A comparative analysis between the multilayer perceptron "neural network" and multiple regression analysis for predicting construction plant maintenance costs

Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. Presents a comparative study between two models developed to predict the average hourly maintenance co...

Full description

Saved in:
Bibliographic Details
Published inJournal of quality in maintenance engineering Vol. 6; no. 1; pp. 45 - 61
Main Authors Edwards, David J, Holt, Gary D, Harris, Frank C
Format Journal Article
LanguageEnglish
Published Bradford MCB UP Ltd 01.03.2000
Emerald Group Publishing Limited
Subjects
Online AccessGet full text
ISSN1355-2511
1758-7832
DOI10.1108/13552510010371376

Cover

Loading…
Abstract Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. Presents a comparative study between two models developed to predict the average hourly maintenance cost of tracked hydraulic excavators operating in the UK opencast mining industry. The models use the conventional statistical technique multiple regression, and artificial neural networks. Performance analysis using mean percentage error, mean absolute percentage error and percentage cost accuracy intervals was conducted. Results reveal that both models performed well, having low mean absolute percentage error values (less than 5 percent) indicating that predictor variables were reliable inputs for modelling average hourly maintenance cost. Overall, the neural network model performed slightly better as it was able to predict up to 95 percent of cost observations to within ≤q £5. Moreover, summary statistical analysis of residual values highlighted that predicted values using the neural network model are less subject to variance than the multiple regression model.
AbstractList Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. Presents a comparative study between two models developed to predict the average hourly maintenance cost of tracked hydraulic excavators operating in the UK opencast mining industry. The models use the conventional statistical technique multiple regression, and artificial neural networks. Performance analysis using mean percentage error, mean absolute percentage error and percentage cost accuracy intervals was conducted. Results reveal that both models performed well, having low mean absolute percentage error values (less than 5 percent) indicating that predictor variables were reliable inputs for modelling average hourly maintenance cost. Overall, the neural network model performed slightly better as it was able to predict up to 95 percent of cost observations to within =q 5. Moreover, summary statistical analysis of residual values highlighted that predicted values using the neural network model are less subject to variance than the multiple regression model.
Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. Presents a comparative study between two models developed to predict the average hourly maintenance cost of tracked hydraulic excavators operating in the UK opencast mining industry. The models use the conventional statistical technique multiple regression, and artificial neural networks. Performance analysis using mean percentage error, mean absolute percentage error and percentage cost accuracy intervals was conducted. Results reveal that both models performed well, having low mean absolute percentage error values (less than 5 percent) indicating that predictor variables were reliable inputs for modelling average hourly maintenance cost. Overall, the neural network model performed slightly better as it was able to predict up to 95 percent of cost observations to within ≤q £5. Moreover, summary statistical analysis of residual values highlighted that predicted values using the neural network model are less subject to variance than the multiple regression model.
The real test of maintenance stratagem success can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. A comparative study between 2 models developed to predict the average hourly maintenance cost of tracked hydraulic excavators operating in the UK opencast mining industry is presented.
Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. Presents a comparative study between two models developed to predict the average hourly maintenance cost of tracked hydraulic excavators operating in the UK opencast mining industry. The models use the conventional statistical technique multiple regression, and artificial neural networks. Performance analysis using mean percentage error, mean absolute percentage error and percentage cost accuracy intervals was conducted. Results reveal that both models performed well, having low mean absolute percentage error values (less than 5 percent) indicating that predictor variables were reliable inputs for modelling average hourly maintenance cost. Overall, the neural network model performed slightly better as it was able to predict up to 95 percent of cost observations to within ≤ q £5. Moreover, summary statistical analysis of residual values highlighted that predicted values using the neural network model are less subject to variance than the multiple regression model.
Author Harris, Frank C
Edwards, David J
Holt, Gary D
Author_xml – sequence: 1
  givenname: David J
  surname: Edwards
  fullname: Edwards, David J
  organization: University of Wolverhampton, Wolverhampton, UK
– sequence: 2
  givenname: Gary D
  surname: Holt
  fullname: Holt, Gary D
  organization: University of Wolverhampton, Wolverhampton, UK
– sequence: 3
  givenname: Frank C
  surname: Harris
  fullname: Harris, Frank C
  organization: University of Wolverhampton, Wolverhampton, UK
BookMark eNqNks1u1TAQhS1UJNoLD8AuugvYEPBPHDvLqioFVIEERSwtx5kUt4kTbAd6X4ZnZaqgLi6iIFmyR_OdM-PRHJGDMAUg5CmjLxmj-hUTUnLJKGVUKCZU_YAcMiV1qbTgB_jGfIkAe0SOUrqilIpG0UPy87hw0zjbaLP_DoUNdtgln4oW8g-AUOSvUIzLkP1gdxCLGaKDOccpFNsAS7RDEZCc4vUWtd2KzgMUES4jpOQRvPPsJzSI0HmXfbjEuiHluGCA0DzYkIvR-pAh2OAA0ymnx-Rhb4cET37fG_L59enFyZvy_MPZ25Pj89KJRuZSN6KveMuUdSDrltVcV8IKqzXYWlKtZWu7TvOeC8a1VFo51ogWj1S1FUpsyPPVd47TtwVSNqNPDgbsCqYlGVWJWjJeUSSf3UvyhgvOpPw3qDlnTNcIbvfAq2mJODRk0EhWCj-zIWyFXJxSitCbOfrRxp1h1NxugPljA1Cj9jTOZ3s77hytH-5VlqvSpww3d6VsvDa1Ekqa6gs37-j7i0rTT-Yj8nTlYQTcie6_mnvxF8k-auauF78AzFTiyg
CODEN JQMEFI
CitedBy_id crossref_primary_10_1016_j_ijpe_2011_06_013
crossref_primary_10_1016_j_autcon_2013_10_024
crossref_primary_10_1080_07408170701291779
crossref_primary_10_1080_19397038_2014_962645
crossref_primary_10_1108_09699980810916988
crossref_primary_10_1109_TR_2005_853443
crossref_primary_10_35596_1729_7648_2021_19_7_13_21
crossref_primary_10_1108_02632770410540342
crossref_primary_10_1108_02632770410547570
crossref_primary_10_1108_SASBE_07_2021_0120
crossref_primary_10_1080_08838151_2022_2162901
crossref_primary_10_1080_15685543_2012_720903
crossref_primary_10_3390_su15032566
crossref_primary_10_1016_j_cie_2023_109671
crossref_primary_10_1108_WJSTSD_04_2013_0019
crossref_primary_10_1108_13552510210439810
crossref_primary_10_1007_s12205_017_0537_6
crossref_primary_10_6106_JCEPM_2013_3_2_058
crossref_primary_10_1016_j_ijpe_2008_05_009
crossref_primary_10_1108_20466091311325863
crossref_primary_10_1016_j_matpr_2021_01_567
crossref_primary_10_1108_17260530910974989
crossref_primary_10_1108_09699980710744881
crossref_primary_10_1088_1361_651X_ad4407
crossref_primary_10_1016_j_triboint_2010_01_013
crossref_primary_10_3390_su151411299
Cites_doi 10.1108/13552519810369057
10.1080/01446190050024842
10.1061/(ASCE)0733-9364(1994)120:2(306)
10.1080/01446199400000002
10.7551/mitpress/3071.001.0001
10.1007/978-1-349-13530-1
10.4324/9780203451519
10.1080/01446199600000004
ContentType Journal Article
Copyright MCB UP Limited
Copyright MCB UP Limited (MCB) 2000
Copyright_xml – notice: MCB UP Limited
– notice: Copyright MCB UP Limited (MCB) 2000
DBID BSCLL
AAYXX
CITATION
7TB
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
ABJCF
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
F~G
GNUQQ
HCIFZ
K6~
L.-
L.0
L6V
M0C
M2P
M7S
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
S0W
KR7
DOI 10.1108/13552510010371376
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
ABI/INFORM Global
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DELNET Engineering & Technology Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Civil Engineering Abstracts
DatabaseTitleList Technology Research Database
Technology Research Database

Technology Research Database
CrossRef
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1758-7832
EndPage 61
ExternalDocumentID 86926447
10_1108_13552510010371376
ark_67375_4W2_J0NT480S_R
10.1108/13552510010371376
Genre Feature
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GroupedDBID 0R
1WG
29L
3FY
3V.
4.4
5GY
5VS
70U
7WY
8AO
8FE
8FG
8R4
8R5
9E0
9F-
AADTA
AADXL
AAGBP
AAMCF
AAUDR
ABCTS
ABFLS
ABIJV
ABJCF
ABPTK
ABSDC
ACGFS
ACGOD
ACIWK
ACMTK
ADOMW
AEBZA
AEDOK
AEGYS
AEUCW
AFKRA
AJEBP
ALMA_UNASSIGNED_HOLDINGS
APPLU
ASMFL
ASPBG
ATGMP
AUCOK
AVELQ
AVWKF
AZFZN
AZQEC
BENPR
BEZIV
BFOSL
BFQZO
BGLVJ
BLEHN
BPHCQ
BTXLY
BUONS
CAG
COF
CS3
DU5
DWQXO
EBS
ECCUG
EJD
FNNZZ
GEA
GEB
GEC
GEI
GMM
GMN
GMX
GNUQQ
GQ.
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HZ
IPNFZ
J1Y
JI-
JL0
K6
L6V
LOTEE
LXI
M0C
M2P
M42
M7S
MORNK
NADUK
O9-
P2P
PQBIZ
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
Q2X
Q3A
RIG
ROL
S0W
SLOBJ
TDZ
TEM
TET
TGG
TMD
TMF
TMI
TMK
TMT
TMX
U5U
UNMZH
V1G
WW
Z11
Z12
Z21
Z22
ZYZAG
.WW
0R~
AAKOT
AAPSD
AAXBI
ABEAN
ABJNI
ABYQI
ACGFO
ACTSA
ADFRT
ADWNT
AEFVF
AEMMR
AETHF
AFNTC
AFNZV
AFVFF
AGQPQ
AGTVX
AGZLY
AHMHQ
AIAFM
AILOG
AJFKA
AMLIN
AODMV
ASJQZ
BSCLL
HZ~
K6~
SCAQC
SDURG
AAYXX
CITATION
7TB
7XB
8FD
CCPQU
FR3
L.-
L.0
PHGZM
PHGZT
PKEHL
PQGLB
Q9U
KR7
ID FETCH-LOGICAL-c395t-893f42b17ace56b162843a3a88ea650885badd82f231285787c193b93b576a373
IEDL.DBID ZYZAG
ISSN 1355-2511
IngestDate Fri Jul 11 09:41:21 EDT 2025
Fri Jul 11 01:33:18 EDT 2025
Fri Jul 11 12:32:46 EDT 2025
Sat Aug 23 12:49:04 EDT 2025
Wed Jul 30 23:55:45 EDT 2025
Thu Apr 24 23:10:42 EDT 2025
Thu Jul 03 05:55:01 EDT 2025
Tue Nov 23 15:45:28 EST 2021
Wed Jul 31 14:17:20 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Plant and machinery
Costs
Maintenance
Multiple regression analysis
Artificial intelligence
Construction industry
Language English
License https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-893f42b17ace56b162843a3a88ea650885badd82f231285787c193b93b576a373
Notes ark:/67375/4W2-J0NT480S-R
original-pdf:1540060104.pdf
href:13552510010371376.pdf
filenameID:1540060104
istex:915697C41FE3576FAFDC58ADCE3813BF27FA8BE6
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 215554784
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_743651240
proquest_journals_215554784
crossref_primary_10_1108_13552510010371376
emerald_primary_10_1108_13552510010371376
proquest_miscellaneous_29232155
proquest_miscellaneous_28221186
crossref_citationtrail_10_1108_13552510010371376
istex_primary_ark_67375_4W2_J0NT480S_R
PublicationCentury 2000
PublicationDate 20000301
PublicationDateYYYYMMDD 2000-03-01
PublicationDate_xml – month: 03
  year: 2000
  text: 20000301
  day: 01
PublicationDecade 2000
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Journal of quality in maintenance engineering
PublicationYear 2000
Publisher MCB UP Ltd
Emerald Group Publishing Limited
Publisher_xml – name: MCB UP Ltd
– name: Emerald Group Publishing Limited
References key2022032120302481400_b18
key2022032120302481400_b17
key2022032120302481400_b19
key2022032120302481400_b10
key2022032120302481400_b12
key2022032120302481400_b11
key2022032120302481400_b14
key2022032120302481400_b13
key2022032120302481400_b16
key2022032120302481400_b15
key2022032120302481400_b1
key2022032120302481400_b30
key2022032120302481400_b29
key2022032120302481400_b28
key2022032120302481400_b8
key2022032120302481400_b21
key2022032120302481400_b9
key2022032120302481400_b20
key2022032120302481400_b6
key2022032120302481400_b23
key2022032120302481400_b7
key2022032120302481400_b22
key2022032120302481400_b4
key2022032120302481400_b25
key2022032120302481400_b5
key2022032120302481400_b24
key2022032120302481400_b2
key2022032120302481400_b27
key2022032120302481400_b3
key2022032120302481400_b26
References_xml – ident: key2022032120302481400_b10
  doi: 10.1108/13552519810369057
– ident: key2022032120302481400_b29
– ident: key2022032120302481400_b27
– ident: key2022032120302481400_b9
– ident: key2022032120302481400_b20
– ident: key2022032120302481400_b22
– ident: key2022032120302481400_b4
– ident: key2022032120302481400_b24
– ident: key2022032120302481400_b6
– ident: key2022032120302481400_b12
– ident: key2022032120302481400_b14
  doi: 10.1080/01446190050024842
– ident: key2022032120302481400_b30
  doi: 10.1061/(ASCE)0733-9364(1994)120:2(306)
– ident: key2022032120302481400_b2
  doi: 10.1080/01446199400000002
– ident: key2022032120302481400_b18
  doi: 10.7551/mitpress/3071.001.0001
– ident: key2022032120302481400_b11
– ident: key2022032120302481400_b28
– ident: key2022032120302481400_b26
– ident: key2022032120302481400_b8
– ident: key2022032120302481400_b23
  doi: 10.1007/978-1-349-13530-1
– ident: key2022032120302481400_b16
  doi: 10.4324/9780203451519
– ident: key2022032120302481400_b17
  doi: 10.1080/01446199600000004
– ident: key2022032120302481400_b3
– ident: key2022032120302481400_b19
– ident: key2022032120302481400_b21
– ident: key2022032120302481400_b1
– ident: key2022032120302481400_b7
– ident: key2022032120302481400_b15
– ident: key2022032120302481400_b5
– ident: key2022032120302481400_b25
– ident: key2022032120302481400_b13
SSID ssj0003970
Score 1.6071606
Snippet Notes that the real test of maintenance stratagem success (or failure in financial terms) can only be resolved when a comparison of machine maintenance costs...
Notes that the real test of maintenance stratagem success or failure in financial terms can only be resolved when a comparison of machine maintenance costs can...
The real test of maintenance stratagem success can only be resolved when a comparison of machine maintenance costs can be made to some benchmark standard. A...
SourceID proquest
crossref
istex
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms Artificial intelligence
Beneficiaries
Coal mining
Comparative analysis
Construction
Construction industry
Contractors
Costs
Earthmoving equipment
Expenditures
Forecasting techniques
Hydraulics
Hypotheses
Independent variables
Maintenance
Maintenance costs
Maintenance management
Mining industry
Multiple regression analysis
Neural networks
Plant and machinery
Productivity
Regression analysis
Studies
Variables
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3B7gUOiE8Rlg9rBUggRTiJk3pPaIUoq5XYA-yKvVlO7HCgpKEtEr-G38obx01XVFRIPSUTt4rHM2_q5zdEzx0KY6SGNq1raflIjky1dahSlC-KvNaNCur6H8-qkwt1elleRm7OMtIq1zExBGo3b_g_8jdITSVrT6m3_Y-Um0bx5mrsoHGd9jMkGnZwPf0wBmKk2uGQcFmmjKTjpiY3vuFruBS6HKBMY8WRK2lpczZ3n9_1r604HZLP9DbdiqhRHA_TfIeu-e4u3byiJXiPfh-LZqPkLWwUGxGRiCUA9ERgD84sULboB0LLYt6JQ9a0xOjdwAg_xLNOrImGYuG_DlTZbjMmgK7oF7zFw6RpfO9Ghlb0M8yV-G5Zh4LFPDxuL1fL-3QxfX_-7iSNzRfSpjgqVylwTKvyOpvYxpdVnVXIY4UtrNbeBlRX1giNOm8BEHPN674BFqzxQQVji0nxgPa6eecfkpDaZ0ceqdK1TskW5bvNXaUa22bOVsolJNfv3jRRmZwbZMxMqFCkNlvTldDr8ZF-kOXYZfwqTuj_2L7Ysv3bxvSuTehlcI3Ryi6-MUduUhr1JTen8uxcafnZfEroYO07JoaHpRmdOaFn412sa96ssZ2f_4QJkBuKv2qHBbA5D5SQ-IcF0GEFQKfko50_4oBuDAIDzKx7THvwGP8EUGtVPw0L6g_AZCMn
  priority: 102
  providerName: ProQuest
Title A comparative analysis between the multilayer perceptron "neural network" and multiple regression analysis for predicting construction plant maintenance costs
URI https://www.emerald.com/insight/content/doi/10.1108/13552510010371376/full/html
https://api.istex.fr/ark:/67375/4W2-J0NT480S-R/fulltext.pdf
https://www.proquest.com/docview/215554784
https://www.proquest.com/docview/28221186
https://www.proquest.com/docview/29232155
https://www.proquest.com/docview/743651240
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5t7Qs88BsRBsUPgARSVidxUu-xoHXTJAoamxh7iezYAbQujdpMQvwt_LHcJU4KKwwekPKWs6PEl7vv7M-fAZ4aLIwxNeS-1lzRlhzuS2WwShE2ikItM1Gr67-ZJvvH4uAkPtmAt-1emJpW2UzH1HH6S7GkInVIxG2Mwp3gAJ1eE2CuxPRcH1WAtdYoGdKU9fBzdT7bhH5I0mk96J9-PB3vdcEZ02-zcTiOfULXbqHzt939kqpW-3X79P2_rsXuOiFNbkLZvkrDQznbvqj0dvbtksrjf3zXW3DDgVc2brztNmzY4g5c_0nS8C58H7NsJSjOlNM8YY4PxhBvsprEOFMI9lnZ8GoW84KRsiZ2XjS8dGxpWMt2ZAv7qeHrFqseEW2zckHrTMTcxqeutHBZOUOHYeeKxDBIUcTi7WW1vAfHk92j1_u-OwHCz6KduPIRTOUi1MFIZTZOdJBgMo1UpKS0qoaWscb4LMMcUWooKfhkCEg1XlhGqWgU3YdeMS_sA2Bc2mDHYr42uRE8tzpSoUlEpvLAqEQYD3g72Gnm5NHplI5ZWpdJXKZrQ-DBy65J2WiDXGX8wo31v9g-W7O9bJOWJvfgee2LnZVanBFRbxSn4kOYHvDpkZD8fXrowVbrrKmLUcsUwV5Mam7CgyfdXQwutGKkCju_QBOEj1iBJldYYIFAHXnA_mCBEDVBVCn4w78-ZguuNUoHRPF7BD30GvsYMV-lB7ApJ3sD6L_anb47HLi_-get9VIZ
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAcEE-xLVCrokggrXB2vRvnUKEKCOkrB0hFb6699nIgbLZJEPBn-g_4j8x4H6mIiLhUyml31nl4PPNN_PkbgOcWC2NMDXloDNd0JIeHUlusUoSL48jITHh1_ZNhOjgVh2fJ2Rr8bs7CEK2yiYk-UNtJRv-Rv8bUlJD2lHhTXoTUNIo2V5sOGpVXHLlfP7Bim-0dvMPp3Y2i_vvR20FYNxUIs7iXzEPMz7mITKerM5ekppNifI51rKV02qOVxOCSl1GOwCeS5M8ZYhyDL0TmOu7GOO4N2MBv1SMGoex_aAM_pvbqUHKShITc601UarRD1_CS76qAZSEpnFxJg4uzwBs0tz-X8oJPdv27cKdGqWy_cqt7sOaK-3D7inbhA7jcZ9lCOZzpWtyE1cQvhsCSebbiWCOqZ2VFoJlOCrZDGpo4elEx0HfwWcsaYiObui8VNbdYjInAmpVT2lIikja-70L2lpVj9A32TZPuBYmHOLw9m88ewum1zMsjWC8mhXsMjEvX6TlMzTa3gufOxDqyqch03rE6FTYA3vz2KquV0Kkhx1j5iohLtTRdAbxqHykrGZBVxi_rCf0f290l279tVGnzAF5412it9PQrcfK6iRKfI3XIhyMh-Sf1MYCtxndUHY5mql08AWy3dzGO0OaQLtzkO5ogUsRiM11hgbUADRQA-4cFotEUAaTgmys_xDbcHIxOjtXxwfBoC25V4gbE6nsC6-g97inCvLl55hcXg_PrXs1_APeJXh8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6NVkLwMMYvkQ2YNQESSFmdxEm9xwpWxoAKwSa2vVh24qBpXRq1nYT4Y_hbuYuTFFaYQELKWy6OYl_uvrM_fwZ4kmFhjKkh943hmrbkcF_qDKsUYaMoNDIVlbr--1Gydyj2j-KjFRg1e2EqWqWbjqni9GkxoyK1R8RtjMKt4ACdXhNgrsT0XB1VgLVWP-nRlHWvzPJr0EXfkqID3ZPjk8HrNjZj9nX7huPYJ3Bdr3P-trVfMtViu26Xuv_rUuiu8tHwFkyaL3E0lLPti7nZTr9dEnn8f5-6Bqs1dGUD52u3YcUWd-DmT4KGd-H7gKULOXGma8UTVrPBGKJNVlEYxxqhPisdq2Y6KdgWCWti64WjpW_hsxlr2I5sar84vm6xaBPRNiuntM5EzG1870ILl5VjdBh2rkkMgxRFLN6ezWf34HC4e_Byz69PgPDTaCee-wimchGaoK9TGycmSDCZRjrSUlpdQcvYYHyWYY4oNZQUfFIEpAYvLKN01I_uQ6eYFPYBMC5tsGMxX2d5JnhuTaTDLBGpzoNMJyLzgDejrdJaHp1O6RirqkziUi2NgQcv2kdKpw1ylfHzerD_xvbpku1lG4Vj78GzyhlbKz09I6JeP1bic6j2-ehASP5JffRgo_FWVceomUKwF5Oam_Bgs72LwYVWjHRhJxdogvARK9DkCgssEKghD9gfLBCiJogqBV__hx7YhOsfXg3Vuzejtxtww8kfEO_vIXTQlewjBIJz87j-u38AmxZSGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+analysis+between+the+multilayer+perceptron+neural+network+and+multiple+regression+analysis+for+predicting+construction+plant+maintenance+costs&rft.jtitle=Journal+of+quality+in+maintenance+engineering&rft.au=Edwards%2C+David+J&rft.au=Holt%2C+Gary+D&rft.au=Harris%2C+Frank+C&rft.date=2000-03-01&rft.issn=1355-2511&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1108%2F13552510010371376&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-2511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-2511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-2511&client=summon