A comparative analysis between the multilayer perceptron "neural network" and multiple regression analysis for predicting construction plant maintenance costs
Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. Presents a comparative study between two models developed to predict the average hourly maintenance co...
Saved in:
Published in | Journal of quality in maintenance engineering Vol. 6; no. 1; pp. 45 - 61 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bradford
MCB UP Ltd
01.03.2000
Emerald Group Publishing Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1355-2511 1758-7832 |
DOI | 10.1108/13552510010371376 |
Cover
Loading…
Abstract | Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. Presents a comparative study between two models developed to predict the average hourly maintenance cost of tracked hydraulic excavators operating in the UK opencast mining industry. The models use the conventional statistical technique multiple regression, and artificial neural networks. Performance analysis using mean percentage error, mean absolute percentage error and percentage cost accuracy intervals was conducted. Results reveal that both models performed well, having low mean absolute percentage error values (less than 5 percent) indicating that predictor variables were reliable inputs for modelling average hourly maintenance cost. Overall, the neural network model performed slightly better as it was able to predict up to 95 percent of cost observations to within ≤q £5. Moreover, summary statistical analysis of residual values highlighted that predicted values using the neural network model are less subject to variance than the multiple regression model. |
---|---|
AbstractList | Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. Presents a comparative study between two models developed to predict the average hourly maintenance cost of tracked hydraulic excavators operating in the UK opencast mining industry. The models use the conventional statistical technique multiple regression, and artificial neural networks. Performance analysis using mean percentage error, mean absolute percentage error and percentage cost accuracy intervals was conducted. Results reveal that both models performed well, having low mean absolute percentage error values (less than 5 percent) indicating that predictor variables were reliable inputs for modelling average hourly maintenance cost. Overall, the neural network model performed slightly better as it was able to predict up to 95 percent of cost observations to within =q 5. Moreover, summary statistical analysis of residual values highlighted that predicted values using the neural network model are less subject to variance than the multiple regression model. Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. Presents a comparative study between two models developed to predict the average hourly maintenance cost of tracked hydraulic excavators operating in the UK opencast mining industry. The models use the conventional statistical technique multiple regression, and artificial neural networks. Performance analysis using mean percentage error, mean absolute percentage error and percentage cost accuracy intervals was conducted. Results reveal that both models performed well, having low mean absolute percentage error values (less than 5 percent) indicating that predictor variables were reliable inputs for modelling average hourly maintenance cost. Overall, the neural network model performed slightly better as it was able to predict up to 95 percent of cost observations to within ≤q £5. Moreover, summary statistical analysis of residual values highlighted that predicted values using the neural network model are less subject to variance than the multiple regression model. The real test of maintenance stratagem success can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. A comparative study between 2 models developed to predict the average hourly maintenance cost of tracked hydraulic excavators operating in the UK opencast mining industry is presented. Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. Presents a comparative study between two models developed to predict the average hourly maintenance cost of tracked hydraulic excavators operating in the UK opencast mining industry. The models use the conventional statistical technique multiple regression, and artificial neural networks. Performance analysis using mean percentage error, mean absolute percentage error and percentage cost accuracy intervals was conducted. Results reveal that both models performed well, having low mean absolute percentage error values (less than 5 percent) indicating that predictor variables were reliable inputs for modelling average hourly maintenance cost. Overall, the neural network model performed slightly better as it was able to predict up to 95 percent of cost observations to within ≤ q £5. Moreover, summary statistical analysis of residual values highlighted that predicted values using the neural network model are less subject to variance than the multiple regression model. |
Author | Harris, Frank C Edwards, David J Holt, Gary D |
Author_xml | – sequence: 1 givenname: David J surname: Edwards fullname: Edwards, David J organization: University of Wolverhampton, Wolverhampton, UK – sequence: 2 givenname: Gary D surname: Holt fullname: Holt, Gary D organization: University of Wolverhampton, Wolverhampton, UK – sequence: 3 givenname: Frank C surname: Harris fullname: Harris, Frank C organization: University of Wolverhampton, Wolverhampton, UK |
BookMark | eNqNks1u1TAQhS1UJNoLD8AuugvYEPBPHDvLqioFVIEERSwtx5kUt4kTbAd6X4ZnZaqgLi6iIFmyR_OdM-PRHJGDMAUg5CmjLxmj-hUTUnLJKGVUKCZU_YAcMiV1qbTgB_jGfIkAe0SOUrqilIpG0UPy87hw0zjbaLP_DoUNdtgln4oW8g-AUOSvUIzLkP1gdxCLGaKDOccpFNsAS7RDEZCc4vUWtd2KzgMUES4jpOQRvPPsJzSI0HmXfbjEuiHluGCA0DzYkIvR-pAh2OAA0ymnx-Rhb4cET37fG_L59enFyZvy_MPZ25Pj89KJRuZSN6KveMuUdSDrltVcV8IKqzXYWlKtZWu7TvOeC8a1VFo51ogWj1S1FUpsyPPVd47TtwVSNqNPDgbsCqYlGVWJWjJeUSSf3UvyhgvOpPw3qDlnTNcIbvfAq2mJODRk0EhWCj-zIWyFXJxSitCbOfrRxp1h1NxugPljA1Cj9jTOZ3s77hytH-5VlqvSpww3d6VsvDa1Ekqa6gs37-j7i0rTT-Yj8nTlYQTcie6_mnvxF8k-auauF78AzFTiyg |
CODEN | JQMEFI |
CitedBy_id | crossref_primary_10_1016_j_ijpe_2011_06_013 crossref_primary_10_1016_j_autcon_2013_10_024 crossref_primary_10_1080_07408170701291779 crossref_primary_10_1080_19397038_2014_962645 crossref_primary_10_1108_09699980810916988 crossref_primary_10_1109_TR_2005_853443 crossref_primary_10_35596_1729_7648_2021_19_7_13_21 crossref_primary_10_1108_02632770410540342 crossref_primary_10_1108_02632770410547570 crossref_primary_10_1108_SASBE_07_2021_0120 crossref_primary_10_1080_08838151_2022_2162901 crossref_primary_10_1080_15685543_2012_720903 crossref_primary_10_3390_su15032566 crossref_primary_10_1016_j_cie_2023_109671 crossref_primary_10_1108_WJSTSD_04_2013_0019 crossref_primary_10_1108_13552510210439810 crossref_primary_10_1007_s12205_017_0537_6 crossref_primary_10_6106_JCEPM_2013_3_2_058 crossref_primary_10_1016_j_ijpe_2008_05_009 crossref_primary_10_1108_20466091311325863 crossref_primary_10_1016_j_matpr_2021_01_567 crossref_primary_10_1108_17260530910974989 crossref_primary_10_1108_09699980710744881 crossref_primary_10_1088_1361_651X_ad4407 crossref_primary_10_1016_j_triboint_2010_01_013 crossref_primary_10_3390_su151411299 |
Cites_doi | 10.1108/13552519810369057 10.1080/01446190050024842 10.1061/(ASCE)0733-9364(1994)120:2(306) 10.1080/01446199400000002 10.7551/mitpress/3071.001.0001 10.1007/978-1-349-13530-1 10.4324/9780203451519 10.1080/01446199600000004 |
ContentType | Journal Article |
Copyright | MCB UP Limited Copyright MCB UP Limited (MCB) 2000 |
Copyright_xml | – notice: MCB UP Limited – notice: Copyright MCB UP Limited (MCB) 2000 |
DBID | BSCLL AAYXX CITATION 7TB 7WY 7WZ 7XB 8AO 8FD 8FE 8FG ABJCF AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 F~G GNUQQ HCIFZ K6~ L.- L.0 L6V M0C M2P M7S PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U S0W KR7 |
DOI | 10.1108/13552510010371376 |
DatabaseName | Istex CrossRef Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection ABI/INFORM Global Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic DELNET Engineering & Technology Collection Civil Engineering Abstracts |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Civil Engineering Abstracts |
DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database CrossRef ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1758-7832 |
EndPage | 61 |
ExternalDocumentID | 86926447 10_1108_13552510010371376 ark_67375_4W2_J0NT480S_R 10.1108/13552510010371376 |
Genre | Feature |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GroupedDBID | 0R 1WG 29L 3FY 3V. 4.4 5GY 5VS 70U 7WY 8AO 8FE 8FG 8R4 8R5 9E0 9F- AADTA AADXL AAGBP AAMCF AAUDR ABCTS ABFLS ABIJV ABJCF ABPTK ABSDC ACGFS ACGOD ACIWK ACMTK ADOMW AEBZA AEDOK AEGYS AEUCW AFKRA AJEBP ALMA_UNASSIGNED_HOLDINGS APPLU ASMFL ASPBG ATGMP AUCOK AVELQ AVWKF AZFZN AZQEC BENPR BEZIV BFOSL BFQZO BGLVJ BLEHN BPHCQ BTXLY BUONS CAG COF CS3 DU5 DWQXO EBS ECCUG EJD FNNZZ GEA GEB GEC GEI GMM GMN GMX GNUQQ GQ. GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HZ IPNFZ J1Y JI- JL0 K6 L6V LOTEE LXI M0C M2P M42 M7S MORNK NADUK O9- P2P PQBIZ PQEST PQQKQ PQUKI PRINS PROAC PTHSS Q2X Q3A RIG ROL S0W SLOBJ TDZ TEM TET TGG TMD TMF TMI TMK TMT TMX U5U UNMZH V1G WW Z11 Z12 Z21 Z22 ZYZAG .WW 0R~ AAKOT AAPSD AAXBI ABEAN ABJNI ABYQI ACGFO ACTSA ADFRT ADWNT AEFVF AEMMR AETHF AFNTC AFNZV AFVFF AGQPQ AGTVX AGZLY AHMHQ AIAFM AILOG AJFKA AMLIN AODMV ASJQZ BSCLL HZ~ K6~ SCAQC SDURG AAYXX CITATION 7TB 7XB 8FD CCPQU FR3 L.- L.0 PHGZM PHGZT PKEHL PQGLB Q9U KR7 |
ID | FETCH-LOGICAL-c395t-893f42b17ace56b162843a3a88ea650885badd82f231285787c193b93b576a373 |
IEDL.DBID | ZYZAG |
ISSN | 1355-2511 |
IngestDate | Fri Jul 11 09:41:21 EDT 2025 Fri Jul 11 01:33:18 EDT 2025 Fri Jul 11 12:32:46 EDT 2025 Sat Aug 23 12:49:04 EDT 2025 Wed Jul 30 23:55:45 EDT 2025 Thu Apr 24 23:10:42 EDT 2025 Thu Jul 03 05:55:01 EDT 2025 Tue Nov 23 15:45:28 EST 2021 Wed Jul 31 14:17:20 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Plant and machinery Costs Maintenance Multiple regression analysis Artificial intelligence Construction industry |
Language | English |
License | https://www.emerald.com/insight/site-policies |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-893f42b17ace56b162843a3a88ea650885badd82f231285787c193b93b576a373 |
Notes | ark:/67375/4W2-J0NT480S-R original-pdf:1540060104.pdf href:13552510010371376.pdf filenameID:1540060104 istex:915697C41FE3576FAFDC58ADCE3813BF27FA8BE6 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 215554784 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_743651240 proquest_journals_215554784 crossref_primary_10_1108_13552510010371376 emerald_primary_10_1108_13552510010371376 proquest_miscellaneous_29232155 proquest_miscellaneous_28221186 crossref_citationtrail_10_1108_13552510010371376 istex_primary_ark_67375_4W2_J0NT480S_R |
PublicationCentury | 2000 |
PublicationDate | 20000301 |
PublicationDateYYYYMMDD | 2000-03-01 |
PublicationDate_xml | – month: 03 year: 2000 text: 20000301 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bradford |
PublicationPlace_xml | – name: Bradford |
PublicationTitle | Journal of quality in maintenance engineering |
PublicationYear | 2000 |
Publisher | MCB UP Ltd Emerald Group Publishing Limited |
Publisher_xml | – name: MCB UP Ltd – name: Emerald Group Publishing Limited |
References | key2022032120302481400_b18 key2022032120302481400_b17 key2022032120302481400_b19 key2022032120302481400_b10 key2022032120302481400_b12 key2022032120302481400_b11 key2022032120302481400_b14 key2022032120302481400_b13 key2022032120302481400_b16 key2022032120302481400_b15 key2022032120302481400_b1 key2022032120302481400_b30 key2022032120302481400_b29 key2022032120302481400_b28 key2022032120302481400_b8 key2022032120302481400_b21 key2022032120302481400_b9 key2022032120302481400_b20 key2022032120302481400_b6 key2022032120302481400_b23 key2022032120302481400_b7 key2022032120302481400_b22 key2022032120302481400_b4 key2022032120302481400_b25 key2022032120302481400_b5 key2022032120302481400_b24 key2022032120302481400_b2 key2022032120302481400_b27 key2022032120302481400_b3 key2022032120302481400_b26 |
References_xml | – ident: key2022032120302481400_b10 doi: 10.1108/13552519810369057 – ident: key2022032120302481400_b29 – ident: key2022032120302481400_b27 – ident: key2022032120302481400_b9 – ident: key2022032120302481400_b20 – ident: key2022032120302481400_b22 – ident: key2022032120302481400_b4 – ident: key2022032120302481400_b24 – ident: key2022032120302481400_b6 – ident: key2022032120302481400_b12 – ident: key2022032120302481400_b14 doi: 10.1080/01446190050024842 – ident: key2022032120302481400_b30 doi: 10.1061/(ASCE)0733-9364(1994)120:2(306) – ident: key2022032120302481400_b2 doi: 10.1080/01446199400000002 – ident: key2022032120302481400_b18 doi: 10.7551/mitpress/3071.001.0001 – ident: key2022032120302481400_b11 – ident: key2022032120302481400_b28 – ident: key2022032120302481400_b26 – ident: key2022032120302481400_b8 – ident: key2022032120302481400_b23 doi: 10.1007/978-1-349-13530-1 – ident: key2022032120302481400_b16 doi: 10.4324/9780203451519 – ident: key2022032120302481400_b17 doi: 10.1080/01446199600000004 – ident: key2022032120302481400_b3 – ident: key2022032120302481400_b19 – ident: key2022032120302481400_b21 – ident: key2022032120302481400_b1 – ident: key2022032120302481400_b7 – ident: key2022032120302481400_b15 – ident: key2022032120302481400_b5 – ident: key2022032120302481400_b25 – ident: key2022032120302481400_b13 |
SSID | ssj0003970 |
Score | 1.6071606 |
Snippet | Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs... Notes that the real test of maintenance stratagem success or failure in financial terms can only be resolved when a comparison of machine maintenance costs can... The real test of maintenance stratagem success can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. A... |
SourceID | proquest crossref istex emerald |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 45 |
SubjectTerms | Artificial intelligence Beneficiaries Coal mining Comparative analysis Construction Construction industry Contractors Costs Earthmoving equipment Expenditures Forecasting techniques Hydraulics Hypotheses Independent variables Maintenance Maintenance costs Maintenance management Mining industry Multiple regression analysis Neural networks Plant and machinery Productivity Regression analysis Studies Variables |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3B7gUOiE8Rlg9rBUggRTiJk3pPaIUoq5XYA-yKvVlO7HCgpKEtEr-G38obx01XVFRIPSUTt4rHM2_q5zdEzx0KY6SGNq1raflIjky1dahSlC-KvNaNCur6H8-qkwt1elleRm7OMtIq1zExBGo3b_g_8jdITSVrT6m3_Y-Um0bx5mrsoHGd9jMkGnZwPf0wBmKk2uGQcFmmjKTjpiY3vuFruBS6HKBMY8WRK2lpczZ3n9_1r604HZLP9DbdiqhRHA_TfIeu-e4u3byiJXiPfh-LZqPkLWwUGxGRiCUA9ERgD84sULboB0LLYt6JQ9a0xOjdwAg_xLNOrImGYuG_DlTZbjMmgK7oF7zFw6RpfO9Ghlb0M8yV-G5Zh4LFPDxuL1fL-3QxfX_-7iSNzRfSpjgqVylwTKvyOpvYxpdVnVXIY4UtrNbeBlRX1giNOm8BEHPN674BFqzxQQVji0nxgPa6eecfkpDaZ0ceqdK1TskW5bvNXaUa22bOVsolJNfv3jRRmZwbZMxMqFCkNlvTldDr8ZF-kOXYZfwqTuj_2L7Ysv3bxvSuTehlcI3Ryi6-MUduUhr1JTen8uxcafnZfEroYO07JoaHpRmdOaFn412sa96ssZ2f_4QJkBuKv2qHBbA5D5SQ-IcF0GEFQKfko50_4oBuDAIDzKx7THvwGP8EUGtVPw0L6g_AZCMn priority: 102 providerName: ProQuest |
Title | A comparative analysis between the multilayer perceptron "neural network" and multiple regression analysis for predicting construction plant maintenance costs |
URI | https://www.emerald.com/insight/content/doi/10.1108/13552510010371376/full/html https://api.istex.fr/ark:/67375/4W2-J0NT480S-R/fulltext.pdf https://www.proquest.com/docview/215554784 https://www.proquest.com/docview/28221186 https://www.proquest.com/docview/29232155 https://www.proquest.com/docview/743651240 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5t7Qs88BsRBsUPgARSVidxUu-xoHXTJAoamxh7iezYAbQujdpMQvwt_LHcJU4KKwwekPKWs6PEl7vv7M-fAZ4aLIwxNeS-1lzRlhzuS2WwShE2ikItM1Gr67-ZJvvH4uAkPtmAt-1emJpW2UzH1HH6S7GkInVIxG2Mwp3gAJ1eE2CuxPRcH1WAtdYoGdKU9fBzdT7bhH5I0mk96J9-PB3vdcEZ02-zcTiOfULXbqHzt939kqpW-3X79P2_rsXuOiFNbkLZvkrDQznbvqj0dvbtksrjf3zXW3DDgVc2brztNmzY4g5c_0nS8C58H7NsJSjOlNM8YY4PxhBvsprEOFMI9lnZ8GoW84KRsiZ2XjS8dGxpWMt2ZAv7qeHrFqseEW2zckHrTMTcxqeutHBZOUOHYeeKxDBIUcTi7WW1vAfHk92j1_u-OwHCz6KduPIRTOUi1MFIZTZOdJBgMo1UpKS0qoaWscb4LMMcUWooKfhkCEg1XlhGqWgU3YdeMS_sA2Bc2mDHYr42uRE8tzpSoUlEpvLAqEQYD3g72Gnm5NHplI5ZWpdJXKZrQ-DBy65J2WiDXGX8wo31v9g-W7O9bJOWJvfgee2LnZVanBFRbxSn4kOYHvDpkZD8fXrowVbrrKmLUcsUwV5Mam7CgyfdXQwutGKkCju_QBOEj1iBJldYYIFAHXnA_mCBEDVBVCn4w78-ZguuNUoHRPF7BD30GvsYMV-lB7ApJ3sD6L_anb47HLi_-get9VIZ |
linkProvider | Emerald |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAcEE-xLVCrokggrXB2vRvnUKEKCOkrB0hFb6699nIgbLZJEPBn-g_4j8x4H6mIiLhUyml31nl4PPNN_PkbgOcWC2NMDXloDNd0JIeHUlusUoSL48jITHh1_ZNhOjgVh2fJ2Rr8bs7CEK2yiYk-UNtJRv-Rv8bUlJD2lHhTXoTUNIo2V5sOGpVXHLlfP7Bim-0dvMPp3Y2i_vvR20FYNxUIs7iXzEPMz7mITKerM5ekppNifI51rKV02qOVxOCSl1GOwCeS5M8ZYhyDL0TmOu7GOO4N2MBv1SMGoex_aAM_pvbqUHKShITc601UarRD1_CS76qAZSEpnFxJg4uzwBs0tz-X8oJPdv27cKdGqWy_cqt7sOaK-3D7inbhA7jcZ9lCOZzpWtyE1cQvhsCSebbiWCOqZ2VFoJlOCrZDGpo4elEx0HfwWcsaYiObui8VNbdYjInAmpVT2lIikja-70L2lpVj9A32TZPuBYmHOLw9m88ewum1zMsjWC8mhXsMjEvX6TlMzTa3gufOxDqyqch03rE6FTYA3vz2KquV0Kkhx1j5iohLtTRdAbxqHykrGZBVxi_rCf0f290l279tVGnzAF5412it9PQrcfK6iRKfI3XIhyMh-Sf1MYCtxndUHY5mql08AWy3dzGO0OaQLtzkO5ogUsRiM11hgbUADRQA-4cFotEUAaTgmys_xDbcHIxOjtXxwfBoC25V4gbE6nsC6-g97inCvLl55hcXg_PrXs1_APeJXh8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6NVkLwMMYvkQ2YNQESSFmdxEm9xwpWxoAKwSa2vVh24qBpXRq1nYT4Y_hbuYuTFFaYQELKWy6OYl_uvrM_fwZ4kmFhjKkh943hmrbkcF_qDKsUYaMoNDIVlbr--1Gydyj2j-KjFRg1e2EqWqWbjqni9GkxoyK1R8RtjMKt4ACdXhNgrsT0XB1VgLVWP-nRlHWvzPJr0EXfkqID3ZPjk8HrNjZj9nX7huPYJ3Bdr3P-trVfMtViu26Xuv_rUuiu8tHwFkyaL3E0lLPti7nZTr9dEnn8f5-6Bqs1dGUD52u3YcUWd-DmT4KGd-H7gKULOXGma8UTVrPBGKJNVlEYxxqhPisdq2Y6KdgWCWti64WjpW_hsxlr2I5sar84vm6xaBPRNiuntM5EzG1870ILl5VjdBh2rkkMgxRFLN6ezWf34HC4e_Byz69PgPDTaCee-wimchGaoK9TGycmSDCZRjrSUlpdQcvYYHyWYY4oNZQUfFIEpAYvLKN01I_uQ6eYFPYBMC5tsGMxX2d5JnhuTaTDLBGpzoNMJyLzgDejrdJaHp1O6RirqkziUi2NgQcv2kdKpw1ylfHzerD_xvbpku1lG4Vj78GzyhlbKz09I6JeP1bic6j2-ehASP5JffRgo_FWVceomUKwF5Oam_Bgs72LwYVWjHRhJxdogvARK9DkCgssEKghD9gfLBCiJogqBV__hx7YhOsfXg3Vuzejtxtww8kfEO_vIXTQlewjBIJz87j-u38AmxZSGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+analysis+between+the+multilayer+perceptron+neural+network+and+multiple+regression+analysis+for+predicting+construction+plant+maintenance+costs&rft.jtitle=Journal+of+quality+in+maintenance+engineering&rft.au=Edwards%2C+David+J&rft.au=Holt%2C+Gary+D&rft.au=Harris%2C+Frank+C&rft.date=2000-03-01&rft.issn=1355-2511&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1108%2F13552510010371376&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-2511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-2511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-2511&client=summon |