Green synthesized silver nanoparticles for iron and manganese ion removal from aqueous solutions

Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. an...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 327; p. 121483
Main Authors Moraes, Leonardo C., Gomes, Marcelo P., Ribeiro-Andrade, Rodrigo, Garcia, Queila S., Figueredo, Cleber C.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV–Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L−1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water. [Display omitted] •Cyanobacteria and algae do eco-friendly green synthesis of metal nanoparticles.•Different silver NPs were synthesized by different species.•Nanobiofilters for metals remotion are of interest for water treatment.•AgNPs biosynthesized by microalgae and cyanobacteria can remove metals from water.
AbstractList Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO₃ under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV–Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L⁻¹ in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO₃ (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe³⁺ and Mn²⁺ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe³⁺ and Mn²⁺ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water.
Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV-Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L-1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water.Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV-Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L-1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water.
Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV-Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe and Mn ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe and Mn ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water.
Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV–Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L−1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water. [Display omitted] •Cyanobacteria and algae do eco-friendly green synthesis of metal nanoparticles.•Different silver NPs were synthesized by different species.•Nanobiofilters for metals remotion are of interest for water treatment.•AgNPs biosynthesized by microalgae and cyanobacteria can remove metals from water.
ArticleNumber 121483
Author Garcia, Queila S.
Figueredo, Cleber C.
Gomes, Marcelo P.
Moraes, Leonardo C.
Ribeiro-Andrade, Rodrigo
Author_xml – sequence: 1
  givenname: Leonardo C.
  surname: Moraes
  fullname: Moraes, Leonardo C.
  organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
– sequence: 2
  givenname: Marcelo P.
  orcidid: 0000-0001-9406-9815
  surname: Gomes
  fullname: Gomes, Marcelo P.
  organization: Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim Das Américas, C.P. 19031, Curitiba, 81531-980, Paraná, Brazil
– sequence: 3
  givenname: Rodrigo
  orcidid: 0000-0002-2889-7636
  surname: Ribeiro-Andrade
  fullname: Ribeiro-Andrade, Rodrigo
  organization: Centro de Microscopia da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
– sequence: 4
  givenname: Queila S.
  surname: Garcia
  fullname: Garcia, Queila S.
  organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
– sequence: 5
  givenname: Cleber C.
  surname: Figueredo
  fullname: Figueredo, Cleber C.
  email: cleberfigueredo@ufmg.br
  organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36990344$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rVDEUxYNU7LT6DUSydPOm-TfJiwtBilah0I2uYya50Qx5yZi8GaifvhledeHCbm7g5ncuh3Mu0FkuGRB6TcmaEiqvdmvIx31Ja0YYX1NGxcifoRUdFR-kYOIMrQiTelBC03N00dqOECI45y_QOZdaEy7ECn2_qQAZt_s8_4QWf4PHLaYjVJxtLntb5-gSNBxKxbGWjG32eLL5h83QAMe-qTCVo0041DJh--sA5dBwK-kw99_2Ej0PNjV49fheom-fPn69_jzc3t18uf5wOziuN_OgpRdKj0AsDUKNTvZJJKOWcBvkCNoGsNxvFPPWSsq3EIJUTniypUxvFL9Eb5e7-1q6hzabKTYHKXWj3ZBhIxdMKanHp1GlmSZMbXhH3zyih-0E3uxrnGy9N38C7IBYAFdLaxXCX4QSc-rJ7MzSkzn1ZJaeuuzdPzIXZ3sKbK42pqfE7xcx9DyPEappLkJ24GMFNxtf4v8PPAAExrG1
CitedBy_id crossref_primary_10_1080_10889868_2023_2269247
crossref_primary_10_1007_s42729_024_02047_7
crossref_primary_10_1007_s44372_025_00090_x
crossref_primary_10_1039_D4RA04140B
crossref_primary_10_1016_j_ejar_2023_10_001
crossref_primary_10_1007_s13201_025_02364_x
crossref_primary_10_14258_jcprm_20230412740
crossref_primary_10_1016_j_jwpe_2024_105566
Cites_doi 10.1039/C9RA10104G
10.1016/S0160-4120(01)00052-6
10.1016/j.marpolbul.2017.04.056
10.1016/j.colcom.2021.100420
10.1016/j.cej.2013.02.054
10.3762/bjnano.9.98
10.1016/j.btre.2014.12.001
10.1007/s11756-022-01189-2
10.1016/j.envpol.2022.120840
10.1007/s12668-012-0046-5
10.1016/j.chemosphere.2021.131368
10.1016/j.chemosphere.2021.131572
10.1016/j.enzmictec.2016.10.018
10.1039/C9GC02291K
10.1016/j.chemosphere.2020.128919
10.1039/C5CC00211G
10.1039/b517312b
10.3389/fbioe.2018.00157
10.1007/BF02932318
10.1039/C8NR02278J
10.1016/S0166-445X(02)00080-2
10.1016/j.chemosphere.2021.132367
10.1049/iet-nbt.2012.0041
10.3389/fbioe.2022.874742
10.1039/c1nr10201j
10.1016/j.jclepro.2017.03.082
10.1016/j.matlet.2020.129265
10.1016/j.chemosphere.2018.09.106
10.1016/j.ecoenv.2013.09.003
10.22571/Actabra13201758
10.1016/j.drudis.2014.11.014
10.1016/j.jcis.2016.01.023
10.1088/1361-648X/aa60f3
10.1080/03067319.2019.1673383
10.1007/s13201-020-01240-0
10.1002/jctb.2552
10.1007/s11270-020-04691-y
10.1016/j.colsurfb.2009.07.048
10.1007/s10098-014-0803-y
10.1016/j.jphotobiol.2020.111823
10.1016/j.colsurfb.2012.11.022
10.1016/S1001-0742(12)60145-4
10.1016/j.wri.2018.10.001
10.3390/jcs7020084
10.1016/j.ccr.2015.07.013
10.1016/j.envpol.2023.121005
10.1039/D2RA07911A
10.1088/0950-7671/36/3/302
10.3390/ma12030465
10.1080/09670262.2011.653406
10.1016/S2221-1691(13)60006-4
10.1016/j.saa.2014.02.119
10.1039/C8DT01152D
10.1021/acs.analchem.8b01905
10.1007/s40097-017-0219-4
10.1007/BF00405922
10.1039/C8RA10483B
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2023.121483
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 36990344
10_1016_j_envpol_2023_121483
S0269749123004852
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XJT
XOL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-96d4798e0a1f478c6f470621a03af68e9afea3d572daa613beff67c4d0b129573
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Thu Jul 10 16:48:58 EDT 2025
Thu Jul 10 19:54:40 EDT 2025
Wed Feb 19 02:23:41 EST 2025
Tue Jul 01 02:26:29 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Tue Dec 03 03:44:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metals removal
Green synthesis
Autotrophic microorganisms
Water purification
Nanobiotechnology
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-96d4798e0a1f478c6f470621a03af68e9afea3d572daa613beff67c4d0b129573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9406-9815
0000-0002-2889-7636
PMID 36990344
PQID 2792902753
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834277698
proquest_miscellaneous_2792902753
pubmed_primary_36990344
crossref_primary_10_1016_j_envpol_2023_121483
crossref_citationtrail_10_1016_j_envpol_2023_121483
elsevier_sciencedirect_doi_10_1016_j_envpol_2023_121483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moraes, Figueiredo, Ribeiro-Andrade, Pontes-Silva, Arantes, Giani, Figueredo (bib41) 2021; 42
Chopra, Bibi, Singh, Hasan, Khan, Yousafi, Baig, Rahman, Islam, Emran, Cavalu (bib12) 2022; 10
Anirudhan, Deepa, Christa (bib4) 2016; 467
Martínez-Prieto, Urbaneja, Palma, Cámpora, Philippot, Chaudret (bib40) 2015; 51
Neculita, Rosa (bib43) 2019; 214
Sadegh, Ali, Gupta, Makhlouf, Shahryari-ghoshekandi, Nadagouda, Sillanpää, Megiel (bib52) 2017; 7
Vishnu, Dhandapani, Vaishnavi, Preethi (bib64) 2022; 286
Sunkar, Nachiyar (bib62) 2012; 2
Saravanan, Kumar, Karishma, Vo, Jeevanantham, Yaashikaa, George (bib55) 2020; 264
Devi, Bhimba (bib15) 2012; 1
Ganachari, Bhat, Deshpande, Venkataraman (bib20) 2012; 2
Lobo-Recio, Rodrigues, Jeremias, Lapolli, Padilla, López-Delgado (bib38) 2021; 267
Vishnu, Dhandapani, K (bib63) 2019; 6445
Attatsi, Nsiah (bib6) 2020; 10
Lee, Kacew, Kim, Lu (bib35) 2018
Li, Liu, Wang, Guo, Losic, Deng, Wu, Yuan (bib36) 2023; 319
Chandhirasekar, Thendralmanikandan, Thangavelu, Nguyen, Nguyen, Sivashanmugan, Nareshkumar, Nguyen (bib11) 2021; 287
Sag, Kutsal (bib53) 2001; 6
Carvalho, Ribeiro, Moreira, Almeida (bib9) 2017; 1
Hong, Xie, Mirshahghassemi, Lead (bib27) 2020; 10
Pandian, Rajasimman, Rajamohan, Varjani, Karthikeyan (bib44) 2021; 416
Wang, Lan, Bo, Gong, Ou (bib65) 2023; 13
Gahlawat, Choudhury (bib19) 2019; 9
(bib13) 2005
Ali, Mannan, Hussain, Hussain, Zia (bib1) 2018; 9
Parandhaman, Dey, Das (bib46) 2019; 21
Pessarakli (bib50) 2016
Ferreira, ConzFerreira, Lima, Frasés, Souza, Sant'Anna (bib18) 2017; 97
Pillai, Deepa, Abraham, Girija, Geetha, Jacob, Koshy (bib51) 2013; 98
Amendola, Pilot, Frasconi, Maragò, Iatì (bib2) 2017; 29
Harikumar, Hridya (bib25) 2021; 101
Kefeni, Msagati, Mamba (bib30) 2017; 151
Kumar, Govindaraju, Senthamilselvi, Premkumar (bib33) 2013; 103
Gurunathan, Kalishwaralal, Vaidyanathan, Deepak, Pandian, Muniyandi, Hariharan, Eom (bib24) 2009; 74
Marimuthu, Antonisamy, Malayandi, Rajendran, Tsai, Pugazhendhi, Ponnusamy (bib39) 2020; 205
Ansari, Ficiara, Ruffinatti, Stura, Argenziano, Abollino, Cavalli, Guiot, D'Agata (bib5) 2019; 12
Bindhu, Umadevi (bib8) 2014; 128
Sharma, Pattadar, Mainali, Zamborini (bib57) 2018; 90
Amiens, Ciuculescu-Pradines, Philippot (bib3) 2016; 308
Bastus, Casals, Ojea, Varon, Puntes (bib7) 2012
Khan, Shaik, Adil, Khan, Al-Warthan, Siddiqui, Tahir, Tremel (bib31) 2018; 47
Sood, Renuka, Prasanna, Ahluwalia (bib60) 2015
Kurniawan, Lo, Liang, Goh, Othman, Chong, Mohyuddin, Kern, Chew (bib34) 2023; 7
Jain, Yadav, Kohout, Lahtinen, Garg, Sillanpää (bib28) 2018; 20
Gomes, Correa, Sá, Neto, Bernardino (bib22) 2017; 120
Spreadborough, Christian (bib61) 1959; 36
Pandian, Gopalakrishnan, Rajasimman, Rajamohan, Karthikeyan (bib45) 2021; 197
Zahmakıran, Özkar (bib69) 2011; 3
Mourdikoudis, Pallares, Thanh (bib42) 2018; 10
Patel, Berthold, Puranik, Gantar (bib48) 2015; 5
Samuel, Selvarajan, Chidambaram, Patel, Brindhadevi (bib54) 2021; 284
Hokkanen, Repo, Sillanpää (bib26) 2013; 223
Sawidis, Brown, Zachariadis, Sratis (bib56) 2001; 27
Kim, Im, Lee (bib32) 2022; 287
Diep, Mahadevan, Yakunin (bib16) 2018; 6
Silva, Figueredo (bib58) 2023; 78
De Filippis, Hampp, Ziegler (bib14) 1981; 128
Song, Saman, Johari, Mat (bib59) 2014; 16
Castro, Blázquez, Muñoz, González, Ballester (bib10) 2013; 7
Wilcoxon, Abrams (bib67) 2006; 35
Yu, Tong, Ge, Wu, Zuo, Cao, Song (bib68) 2013; 25
Wei, Lu, Xu, Patel, Chen, Chen (bib66) 2015; 20
Lobban, Harrison (bib37) 1994
Jeevanandam, Barhoum, Chan, Dufresne, Danquah (bib29) 2018; 9
Parial, Patra, Dasgupta, Pal (bib47) 2012; 47
Girotto, Espíndola, Gebara, Freitas (bib21) 2020; 231
Dubey, Chen, Haldar, Tambat, Kumar, Tiwari, Singhani, Dong, Patel (bib17) 2023; 317
Zamboulis, Peleka, Lazaridis, Matis (bib70) 2011; 86
Greene, Darnall (bib23) 1990
Pawlik-Skowrońska (bib49) 2003; 62
Vishnu (10.1016/j.envpol.2023.121483_bib63) 2019; 6445
Harikumar (10.1016/j.envpol.2023.121483_bib25) 2021; 101
Ganachari (10.1016/j.envpol.2023.121483_bib20) 2012; 2
Castro (10.1016/j.envpol.2023.121483_bib10) 2013; 7
Chandhirasekar (10.1016/j.envpol.2023.121483_bib11) 2021; 287
Wei (10.1016/j.envpol.2023.121483_bib66) 2015; 20
Diep (10.1016/j.envpol.2023.121483_bib16) 2018; 6
Chopra (10.1016/j.envpol.2023.121483_bib12) 2022; 10
Amendola (10.1016/j.envpol.2023.121483_bib2) 2017; 29
Bastus (10.1016/j.envpol.2023.121483_bib7) 2012
Parandhaman (10.1016/j.envpol.2023.121483_bib46) 2019; 21
Amiens (10.1016/j.envpol.2023.121483_bib3) 2016; 308
Parial (10.1016/j.envpol.2023.121483_bib47) 2012; 47
Attatsi (10.1016/j.envpol.2023.121483_bib6) 2020; 10
Wilcoxon (10.1016/j.envpol.2023.121483_bib67) 2006; 35
Gahlawat (10.1016/j.envpol.2023.121483_bib19) 2019; 9
Lee (10.1016/j.envpol.2023.121483_bib35) 2018
Gomes (10.1016/j.envpol.2023.121483_bib22) 2017; 120
Ansari (10.1016/j.envpol.2023.121483_bib5) 2019; 12
Pillai (10.1016/j.envpol.2023.121483_bib51) 2013; 98
Zahmakıran (10.1016/j.envpol.2023.121483_bib69) 2011; 3
Li (10.1016/j.envpol.2023.121483_bib36) 2023; 319
Hong (10.1016/j.envpol.2023.121483_bib27) 2020; 10
Lobo-Recio (10.1016/j.envpol.2023.121483_bib38) 2021; 267
Kumar (10.1016/j.envpol.2023.121483_bib33) 2013; 103
Marimuthu (10.1016/j.envpol.2023.121483_bib39) 2020; 205
Ferreira (10.1016/j.envpol.2023.121483_bib18) 2017; 97
Saravanan (10.1016/j.envpol.2023.121483_bib55) 2020; 264
Bindhu (10.1016/j.envpol.2023.121483_bib8) 2014; 128
Gurunathan (10.1016/j.envpol.2023.121483_bib24) 2009; 74
Samuel (10.1016/j.envpol.2023.121483_bib54) 2021; 284
Moraes (10.1016/j.envpol.2023.121483_bib41) 2021; 42
Lobban (10.1016/j.envpol.2023.121483_bib37) 1994
Spreadborough (10.1016/j.envpol.2023.121483_bib61) 1959; 36
Kurniawan (10.1016/j.envpol.2023.121483_bib34) 2023; 7
Pawlik-Skowrońska (10.1016/j.envpol.2023.121483_bib49) 2003; 62
Silva (10.1016/j.envpol.2023.121483_bib58) 2023; 78
Mourdikoudis (10.1016/j.envpol.2023.121483_bib42) 2018; 10
Pandian (10.1016/j.envpol.2023.121483_bib44) 2021; 416
Song (10.1016/j.envpol.2023.121483_bib59) 2014; 16
Anirudhan (10.1016/j.envpol.2023.121483_bib4) 2016; 467
Martínez-Prieto (10.1016/j.envpol.2023.121483_bib40) 2015; 51
Sawidis (10.1016/j.envpol.2023.121483_bib56) 2001; 27
Kefeni (10.1016/j.envpol.2023.121483_bib30) 2017; 151
Devi (10.1016/j.envpol.2023.121483_bib15) 2012; 1
Pandian (10.1016/j.envpol.2023.121483_bib45) 2021; 197
Patel (10.1016/j.envpol.2023.121483_bib48) 2015; 5
Yu (10.1016/j.envpol.2023.121483_bib68) 2013; 25
Greene (10.1016/j.envpol.2023.121483_bib23) 1990
Sadegh (10.1016/j.envpol.2023.121483_bib52) 2017; 7
Jain (10.1016/j.envpol.2023.121483_bib28) 2018; 20
Ali (10.1016/j.envpol.2023.121483_bib1) 2018; 9
Dubey (10.1016/j.envpol.2023.121483_bib17) 2023; 317
Carvalho (10.1016/j.envpol.2023.121483_bib9) 2017; 1
Sood (10.1016/j.envpol.2023.121483_bib60) 2015
Sharma (10.1016/j.envpol.2023.121483_bib57) 2018; 90
Sunkar (10.1016/j.envpol.2023.121483_bib62) 2012; 2
(10.1016/j.envpol.2023.121483_bib13) 2005
De Filippis (10.1016/j.envpol.2023.121483_bib14) 1981; 128
Vishnu (10.1016/j.envpol.2023.121483_bib64) 2022; 286
Kim (10.1016/j.envpol.2023.121483_bib32) 2022; 287
Neculita (10.1016/j.envpol.2023.121483_bib43) 2019; 214
Khan (10.1016/j.envpol.2023.121483_bib31) 2018; 47
Zamboulis (10.1016/j.envpol.2023.121483_bib70) 2011; 86
Wang (10.1016/j.envpol.2023.121483_bib65) 2023; 13
Hokkanen (10.1016/j.envpol.2023.121483_bib26) 2013; 223
Jeevanandam (10.1016/j.envpol.2023.121483_bib29) 2018; 9
Girotto (10.1016/j.envpol.2023.121483_bib21) 2020; 231
Pessarakli (10.1016/j.envpol.2023.121483_bib50) 2016
Sag (10.1016/j.envpol.2023.121483_bib53) 2001; 6
References_xml – volume: 416
  year: 2021
  ident: bib44
  article-title: Anaerobic mixed consortium (AMC) mediated enhanced biosynthesis of silver nano particles (AgNPs) and its application for the removal of phenol
  publication-title: J. Hazard Mater.
– volume: 78
  start-page: 1
  year: 2023
  end-page: 14
  ident: bib58
  article-title: Algae as biosorption agents for recovering environments contaminated by trace metals: an overview of a potentially useful tool for mine disasters in Brazil
  publication-title: Biologia
– year: 1994
  ident: bib37
  article-title: Seaweed Ecology and Physiology
– volume: 7
  start-page: 109
  year: 2013
  end-page: 116
  ident: bib10
  article-title: Biological synthesis of metallic nanoparticles using algae
  publication-title: IET Nanobiotechnol.
– volume: 20
  start-page: 54
  year: 2018
  end-page: 74
  ident: bib28
  article-title: Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution
  publication-title: Water Resour. Ind.
– start-page: 377
  year: 2012
  end-page: 400
  ident: bib7
  article-title: The reactivity of colloidal inorganic nanoparticles
  publication-title: The Delivery of Nanoparticles
– volume: 223
  start-page: 40
  year: 2013
  end-page: 47
  ident: bib26
  article-title: Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose
  publication-title: Chem. Eng. J.
– volume: 6445
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib63
  article-title: The symbiotic effect of integrated
  publication-title: Chem. Eng. Commun.
– start-page: 277
  year: 1990
  end-page: 302
  ident: bib23
  article-title: Microbial oxygenic photoautotrophs (cyanobacteria and algae) for metal ion binding
  publication-title: Microbial Mineral Recovery
– volume: 98
  start-page: 352
  year: 2013
  end-page: 360
  ident: bib51
  article-title: Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 13
  start-page: 4275
  year: 2023
  end-page: 4302
  ident: bib65
  article-title: Adsorption of heavy metal onto biomass-derived activated carbon: review
  publication-title: RSC Adv.
– volume: 308
  start-page: 409
  year: 2016
  end-page: 432
  ident: bib3
  article-title: Controlled metal nanostructures: fertile ground for coordination chemists
  publication-title: Coord. Chem. Rev.
– volume: 231
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib21
  article-title: Acute and chronic effects on tadpoles (
  publication-title: Water Air Soil Pollut.
– volume: 47
  start-page: 11988
  year: 2018
  end-page: 12010
  ident: bib31
  article-title: Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis
  publication-title: Dalton Trans.
– volume: 97
  start-page: 114
  year: 2017
  end-page: 121
  ident: bib18
  article-title: Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria
  publication-title: Enzym. Microb. Technol.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib52
  article-title: The role of nanomaterials as effective adsorbents and their applications in wastewater treatment
  publication-title: J. Nanostructure Chem.
– volume: 21
  start-page: 5469
  year: 2019
  end-page: 5500
  ident: bib46
  article-title: Biofabrication of supported metal nanoparticles: exploring the bioinspiration strategy to mitigate the environmental challenges
  publication-title: Green Chem.
– volume: 62
  start-page: 155
  year: 2003
  end-page: 163
  ident: bib49
  article-title: When adapted to high zinc concentrations the periphytic green alga
  publication-title: Aquat. Toxicol.
– volume: 51
  start-page: 4647
  year: 2015
  end-page: 4650
  ident: bib40
  article-title: A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles
  publication-title: Chem. Commun.
– volume: 10
  start-page: 152
  year: 2020
  ident: bib6
  article-title: Application of silver nanoparticles toward Co(II) and Pb(II) ions contaminant removal in groundwater
  publication-title: Appl. Water Sci.
– volume: 101
  start-page: 869
  year: 2021
  end-page: 883
  ident: bib25
  article-title: Application of CuNi bimetallic nanoparticle as an adsorbent for the removal of heavy metals from aqueous solution
  publication-title: Int. J. Environ. Anal. Chem.
– volume: 284
  year: 2021
  ident: bib54
  article-title: Clean approach for chromium removal in aqueous environments and role of nanomaterials in bioremediation: present research and future perspective
  publication-title: Chemosphere
– volume: 3
  start-page: 3462
  year: 2011
  end-page: 3481
  ident: bib69
  article-title: Metal nanoparticles in liquid phase catalysis; from recent advances to future goals
  publication-title: Nanoscale
– volume: 6
  start-page: 157
  year: 2018
  ident: bib16
  article-title: Heavy metal removal by bioaccumulation using genetically engineered microorganisms
  publication-title: Front. Bioeng. Biotechnol.
– volume: 74
  start-page: 328
  year: 2009
  end-page: 335
  ident: bib24
  article-title: Biosynthesis, purification and characterization of silver nanoparticles using
  publication-title: Colloids Surf. B
– volume: 20
  start-page: 595
  year: 2015
  end-page: 601
  ident: bib66
  article-title: Silver nanoparticles: synthesis, properties, and therapeutic applications
  publication-title: Drug Discov. Today
– volume: 1
  start-page: 37
  year: 2017
  end-page: 41
  ident: bib9
  article-title: Concentration of metals in the Doce River in mariana, Minas Gerais, Brazil
  publication-title: Acta Brasiliensis
– volume: 317
  year: 2023
  ident: bib17
  article-title: Advancement in algal bioremediation for organic, inorganic, and emerging pollutants
  publication-title: Environ. Pollut.
– volume: 12
  start-page: 465
  year: 2019
  ident: bib5
  article-title: Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system
  publication-title: Materials
– volume: 467
  start-page: 307
  year: 2016
  end-page: 320
  ident: bib4
  article-title: Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib1
  article-title: Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: isotherm, kinetics and statistical supposition of process
  publication-title: Environ. Nanotechnol. Monit. Manag.
– volume: 9
  start-page: 1050
  year: 2018
  end-page: 1074
  ident: bib29
  article-title: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations
  publication-title: Beilstein J. Nanotechnol.
– volume: 103
  start-page: 658
  year: 2013
  end-page: 661
  ident: bib33
  article-title: Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from
  publication-title: Colloids Surf. B
– volume: 10
  start-page: 3266
  year: 2020
  end-page: 3276
  ident: bib27
  article-title: Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles
  publication-title: RSC Adv.
– volume: 35
  start-page: 1162
  year: 2006
  end-page: 1194
  ident: bib67
  article-title: Synthesis, structure and properties of metal nanoclusters
  publication-title: Chem. Soc. Rev.
– volume: 128
  start-page: 37
  year: 2014
  end-page: 45
  ident: bib8
  article-title: Silver and gold nanoparticles for sensor and antibacterial applications
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 1
  start-page: 242
  year: 2012
  ident: bib15
  article-title: Anticancer activity of silver nanoparticles synthesized by the seaweed
  publication-title: Sci. Rep.
– volume: 197
  year: 2021
  ident: bib45
  article-title: Green synthesis of bio-functionalized nano-particles for the application of copper removal – characterization and modeling studies
  publication-title: Environ. Res.
– volume: 287
  year: 2021
  ident: bib11
  article-title: Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of
  publication-title: Mater. Lett.
– volume: 120
  start-page: 28
  year: 2017
  end-page: 36
  ident: bib22
  article-title: The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil
  publication-title: Mar. Pollut. Bull.
– year: 2005
  ident: bib13
  article-title: Resolução CONAMA N357/2005
– volume: 2
  start-page: 316
  year: 2012
  end-page: 321
  ident: bib20
  article-title: Extracellular biosynthesis of silver nanoparticles using fungi
  publication-title: Bionanoscience
– volume: 42
  year: 2021
  ident: bib41
  article-title: High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: a species-specific green synthesis
  publication-title: Colloids Interface Sci. Commun.
– volume: 10
  year: 2022
  ident: bib12
  article-title: Green metallic nanoparticles: biosynthesis to applications
  publication-title: Front. Bioeng. Biotechnol.
– volume: 151
  start-page: 475
  year: 2017
  end-page: 493
  ident: bib30
  article-title: Acid mine drainage: prevention, treatment options, and resource recovery: a review
  publication-title: J. Clean. Prod.
– volume: 205
  year: 2020
  ident: bib39
  article-title: Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity
  publication-title: J. Photochem. Photobiol. B
– volume: 319
  year: 2023
  ident: bib36
  article-title: Efficient removal of Cd
  publication-title: Environ. Pollut.
– volume: 36
  start-page: 116
  year: 1959
  end-page: 118
  ident: bib61
  article-title: High-temperature X-ray diffractometer
  publication-title: J. Sci. Instrum.
– volume: 10
  start-page: 12871
  year: 2018
  end-page: 12934
  ident: bib42
  article-title: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties
  publication-title: Nanoscale
– volume: 7
  start-page: 84
  year: 2023
  ident: bib34
  article-title: Heavy metal removal from aqueous solutions using biomaterials and/or functional composites: recent advances and the way forward in wastewater treatment using digitalization
  publication-title: J. Compos. Sci.
– volume: 6
  start-page: 376
  year: 2001
  end-page: 385
  ident: bib53
  article-title: Recent trends in the biosorption of heavy metals: a review
  publication-title: Biotechnol. Bioproc. Eng.
– volume: 264
  year: 2020
  ident: bib55
  article-title: A review on biosynthesis of metal nanoparticles and its environmental applications
  publication-title: Chemosphere
– volume: 267
  year: 2021
  ident: bib38
  article-title: Highly efficient removal of aluminum, iron, and manganese ions using Linde type-A zeolite obtained from hazardous waste
  publication-title: Chemosphere
– start-page: 83
  year: 2015
  end-page: 93
  ident: bib60
  article-title: Cyanobacteria as potential options for wastewater treatment BT
  publication-title: Phytoremediation: Management of Environmental Contaminants
– volume: 286
  year: 2022
  ident: bib64
  article-title: Synthesis of tri-metallic surface engineered nanobiochar from cynodon dactylon residues in a single step - batch and column studies for the removal of copper and lead ions
  publication-title: Chemosphere
– volume: 5
  start-page: 112
  year: 2015
  end-page: 119
  ident: bib48
  article-title: Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity
  publication-title: Biotechnol. Rep.
– volume: 287
  year: 2022
  ident: bib32
  article-title: Removal of Mn via coprecipitation and sorption by Fe(II), Fe(III), and Al in mine drainage
  publication-title: Chemosphere
– volume: 47
  start-page: 22
  year: 2012
  end-page: 29
  ident: bib47
  article-title: Screening of different algae for green synthesis of gold nanoparticles
  publication-title: Eur. J. Phycol.
– year: 2016
  ident: bib50
  article-title: Handbook of Photosynthesis
– volume: 90
  start-page: 9308
  year: 2018
  end-page: 9314
  ident: bib57
  article-title: Size determination of metal nanoparticles based on electrochemically measured surface-area-to-volume ratios
  publication-title: Anal. Chem.
– volume: 128
  start-page: 407
  year: 1981
  end-page: 411
  ident: bib14
  article-title: The effects of sublethal concentrations of zinc, cadmium and mercury on
  publication-title: Arch. Microbiol.
– volume: 16
  start-page: 1747
  year: 2014
  end-page: 1755
  ident: bib59
  article-title: Surface chemistry modifications of rice husk toward enhancement of Hg(II) adsorption from aqueous solution
  publication-title: Clean Technol. Environ. Policy
– volume: 9
  start-page: 12944
  year: 2019
  end-page: 12967
  ident: bib19
  article-title: A review on the biosynthesis of metal and metal salt nanoparticles by microbes
  publication-title: RSC Adv.
– volume: 2
  start-page: 953
  year: 2012
  end-page: 959
  ident: bib62
  article-title: Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium
  publication-title: Asian Pac. J. Trop. Biomed.
– volume: 86
  start-page: 335
  year: 2011
  end-page: 344
  ident: bib70
  article-title: Metal ion separation and recovery from environmental sources using various flotation and sorption techniques
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 27
  start-page: 43
  year: 2001
  end-page: 47
  ident: bib56
  article-title: Trace metal concentrations in marine macroalgae from different biotopes in the Aegean Sea
  publication-title: Environ. Int.
– volume: 214
  start-page: 491
  year: 2019
  end-page: 510
  ident: bib43
  article-title: A review of the implications and challenges of manganese removal from mine drainage
  publication-title: Chemosphere
– volume: 29
  year: 2017
  ident: bib2
  article-title: Surface plasmon resonance in gold nanoparticles: a review
  publication-title: J. Phys. Condens. Matter
– year: 2018
  ident: bib35
  article-title: Lu's Basic Toxicology: Fundamentals, Target Organs and Risk Assessment
– volume: 25
  start-page: 933
  year: 2013
  end-page: 943
  ident: bib68
  article-title: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals
  publication-title: J. Environ. Sci.
– volume: 10
  start-page: 3266
  year: 2020
  ident: 10.1016/j.envpol.2023.121483_bib27
  article-title: Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10104G
– volume: 27
  start-page: 43
  year: 2001
  ident: 10.1016/j.envpol.2023.121483_bib56
  article-title: Trace metal concentrations in marine macroalgae from different biotopes in the Aegean Sea
  publication-title: Environ. Int.
  doi: 10.1016/S0160-4120(01)00052-6
– volume: 120
  start-page: 28
  year: 2017
  ident: 10.1016/j.envpol.2023.121483_bib22
  article-title: The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2017.04.056
– start-page: 277
  year: 1990
  ident: 10.1016/j.envpol.2023.121483_bib23
  article-title: Microbial oxygenic photoautotrophs (cyanobacteria and algae) for metal ion binding
– volume: 42
  year: 2021
  ident: 10.1016/j.envpol.2023.121483_bib41
  article-title: High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: a species-specific green synthesis
  publication-title: Colloids Interface Sci. Commun.
  doi: 10.1016/j.colcom.2021.100420
– volume: 197
  year: 2021
  ident: 10.1016/j.envpol.2023.121483_bib45
  article-title: Green synthesis of bio-functionalized nano-particles for the application of copper removal – characterization and modeling studies
  publication-title: Environ. Res.
– volume: 223
  start-page: 40
  year: 2013
  ident: 10.1016/j.envpol.2023.121483_bib26
  article-title: Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.02.054
– volume: 9
  start-page: 1050
  year: 2018
  ident: 10.1016/j.envpol.2023.121483_bib29
  article-title: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.9.98
– volume: 5
  start-page: 112
  year: 2015
  ident: 10.1016/j.envpol.2023.121483_bib48
  article-title: Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2014.12.001
– volume: 78
  start-page: 1
  year: 2023
  ident: 10.1016/j.envpol.2023.121483_bib58
  article-title: Algae as biosorption agents for recovering environments contaminated by trace metals: an overview of a potentially useful tool for mine disasters in Brazil
  publication-title: Biologia
  doi: 10.1007/s11756-022-01189-2
– volume: 317
  year: 2023
  ident: 10.1016/j.envpol.2023.121483_bib17
  article-title: Advancement in algal bioremediation for organic, inorganic, and emerging pollutants
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.120840
– volume: 2
  start-page: 316
  year: 2012
  ident: 10.1016/j.envpol.2023.121483_bib20
  article-title: Extracellular biosynthesis of silver nanoparticles using fungi Penicillium diversum and their antimicrobial activity studies
  publication-title: Bionanoscience
  doi: 10.1007/s12668-012-0046-5
– volume: 284
  year: 2021
  ident: 10.1016/j.envpol.2023.121483_bib54
  article-title: Clean approach for chromium removal in aqueous environments and role of nanomaterials in bioremediation: present research and future perspective
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131368
– volume: 6445
  start-page: 1
  year: 2019
  ident: 10.1016/j.envpol.2023.121483_bib63
  article-title: The symbiotic effect of integrated Muraya koenigii extract and surface-modified magnetic microspheres – a green biosorbent for the removal of Cu(II) and Cr(VI) ions from aqueous solutions
  publication-title: Chem. Eng. Commun.
– volume: 286
  year: 2022
  ident: 10.1016/j.envpol.2023.121483_bib64
  article-title: Synthesis of tri-metallic surface engineered nanobiochar from cynodon dactylon residues in a single step - batch and column studies for the removal of copper and lead ions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131572
– volume: 97
  start-page: 114
  year: 2017
  ident: 10.1016/j.envpol.2023.121483_bib18
  article-title: Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2016.10.018
– volume: 21
  start-page: 5469
  year: 2019
  ident: 10.1016/j.envpol.2023.121483_bib46
  article-title: Biofabrication of supported metal nanoparticles: exploring the bioinspiration strategy to mitigate the environmental challenges
  publication-title: Green Chem.
  doi: 10.1039/C9GC02291K
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.envpol.2023.121483_bib1
  article-title: Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: isotherm, kinetics and statistical supposition of process
  publication-title: Environ. Nanotechnol. Monit. Manag.
– volume: 267
  year: 2021
  ident: 10.1016/j.envpol.2023.121483_bib38
  article-title: Highly efficient removal of aluminum, iron, and manganese ions using Linde type-A zeolite obtained from hazardous waste
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128919
– volume: 51
  start-page: 4647
  year: 2015
  ident: 10.1016/j.envpol.2023.121483_bib40
  article-title: A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00211G
– volume: 35
  start-page: 1162
  year: 2006
  ident: 10.1016/j.envpol.2023.121483_bib67
  article-title: Synthesis, structure and properties of metal nanoclusters
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b517312b
– volume: 6
  start-page: 157
  year: 2018
  ident: 10.1016/j.envpol.2023.121483_bib16
  article-title: Heavy metal removal by bioaccumulation using genetically engineered microorganisms
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2018.00157
– volume: 6
  start-page: 376
  year: 2001
  ident: 10.1016/j.envpol.2023.121483_bib53
  article-title: Recent trends in the biosorption of heavy metals: a review
  publication-title: Biotechnol. Bioproc. Eng.
  doi: 10.1007/BF02932318
– volume: 10
  start-page: 12871
  year: 2018
  ident: 10.1016/j.envpol.2023.121483_bib42
  article-title: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties
  publication-title: Nanoscale
  doi: 10.1039/C8NR02278J
– volume: 62
  start-page: 155
  year: 2003
  ident: 10.1016/j.envpol.2023.121483_bib49
  article-title: When adapted to high zinc concentrations the periphytic green alga Stigeoclonium tenue produces high amounts of novel phytochelatin-related peptides
  publication-title: Aquat. Toxicol.
  doi: 10.1016/S0166-445X(02)00080-2
– volume: 287
  year: 2022
  ident: 10.1016/j.envpol.2023.121483_bib32
  article-title: Removal of Mn via coprecipitation and sorption by Fe(II), Fe(III), and Al in mine drainage
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132367
– volume: 7
  start-page: 109
  year: 2013
  ident: 10.1016/j.envpol.2023.121483_bib10
  article-title: Biological synthesis of metallic nanoparticles using algae
  publication-title: IET Nanobiotechnol.
  doi: 10.1049/iet-nbt.2012.0041
– volume: 10
  year: 2022
  ident: 10.1016/j.envpol.2023.121483_bib12
  article-title: Green metallic nanoparticles: biosynthesis to applications
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.874742
– volume: 3
  start-page: 3462
  year: 2011
  ident: 10.1016/j.envpol.2023.121483_bib69
  article-title: Metal nanoparticles in liquid phase catalysis; from recent advances to future goals
  publication-title: Nanoscale
  doi: 10.1039/c1nr10201j
– volume: 151
  start-page: 475
  year: 2017
  ident: 10.1016/j.envpol.2023.121483_bib30
  article-title: Acid mine drainage: prevention, treatment options, and resource recovery: a review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.03.082
– volume: 287
  year: 2021
  ident: 10.1016/j.envpol.2023.121483_bib11
  article-title: Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.129265
– volume: 214
  start-page: 491
  year: 2019
  ident: 10.1016/j.envpol.2023.121483_bib43
  article-title: A review of the implications and challenges of manganese removal from mine drainage
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.09.106
– volume: 98
  start-page: 352
  year: 2013
  ident: 10.1016/j.envpol.2023.121483_bib51
  article-title: Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2013.09.003
– volume: 1
  start-page: 37
  year: 2017
  ident: 10.1016/j.envpol.2023.121483_bib9
  article-title: Concentration of metals in the Doce River in mariana, Minas Gerais, Brazil
  publication-title: Acta Brasiliensis
  doi: 10.22571/Actabra13201758
– year: 1994
  ident: 10.1016/j.envpol.2023.121483_bib37
– volume: 20
  start-page: 595
  year: 2015
  ident: 10.1016/j.envpol.2023.121483_bib66
  article-title: Silver nanoparticles: synthesis, properties, and therapeutic applications
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2014.11.014
– volume: 467
  start-page: 307
  year: 2016
  ident: 10.1016/j.envpol.2023.121483_bib4
  article-title: Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.01.023
– volume: 29
  year: 2017
  ident: 10.1016/j.envpol.2023.121483_bib2
  article-title: Surface plasmon resonance in gold nanoparticles: a review
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/aa60f3
– volume: 101
  start-page: 869
  year: 2021
  ident: 10.1016/j.envpol.2023.121483_bib25
  article-title: Application of CuNi bimetallic nanoparticle as an adsorbent for the removal of heavy metals from aqueous solution
  publication-title: Int. J. Environ. Anal. Chem.
  doi: 10.1080/03067319.2019.1673383
– volume: 10
  start-page: 152
  year: 2020
  ident: 10.1016/j.envpol.2023.121483_bib6
  article-title: Application of silver nanoparticles toward Co(II) and Pb(II) ions contaminant removal in groundwater
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-020-01240-0
– year: 2016
  ident: 10.1016/j.envpol.2023.121483_bib50
– volume: 86
  start-page: 335
  year: 2011
  ident: 10.1016/j.envpol.2023.121483_bib70
  article-title: Metal ion separation and recovery from environmental sources using various flotation and sorption techniques
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.2552
– volume: 231
  start-page: 1
  year: 2020
  ident: 10.1016/j.envpol.2023.121483_bib21
  article-title: Acute and chronic effects on tadpoles (Lithobates catesbeianus) exposed to mining tailings from the dam rupture in mariana, MG (Brazil)
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-020-04691-y
– volume: 1
  start-page: 242
  year: 2012
  ident: 10.1016/j.envpol.2023.121483_bib15
  article-title: Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca invitro
  publication-title: Sci. Rep.
– volume: 74
  start-page: 328
  year: 2009
  ident: 10.1016/j.envpol.2023.121483_bib24
  article-title: Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2009.07.048
– volume: 16
  start-page: 1747
  year: 2014
  ident: 10.1016/j.envpol.2023.121483_bib59
  article-title: Surface chemistry modifications of rice husk toward enhancement of Hg(II) adsorption from aqueous solution
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-014-0803-y
– volume: 205
  year: 2020
  ident: 10.1016/j.envpol.2023.121483_bib39
  article-title: Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2020.111823
– volume: 103
  start-page: 658
  year: 2013
  ident: 10.1016/j.envpol.2023.121483_bib33
  article-title: Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2012.11.022
– volume: 25
  start-page: 933
  year: 2013
  ident: 10.1016/j.envpol.2023.121483_bib68
  article-title: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(12)60145-4
– year: 2018
  ident: 10.1016/j.envpol.2023.121483_bib35
– year: 2005
  ident: 10.1016/j.envpol.2023.121483_bib13
– volume: 20
  start-page: 54
  year: 2018
  ident: 10.1016/j.envpol.2023.121483_bib28
  article-title: Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution
  publication-title: Water Resour. Ind.
  doi: 10.1016/j.wri.2018.10.001
– volume: 7
  start-page: 84
  year: 2023
  ident: 10.1016/j.envpol.2023.121483_bib34
  article-title: Heavy metal removal from aqueous solutions using biomaterials and/or functional composites: recent advances and the way forward in wastewater treatment using digitalization
  publication-title: J. Compos. Sci.
  doi: 10.3390/jcs7020084
– volume: 308
  start-page: 409
  year: 2016
  ident: 10.1016/j.envpol.2023.121483_bib3
  article-title: Controlled metal nanostructures: fertile ground for coordination chemists
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.07.013
– volume: 264
  year: 2020
  ident: 10.1016/j.envpol.2023.121483_bib55
  article-title: A review on biosynthesis of metal nanoparticles and its environmental applications
  publication-title: Chemosphere
– volume: 319
  year: 2023
  ident: 10.1016/j.envpol.2023.121483_bib36
  article-title: Efficient removal of Cd2+ by diatom frustules self-modified in situ with intercellular organic components
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2023.121005
– volume: 13
  start-page: 4275
  year: 2023
  ident: 10.1016/j.envpol.2023.121483_bib65
  article-title: Adsorption of heavy metal onto biomass-derived activated carbon: review
  publication-title: RSC Adv.
  doi: 10.1039/D2RA07911A
– volume: 36
  start-page: 116
  year: 1959
  ident: 10.1016/j.envpol.2023.121483_bib61
  article-title: High-temperature X-ray diffractometer
  publication-title: J. Sci. Instrum.
  doi: 10.1088/0950-7671/36/3/302
– volume: 12
  start-page: 465
  year: 2019
  ident: 10.1016/j.envpol.2023.121483_bib5
  article-title: Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system
  publication-title: Materials
  doi: 10.3390/ma12030465
– start-page: 377
  year: 2012
  ident: 10.1016/j.envpol.2023.121483_bib7
  article-title: The reactivity of colloidal inorganic nanoparticles
– volume: 47
  start-page: 22
  year: 2012
  ident: 10.1016/j.envpol.2023.121483_bib47
  article-title: Screening of different algae for green synthesis of gold nanoparticles
  publication-title: Eur. J. Phycol.
  doi: 10.1080/09670262.2011.653406
– volume: 2
  start-page: 953
  year: 2012
  ident: 10.1016/j.envpol.2023.121483_bib62
  article-title: Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus
  publication-title: Asian Pac. J. Trop. Biomed.
  doi: 10.1016/S2221-1691(13)60006-4
– volume: 128
  start-page: 37
  year: 2014
  ident: 10.1016/j.envpol.2023.121483_bib8
  article-title: Silver and gold nanoparticles for sensor and antibacterial applications
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2014.02.119
– volume: 47
  start-page: 11988
  year: 2018
  ident: 10.1016/j.envpol.2023.121483_bib31
  article-title: Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT01152D
– volume: 90
  start-page: 9308
  year: 2018
  ident: 10.1016/j.envpol.2023.121483_bib57
  article-title: Size determination of metal nanoparticles based on electrochemically measured surface-area-to-volume ratios
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b01905
– volume: 416
  year: 2021
  ident: 10.1016/j.envpol.2023.121483_bib44
  article-title: Anaerobic mixed consortium (AMC) mediated enhanced biosynthesis of silver nano particles (AgNPs) and its application for the removal of phenol
  publication-title: J. Hazard Mater.
– start-page: 83
  year: 2015
  ident: 10.1016/j.envpol.2023.121483_bib60
  article-title: Cyanobacteria as potential options for wastewater treatment BT
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.envpol.2023.121483_bib52
  article-title: The role of nanomaterials as effective adsorbents and their applications in wastewater treatment
  publication-title: J. Nanostructure Chem.
  doi: 10.1007/s40097-017-0219-4
– volume: 128
  start-page: 407
  year: 1981
  ident: 10.1016/j.envpol.2023.121483_bib14
  article-title: The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00405922
– volume: 9
  start-page: 12944
  year: 2019
  ident: 10.1016/j.envpol.2023.121483_bib19
  article-title: A review on the biosynthesis of metal and metal salt nanoparticles by microbes
  publication-title: RSC Adv.
  doi: 10.1039/C8RA10483B
SSID ssj0004333
Score 2.4682324
Snippet Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room...
Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO under air atmosphere at room...
Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO₃ under air atmosphere at room...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121483
SubjectTerms air
ambient temperature
Anti-Bacterial Agents
Autotrophic microorganisms
biofilters
Cosmarium
decontamination
Green synthesis
Iron
ligands
Manganese
manufacturing
Metal Nanoparticles
Metals removal
microalgae
Nanobiotechnology
nanoparticles
nanosilver
Plant Extracts
pollution
Silver
Stigeoclonium
Synechococcus elongatus
Water
Water purification
Title Green synthesized silver nanoparticles for iron and manganese ion removal from aqueous solutions
URI https://dx.doi.org/10.1016/j.envpol.2023.121483
https://www.ncbi.nlm.nih.gov/pubmed/36990344
https://www.proquest.com/docview/2792902753
https://www.proquest.com/docview/2834277698
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QIHBFsKSx8yEuIWNomd2D6uqlYLiF6gUm_GsR20qOtdNVukcuhv70we23IolbhESjSOnJnx-Jv48xjgfVr7jDuJaYlQRSKcxDhYBptgNpRxy50r2sLzX0_L2Zn4fF6cb8HRsBeGaJV97O9iehut-yeTXpuT1Xw--YbZA4JhjaGX3LCgOCyEJC__eHNH8xC8O04ehROSHrbPtRyvEH-vlrQAkXMqsyAUf2h6egh-ttPQyQt43uNHNu26-BK2QhzBzjRi7ry4Zh9Yy-hsf5WP4Nm9YoMj2D2-29OGb-gHdbMDP1ruDWuuI4LBZv4neNbMiTDNoo2YU_fUOYbwltELmI2eLWz8aen0SoaGZZdhsUSXZbRZhVn8guVVwzZe_QrOTo6_H82S_uCFxHFdrBNdeiG1CqnNaiGVK_GalnlmU27rUgVt62C5L2TurUU8UIW6LqUTPq0QPhSS78J2XMbwBpi01uchy733HDNPr5VUwlWVCFLVQvsx8EHfxvVVyelwjAsz0M9-mc5KhqxkOiuNIdm0WnVVOR6Rl4MpzV_eZXDieKTlu8HyBgceraagclGJhiovalr0_ZeM4iKXstRqDK87t9n0l5cIBFAnb_-7b3vwlO6IuJYV-7C9vrwKBwiR1tVhOwYO4cn005fZ6S07IxI8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCLYUlqeRgFvYxHZi-8ChglZb-rjQSr25ju2gRax31WxBy4E_xR9knMcWDqUSUi85JI7lzHhe8TczAK_SymXMCgxLuMwTbgXqwcKbBKOhjBlmbd4Unj84LMbH_ONJfrIGv_pcmAir7HR_q9Mbbd3dGXXUHM0nk9EnjB7QGVaoeuM2zGmHrNzzy-8Yt9Xvdj8gk19TurN99H6cdK0FEstUvkhU4bhQ0qcmq7iQtsBrWtDMpMxUhfTKVN4wlwvqjEGLV_qqKoTlLi3RQOaC4bw34CZHdRHbJrz9eYEr4aztX4-rS-Ly-ny9BlTmw7f5LJ54UBbrOnDJLrOHl_m7jd3buQd3O4eVbLU0uQ9rPgxgYytgsD5dkjekgZA2_-YHcOeP6oYD2Ny-SKLDGTotUm_AaQP2IfUyoPdZT354R-pJRGiTYAIG8R1Wj6A_TeIExARHpiZ8NrFdJsGdRM78dIYyQmJ2DDH4BbPzmqzE6AEcXws7NmE9zIJ_BEQY46jPqHOOYajrlBSS27LkXsiKKzcE1tNb264MeuzG8VX3eLcvuuWSjlzSLZeGkKzemrdlQK4YL3pW6r-2s0ZLdcWbL3vOa5T0eHyDxEUi6ljqUcVT5n-NkYxTIQolh_Cw3Tar9bICPQ-kyeP_XtsLuDU-OtjX-7uHe0_gdnzSQiefwvri7Nw_Q_9sUT5v5IHA6XUL4G_iW04f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+synthesized+silver+nanoparticles+for+iron+and+manganese+ion+removal+from+aqueous+solutions&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Moraes%2C+Leonardo+C.&rft.au=Gomes%2C+Marcelo+P.&rft.au=Ribeiro-Andrade%2C+Rodrigo&rft.au=Garcia%2C+Queila+S.&rft.date=2023-06-15&rft.issn=0269-7491&rft.volume=327&rft.spage=121483&rft_id=info:doi/10.1016%2Fj.envpol.2023.121483&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2023_121483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon