A Transferable Adaptive Domain Adversarial Neural Network for Virtual Reality Augmented EMG-Based Gesture Recognition

Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the off line accuracy reported in the literature and the real-time usability of a classifier. This gap mainly stems from two factors: 1) The absence of a controller, making the data collected dissimilar t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 546 - 555
Main Authors Cote-Allard, Ulysse, Gagnon-Turcotte, Gabriel, Phinyomark, Angkoon, Glette, Kyrre, Scheme, Erik, Laviolette, Francois, Gosselin, Benoit
Format Journal Article
LanguageEnglish
Published United States IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the off line accuracy reported in the literature and the real-time usability of a classifier. This gap mainly stems from two factors: 1) The absence of a controller, making the data collected dissimilar to actual control. 2) The difficulty of including the four main dynamic factors (gesture intensity, limb position, electrode shift, and transient changes in the signal), as including their permutations drastically increases the amount of data to be recorded. Contrarily, online datasets are limited to the exact EMG-based controller used to record them, necessitating the recording of a new dataset for each control method or variant to be tested. Consequently, this paper proposes a new type of dataset to serve as an intermediate between off line and online datasets, by recording the data using a real-time experimental protocol. The protocol, performed in virtual reality, includes the four main dynamic factors and uses an EMG-independent controller to guide movements. This EMG-independent feedback ensures that the user is in-the-loop during recording, while enabling the resulting dynamic dataset to be used as an EMG-based benchmark. The dataset is comprised of 20 able-bodied participants completing three to four sessions over a period of 14 to 21 days. The ability of the dynamic dataset to serve as a benchmark is leveraged to evaluate the impact of different-recalibration techniques for long-term (across-day) gesture recognition, including a novel algorithm, named TADANN. TADANN consistently and significantly (p <; 0.05) outperforms using fine-tuning as the recalibration technique.
AbstractList Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the offline accuracy reported in the literature and the real-time usability of a classifier. This gap mainly stems from two factors: 1) The absence of a controller, making the data collected dissimilar to actual control. 2) The difficulty of including the four main dynamic factors (gesture intensity, limb position, electrode shift, and transient changes in the signal), as including their permutations drastically increases the amount of data to be recorded. Contrarily, online datasets are limited to the exact EMG-based controller used to record them, necessitating the recording of a new dataset for each control method or variant to be tested. Consequently, this paper proposes a new type of dataset to serve as an intermediate between offline and online datasets, by recording the data using a real-time experimental protocol. The protocol, performed in virtual reality, includes the four main dynamic factors and uses an EMG-independent controller to guide movements. This EMG-independent feedback ensures that the user is in-the-loop during recording, while enabling the resulting dynamic dataset to be used as an EMG-based benchmark. The dataset is comprised of 20 able-bodied participants completing three to four sessions over a period of 14 to 21 days. The ability of the dynamic dataset to serve as a benchmark is leveraged to evaluate the impact of different recalibration techniques for long-term (across-day) gesture recognition, including a novel algorithm, named TADANN. TADANN consistently and significantly ([Formula Omitted]) outperforms using fine-tuning as the recalibration technique.
Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the offline accuracy reported in the literature and the real-time usability of a classifier. This gap mainly stems from two factors: 1) The absence of a controller, making the data collected dissimilar to actual control. 2) The difficulty of including the four main dynamic factors (gesture intensity, limb position, electrode shift, and transient changes in the signal), as including their permutations drastically increases the amount of data to be recorded. Contrarily, online datasets are limited to the exact EMG-based controller used to record them, necessitating the recording of a new dataset for each control method or variant to be tested. Consequently, this paper proposes a new type of dataset to serve as an intermediate between offline and online datasets, by recording the data using a real-time experimental protocol. The protocol, performed in virtual reality, includes the four main dynamic factors and uses an EMG-independent controller to guide movements. This EMG-independent feedback ensures that the user is in-the-loop during recording, while enabling the resulting dynamic dataset to be used as an EMG-based benchmark. The dataset is comprised of 20 able-bodied participants completing three to four sessions over a period of 14 to 21 days. The ability of the dynamic dataset to serve as a benchmark is leveraged to evaluate the impact of different recalibration techniques for long-term (across-day) gesture recognition, including a novel algorithm, named TADANN. TADANN consistently and significantly ( [Formula: see text]) outperforms using fine-tuning as the recalibration technique.
Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the offline accuracy reported in the literature and the real-time usability of a classifier. This gap mainly stems from two factors: 1) The absence of a controller, making the data collected dissimilar to actual control. 2) The difficulty of including the four main dynamic factors (gesture intensity, limb position, electrode shift, and transient changes in the signal), as including their permutations drastically increases the amount of data to be recorded. Contrarily, online datasets are limited to the exact EMG-based controller used to record them, necessitating the recording of a new dataset for each control method or variant to be tested. Consequently, this paper proposes a new type of dataset to serve as an intermediate between offline and online datasets, by recording the data using a real-time experimental protocol. The protocol, performed in virtual reality, includes the four main dynamic factors and uses an EMG-independent controller to guide movements. This EMG-independent feedback ensures that the user is in-the-loop during recording, while enabling the resulting dynamic dataset to be used as an EMG-based benchmark. The dataset is comprised of 20 able-bodied participants completing three to four sessions over a period of 14 to 21 days. The ability of the dynamic dataset to serve as a benchmark is leveraged to evaluate the impact of different recalibration techniques for long-term (across-day) gesture recognition, including a novel algorithm, named TADANN. TADANN consistently and significantly ( [Formula: see text]) outperforms using fine-tuning as the recalibration technique.Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the offline accuracy reported in the literature and the real-time usability of a classifier. This gap mainly stems from two factors: 1) The absence of a controller, making the data collected dissimilar to actual control. 2) The difficulty of including the four main dynamic factors (gesture intensity, limb position, electrode shift, and transient changes in the signal), as including their permutations drastically increases the amount of data to be recorded. Contrarily, online datasets are limited to the exact EMG-based controller used to record them, necessitating the recording of a new dataset for each control method or variant to be tested. Consequently, this paper proposes a new type of dataset to serve as an intermediate between offline and online datasets, by recording the data using a real-time experimental protocol. The protocol, performed in virtual reality, includes the four main dynamic factors and uses an EMG-independent controller to guide movements. This EMG-independent feedback ensures that the user is in-the-loop during recording, while enabling the resulting dynamic dataset to be used as an EMG-based benchmark. The dataset is comprised of 20 able-bodied participants completing three to four sessions over a period of 14 to 21 days. The ability of the dynamic dataset to serve as a benchmark is leveraged to evaluate the impact of different recalibration techniques for long-term (across-day) gesture recognition, including a novel algorithm, named TADANN. TADANN consistently and significantly ( [Formula: see text]) outperforms using fine-tuning as the recalibration technique.
Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the off line accuracy reported in the literature and the real-time usability of a classifier. This gap mainly stems from two factors: 1) The absence of a controller, making the data collected dissimilar to actual control. 2) The difficulty of including the four main dynamic factors (gesture intensity, limb position, electrode shift, and transient changes in the signal), as including their permutations drastically increases the amount of data to be recorded. Contrarily, online datasets are limited to the exact EMG-based controller used to record them, necessitating the recording of a new dataset for each control method or variant to be tested. Consequently, this paper proposes a new type of dataset to serve as an intermediate between off line and online datasets, by recording the data using a real-time experimental protocol. The protocol, performed in virtual reality, includes the four main dynamic factors and uses an EMG-independent controller to guide movements. This EMG-independent feedback ensures that the user is in-the-loop during recording, while enabling the resulting dynamic dataset to be used as an EMG-based benchmark. The dataset is comprised of 20 able-bodied participants completing three to four sessions over a period of 14 to 21 days. The ability of the dynamic dataset to serve as a benchmark is leveraged to evaluate the impact of different-recalibration techniques for long-term (across-day) gesture recognition, including a novel algorithm, named TADANN. TADANN consistently and significantly (p <; 0.05) outperforms using fine-tuning as the recalibration technique.
Author Glette, Kyrre
Phinyomark, Angkoon
Scheme, Erik
Cote-Allard, Ulysse
Gagnon-Turcotte, Gabriel
Gosselin, Benoit
Laviolette, Francois
Author_xml – sequence: 1
  givenname: Ulysse
  orcidid: 0000-0003-3241-8404
  surname: Cote-Allard
  fullname: Cote-Allard, Ulysse
  email: ulysseca@uio.no
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 2
  givenname: Gabriel
  orcidid: 0000-0002-4336-2664
  surname: Gagnon-Turcotte
  fullname: Gagnon-Turcotte, Gabriel
  organization: Laboratoire de recherche sur les Microsystèmes Biomédicaux, Université Laval, Quebec, QC, Canada
– sequence: 3
  givenname: Angkoon
  orcidid: 0000-0003-0170-3245
  surname: Phinyomark
  fullname: Phinyomark, Angkoon
  organization: Angkoon Phinyomark and Erik Scheme~are with the Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
– sequence: 4
  givenname: Kyrre
  orcidid: 0000-0003-3550-3225
  surname: Glette
  fullname: Glette, Kyrre
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 5
  givenname: Erik
  orcidid: 0000-0002-4421-1016
  surname: Scheme
  fullname: Scheme, Erik
  organization: Angkoon Phinyomark and Erik Scheme~are with the Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
– sequence: 6
  givenname: Francois
  surname: Laviolette
  fullname: Laviolette, Francois
  organization: Département de Génie Electrique et de Génie Informatique, Université Laval, Quebec, QC, Canada
– sequence: 7
  givenname: Benoit
  orcidid: 0000-0003-1473-3451
  surname: Gosselin
  fullname: Gosselin, Benoit
  organization: Department of Electrical and Computer Engineering, Université Laval, Quebec, QC, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33591919$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URC_wAiChSGzYZOpLbMfLoQxDpdJKZWAbOclJ5ZLYU1-K-vY4nWkXXaCzOBd9v310_mN0YJ0FhN4TvCAEq9PN5c_r1YJiShYMcyUr8godEc7rMo_wwVyzqqwYxYfoOIRbjIkUXL5Bh4xxRXIcobQsNl7bMIDX7QjFstfbaO6h-OombWzu78EH7Y0ei0tI_jHFv87_KQbni9_Gx5Rn16BHEx-KZbqZwEboi9WPdflFh1ytIcTkITOdu7EmGmffoteDHgO82-cT9OvbanP2vby4Wp-fLS_KjikeSyUkIWIgnCrMWlb3PectZUwwylsue441HRQdWKYIqaSktWCCwtCLqusqzE7Q5927W-_uUt6jmUzoYBy1BZdCQyuFBa6wqDP66QV665K3ebuZqoVUXMpMfdxTqZ2gb7beTNo_NE8HzQDdAZ13IXgYnhGCm9m15tG1Znat2buWRfULUWeing8VvTbj_6UfdlIDAM9_KcYrWXP2DwoxosI
CODEN ITNSB3
CitedBy_id crossref_primary_10_3389_fphys_2023_1151312
crossref_primary_10_1109_ACCESS_2024_3373044
crossref_primary_10_1142_S0219843623500172
crossref_primary_10_1038_s41597_025_04749_8
crossref_primary_10_1109_ACCESS_2023_3279735
crossref_primary_10_1109_TBCAS_2022_3222196
crossref_primary_10_1109_TCDS_2023_3316701
crossref_primary_10_1109_TCYB_2025_3525652
crossref_primary_10_3389_fbioe_2024_1329209
crossref_primary_10_1109_ACCESS_2024_3508799
crossref_primary_10_1109_JBHI_2022_3197831
crossref_primary_10_1145_3617370
crossref_primary_10_1109_JBHI_2024_3417236
crossref_primary_10_1088_1741_2552_adada0
crossref_primary_10_1038_s41597_024_04296_8
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1109_JSEN_2024_3419802
crossref_primary_10_1038_s41597_022_01836_y
crossref_primary_10_1038_s41598_024_52405_9
crossref_primary_10_1109_TNSRE_2023_3253683
crossref_primary_10_1109_ACCESS_2024_3464101
crossref_primary_10_1109_TNSRE_2023_3236982
crossref_primary_10_1186_s12984_024_01355_4
crossref_primary_10_1016_j_jfranklin_2023_08_046
crossref_primary_10_1007_s11814_024_00227_w
crossref_primary_10_1007_s12193_023_00406_9
crossref_primary_10_1109_TNSRE_2023_3295453
crossref_primary_10_1109_TNSRE_2022_3173724
crossref_primary_10_3390_s24082407
Cites_doi 10.3390/s18082497
10.1016/j.eswa.2013.02.023
10.3390/s19122811
10.1097/JPO.0000000000000121
10.1109/TBME.2017.2719400
10.1016/j.bspc.2015.02.009
10.1016/j.bspc.2018.02.013
10.3390/s19224887
10.1109/TBME.2013.2238939
10.1145/3323213
10.1109/TNSRE.2014.2355856
10.1109/TNSRE.2011.2182525
10.3390/s130506380
10.1016/j.bspc.2007.07.009
10.1109/SAS.2018.8336753
10.1109/SMC.2017.8122854
10.3389/fbioe.2020.00158
10.1186/1743-0003-9-74
10.1109/TNSRE.2016.2644264
10.1109/TNSRE.2013.2279737
10.1016/j.jelekin.2015.06.010
10.1016/j.eswa.2017.11.049
10.3200/JMBR.36.4.450-459
10.1016/j.eswa.2016.05.031
10.1109/EMBC.2014.6943678
10.1109/TNSRE.2019.2896269
10.1126/science.1127647
10.1371/journal.pone.0206049
10.1682/JRRD.2010.09.0177
10.1038/s41598-017-04255-x
10.1088/1741-2560/12/4/046005
10.1145/2993148.2997632
10.1109/TNSRE.2019.2894102
10.1109/IEMBS.2010.5627638
10.1152/jn.90614.2008
10.1109/TNSRE.2010.2100828
10.4324/9780203771587
10.1371/journal.pone.0203835
10.3389/fpsyg.2013.00863
10.1007/s11042-017-5443-x
10.1109/TNSRE.2019.2929917
10.1109/TNSRE.2015.2445634
10.1016/j.jelekin.2006.08.006
10.1038/nature14539
10.1109/IROS.2016.7759384
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2021.3059741
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 555
ExternalDocumentID 33591919
10_1109_TNSRE_2021_3059741
9354785
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Institut de recherche Robert-Sauvé en sante et en sécurité du travail (IRSST)
  funderid: 10.13039/501100002343
– fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
  grantid: 401220434; 376091307; 114090; 201404920
  funderid: 10.13039/501100000038
– fundername: Norges Forskningsråd; Research Council of Norway
  grantid: 262762; 274996
  funderid: 10.13039/501100005416
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c395t-967116f152903b38dd55b2336325b57d50a2f92f311611477286362efd64cc403
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 23:40:05 EDT 2025
Fri Jul 25 03:43:44 EDT 2025
Wed Feb 19 02:29:09 EST 2025
Tue Jul 01 00:43:22 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-967116f152903b38dd55b2336325b57d50a2f92f311611477286362efd64cc403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0170-3245
0000-0002-4421-1016
0000-0003-3550-3225
0000-0003-1473-3451
0000-0003-3241-8404
0000-0002-4336-2664
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9354785
PMID 33591919
PQID 2498679577
PQPubID 85423
PageCount 10
ParticipantIDs crossref_primary_10_1109_TNSRE_2021_3059741
pubmed_primary_33591919
proquest_journals_2498679577
crossref_citationtrail_10_1109_TNSRE_2021_3059741
proquest_miscellaneous_2490604068
ieee_primary_9354785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref15
ioffe (ref48) 2015
ref58
ref14
ref55
ref11
ref10
ref17
ref16
ref19
ref18
tan (ref47) 2019
ganin (ref54) 2015; 17
ref46
côté-allard (ref41) 2019; 19
ref42
demšar (ref57) 2006; 7
ref44
ref43
xu (ref49) 2015
ref8
ref7
ref9
ref4
ref3
ref6
ref5
yosinski (ref53) 2014
ref35
ref37
ref36
ref31
ref30
bai (ref34) 2018
van den oord (ref32) 2016
ref2
yosinski (ref39) 2014
ref1
paszke (ref45) 2017
ref24
ref26
ref25
bengio (ref38) 2012
ref20
ref22
ref21
van den oord (ref33) 2016
ref27
ref29
huh (ref40) 2016
ref60
gal (ref50) 2016
bergstra (ref52) 2012; 13
ref62
ref61
kingma (ref51) 2014
lecun (ref28) 2015; 521
(ref23) 2020
References_xml – ident: ref27
  doi: 10.3390/s18082497
– ident: ref5
  doi: 10.1016/j.eswa.2013.02.023
– volume: 19
  start-page: 2811
  year: 2019
  ident: ref41
  article-title: A low-cost, wireless, 3-D-printed custom armband for sEMG hand gesture recognition
  publication-title: SENSORS
  doi: 10.3390/s19122811
– ident: ref14
  doi: 10.1097/JPO.0000000000000121
– ident: ref9
  doi: 10.1109/TBME.2017.2719400
– year: 2016
  ident: ref33
  article-title: Pixel recurrent neural networks
  publication-title: arXiv 1601 06759
– year: 2016
  ident: ref32
  article-title: WaveNet: A generative model for raw audio
  publication-title: arXiv 1609 03499
– ident: ref1
  doi: 10.1016/j.bspc.2015.02.009
– volume: 7
  start-page: 1
  year: 2006
  ident: ref57
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref26
  doi: 10.1016/j.bspc.2018.02.013
– ident: ref59
  doi: 10.3390/s19224887
– start-page: 3320
  year: 2014
  ident: ref39
  article-title: How transferable are features in deep neural networks?
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref61
  doi: 10.1109/TBME.2013.2238939
– ident: ref3
  doi: 10.1145/3323213
– ident: ref46
  doi: 10.1109/TNSRE.2014.2355856
– ident: ref58
  doi: 10.1109/TNSRE.2011.2182525
– ident: ref43
  doi: 10.3390/s130506380
– ident: ref4
  doi: 10.1016/j.bspc.2007.07.009
– ident: ref42
  doi: 10.1109/SAS.2018.8336753
– ident: ref35
  doi: 10.1109/SMC.2017.8122854
– year: 2015
  ident: ref48
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv 1502 03167
– year: 2016
  ident: ref40
  article-title: What makes ImageNet good for transfer learning?
  publication-title: arXiv 1608 08614
– ident: ref36
  doi: 10.3389/fbioe.2020.00158
– ident: ref24
  doi: 10.1186/1743-0003-9-74
– year: 2014
  ident: ref51
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref10
  doi: 10.1109/TNSRE.2016.2644264
– ident: ref18
  doi: 10.1109/TNSRE.2013.2279737
– ident: ref22
  doi: 10.1016/j.jelekin.2015.06.010
– year: 2018
  ident: ref34
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
  publication-title: arXiv 1803 01271
– start-page: 1
  year: 2017
  ident: ref45
  article-title: Automatic differentiation in PyTorch
  publication-title: Proc NIPS-W
– ident: ref13
  doi: 10.1016/j.eswa.2017.11.049
– ident: ref15
  doi: 10.3200/JMBR.36.4.450-459
– ident: ref8
  doi: 10.1016/j.eswa.2016.05.031
– ident: ref25
  doi: 10.1109/EMBC.2014.6943678
– year: 2019
  ident: ref47
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: arXiv 1905 11946
– year: 2020
  ident: ref23
  publication-title: Leap Motion
– ident: ref19
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref37
  doi: 10.1126/science.1127647
– volume: 17
  start-page: 2030
  year: 2015
  ident: ref54
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– ident: ref31
  doi: 10.1371/journal.pone.0206049
– ident: ref7
  doi: 10.1682/JRRD.2010.09.0177
– year: 2015
  ident: ref49
  article-title: Empirical evaluation of rectified activations in convolutional network
  publication-title: arXiv 1505 00853
– ident: ref62
  doi: 10.1038/s41598-017-04255-x
– ident: ref12
  doi: 10.1088/1741-2560/12/4/046005
– start-page: 17
  year: 2012
  ident: ref38
  article-title: Deep learning of representations for unsupervised and transfer learning
  publication-title: Proc ICML Workshop Unsupervised Transf Learn
– volume: 13
  start-page: 281
  year: 2012
  ident: ref52
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– ident: ref29
  doi: 10.1145/2993148.2997632
– ident: ref2
  doi: 10.1109/TNSRE.2019.2894102
– ident: ref60
  doi: 10.1109/IEMBS.2010.5627638
– ident: ref17
  doi: 10.1152/jn.90614.2008
– ident: ref44
  doi: 10.1109/TNSRE.2010.2100828
– ident: ref55
  doi: 10.4324/9780203771587
– ident: ref21
  doi: 10.1371/journal.pone.0203835
– ident: ref56
  doi: 10.3389/fpsyg.2013.00863
– start-page: 3320
  year: 2014
  ident: ref53
  article-title: How transferable are features in deep neural networks?
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1007/s11042-017-5443-x
– ident: ref16
  doi: 10.1109/TNSRE.2019.2929917
– ident: ref11
  doi: 10.1109/TNSRE.2015.2445634
– ident: ref6
  doi: 10.1016/j.jelekin.2006.08.006
– volume: 521
  start-page: 436
  year: 2015
  ident: ref28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1050
  year: 2016
  ident: ref50
  article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref20
  doi: 10.1109/IROS.2016.7759384
SSID ssj0017657
Score 2.4916568
Snippet Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the off line accuracy reported in the literature and the...
Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the offline accuracy reported in the literature and the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 546
SubjectTerms Algorithms
Benchmarks
Computer applications
Control methods
Controllers
Datasets
Electromyography
EMG
Gesture recognition
Heuristic algorithms
leap motion
myoelectric control
Neural networks
Permutations
Protocols
Real time
Real-time systems
Recording
Three-dimensional displays
transfer learning
Virtual reality
Title A Transferable Adaptive Domain Adversarial Neural Network for Virtual Reality Augmented EMG-Based Gesture Recognition
URI https://ieeexplore.ieee.org/document/9354785
https://www.ncbi.nlm.nih.gov/pubmed/33591919
https://www.proquest.com/docview/2498679577
https://www.proquest.com/docview/2490604068
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXHhVR4ppTIScIFskzh21seFblshbQ_LFvUW2bGNKtqk2m4u_HpmnIcooohTImXiOJ6xZ8ae-QbgLS9Uhiuii0WR-jg3jsdKGhNX6dRnDhWe85SNvDiTp-f5lwtxsQUfx1wY51wIPnMTug1n-bapWtoqO1Sc0KfENmyj49blao0nBoUMqJ44gfM451kyJMgk6nB19nU5R1cwSyco3WhAU3kYzoVCX0Xd0UehwMr9tmbQOcePYDH0tgs1-TFpN2ZS_fwDyPF_f-cxPOyNTzbrpOUJbLn6Kbz7HWiYrTqUAfaeLe9geO9CO2NBsXkkMFeOzay-obWSHTXX-rJmobTzrSaBZgT5ES4hxpyhYcy-Xa4pVQWbDZY_m7XfAx6oZfPFSfwJlallJzgY7dqx5RDV1NTP4Px4vvp8GvdFG-KKK7FBThdpKj2aBSrhhk-tFcJknEueCSMKKxKdeZV5jlToi6FxP5WoRJ23Mq-qPOHPYaduavcSWJ74wudWq5QwbKTQwkiNTSujfCU0jyAdWFdW_WhQYY2rMng2iSoD50vifNlzPoIP4zs3HZ7HP6l3iW0jZc-xCPYHCSn7KX9boh9L4IWiKCJ4Mz7GyUonMLp2TRtoCKwokdMIXnSSNbY9COTe37_5Ch5Qz7rdn33Y2axb9xrtoY05CPsIB2E6_AIuJQR6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcuBEC-URWsBIwAWyTezYWR8X2HaB7h6WLeotsmMbVS1Jtd1c-PWMnYcoAoQUKZEycRLP2DNjz3wD8JLlkuKMaGOepy7OtGWxFFrHZTp21KLCs85nI88XYnaafTrjZ1vwdsiFsdaG4DM78pdhL9_UZeOXyg4l8-hT_BbcRr3PaZutNewZ5CLgeuIQzuKM0aRPkUnk4WrxZTlFZ5CmI5RvNKF9gRjGuERvRd7QSKHEyt-tzaB1jnZg3n9vG2xyMWo2elT--A3K8X9_aBfuduYnmbTycg-2bHUfXv0KNUxWLc4AeU2WN1C896CZkKDaHBLoS0smRl352ZJ8qL-r84qE4s7Xyos08aAf4RSizAmaxuTr-donq2CzwfYnk-ZbQAQ1ZDo_jt-hOjXkGDujWVuy7OOa6uoBnB5NV-9ncVe2IS6Z5BvkdZ6mwqFhIBOm2dgYzjVlTDDKNc8NTxR1kjqGVOiNoXk_FqhGrTMiK8ssYQ9hu6or-xhIlrjcZUbJ1KPYCK64Fgqbllq6kisWQdqzrii73vClNS6L4NsksgicLzzni47zEbwZnrlqET3-Sb3n2TZQdhyL4KCXkKIb9NcFerIevpDneQQvhts4XP0ejKps3QQaD1eUiHEEj1rJGtruBfLJn9_5HO7MVvOT4uTj4vO-X18IC0F4HMD2Zt3Yp2gdbfSzMCh-AsYGBss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Transferable+Adaptive+Domain+Adversarial+Neural+Network+for+Virtual+Reality+Augmented+EMG-Based+Gesture+Recognition&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Cote-Allard%2C+Ulysse&rft.au=Gagnon-Turcotte%2C+Gabriel&rft.au=Phinyomark%2C+Angkoon&rft.au=Glette%2C+Kyrre&rft.date=2021&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=29&rft.spage=546&rft.epage=555&rft_id=info:doi/10.1109%2FTNSRE.2021.3059741&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2021_3059741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon