Green synthesized silver nanoparticles for iron and manganese ion removal from aqueous solutions
Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. an...
Saved in:
Published in | Environmental pollution (1987) Vol. 327; p. 121483 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV–Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L−1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water.
[Display omitted]
•Cyanobacteria and algae do eco-friendly green synthesis of metal nanoparticles.•Different silver NPs were synthesized by different species.•Nanobiofilters for metals remotion are of interest for water treatment.•AgNPs biosynthesized by microalgae and cyanobacteria can remove metals from water. |
---|---|
AbstractList | Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO₃ under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV–Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L⁻¹ in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO₃ (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe³⁺ and Mn²⁺ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe³⁺ and Mn²⁺ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water. Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV-Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L-1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water.Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV-Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L-1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water. Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV-Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe and Mn ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe and Mn ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water. Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV–Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L−1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water. [Display omitted] •Cyanobacteria and algae do eco-friendly green synthesis of metal nanoparticles.•Different silver NPs were synthesized by different species.•Nanobiofilters for metals remotion are of interest for water treatment.•AgNPs biosynthesized by microalgae and cyanobacteria can remove metals from water. |
ArticleNumber | 121483 |
Author | Garcia, Queila S. Figueredo, Cleber C. Gomes, Marcelo P. Moraes, Leonardo C. Ribeiro-Andrade, Rodrigo |
Author_xml | – sequence: 1 givenname: Leonardo C. surname: Moraes fullname: Moraes, Leonardo C. organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil – sequence: 2 givenname: Marcelo P. orcidid: 0000-0001-9406-9815 surname: Gomes fullname: Gomes, Marcelo P. organization: Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim Das Américas, C.P. 19031, Curitiba, 81531-980, Paraná, Brazil – sequence: 3 givenname: Rodrigo orcidid: 0000-0002-2889-7636 surname: Ribeiro-Andrade fullname: Ribeiro-Andrade, Rodrigo organization: Centro de Microscopia da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil – sequence: 4 givenname: Queila S. surname: Garcia fullname: Garcia, Queila S. organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil – sequence: 5 givenname: Cleber C. surname: Figueredo fullname: Figueredo, Cleber C. email: cleberfigueredo@ufmg.br organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36990344$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rVDEUxYNU7LT6DUSydPOm-TfJiwtBilah0I2uYya50Qx5yZi8GaifvhledeHCbm7g5ncuh3Mu0FkuGRB6TcmaEiqvdmvIx31Ja0YYX1NGxcifoRUdFR-kYOIMrQiTelBC03N00dqOECI45y_QOZdaEy7ECn2_qQAZt_s8_4QWf4PHLaYjVJxtLntb5-gSNBxKxbGWjG32eLL5h83QAMe-qTCVo0041DJh--sA5dBwK-kw99_2Ej0PNjV49fheom-fPn69_jzc3t18uf5wOziuN_OgpRdKj0AsDUKNTvZJJKOWcBvkCNoGsNxvFPPWSsq3EIJUTniypUxvFL9Eb5e7-1q6hzabKTYHKXWj3ZBhIxdMKanHp1GlmSZMbXhH3zyih-0E3uxrnGy9N38C7IBYAFdLaxXCX4QSc-rJ7MzSkzn1ZJaeuuzdPzIXZ3sKbK42pqfE7xcx9DyPEappLkJ24GMFNxtf4v8PPAAExrG1 |
CitedBy_id | crossref_primary_10_1080_10889868_2023_2269247 crossref_primary_10_1007_s42729_024_02047_7 crossref_primary_10_1007_s44372_025_00090_x crossref_primary_10_1039_D4RA04140B crossref_primary_10_1016_j_ejar_2023_10_001 crossref_primary_10_1007_s13201_025_02364_x crossref_primary_10_14258_jcprm_20230412740 crossref_primary_10_1016_j_jwpe_2024_105566 |
Cites_doi | 10.1039/C9RA10104G 10.1016/S0160-4120(01)00052-6 10.1016/j.marpolbul.2017.04.056 10.1016/j.colcom.2021.100420 10.1016/j.cej.2013.02.054 10.3762/bjnano.9.98 10.1016/j.btre.2014.12.001 10.1007/s11756-022-01189-2 10.1016/j.envpol.2022.120840 10.1007/s12668-012-0046-5 10.1016/j.chemosphere.2021.131368 10.1016/j.chemosphere.2021.131572 10.1016/j.enzmictec.2016.10.018 10.1039/C9GC02291K 10.1016/j.chemosphere.2020.128919 10.1039/C5CC00211G 10.1039/b517312b 10.3389/fbioe.2018.00157 10.1007/BF02932318 10.1039/C8NR02278J 10.1016/S0166-445X(02)00080-2 10.1016/j.chemosphere.2021.132367 10.1049/iet-nbt.2012.0041 10.3389/fbioe.2022.874742 10.1039/c1nr10201j 10.1016/j.jclepro.2017.03.082 10.1016/j.matlet.2020.129265 10.1016/j.chemosphere.2018.09.106 10.1016/j.ecoenv.2013.09.003 10.22571/Actabra13201758 10.1016/j.drudis.2014.11.014 10.1016/j.jcis.2016.01.023 10.1088/1361-648X/aa60f3 10.1080/03067319.2019.1673383 10.1007/s13201-020-01240-0 10.1002/jctb.2552 10.1007/s11270-020-04691-y 10.1016/j.colsurfb.2009.07.048 10.1007/s10098-014-0803-y 10.1016/j.jphotobiol.2020.111823 10.1016/j.colsurfb.2012.11.022 10.1016/S1001-0742(12)60145-4 10.1016/j.wri.2018.10.001 10.3390/jcs7020084 10.1016/j.ccr.2015.07.013 10.1016/j.envpol.2023.121005 10.1039/D2RA07911A 10.1088/0950-7671/36/3/302 10.3390/ma12030465 10.1080/09670262.2011.653406 10.1016/S2221-1691(13)60006-4 10.1016/j.saa.2014.02.119 10.1039/C8DT01152D 10.1021/acs.analchem.8b01905 10.1007/s40097-017-0219-4 10.1007/BF00405922 10.1039/C8RA10483B |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2023.121483 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 36990344 10_1016_j_envpol_2023_121483 S0269749123004852 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- RIG SEN SEW SSH VH1 WUQ XJT XOL CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-96d4798e0a1f478c6f470621a03af68e9afea3d572daa613beff67c4d0b129573 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Thu Jul 10 16:48:58 EDT 2025 Thu Jul 10 19:54:40 EDT 2025 Wed Feb 19 02:23:41 EST 2025 Tue Jul 01 02:26:29 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Tue Dec 03 03:44:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metals removal Green synthesis Autotrophic microorganisms Water purification Nanobiotechnology |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-96d4798e0a1f478c6f470621a03af68e9afea3d572daa613beff67c4d0b129573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9406-9815 0000-0002-2889-7636 |
PMID | 36990344 |
PQID | 2792902753 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2834277698 proquest_miscellaneous_2792902753 pubmed_primary_36990344 crossref_primary_10_1016_j_envpol_2023_121483 crossref_citationtrail_10_1016_j_envpol_2023_121483 elsevier_sciencedirect_doi_10_1016_j_envpol_2023_121483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Moraes, Figueiredo, Ribeiro-Andrade, Pontes-Silva, Arantes, Giani, Figueredo (bib41) 2021; 42 Chopra, Bibi, Singh, Hasan, Khan, Yousafi, Baig, Rahman, Islam, Emran, Cavalu (bib12) 2022; 10 Anirudhan, Deepa, Christa (bib4) 2016; 467 Martínez-Prieto, Urbaneja, Palma, Cámpora, Philippot, Chaudret (bib40) 2015; 51 Neculita, Rosa (bib43) 2019; 214 Sadegh, Ali, Gupta, Makhlouf, Shahryari-ghoshekandi, Nadagouda, Sillanpää, Megiel (bib52) 2017; 7 Vishnu, Dhandapani, Vaishnavi, Preethi (bib64) 2022; 286 Sunkar, Nachiyar (bib62) 2012; 2 Saravanan, Kumar, Karishma, Vo, Jeevanantham, Yaashikaa, George (bib55) 2020; 264 Devi, Bhimba (bib15) 2012; 1 Ganachari, Bhat, Deshpande, Venkataraman (bib20) 2012; 2 Lobo-Recio, Rodrigues, Jeremias, Lapolli, Padilla, López-Delgado (bib38) 2021; 267 Vishnu, Dhandapani, K (bib63) 2019; 6445 Attatsi, Nsiah (bib6) 2020; 10 Lee, Kacew, Kim, Lu (bib35) 2018 Li, Liu, Wang, Guo, Losic, Deng, Wu, Yuan (bib36) 2023; 319 Chandhirasekar, Thendralmanikandan, Thangavelu, Nguyen, Nguyen, Sivashanmugan, Nareshkumar, Nguyen (bib11) 2021; 287 Sag, Kutsal (bib53) 2001; 6 Carvalho, Ribeiro, Moreira, Almeida (bib9) 2017; 1 Hong, Xie, Mirshahghassemi, Lead (bib27) 2020; 10 Pandian, Rajasimman, Rajamohan, Varjani, Karthikeyan (bib44) 2021; 416 Wang, Lan, Bo, Gong, Ou (bib65) 2023; 13 Gahlawat, Choudhury (bib19) 2019; 9 (bib13) 2005 Ali, Mannan, Hussain, Hussain, Zia (bib1) 2018; 9 Parandhaman, Dey, Das (bib46) 2019; 21 Pessarakli (bib50) 2016 Ferreira, ConzFerreira, Lima, Frasés, Souza, Sant'Anna (bib18) 2017; 97 Pillai, Deepa, Abraham, Girija, Geetha, Jacob, Koshy (bib51) 2013; 98 Amendola, Pilot, Frasconi, Maragò, Iatì (bib2) 2017; 29 Harikumar, Hridya (bib25) 2021; 101 Kefeni, Msagati, Mamba (bib30) 2017; 151 Kumar, Govindaraju, Senthamilselvi, Premkumar (bib33) 2013; 103 Gurunathan, Kalishwaralal, Vaidyanathan, Deepak, Pandian, Muniyandi, Hariharan, Eom (bib24) 2009; 74 Marimuthu, Antonisamy, Malayandi, Rajendran, Tsai, Pugazhendhi, Ponnusamy (bib39) 2020; 205 Ansari, Ficiara, Ruffinatti, Stura, Argenziano, Abollino, Cavalli, Guiot, D'Agata (bib5) 2019; 12 Bindhu, Umadevi (bib8) 2014; 128 Sharma, Pattadar, Mainali, Zamborini (bib57) 2018; 90 Amiens, Ciuculescu-Pradines, Philippot (bib3) 2016; 308 Bastus, Casals, Ojea, Varon, Puntes (bib7) 2012 Khan, Shaik, Adil, Khan, Al-Warthan, Siddiqui, Tahir, Tremel (bib31) 2018; 47 Sood, Renuka, Prasanna, Ahluwalia (bib60) 2015 Kurniawan, Lo, Liang, Goh, Othman, Chong, Mohyuddin, Kern, Chew (bib34) 2023; 7 Jain, Yadav, Kohout, Lahtinen, Garg, Sillanpää (bib28) 2018; 20 Gomes, Correa, Sá, Neto, Bernardino (bib22) 2017; 120 Spreadborough, Christian (bib61) 1959; 36 Pandian, Gopalakrishnan, Rajasimman, Rajamohan, Karthikeyan (bib45) 2021; 197 Zahmakıran, Özkar (bib69) 2011; 3 Mourdikoudis, Pallares, Thanh (bib42) 2018; 10 Patel, Berthold, Puranik, Gantar (bib48) 2015; 5 Samuel, Selvarajan, Chidambaram, Patel, Brindhadevi (bib54) 2021; 284 Hokkanen, Repo, Sillanpää (bib26) 2013; 223 Sawidis, Brown, Zachariadis, Sratis (bib56) 2001; 27 Kim, Im, Lee (bib32) 2022; 287 Diep, Mahadevan, Yakunin (bib16) 2018; 6 Silva, Figueredo (bib58) 2023; 78 De Filippis, Hampp, Ziegler (bib14) 1981; 128 Song, Saman, Johari, Mat (bib59) 2014; 16 Castro, Blázquez, Muñoz, González, Ballester (bib10) 2013; 7 Wilcoxon, Abrams (bib67) 2006; 35 Yu, Tong, Ge, Wu, Zuo, Cao, Song (bib68) 2013; 25 Wei, Lu, Xu, Patel, Chen, Chen (bib66) 2015; 20 Lobban, Harrison (bib37) 1994 Jeevanandam, Barhoum, Chan, Dufresne, Danquah (bib29) 2018; 9 Parial, Patra, Dasgupta, Pal (bib47) 2012; 47 Girotto, Espíndola, Gebara, Freitas (bib21) 2020; 231 Dubey, Chen, Haldar, Tambat, Kumar, Tiwari, Singhani, Dong, Patel (bib17) 2023; 317 Zamboulis, Peleka, Lazaridis, Matis (bib70) 2011; 86 Greene, Darnall (bib23) 1990 Pawlik-Skowrońska (bib49) 2003; 62 Vishnu (10.1016/j.envpol.2023.121483_bib63) 2019; 6445 Harikumar (10.1016/j.envpol.2023.121483_bib25) 2021; 101 Ganachari (10.1016/j.envpol.2023.121483_bib20) 2012; 2 Castro (10.1016/j.envpol.2023.121483_bib10) 2013; 7 Chandhirasekar (10.1016/j.envpol.2023.121483_bib11) 2021; 287 Wei (10.1016/j.envpol.2023.121483_bib66) 2015; 20 Diep (10.1016/j.envpol.2023.121483_bib16) 2018; 6 Chopra (10.1016/j.envpol.2023.121483_bib12) 2022; 10 Amendola (10.1016/j.envpol.2023.121483_bib2) 2017; 29 Bastus (10.1016/j.envpol.2023.121483_bib7) 2012 Parandhaman (10.1016/j.envpol.2023.121483_bib46) 2019; 21 Amiens (10.1016/j.envpol.2023.121483_bib3) 2016; 308 Parial (10.1016/j.envpol.2023.121483_bib47) 2012; 47 Attatsi (10.1016/j.envpol.2023.121483_bib6) 2020; 10 Wilcoxon (10.1016/j.envpol.2023.121483_bib67) 2006; 35 Gahlawat (10.1016/j.envpol.2023.121483_bib19) 2019; 9 Lee (10.1016/j.envpol.2023.121483_bib35) 2018 Gomes (10.1016/j.envpol.2023.121483_bib22) 2017; 120 Ansari (10.1016/j.envpol.2023.121483_bib5) 2019; 12 Pillai (10.1016/j.envpol.2023.121483_bib51) 2013; 98 Zahmakıran (10.1016/j.envpol.2023.121483_bib69) 2011; 3 Li (10.1016/j.envpol.2023.121483_bib36) 2023; 319 Hong (10.1016/j.envpol.2023.121483_bib27) 2020; 10 Lobo-Recio (10.1016/j.envpol.2023.121483_bib38) 2021; 267 Kumar (10.1016/j.envpol.2023.121483_bib33) 2013; 103 Marimuthu (10.1016/j.envpol.2023.121483_bib39) 2020; 205 Ferreira (10.1016/j.envpol.2023.121483_bib18) 2017; 97 Saravanan (10.1016/j.envpol.2023.121483_bib55) 2020; 264 Bindhu (10.1016/j.envpol.2023.121483_bib8) 2014; 128 Gurunathan (10.1016/j.envpol.2023.121483_bib24) 2009; 74 Samuel (10.1016/j.envpol.2023.121483_bib54) 2021; 284 Moraes (10.1016/j.envpol.2023.121483_bib41) 2021; 42 Lobban (10.1016/j.envpol.2023.121483_bib37) 1994 Spreadborough (10.1016/j.envpol.2023.121483_bib61) 1959; 36 Kurniawan (10.1016/j.envpol.2023.121483_bib34) 2023; 7 Pawlik-Skowrońska (10.1016/j.envpol.2023.121483_bib49) 2003; 62 Silva (10.1016/j.envpol.2023.121483_bib58) 2023; 78 Mourdikoudis (10.1016/j.envpol.2023.121483_bib42) 2018; 10 Pandian (10.1016/j.envpol.2023.121483_bib44) 2021; 416 Song (10.1016/j.envpol.2023.121483_bib59) 2014; 16 Anirudhan (10.1016/j.envpol.2023.121483_bib4) 2016; 467 Martínez-Prieto (10.1016/j.envpol.2023.121483_bib40) 2015; 51 Sawidis (10.1016/j.envpol.2023.121483_bib56) 2001; 27 Kefeni (10.1016/j.envpol.2023.121483_bib30) 2017; 151 Devi (10.1016/j.envpol.2023.121483_bib15) 2012; 1 Pandian (10.1016/j.envpol.2023.121483_bib45) 2021; 197 Patel (10.1016/j.envpol.2023.121483_bib48) 2015; 5 Yu (10.1016/j.envpol.2023.121483_bib68) 2013; 25 Greene (10.1016/j.envpol.2023.121483_bib23) 1990 Sadegh (10.1016/j.envpol.2023.121483_bib52) 2017; 7 Jain (10.1016/j.envpol.2023.121483_bib28) 2018; 20 Ali (10.1016/j.envpol.2023.121483_bib1) 2018; 9 Dubey (10.1016/j.envpol.2023.121483_bib17) 2023; 317 Carvalho (10.1016/j.envpol.2023.121483_bib9) 2017; 1 Sood (10.1016/j.envpol.2023.121483_bib60) 2015 Sharma (10.1016/j.envpol.2023.121483_bib57) 2018; 90 Sunkar (10.1016/j.envpol.2023.121483_bib62) 2012; 2 (10.1016/j.envpol.2023.121483_bib13) 2005 De Filippis (10.1016/j.envpol.2023.121483_bib14) 1981; 128 Vishnu (10.1016/j.envpol.2023.121483_bib64) 2022; 286 Kim (10.1016/j.envpol.2023.121483_bib32) 2022; 287 Neculita (10.1016/j.envpol.2023.121483_bib43) 2019; 214 Khan (10.1016/j.envpol.2023.121483_bib31) 2018; 47 Zamboulis (10.1016/j.envpol.2023.121483_bib70) 2011; 86 Wang (10.1016/j.envpol.2023.121483_bib65) 2023; 13 Hokkanen (10.1016/j.envpol.2023.121483_bib26) 2013; 223 Jeevanandam (10.1016/j.envpol.2023.121483_bib29) 2018; 9 Girotto (10.1016/j.envpol.2023.121483_bib21) 2020; 231 Pessarakli (10.1016/j.envpol.2023.121483_bib50) 2016 Sag (10.1016/j.envpol.2023.121483_bib53) 2001; 6 |
References_xml | – volume: 416 year: 2021 ident: bib44 article-title: Anaerobic mixed consortium (AMC) mediated enhanced biosynthesis of silver nano particles (AgNPs) and its application for the removal of phenol publication-title: J. Hazard Mater. – volume: 78 start-page: 1 year: 2023 end-page: 14 ident: bib58 article-title: Algae as biosorption agents for recovering environments contaminated by trace metals: an overview of a potentially useful tool for mine disasters in Brazil publication-title: Biologia – year: 1994 ident: bib37 article-title: Seaweed Ecology and Physiology – volume: 7 start-page: 109 year: 2013 end-page: 116 ident: bib10 article-title: Biological synthesis of metallic nanoparticles using algae publication-title: IET Nanobiotechnol. – volume: 20 start-page: 54 year: 2018 end-page: 74 ident: bib28 article-title: Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution publication-title: Water Resour. Ind. – start-page: 377 year: 2012 end-page: 400 ident: bib7 article-title: The reactivity of colloidal inorganic nanoparticles publication-title: The Delivery of Nanoparticles – volume: 223 start-page: 40 year: 2013 end-page: 47 ident: bib26 article-title: Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose publication-title: Chem. Eng. J. – volume: 6445 start-page: 1 year: 2019 end-page: 12 ident: bib63 article-title: The symbiotic effect of integrated publication-title: Chem. Eng. Commun. – start-page: 277 year: 1990 end-page: 302 ident: bib23 article-title: Microbial oxygenic photoautotrophs (cyanobacteria and algae) for metal ion binding publication-title: Microbial Mineral Recovery – volume: 98 start-page: 352 year: 2013 end-page: 360 ident: bib51 article-title: Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies publication-title: Ecotoxicol. Environ. Saf. – volume: 13 start-page: 4275 year: 2023 end-page: 4302 ident: bib65 article-title: Adsorption of heavy metal onto biomass-derived activated carbon: review publication-title: RSC Adv. – volume: 308 start-page: 409 year: 2016 end-page: 432 ident: bib3 article-title: Controlled metal nanostructures: fertile ground for coordination chemists publication-title: Coord. Chem. Rev. – volume: 231 start-page: 1 year: 2020 end-page: 15 ident: bib21 article-title: Acute and chronic effects on tadpoles ( publication-title: Water Air Soil Pollut. – volume: 47 start-page: 11988 year: 2018 end-page: 12010 ident: bib31 article-title: Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis publication-title: Dalton Trans. – volume: 97 start-page: 114 year: 2017 end-page: 121 ident: bib18 article-title: Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria publication-title: Enzym. Microb. Technol. – volume: 7 start-page: 1 year: 2017 end-page: 14 ident: bib52 article-title: The role of nanomaterials as effective adsorbents and their applications in wastewater treatment publication-title: J. Nanostructure Chem. – volume: 21 start-page: 5469 year: 2019 end-page: 5500 ident: bib46 article-title: Biofabrication of supported metal nanoparticles: exploring the bioinspiration strategy to mitigate the environmental challenges publication-title: Green Chem. – volume: 62 start-page: 155 year: 2003 end-page: 163 ident: bib49 article-title: When adapted to high zinc concentrations the periphytic green alga publication-title: Aquat. Toxicol. – volume: 51 start-page: 4647 year: 2015 end-page: 4650 ident: bib40 article-title: A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles publication-title: Chem. Commun. – volume: 10 start-page: 152 year: 2020 ident: bib6 article-title: Application of silver nanoparticles toward Co(II) and Pb(II) ions contaminant removal in groundwater publication-title: Appl. Water Sci. – volume: 101 start-page: 869 year: 2021 end-page: 883 ident: bib25 article-title: Application of CuNi bimetallic nanoparticle as an adsorbent for the removal of heavy metals from aqueous solution publication-title: Int. J. Environ. Anal. Chem. – volume: 284 year: 2021 ident: bib54 article-title: Clean approach for chromium removal in aqueous environments and role of nanomaterials in bioremediation: present research and future perspective publication-title: Chemosphere – volume: 3 start-page: 3462 year: 2011 end-page: 3481 ident: bib69 article-title: Metal nanoparticles in liquid phase catalysis; from recent advances to future goals publication-title: Nanoscale – volume: 6 start-page: 157 year: 2018 ident: bib16 article-title: Heavy metal removal by bioaccumulation using genetically engineered microorganisms publication-title: Front. Bioeng. Biotechnol. – volume: 74 start-page: 328 year: 2009 end-page: 335 ident: bib24 article-title: Biosynthesis, purification and characterization of silver nanoparticles using publication-title: Colloids Surf. B – volume: 20 start-page: 595 year: 2015 end-page: 601 ident: bib66 article-title: Silver nanoparticles: synthesis, properties, and therapeutic applications publication-title: Drug Discov. Today – volume: 1 start-page: 37 year: 2017 end-page: 41 ident: bib9 article-title: Concentration of metals in the Doce River in mariana, Minas Gerais, Brazil publication-title: Acta Brasiliensis – volume: 317 year: 2023 ident: bib17 article-title: Advancement in algal bioremediation for organic, inorganic, and emerging pollutants publication-title: Environ. Pollut. – volume: 12 start-page: 465 year: 2019 ident: bib5 article-title: Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system publication-title: Materials – volume: 467 start-page: 307 year: 2016 end-page: 320 ident: bib4 article-title: Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 1 year: 2018 end-page: 11 ident: bib1 article-title: Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: isotherm, kinetics and statistical supposition of process publication-title: Environ. Nanotechnol. Monit. Manag. – volume: 9 start-page: 1050 year: 2018 end-page: 1074 ident: bib29 article-title: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations publication-title: Beilstein J. Nanotechnol. – volume: 103 start-page: 658 year: 2013 end-page: 661 ident: bib33 article-title: Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from publication-title: Colloids Surf. B – volume: 10 start-page: 3266 year: 2020 end-page: 3276 ident: bib27 article-title: Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles publication-title: RSC Adv. – volume: 35 start-page: 1162 year: 2006 end-page: 1194 ident: bib67 article-title: Synthesis, structure and properties of metal nanoclusters publication-title: Chem. Soc. Rev. – volume: 128 start-page: 37 year: 2014 end-page: 45 ident: bib8 article-title: Silver and gold nanoparticles for sensor and antibacterial applications publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. – volume: 1 start-page: 242 year: 2012 ident: bib15 article-title: Anticancer activity of silver nanoparticles synthesized by the seaweed publication-title: Sci. Rep. – volume: 197 year: 2021 ident: bib45 article-title: Green synthesis of bio-functionalized nano-particles for the application of copper removal – characterization and modeling studies publication-title: Environ. Res. – volume: 287 year: 2021 ident: bib11 article-title: Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of publication-title: Mater. Lett. – volume: 120 start-page: 28 year: 2017 end-page: 36 ident: bib22 article-title: The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil publication-title: Mar. Pollut. Bull. – year: 2005 ident: bib13 article-title: Resolução CONAMA N357/2005 – volume: 2 start-page: 316 year: 2012 end-page: 321 ident: bib20 article-title: Extracellular biosynthesis of silver nanoparticles using fungi publication-title: Bionanoscience – volume: 42 year: 2021 ident: bib41 article-title: High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: a species-specific green synthesis publication-title: Colloids Interface Sci. Commun. – volume: 10 year: 2022 ident: bib12 article-title: Green metallic nanoparticles: biosynthesis to applications publication-title: Front. Bioeng. Biotechnol. – volume: 151 start-page: 475 year: 2017 end-page: 493 ident: bib30 article-title: Acid mine drainage: prevention, treatment options, and resource recovery: a review publication-title: J. Clean. Prod. – volume: 205 year: 2020 ident: bib39 article-title: Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity publication-title: J. Photochem. Photobiol. B – volume: 319 year: 2023 ident: bib36 article-title: Efficient removal of Cd publication-title: Environ. Pollut. – volume: 36 start-page: 116 year: 1959 end-page: 118 ident: bib61 article-title: High-temperature X-ray diffractometer publication-title: J. Sci. Instrum. – volume: 10 start-page: 12871 year: 2018 end-page: 12934 ident: bib42 article-title: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties publication-title: Nanoscale – volume: 7 start-page: 84 year: 2023 ident: bib34 article-title: Heavy metal removal from aqueous solutions using biomaterials and/or functional composites: recent advances and the way forward in wastewater treatment using digitalization publication-title: J. Compos. Sci. – volume: 6 start-page: 376 year: 2001 end-page: 385 ident: bib53 article-title: Recent trends in the biosorption of heavy metals: a review publication-title: Biotechnol. Bioproc. Eng. – volume: 264 year: 2020 ident: bib55 article-title: A review on biosynthesis of metal nanoparticles and its environmental applications publication-title: Chemosphere – volume: 267 year: 2021 ident: bib38 article-title: Highly efficient removal of aluminum, iron, and manganese ions using Linde type-A zeolite obtained from hazardous waste publication-title: Chemosphere – start-page: 83 year: 2015 end-page: 93 ident: bib60 article-title: Cyanobacteria as potential options for wastewater treatment BT publication-title: Phytoremediation: Management of Environmental Contaminants – volume: 286 year: 2022 ident: bib64 article-title: Synthesis of tri-metallic surface engineered nanobiochar from cynodon dactylon residues in a single step - batch and column studies for the removal of copper and lead ions publication-title: Chemosphere – volume: 5 start-page: 112 year: 2015 end-page: 119 ident: bib48 article-title: Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity publication-title: Biotechnol. Rep. – volume: 287 year: 2022 ident: bib32 article-title: Removal of Mn via coprecipitation and sorption by Fe(II), Fe(III), and Al in mine drainage publication-title: Chemosphere – volume: 47 start-page: 22 year: 2012 end-page: 29 ident: bib47 article-title: Screening of different algae for green synthesis of gold nanoparticles publication-title: Eur. J. Phycol. – year: 2016 ident: bib50 article-title: Handbook of Photosynthesis – volume: 90 start-page: 9308 year: 2018 end-page: 9314 ident: bib57 article-title: Size determination of metal nanoparticles based on electrochemically measured surface-area-to-volume ratios publication-title: Anal. Chem. – volume: 128 start-page: 407 year: 1981 end-page: 411 ident: bib14 article-title: The effects of sublethal concentrations of zinc, cadmium and mercury on publication-title: Arch. Microbiol. – volume: 16 start-page: 1747 year: 2014 end-page: 1755 ident: bib59 article-title: Surface chemistry modifications of rice husk toward enhancement of Hg(II) adsorption from aqueous solution publication-title: Clean Technol. Environ. Policy – volume: 9 start-page: 12944 year: 2019 end-page: 12967 ident: bib19 article-title: A review on the biosynthesis of metal and metal salt nanoparticles by microbes publication-title: RSC Adv. – volume: 2 start-page: 953 year: 2012 end-page: 959 ident: bib62 article-title: Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium publication-title: Asian Pac. J. Trop. Biomed. – volume: 86 start-page: 335 year: 2011 end-page: 344 ident: bib70 article-title: Metal ion separation and recovery from environmental sources using various flotation and sorption techniques publication-title: J. Chem. Technol. Biotechnol. – volume: 27 start-page: 43 year: 2001 end-page: 47 ident: bib56 article-title: Trace metal concentrations in marine macroalgae from different biotopes in the Aegean Sea publication-title: Environ. Int. – volume: 214 start-page: 491 year: 2019 end-page: 510 ident: bib43 article-title: A review of the implications and challenges of manganese removal from mine drainage publication-title: Chemosphere – volume: 29 year: 2017 ident: bib2 article-title: Surface plasmon resonance in gold nanoparticles: a review publication-title: J. Phys. Condens. Matter – year: 2018 ident: bib35 article-title: Lu's Basic Toxicology: Fundamentals, Target Organs and Risk Assessment – volume: 25 start-page: 933 year: 2013 end-page: 943 ident: bib68 article-title: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals publication-title: J. Environ. Sci. – volume: 10 start-page: 3266 year: 2020 ident: 10.1016/j.envpol.2023.121483_bib27 article-title: Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles publication-title: RSC Adv. doi: 10.1039/C9RA10104G – volume: 27 start-page: 43 year: 2001 ident: 10.1016/j.envpol.2023.121483_bib56 article-title: Trace metal concentrations in marine macroalgae from different biotopes in the Aegean Sea publication-title: Environ. Int. doi: 10.1016/S0160-4120(01)00052-6 – volume: 120 start-page: 28 year: 2017 ident: 10.1016/j.envpol.2023.121483_bib22 article-title: The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.04.056 – start-page: 277 year: 1990 ident: 10.1016/j.envpol.2023.121483_bib23 article-title: Microbial oxygenic photoautotrophs (cyanobacteria and algae) for metal ion binding – volume: 42 year: 2021 ident: 10.1016/j.envpol.2023.121483_bib41 article-title: High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: a species-specific green synthesis publication-title: Colloids Interface Sci. Commun. doi: 10.1016/j.colcom.2021.100420 – volume: 197 year: 2021 ident: 10.1016/j.envpol.2023.121483_bib45 article-title: Green synthesis of bio-functionalized nano-particles for the application of copper removal – characterization and modeling studies publication-title: Environ. Res. – volume: 223 start-page: 40 year: 2013 ident: 10.1016/j.envpol.2023.121483_bib26 article-title: Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.02.054 – volume: 9 start-page: 1050 year: 2018 ident: 10.1016/j.envpol.2023.121483_bib29 article-title: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.9.98 – volume: 5 start-page: 112 year: 2015 ident: 10.1016/j.envpol.2023.121483_bib48 article-title: Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2014.12.001 – volume: 78 start-page: 1 year: 2023 ident: 10.1016/j.envpol.2023.121483_bib58 article-title: Algae as biosorption agents for recovering environments contaminated by trace metals: an overview of a potentially useful tool for mine disasters in Brazil publication-title: Biologia doi: 10.1007/s11756-022-01189-2 – volume: 317 year: 2023 ident: 10.1016/j.envpol.2023.121483_bib17 article-title: Advancement in algal bioremediation for organic, inorganic, and emerging pollutants publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.120840 – volume: 2 start-page: 316 year: 2012 ident: 10.1016/j.envpol.2023.121483_bib20 article-title: Extracellular biosynthesis of silver nanoparticles using fungi Penicillium diversum and their antimicrobial activity studies publication-title: Bionanoscience doi: 10.1007/s12668-012-0046-5 – volume: 284 year: 2021 ident: 10.1016/j.envpol.2023.121483_bib54 article-title: Clean approach for chromium removal in aqueous environments and role of nanomaterials in bioremediation: present research and future perspective publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131368 – volume: 6445 start-page: 1 year: 2019 ident: 10.1016/j.envpol.2023.121483_bib63 article-title: The symbiotic effect of integrated Muraya koenigii extract and surface-modified magnetic microspheres – a green biosorbent for the removal of Cu(II) and Cr(VI) ions from aqueous solutions publication-title: Chem. Eng. Commun. – volume: 286 year: 2022 ident: 10.1016/j.envpol.2023.121483_bib64 article-title: Synthesis of tri-metallic surface engineered nanobiochar from cynodon dactylon residues in a single step - batch and column studies for the removal of copper and lead ions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131572 – volume: 97 start-page: 114 year: 2017 ident: 10.1016/j.envpol.2023.121483_bib18 article-title: Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2016.10.018 – volume: 21 start-page: 5469 year: 2019 ident: 10.1016/j.envpol.2023.121483_bib46 article-title: Biofabrication of supported metal nanoparticles: exploring the bioinspiration strategy to mitigate the environmental challenges publication-title: Green Chem. doi: 10.1039/C9GC02291K – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.envpol.2023.121483_bib1 article-title: Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: isotherm, kinetics and statistical supposition of process publication-title: Environ. Nanotechnol. Monit. Manag. – volume: 267 year: 2021 ident: 10.1016/j.envpol.2023.121483_bib38 article-title: Highly efficient removal of aluminum, iron, and manganese ions using Linde type-A zeolite obtained from hazardous waste publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128919 – volume: 51 start-page: 4647 year: 2015 ident: 10.1016/j.envpol.2023.121483_bib40 article-title: A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles publication-title: Chem. Commun. doi: 10.1039/C5CC00211G – volume: 35 start-page: 1162 year: 2006 ident: 10.1016/j.envpol.2023.121483_bib67 article-title: Synthesis, structure and properties of metal nanoclusters publication-title: Chem. Soc. Rev. doi: 10.1039/b517312b – volume: 6 start-page: 157 year: 2018 ident: 10.1016/j.envpol.2023.121483_bib16 article-title: Heavy metal removal by bioaccumulation using genetically engineered microorganisms publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2018.00157 – volume: 6 start-page: 376 year: 2001 ident: 10.1016/j.envpol.2023.121483_bib53 article-title: Recent trends in the biosorption of heavy metals: a review publication-title: Biotechnol. Bioproc. Eng. doi: 10.1007/BF02932318 – volume: 10 start-page: 12871 year: 2018 ident: 10.1016/j.envpol.2023.121483_bib42 article-title: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties publication-title: Nanoscale doi: 10.1039/C8NR02278J – volume: 62 start-page: 155 year: 2003 ident: 10.1016/j.envpol.2023.121483_bib49 article-title: When adapted to high zinc concentrations the periphytic green alga Stigeoclonium tenue produces high amounts of novel phytochelatin-related peptides publication-title: Aquat. Toxicol. doi: 10.1016/S0166-445X(02)00080-2 – volume: 287 year: 2022 ident: 10.1016/j.envpol.2023.121483_bib32 article-title: Removal of Mn via coprecipitation and sorption by Fe(II), Fe(III), and Al in mine drainage publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132367 – volume: 7 start-page: 109 year: 2013 ident: 10.1016/j.envpol.2023.121483_bib10 article-title: Biological synthesis of metallic nanoparticles using algae publication-title: IET Nanobiotechnol. doi: 10.1049/iet-nbt.2012.0041 – volume: 10 year: 2022 ident: 10.1016/j.envpol.2023.121483_bib12 article-title: Green metallic nanoparticles: biosynthesis to applications publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.874742 – volume: 3 start-page: 3462 year: 2011 ident: 10.1016/j.envpol.2023.121483_bib69 article-title: Metal nanoparticles in liquid phase catalysis; from recent advances to future goals publication-title: Nanoscale doi: 10.1039/c1nr10201j – volume: 151 start-page: 475 year: 2017 ident: 10.1016/j.envpol.2023.121483_bib30 article-title: Acid mine drainage: prevention, treatment options, and resource recovery: a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.03.082 – volume: 287 year: 2021 ident: 10.1016/j.envpol.2023.121483_bib11 article-title: Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.129265 – volume: 214 start-page: 491 year: 2019 ident: 10.1016/j.envpol.2023.121483_bib43 article-title: A review of the implications and challenges of manganese removal from mine drainage publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.09.106 – volume: 98 start-page: 352 year: 2013 ident: 10.1016/j.envpol.2023.121483_bib51 article-title: Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2013.09.003 – volume: 1 start-page: 37 year: 2017 ident: 10.1016/j.envpol.2023.121483_bib9 article-title: Concentration of metals in the Doce River in mariana, Minas Gerais, Brazil publication-title: Acta Brasiliensis doi: 10.22571/Actabra13201758 – year: 1994 ident: 10.1016/j.envpol.2023.121483_bib37 – volume: 20 start-page: 595 year: 2015 ident: 10.1016/j.envpol.2023.121483_bib66 article-title: Silver nanoparticles: synthesis, properties, and therapeutic applications publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2014.11.014 – volume: 467 start-page: 307 year: 2016 ident: 10.1016/j.envpol.2023.121483_bib4 article-title: Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.01.023 – volume: 29 year: 2017 ident: 10.1016/j.envpol.2023.121483_bib2 article-title: Surface plasmon resonance in gold nanoparticles: a review publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/aa60f3 – volume: 101 start-page: 869 year: 2021 ident: 10.1016/j.envpol.2023.121483_bib25 article-title: Application of CuNi bimetallic nanoparticle as an adsorbent for the removal of heavy metals from aqueous solution publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067319.2019.1673383 – volume: 10 start-page: 152 year: 2020 ident: 10.1016/j.envpol.2023.121483_bib6 article-title: Application of silver nanoparticles toward Co(II) and Pb(II) ions contaminant removal in groundwater publication-title: Appl. Water Sci. doi: 10.1007/s13201-020-01240-0 – year: 2016 ident: 10.1016/j.envpol.2023.121483_bib50 – volume: 86 start-page: 335 year: 2011 ident: 10.1016/j.envpol.2023.121483_bib70 article-title: Metal ion separation and recovery from environmental sources using various flotation and sorption techniques publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.2552 – volume: 231 start-page: 1 year: 2020 ident: 10.1016/j.envpol.2023.121483_bib21 article-title: Acute and chronic effects on tadpoles (Lithobates catesbeianus) exposed to mining tailings from the dam rupture in mariana, MG (Brazil) publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-020-04691-y – volume: 1 start-page: 242 year: 2012 ident: 10.1016/j.envpol.2023.121483_bib15 article-title: Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca invitro publication-title: Sci. Rep. – volume: 74 start-page: 328 year: 2009 ident: 10.1016/j.envpol.2023.121483_bib24 article-title: Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2009.07.048 – volume: 16 start-page: 1747 year: 2014 ident: 10.1016/j.envpol.2023.121483_bib59 article-title: Surface chemistry modifications of rice husk toward enhancement of Hg(II) adsorption from aqueous solution publication-title: Clean Technol. Environ. Policy doi: 10.1007/s10098-014-0803-y – volume: 205 year: 2020 ident: 10.1016/j.envpol.2023.121483_bib39 article-title: Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2020.111823 – volume: 103 start-page: 658 year: 2013 ident: 10.1016/j.envpol.2023.121483_bib33 article-title: Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2012.11.022 – volume: 25 start-page: 933 year: 2013 ident: 10.1016/j.envpol.2023.121483_bib68 article-title: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(12)60145-4 – year: 2018 ident: 10.1016/j.envpol.2023.121483_bib35 – year: 2005 ident: 10.1016/j.envpol.2023.121483_bib13 – volume: 20 start-page: 54 year: 2018 ident: 10.1016/j.envpol.2023.121483_bib28 article-title: Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution publication-title: Water Resour. Ind. doi: 10.1016/j.wri.2018.10.001 – volume: 7 start-page: 84 year: 2023 ident: 10.1016/j.envpol.2023.121483_bib34 article-title: Heavy metal removal from aqueous solutions using biomaterials and/or functional composites: recent advances and the way forward in wastewater treatment using digitalization publication-title: J. Compos. Sci. doi: 10.3390/jcs7020084 – volume: 308 start-page: 409 year: 2016 ident: 10.1016/j.envpol.2023.121483_bib3 article-title: Controlled metal nanostructures: fertile ground for coordination chemists publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.07.013 – volume: 264 year: 2020 ident: 10.1016/j.envpol.2023.121483_bib55 article-title: A review on biosynthesis of metal nanoparticles and its environmental applications publication-title: Chemosphere – volume: 319 year: 2023 ident: 10.1016/j.envpol.2023.121483_bib36 article-title: Efficient removal of Cd2+ by diatom frustules self-modified in situ with intercellular organic components publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2023.121005 – volume: 13 start-page: 4275 year: 2023 ident: 10.1016/j.envpol.2023.121483_bib65 article-title: Adsorption of heavy metal onto biomass-derived activated carbon: review publication-title: RSC Adv. doi: 10.1039/D2RA07911A – volume: 36 start-page: 116 year: 1959 ident: 10.1016/j.envpol.2023.121483_bib61 article-title: High-temperature X-ray diffractometer publication-title: J. Sci. Instrum. doi: 10.1088/0950-7671/36/3/302 – volume: 12 start-page: 465 year: 2019 ident: 10.1016/j.envpol.2023.121483_bib5 article-title: Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system publication-title: Materials doi: 10.3390/ma12030465 – start-page: 377 year: 2012 ident: 10.1016/j.envpol.2023.121483_bib7 article-title: The reactivity of colloidal inorganic nanoparticles – volume: 47 start-page: 22 year: 2012 ident: 10.1016/j.envpol.2023.121483_bib47 article-title: Screening of different algae for green synthesis of gold nanoparticles publication-title: Eur. J. Phycol. doi: 10.1080/09670262.2011.653406 – volume: 2 start-page: 953 year: 2012 ident: 10.1016/j.envpol.2023.121483_bib62 article-title: Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus publication-title: Asian Pac. J. Trop. Biomed. doi: 10.1016/S2221-1691(13)60006-4 – volume: 128 start-page: 37 year: 2014 ident: 10.1016/j.envpol.2023.121483_bib8 article-title: Silver and gold nanoparticles for sensor and antibacterial applications publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2014.02.119 – volume: 47 start-page: 11988 year: 2018 ident: 10.1016/j.envpol.2023.121483_bib31 article-title: Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis publication-title: Dalton Trans. doi: 10.1039/C8DT01152D – volume: 90 start-page: 9308 year: 2018 ident: 10.1016/j.envpol.2023.121483_bib57 article-title: Size determination of metal nanoparticles based on electrochemically measured surface-area-to-volume ratios publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01905 – volume: 416 year: 2021 ident: 10.1016/j.envpol.2023.121483_bib44 article-title: Anaerobic mixed consortium (AMC) mediated enhanced biosynthesis of silver nano particles (AgNPs) and its application for the removal of phenol publication-title: J. Hazard Mater. – start-page: 83 year: 2015 ident: 10.1016/j.envpol.2023.121483_bib60 article-title: Cyanobacteria as potential options for wastewater treatment BT – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.envpol.2023.121483_bib52 article-title: The role of nanomaterials as effective adsorbents and their applications in wastewater treatment publication-title: J. Nanostructure Chem. doi: 10.1007/s40097-017-0219-4 – volume: 128 start-page: 407 year: 1981 ident: 10.1016/j.envpol.2023.121483_bib14 article-title: The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena publication-title: Arch. Microbiol. doi: 10.1007/BF00405922 – volume: 9 start-page: 12944 year: 2019 ident: 10.1016/j.envpol.2023.121483_bib19 article-title: A review on the biosynthesis of metal and metal salt nanoparticles by microbes publication-title: RSC Adv. doi: 10.1039/C8RA10483B |
SSID | ssj0004333 |
Score | 2.4682324 |
Snippet | Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room... Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO under air atmosphere at room... Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO₃ under air atmosphere at room... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121483 |
SubjectTerms | air ambient temperature Anti-Bacterial Agents Autotrophic microorganisms biofilters Cosmarium decontamination Green synthesis Iron ligands Manganese manufacturing Metal Nanoparticles Metals removal microalgae Nanobiotechnology nanoparticles nanosilver Plant Extracts pollution Silver Stigeoclonium Synechococcus elongatus Water Water purification |
Title | Green synthesized silver nanoparticles for iron and manganese ion removal from aqueous solutions |
URI | https://dx.doi.org/10.1016/j.envpol.2023.121483 https://www.ncbi.nlm.nih.gov/pubmed/36990344 https://www.proquest.com/docview/2792902753 https://www.proquest.com/docview/2834277698 |
Volume | 327 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QIHBFsKSx8yEuIWNomd2D6uqlYLiF6gUm_GsR20qOtdNVukcuhv70we23IolbhESjSOnJnx-Jv48xjgfVr7jDuJaYlQRSKcxDhYBptgNpRxy50r2sLzX0_L2Zn4fF6cb8HRsBeGaJV97O9iehut-yeTXpuT1Xw--YbZA4JhjaGX3LCgOCyEJC__eHNH8xC8O04ehROSHrbPtRyvEH-vlrQAkXMqsyAUf2h6egh-ttPQyQt43uNHNu26-BK2QhzBzjRi7ry4Zh9Yy-hsf5WP4Nm9YoMj2D2-29OGb-gHdbMDP1ruDWuuI4LBZv4neNbMiTDNoo2YU_fUOYbwltELmI2eLWz8aen0SoaGZZdhsUSXZbRZhVn8guVVwzZe_QrOTo6_H82S_uCFxHFdrBNdeiG1CqnNaiGVK_GalnlmU27rUgVt62C5L2TurUU8UIW6LqUTPq0QPhSS78J2XMbwBpi01uchy733HDNPr5VUwlWVCFLVQvsx8EHfxvVVyelwjAsz0M9-mc5KhqxkOiuNIdm0WnVVOR6Rl4MpzV_eZXDieKTlu8HyBgceraagclGJhiovalr0_ZeM4iKXstRqDK87t9n0l5cIBFAnb_-7b3vwlO6IuJYV-7C9vrwKBwiR1tVhOwYO4cn005fZ6S07IxI8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCLYUlqeRgFvYxHZi-8ChglZb-rjQSr25ju2gRax31WxBy4E_xR9knMcWDqUSUi85JI7lzHhe8TczAK_SymXMCgxLuMwTbgXqwcKbBKOhjBlmbd4Unj84LMbH_ONJfrIGv_pcmAir7HR_q9Mbbd3dGXXUHM0nk9EnjB7QGVaoeuM2zGmHrNzzy-8Yt9Xvdj8gk19TurN99H6cdK0FEstUvkhU4bhQ0qcmq7iQtsBrWtDMpMxUhfTKVN4wlwvqjEGLV_qqKoTlLi3RQOaC4bw34CZHdRHbJrz9eYEr4aztX4-rS-Ly-ny9BlTmw7f5LJ54UBbrOnDJLrOHl_m7jd3buQd3O4eVbLU0uQ9rPgxgYytgsD5dkjekgZA2_-YHcOeP6oYD2Ny-SKLDGTotUm_AaQP2IfUyoPdZT354R-pJRGiTYAIG8R1Wj6A_TeIExARHpiZ8NrFdJsGdRM78dIYyQmJ2DDH4BbPzmqzE6AEcXws7NmE9zIJ_BEQY46jPqHOOYajrlBSS27LkXsiKKzcE1tNb264MeuzG8VX3eLcvuuWSjlzSLZeGkKzemrdlQK4YL3pW6r-2s0ZLdcWbL3vOa5T0eHyDxEUi6ljqUcVT5n-NkYxTIQolh_Cw3Tar9bICPQ-kyeP_XtsLuDU-OtjX-7uHe0_gdnzSQiefwvri7Nw_Q_9sUT5v5IHA6XUL4G_iW04f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+synthesized+silver+nanoparticles+for+iron+and+manganese+ion+removal+from+aqueous+solutions&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Moraes%2C+Leonardo+C.&rft.au=Gomes%2C+Marcelo+P.&rft.au=Ribeiro-Andrade%2C+Rodrigo&rft.au=Garcia%2C+Queila+S.&rft.date=2023-06-15&rft.issn=0269-7491&rft.volume=327&rft.spage=121483&rft_id=info:doi/10.1016%2Fj.envpol.2023.121483&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2023_121483 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |