efficient+strategy+for+combinatorial+repression+of+multiple+genes+in+Escherichia+coli&rft.jtitle=Microbial+cell+factories&rft.au=Zheng%2C+Yi&rft.au=Mo%2C+Yuxia&rft.au=Yuan%2C+Yingbo&rft.au=Su%2C+Tianyuan&rft.date=2025-03-28&rft.issn=1475-2859&rft.eissn=1475-2859&rft.volume=24&rft.issue=1&rft.spage=74&rft_id=info:doi/10.1186%2Fs12934-025-02697-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon