Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction

Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distrib...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 7; p. 129600
Main Authors Maiti, Satyabrata, Mukherjee, Debasish, Roy, Parthajit, Chakrabarti, Jaydeb, Bhattacharyya, Dhananjay
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs. We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair. We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear. The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs “tug of war” situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity. We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity. •We used bioinformatics and MD simulation to predict structure of GAG.UAU sequence formed by sheared AA and GU basepairs.•Prediction of structures of UAG.UAG and GAU.GAU sequence motifs using same protocol reveal structural disorders.•Stacking energy analyses of A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC dinucleotide have been done using quantum chemistry.•The quantum chemical calculations prove the reason behind stability as well as conformational plasticity.
AbstractList Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs. We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair. We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear. The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs "tug of war" situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity. We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity.
Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs.BACKGROUNDMolecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs.We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair.METHODSWe employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair.We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear.RESULTSWe noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear.The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs "tug of war" situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity.CONCLUSIONSThe quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs "tug of war" situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity.We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity.GENERAL SIGNIFICANCEWe have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity.
Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs.We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair.We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear.The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs “tug of war” situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity.We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity.
Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs. We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair. We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear. The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs “tug of war” situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity. We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity. •We used bioinformatics and MD simulation to predict structure of GAG.UAU sequence formed by sheared AA and GU basepairs.•Prediction of structures of UAG.UAG and GAU.GAU sequence motifs using same protocol reveal structural disorders.•Stacking energy analyses of A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC dinucleotide have been done using quantum chemistry.•The quantum chemical calculations prove the reason behind stability as well as conformational plasticity.
ArticleNumber 129600
Author Maiti, Satyabrata
Mukherjee, Debasish
Roy, Parthajit
Chakrabarti, Jaydeb
Bhattacharyya, Dhananjay
Author_xml – sequence: 1
  givenname: Satyabrata
  surname: Maiti
  fullname: Maiti, Satyabrata
  organization: Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
– sequence: 2
  givenname: Debasish
  surname: Mukherjee
  fullname: Mukherjee, Debasish
  organization: Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
– sequence: 3
  givenname: Parthajit
  surname: Roy
  fullname: Roy, Parthajit
  organization: Dept. of Computer Science, The University of Burdwan, Rajbati, Golapbag, Burdwan 713104, India
– sequence: 4
  givenname: Jaydeb
  surname: Chakrabarti
  fullname: Chakrabarti, Jaydeb
  organization: S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098, India
– sequence: 5
  givenname: Dhananjay
  surname: Bhattacharyya
  fullname: Bhattacharyya, Dhananjay
  email: dhananjay.bhattacharyya@saha.ac.in
  organization: Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32179130$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv3CAUhVGVqpmk_QdVxbIbT3kZ4ywqVaO-pEhZNFWXCOPrCRMbXGASzb8vEyebLhI2SPCdc-GcM3TigweE3lOypoTKT7t115kt-DUjrByxVhLyCq2oalilCJEnaEU4EZWgsj5FZyntSFl1W79Bp5zRpqWcrNDhVzb21vkt3kKYIMcD7iDfA3ic7wNON2Ai9PiPySn4ahOdvcWdSTAbF9MF3oRp3meTXfBmxPYGJpeOHsb3uHPB-SHEqVzb9KDq8VzcnD3yb9HrwYwJ3j3u5-j3t6_Xmx_V5dX3n5svl5XlbZ0r1YiOUaWoYVZyIyQBNUjBGWMge9LTrlGkoZaCIsApsPK3emgtpVL0cpD8HH1cfOcY_u4hZV3eaGEcjYewT5qJppG0FVy8jPIyizCueEE_PKL7boJez9FNJh70U7IFuFgAG0NKEQZt3RJUjsaNmhJ9rFHv9FKjPtaolxqLWPwnfvJ_QfZ5kUHJ885B1Mk68LZEHsFm3Qf3vME_z-u4jw
CitedBy_id crossref_primary_10_1140_epjp_s13360_025_06000_0
crossref_primary_10_1016_j_inoche_2020_108078
crossref_primary_10_1007_s12539_022_00528_w
crossref_primary_10_1016_j_jmgm_2020_107722
Cites_doi 10.1093/nar/gkj470
10.1063/1.328693
10.1093/nar/gkg680
10.1021/bi00064a004
10.1063/1.462569
10.1017/S1355838201002515
10.1016/j.softx.2015.06.001
10.1038/330221a0
10.1016/0009-2614(90)80029-D
10.1093/nar/gkp011
10.1529/biophysj.106.097782
10.1073/pnas.93.23.12851
10.1093/database/bav011
10.1002/jcc.21287
10.1002/bip.20542
10.1093/nar/gkn112
10.1093/nar/17.5.1797
10.1021/bi0524464
10.1021/bi992055n
10.1038/nature09775
10.1063/1.477788
10.1261/rna.036905.112
10.1016/j.bpj.2012.12.058
10.1039/b810189b
10.1016/S0959-440X(97)80045-0
10.1002/bip.22616
10.1080/07391102.2006.10507108
10.1021/ct900440t
10.1006/jmbi.1994.1134
10.1371/journal.pcbi.1002099
10.1021/ct501170h
10.1021/jp305628v
10.1063/1.2408420
10.1021/ct200162x
10.1261/rna.039438.113
10.1007/s10822-016-0007-0
10.1093/nar/gkl025
10.1006/jmbi.2001.4807
10.1007/s10822-006-9083-x
10.1007/s00214-007-0310-x
10.1007/s10822-014-9767-6
10.1039/C7CP04904H
10.1063/1.456153
10.1021/jp953306e
10.1093/nar/gkp608
10.1093/nar/gkf481
10.1006/jmbi.2000.3690
10.1080/00268977000101561
10.1021/jp102835t
10.1021/acs.jpcb.8b09098
10.1093/nar/gky1141
10.1021/jp076921e
10.1021/ct100481h
10.1021/jp9716997
10.1080/07391102.1996.10508916
10.1063/1.5070152
10.1021/acs.jctc.8b00643
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2020.129600
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 32179130
10_1016_j_bbagen_2020_129600
S0304416520301124
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c395t-874b21881a2c63a460e8f643222e6d0d1b78071c1e80e31e23215f9c1164d6f63
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Mon Jul 21 09:17:02 EDT 2025
Fri Jul 11 10:25:59 EDT 2025
Wed Feb 19 02:30:18 EST 2025
Tue Jul 01 00:22:13 EDT 2025
Thu Apr 24 23:07:35 EDT 2025
Fri Feb 23 02:48:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Density functional theory
Flanking basepair effect
Molecular dynamics simulation
RNA double helices
Conformational plasticity
Basepair stacking
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-874b21881a2c63a460e8f643222e6d0d1b78071c1e80e31e23215f9c1164d6f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32179130
PQID 2378002383
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2477619434
proquest_miscellaneous_2378002383
pubmed_primary_32179130
crossref_citationtrail_10_1016_j_bbagen_2020_129600
crossref_primary_10_1016_j_bbagen_2020_129600
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129600
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
2020-Jul
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bansal, Bhattacharyya, Ravi (bb0140) 1995; 11
Halder, Bhattacharyya (bb0065) 2012; 116
Šponer, Leszczyński, Hobza (bb0180) 1996; 100
Lu (bb0085) 2003; 31
Chen, Kennedy, Qiao, Krugh, Turner (bb0125) 2006; 45
Leontis, Westhof (bb0025) 2001; 7
Bussi, Donadio, Parrinello (bb0245) 2007; 126
Ananth, Goldsmith, Yathindra (bb0005) 2013; 19
Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bb0230) 2015; 1
Bandyopadhyay, Bhattacharyya (bb0310) 2006; 83
Chai, Head-Gordon (bb0160) 2008; 10
Mokdad, Krasovska, Sponer, Leontis (bb0010) 2006; 34
Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Petersson, Nakatsuji, Li, Caricato, Marenich, Bloino, Janesko, Gomperts, Mennucci, Hratchian, Ortiz, Izmaylov (bb0190) 2016
Frisch, Head-Gordon, Pople (bb0185) 1990; 166
Kruse, Banáš, Šponer (bb0095) 2019; 15
Chandrasekaran, Arnott (bb0205) 1996; 13
Zgarbová, Otyepka, Šponer, Mládek, BanáŠ, Cheatham, Jurečka (bb0225) 2011; 7
Egli, Usman, Rich (bb0110) 1993; 32
Schrödinger (bb0315) 2015
Das, Chakrabarti, Ghosh (bb0250) 2013; 104
Banáš, Hollas, Zgarbová, Jurečka, Orozco, Cheatham, Šponer, Otyepka (bb0220) 2010; 6
Spackova, Šponer (bb0045) 2006; 34
Kondo, Westhof (bb0050) 2008; 36
Pérez, Marchán, Svozil, Sponer, Cheatham, Laughton, Orozco, Orozco (bb0215) 2007; 92
Romanowska, McCammon, Trylska (bb0270) 2011; 7
Bhattacharyya, Halder, Basu, Mukherjee, Kumar, Bansal (bb0080) 2017; 31
Réblová, Střelcová, Kulhánek, Beššeová, Mathews, Van Nostrand, Yildirim, Turner, Šponer (bb0285) 2010; 6
Nelson, Finch, Luisi, Klug (bb0305) 1987; 330
Lindqvist, Sarkar, Winqvist, Rozners, Strömberg, Gräslund (bb0120) 2000; 39
Chakraborty, Wales (bb0130) 2019; 150
Réblová, Střelcová, Kulhánek, Beššeová, Mathews, Van Nostrand, Yildirim, Turner, Šponer (bb0060) 2010; 6
Lavery, Moakher, Maddocks, Petkeviciute, Zakrzewska (bb0280) 2009; 37
Bhattacharya, Mittal, Panigrahi, Sharma, Paul, Halder, Halder, Bhattacharyya, Mitra (bb0020) 2015; 2015
Leontis, Stombaugh, Westhof (bb0015) 2002; 30
Halder, Bhattacharyya (bb0070) 2010; 114
Mukherjee, Bansal, Bhattacharyya (bb0145) 2006; 20
Häse, Zacharias (bb0295) 2016; 44
Stombaugh, Zirbel, Westhof, Leontis (bb0260) 2009; 37
Roy, Panigrahi, Bhattacharyya, Bhattacharyya (bb0200) 2008; 112
Nikolova, Kim, Wise, O’Brien, Andricioaei, Al-Hashimi (bb0275) 2011; 470
Kendall, Dunning, Harrison (bb0165) 1992; 96
Sarkar, Maity, Sarma Phukon, Ghosh, Chakrabarti (bb0255) 2019; 123
Barone, Cossi (bb0195) 1998; 102
Das, Mukherjee, Mitra, Bhattacharyya (bb0135) 2006; 24
Dickerson (bb0075) 1989; 17
Lu, Shakked, Olson (bb0300) 2000; 300
Zhao, Truhlar (bb0175) 2008; 120
Pingali, Halder, Mukherjee, Basu, Banerjee, Choudhury, Bhattacharyya (bb0150) 2014; 28
Mondal, Mukherjee, Halder, Bhattacharyya (bb0100) 2015; 103
Petrov, Zirbel, Leontis (bb0090) 2013; 19
Doudna, Cate (bb0035) 1997; 7
Boys, Bernardi (bb0155) 1970; 19
Maiti, Bhattacharyya (bb0105) 2017; 19
Saenger (bb0265) 1984
Ban, Ramakrishnan, Sundaralingam (bb0115) 1994; 236
Kozomara, Birgaoanu, Griffiths-Jones (bb0055) 2019; 47
Elgavish, Cannone, Lee, Harvey, Gutell (bb0040) 2001; 310
Brooks, Brooks, Mackerell, Nilsson, Petrella, Roux, Won, Archontis, Bartels, Boresch, Caflisch, Caves, Cui, Dinner, Feig, Fischer, Gao, Hodoscek, Im, Kuczera (bb0210) 2009; 30
Baeyens, De Bondt, Pardi, Holbrook (bb0030) 1996; 93
Brown, Andrews, Elcock (bb0290) 2015; 11
Darden, Pearlman, Pedersen (bb0235) 1998; 109
Dunning (bb0170) 1989; 90
Parrinello, Rahman (bb0240) 1981; 52
Ban (10.1016/j.bbagen.2020.129600_bb0115) 1994; 236
Bussi (10.1016/j.bbagen.2020.129600_bb0245) 2007; 126
Dunning (10.1016/j.bbagen.2020.129600_bb0170) 1989; 90
Chen (10.1016/j.bbagen.2020.129600_bb0125) 2006; 45
Zgarbová (10.1016/j.bbagen.2020.129600_bb0225) 2011; 7
Das (10.1016/j.bbagen.2020.129600_bb0250) 2013; 104
Chakraborty (10.1016/j.bbagen.2020.129600_bb0130) 2019; 150
Saenger (10.1016/j.bbagen.2020.129600_bb0265) 1984
Banáš (10.1016/j.bbagen.2020.129600_bb0220) 2010; 6
Lindqvist (10.1016/j.bbagen.2020.129600_bb0120) 2000; 39
Nikolova (10.1016/j.bbagen.2020.129600_bb0275) 2011; 470
Kondo (10.1016/j.bbagen.2020.129600_bb0050) 2008; 36
Abraham (10.1016/j.bbagen.2020.129600_bb0230) 2015; 1
Maiti (10.1016/j.bbagen.2020.129600_bb0105) 2017; 19
Halder (10.1016/j.bbagen.2020.129600_bb0065) 2012; 116
Lavery (10.1016/j.bbagen.2020.129600_bb0280) 2009; 37
Petrov (10.1016/j.bbagen.2020.129600_bb0090) 2013; 19
Das (10.1016/j.bbagen.2020.129600_bb0135) 2006; 24
Nelson (10.1016/j.bbagen.2020.129600_bb0305) 1987; 330
Bandyopadhyay (10.1016/j.bbagen.2020.129600_bb0310) 2006; 83
Doudna (10.1016/j.bbagen.2020.129600_bb0035) 1997; 7
Mukherjee (10.1016/j.bbagen.2020.129600_bb0145) 2006; 20
Boys (10.1016/j.bbagen.2020.129600_bb0155) 1970; 19
Elgavish (10.1016/j.bbagen.2020.129600_bb0040) 2001; 310
Roy (10.1016/j.bbagen.2020.129600_bb0200) 2008; 112
Réblová (10.1016/j.bbagen.2020.129600_bb0060) 2010; 6
Bhattacharya (10.1016/j.bbagen.2020.129600_bb0020) 2015; 2015
Réblová (10.1016/j.bbagen.2020.129600_bb0285) 2010; 6
Šponer (10.1016/j.bbagen.2020.129600_bb0180) 1996; 100
Egli (10.1016/j.bbagen.2020.129600_bb0110) 1993; 32
Dickerson (10.1016/j.bbagen.2020.129600_bb0075) 1989; 17
Chai (10.1016/j.bbagen.2020.129600_bb0160) 2008; 10
Sarkar (10.1016/j.bbagen.2020.129600_bb0255) 2019; 123
Kozomara (10.1016/j.bbagen.2020.129600_bb0055) 2019; 47
Pingali (10.1016/j.bbagen.2020.129600_bb0150) 2014; 28
Leontis (10.1016/j.bbagen.2020.129600_bb0015) 2002; 30
Parrinello (10.1016/j.bbagen.2020.129600_bb0240) 1981; 52
Stombaugh (10.1016/j.bbagen.2020.129600_bb0260) 2009; 37
Mokdad (10.1016/j.bbagen.2020.129600_bb0010) 2006; 34
Lu (10.1016/j.bbagen.2020.129600_bb0085) 2003; 31
Frisch (10.1016/j.bbagen.2020.129600_bb0190) 2016
Darden (10.1016/j.bbagen.2020.129600_bb0235) 1998; 109
Schrödinger (10.1016/j.bbagen.2020.129600_bb0315) 2015
Halder (10.1016/j.bbagen.2020.129600_bb0070) 2010; 114
Chandrasekaran (10.1016/j.bbagen.2020.129600_bb0205) 1996; 13
Frisch (10.1016/j.bbagen.2020.129600_bb0185) 1990; 166
Bhattacharyya (10.1016/j.bbagen.2020.129600_bb0080) 2017; 31
Kruse (10.1016/j.bbagen.2020.129600_bb0095) 2019; 15
Bansal (10.1016/j.bbagen.2020.129600_bb0140) 1995; 11
Brown (10.1016/j.bbagen.2020.129600_bb0290) 2015; 11
Brooks (10.1016/j.bbagen.2020.129600_bb0210) 2009; 30
Häse (10.1016/j.bbagen.2020.129600_bb0295) 2016; 44
Pérez (10.1016/j.bbagen.2020.129600_bb0215) 2007; 92
Spackova (10.1016/j.bbagen.2020.129600_bb0045) 2006; 34
Leontis (10.1016/j.bbagen.2020.129600_bb0025) 2001; 7
Barone (10.1016/j.bbagen.2020.129600_bb0195) 1998; 102
Ananth (10.1016/j.bbagen.2020.129600_bb0005) 2013; 19
Romanowska (10.1016/j.bbagen.2020.129600_bb0270) 2011; 7
Kendall (10.1016/j.bbagen.2020.129600_bb0165) 1992; 96
Baeyens (10.1016/j.bbagen.2020.129600_bb0030) 1996; 93
Zhao (10.1016/j.bbagen.2020.129600_bb0175) 2008; 120
Lu (10.1016/j.bbagen.2020.129600_bb0300) 2000; 300
Mondal (10.1016/j.bbagen.2020.129600_bb0100) 2015; 103
References_xml – volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  ident: bb0240
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
– volume: 30
  start-page: 3497
  year: 2002
  end-page: 3531
  ident: bb0015
  article-title: The non-Watson-Crick base pairs and their associated isostericity matrices
  publication-title: Nucleic Acids Res.
– volume: 116
  start-page: 11845
  year: 2012
  end-page: 11856
  ident: bb0065
  article-title: Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis
  publication-title: J. Phys. Chem. B
– volume: 20
  start-page: 629
  year: 2006
  end-page: 645
  ident: bb0145
  article-title: Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis
  publication-title: J. Comput. Aided Mol. Des.
– volume: 15
  start-page: 95
  year: 2019
  end-page: 115
  ident: bb0095
  article-title: Investigations of stacked DNA base-pair steps: highly accurate stacking interaction energies, energy decomposition, and many-body stacking effects
  publication-title: J. Chem. Theory Comput.
– volume: 126
  year: 2007
  ident: bb0245
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
– year: 2015
  ident: bb0315
  article-title: The PyMOL Molecular Graphics System, Version~18
– volume: 310
  start-page: 735
  year: 2001
  end-page: 753
  ident: bb0040
  article-title: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices
  publication-title: J. Mol. Biol.
– volume: 112
  start-page: 3786
  year: 2008
  end-page: 3796
  ident: bb0200
  article-title: Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 910
  year: 2010
  end-page: 929
  ident: bb0285
  article-title: An RNA molecular switch: intrinsic flexibility of 23S rRNA helices 40 and 68 5′-UAA/5′-GAN internal loops studied by molecular dynamics methods
  publication-title: J. Chem. Theory Comput.
– volume: 30
  start-page: 1545
  year: 2009
  end-page: 1614
  ident: bb0210
  article-title: CHARMM: the biomolecular simulation program
  publication-title: J. Comput. Chem.
– volume: 470
  start-page: 498
  year: 2011
  end-page: 502
  ident: bb0275
  article-title: Transient Hoogsteen base pairs in canonical duplex DNA
  publication-title: Nature
– volume: 36
  start-page: 2654
  year: 2008
  end-page: 2666
  ident: bb0050
  article-title: The bacterial and mitochondrial ribosomal A-site molecular switches possess different conformational substates
  publication-title: Nucleic Acids Res.
– volume: 93
  start-page: 12851
  year: 1996
  end-page: 12855
  ident: bb0030
  article-title: A curved RNA helix incorporating an internal loop with G{middle dot}A and A{middle dot}A non-Watson-Crick base pairing
  publication-title: Proc. Natl. Acad. Sci.
– volume: 150
  start-page: 125101
  year: 2019
  ident: bb0130
  article-title: Dynamics of an adenine-adenine RNA conformational switch from discrete path sampling
  publication-title: J. Chem. Phys.
– volume: 104
  start-page: 1274
  year: 2013
  end-page: 1284
  ident: bb0250
  article-title: Conformational contribution to thermodynamics of binding in protein-peptide complexes through microscopic simulation
  publication-title: Biophys. J.
– volume: 109
  start-page: 10921
  year: 1998
  end-page: 10935
  ident: bb0235
  article-title: Ionic charging free energies: spherical versus periodic boundary conditions
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 1797
  year: 1989
  end-page: 1803
  ident: bb0075
  article-title: Definitions and nomenclature of nucleic acid structure components
  publication-title: Nucleic Acids Res.
– volume: 31
  start-page: 219
  year: 2017
  end-page: 235
  ident: bb0080
  article-title: RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs
  publication-title: J. Comput. Aided Mol. Des.
– volume: 37
  start-page: 5917
  year: 2009
  end-page: 5929
  ident: bb0280
  article-title: Conformational analysis of nucleic acids revisited: curves+
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 499
  year: 2001
  end-page: 512
  ident: bb0025
  article-title: Geometric nomenclature and classification of RNA base pairs
  publication-title: RNA
– volume: 7
  start-page: 310
  year: 1997
  end-page: 316
  ident: bb0035
  article-title: RNA structure: crystal clear?
  publication-title: Curr. Opin. Struct. Biol.
– volume: 11
  start-page: 281
  year: 1995
  end-page: 287
  ident: bb0140
  article-title: NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures
  publication-title: Comput. Appl. Biosci.
– volume: 236
  start-page: 275
  year: 1994
  end-page: 285
  ident: bb0115
  article-title: A single 2′-hydroxyl group converts B-DNA to A-DNA: crystal structure of the DNA-RNA chimeric Decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G·C Base-paired quadruplet
  publication-title: J. Mol. Biol.
– volume: 19
  start-page: 553
  year: 1970
  end-page: 566
  ident: bb0155
  article-title: The calculation of small molecular interactions by the differences of separate total energies some procedures with reduced errors
  publication-title: Mol. Phys.
– volume: 123
  start-page: 47
  year: 2019
  end-page: 56
  ident: bb0255
  article-title: Salt induced structural collapse, swelling, and signature of aggregation of two ssDNA strands: insights from molecular dynamics simulation
  publication-title: J. Phys. Chem. B
– volume: 44
  start-page: 7100
  year: 2016
  end-page: 7108
  ident: bb0295
  article-title: Free energy analysis and mechanism of base pair stacking in nicked DNA
  publication-title: Nucleic Acids Res.
– volume: 2015
  year: 2015
  ident: bb0020
  article-title: RNABP COGEST: a resource for investigating functional RNAs
  publication-title: Database (Oxford)
– volume: 1
  start-page: 19
  year: 2015
  end-page: 25
  ident: bb0230
  article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
– volume: 32
  start-page: 3221
  year: 1993
  end-page: 3237
  ident: bb0110
  article-title: Conformational influence of the ribose 2′-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes
  publication-title: Biochemistry
– volume: 37
  start-page: 2294
  year: 2009
  end-page: 2312
  ident: bb0260
  article-title: Frequency and isostericity of RNA base pairs
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 3836
  year: 2010
  end-page: 3849
  ident: bb0220
  article-title: Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins
  publication-title: J. Chem. Theory Comput.
– volume: 39
  start-page: 1693
  year: 2000
  end-page: 1701
  ident: bb0120
  article-title: Optical spectroscopic study of the effects of a single deoxyribose substitution in a ribose backbone: implications in RNA-RNA interaction
  publication-title: Biochemistry
– volume: 45
  start-page: 6889
  year: 2006
  end-page: 6903
  ident: bb0125
  article-title: An alternating sheared AA pair and elements of stability for a single sheared purine-purine pair flanked by sheared GA pairs in RNA
  publication-title: Biochemistry
– volume: 166
  start-page: 275
  year: 1990
  end-page: 280
  ident: bb0185
  article-title: A direct MP2 gradient method
  publication-title: Chem. Phys. Lett.
– year: 2016
  ident: bb0190
  article-title: Gaussian 16 Revision A03 Wallingford CT
– volume: 120
  start-page: 215
  year: 2008
  end-page: 241
  ident: bb0175
  article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function
  publication-title: Theor. Chem. Accounts
– volume: 103
  start-page: 328
  year: 2015
  end-page: 338
  ident: bb0100
  article-title: Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study
  publication-title: Biopolymers
– volume: 7
  year: 2011
  ident: bb0270
  article-title: Understanding the origins of bacterial resistance to aminoglycosides through molecular dynamics mutational study of the ribosomal A-site
  publication-title: PLoS Comput. Biol.
– volume: 13
  start-page: 1015
  year: 1996
  end-page: 1027
  ident: bb0205
  article-title: The structure of
  publication-title: J. Biomol. Struct. Dyn.
– volume: 19
  start-page: 28718
  year: 2017
  end-page: 28730
  ident: bb0105
  article-title: Stacking interactions involving non-Watson–crick basepairs: dispersion corrected density functional theory studies
  publication-title: Phys. Chem. Chem. Phys.
– volume: 47
  year: 2019
  ident: bb0055
  article-title: miRBase: from microRNA sequences to function
  publication-title: Nucleic Acids Res.
– volume: 300
  start-page: 819
  year: 2000
  end-page: 840
  ident: bb0300
  article-title: A-form conformational motifs in ligand-bound DNA structures
  publication-title: J. Mol. Biol.
– volume: 6
  start-page: 910
  year: 2010
  end-page: 929
  ident: bb0060
  article-title: An RNA molecular switch: intrinsic flexibility of 23S rRNA helices 40 and 68 5′-UAA/5′-GAN internal loops studied by molecular dynamics methods
  publication-title: J. Chem. Theory Comput.
– volume: 11
  start-page: 2315
  year: 2015
  end-page: 2328
  ident: bb0290
  article-title: Stacking free energies of all DNA and RNA nucleoside pairs and dinucleoside-monophosphates computed using recently revised AMBER parameters and compared with experiment
  publication-title: J. Chem. Theory Comput.
– volume: 19
  start-page: 1038
  year: 2013
  ident: bb0005
  article-title: An innate twist between Crick’s wobble and Watson-Crick base pairs
  publication-title: RNA
– volume: 24
  start-page: 149
  year: 2006
  end-page: 161
  ident: bb0135
  article-title: Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis
  publication-title: J. Biomol. Struct. Dyn.
– volume: 28
  start-page: 851
  year: 2014
  end-page: 867
  ident: bb0150
  article-title: Analysis of stacking overlap in nucleic acid structures: algorithm and application
  publication-title: J. Comput. Aided Mol. Des.
– volume: 96
  start-page: 6796
  year: 1992
  end-page: 6806
  ident: bb0165
  article-title: Electron affinities of the first-row atoms revisited systematic basis sets and wave functions
  publication-title: J. Chem. Phys.
– volume: 31
  start-page: 5108
  year: 2003
  end-page: 5121
  ident: bb0085
  article-title: 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures
  publication-title: Nucleic Acids Res.
– volume: 19
  start-page: 1327
  year: 2013
  end-page: 1340
  ident: bb0090
  article-title: Automated classification of RNA 3D motifs and the RNA 3D motif atlas
  publication-title: RNA
– volume: 92
  start-page: 3817
  year: 2007
  end-page: 3829
  ident: bb0215
  article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers
  publication-title: Biophys. J.
– volume: 34
  start-page: 1326
  year: 2006
  end-page: 1341
  ident: bb0010
  article-title: Structural and evolutionary classification of G/U wobble basepairs in the ribosome
  publication-title: Nucleic Acids Res.
– volume: 102
  start-page: 1995
  year: 1998
  end-page: 2001
  ident: bb0195
  article-title: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model
  publication-title: J. Phys. Chem. A
– volume: 34
  start-page: 697
  year: 2006
  end-page: 708
  ident: bb0045
  article-title: Molecular dynamics simulations of sarcin-ricin rRNA motif
  publication-title: Nucleic Acids Res.
– volume: 330
  start-page: 221
  year: 1987
  end-page: 226
  ident: bb0305
  article-title: The structure of an oligo(dA)·oligo(dT) tract and its biological implications
  publication-title: Nature
– volume: 100
  start-page: 5590
  year: 1996
  end-page: 5596
  ident: bb0180
  article-title: Nature of nucleic acid−base stacking: nonempirical ab initio and empirical potential characterization of 10 stacked base dimers comparison of stacked and H-bonded base pairs
  publication-title: J. Phys. Chem.
– volume: 83
  start-page: 313
  year: 2006
  end-page: 325
  ident: bb0310
  article-title: Estimation of strength in different extra Watson–crick hydrogen bonds in DNA double helices through quantum chemical studies
  publication-title: Biopolymers
– volume: 114
  start-page: 14028
  year: 2010
  end-page: 14040
  ident: bb0070
  article-title: Structural stability of Tandemly occurring noncanonical basepairs within double helical fragments: molecular dynamics studies of functional RNA
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 2886
  year: 2011
  end-page: 2902
  ident: bb0225
  article-title: Refinement of the Cornell et al nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles
  publication-title: J. Chem. Theory Comput.
– volume: 10
  start-page: 6615
  year: 2008
  end-page: 6620
  ident: bb0160
  article-title: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
  publication-title: Phys. Chem. Chem. Phys.
– year: 1984
  ident: bb0265
  article-title: Principles of Nucleic Acid Structure
– volume: 90
  start-page: 1007
  year: 1989
  end-page: 1023
  ident: bb0170
  article-title: Gaussian basis sets for use in correlated molecular calculations I the atoms boron through neon and hydrogen
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 697
  year: 2006
  ident: 10.1016/j.bbagen.2020.129600_bb0045
  article-title: Molecular dynamics simulations of sarcin-ricin rRNA motif
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj470
– volume: 52
  start-page: 7182
  year: 1981
  ident: 10.1016/j.bbagen.2020.129600_bb0240
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 31
  start-page: 5108
  year: 2003
  ident: 10.1016/j.bbagen.2020.129600_bb0085
  article-title: 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg680
– volume: 32
  start-page: 3221
  year: 1993
  ident: 10.1016/j.bbagen.2020.129600_bb0110
  article-title: Conformational influence of the ribose 2′-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes
  publication-title: Biochemistry
  doi: 10.1021/bi00064a004
– volume: 96
  start-page: 6796
  year: 1992
  ident: 10.1016/j.bbagen.2020.129600_bb0165
  article-title: Electron affinities of the first-row atoms revisited systematic basis sets and wave functions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462569
– volume: 7
  start-page: 499
  year: 2001
  ident: 10.1016/j.bbagen.2020.129600_bb0025
  article-title: Geometric nomenclature and classification of RNA base pairs
  publication-title: RNA
  doi: 10.1017/S1355838201002515
– volume: 1
  start-page: 19
  year: 2015
  ident: 10.1016/j.bbagen.2020.129600_bb0230
  article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 330
  start-page: 221
  year: 1987
  ident: 10.1016/j.bbagen.2020.129600_bb0305
  article-title: The structure of an oligo(dA)·oligo(dT) tract and its biological implications
  publication-title: Nature
  doi: 10.1038/330221a0
– volume: 166
  start-page: 275
  year: 1990
  ident: 10.1016/j.bbagen.2020.129600_bb0185
  article-title: A direct MP2 gradient method
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)80029-D
– volume: 37
  start-page: 2294
  year: 2009
  ident: 10.1016/j.bbagen.2020.129600_bb0260
  article-title: Frequency and isostericity of RNA base pairs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp011
– volume: 92
  start-page: 3817
  year: 2007
  ident: 10.1016/j.bbagen.2020.129600_bb0215
  article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.097782
– volume: 93
  start-page: 12851
  year: 1996
  ident: 10.1016/j.bbagen.2020.129600_bb0030
  article-title: A curved RNA helix incorporating an internal loop with G{middle dot}A and A{middle dot}A non-Watson-Crick base pairing
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.93.23.12851
– volume: 2015
  year: 2015
  ident: 10.1016/j.bbagen.2020.129600_bb0020
  article-title: RNABP COGEST: a resource for investigating functional RNAs
  publication-title: Database (Oxford)
  doi: 10.1093/database/bav011
– volume: 30
  start-page: 1545
  year: 2009
  ident: 10.1016/j.bbagen.2020.129600_bb0210
  article-title: CHARMM: the biomolecular simulation program
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21287
– volume: 83
  start-page: 313
  year: 2006
  ident: 10.1016/j.bbagen.2020.129600_bb0310
  article-title: Estimation of strength in different extra Watson–crick hydrogen bonds in DNA double helices through quantum chemical studies
  publication-title: Biopolymers
  doi: 10.1002/bip.20542
– volume: 36
  start-page: 2654
  year: 2008
  ident: 10.1016/j.bbagen.2020.129600_bb0050
  article-title: The bacterial and mitochondrial ribosomal A-site molecular switches possess different conformational substates
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn112
– year: 2016
  ident: 10.1016/j.bbagen.2020.129600_bb0190
– year: 1984
  ident: 10.1016/j.bbagen.2020.129600_bb0265
– volume: 17
  start-page: 1797
  year: 1989
  ident: 10.1016/j.bbagen.2020.129600_bb0075
  article-title: Definitions and nomenclature of nucleic acid structure components
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/17.5.1797
– volume: 45
  start-page: 6889
  year: 2006
  ident: 10.1016/j.bbagen.2020.129600_bb0125
  article-title: An alternating sheared AA pair and elements of stability for a single sheared purine-purine pair flanked by sheared GA pairs in RNA
  publication-title: Biochemistry
  doi: 10.1021/bi0524464
– volume: 39
  start-page: 1693
  year: 2000
  ident: 10.1016/j.bbagen.2020.129600_bb0120
  article-title: Optical spectroscopic study of the effects of a single deoxyribose substitution in a ribose backbone: implications in RNA-RNA interaction
  publication-title: Biochemistry
  doi: 10.1021/bi992055n
– volume: 470
  start-page: 498
  year: 2011
  ident: 10.1016/j.bbagen.2020.129600_bb0275
  article-title: Transient Hoogsteen base pairs in canonical duplex DNA
  publication-title: Nature
  doi: 10.1038/nature09775
– volume: 109
  start-page: 10921
  year: 1998
  ident: 10.1016/j.bbagen.2020.129600_bb0235
  article-title: Ionic charging free energies: spherical versus periodic boundary conditions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477788
– volume: 19
  start-page: 1038
  year: 2013
  ident: 10.1016/j.bbagen.2020.129600_bb0005
  article-title: An innate twist between Crick’s wobble and Watson-Crick base pairs
  publication-title: RNA
  doi: 10.1261/rna.036905.112
– volume: 104
  start-page: 1274
  year: 2013
  ident: 10.1016/j.bbagen.2020.129600_bb0250
  article-title: Conformational contribution to thermodynamics of binding in protein-peptide complexes through microscopic simulation
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2012.12.058
– volume: 10
  start-page: 6615
  year: 2008
  ident: 10.1016/j.bbagen.2020.129600_bb0160
  article-title: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b810189b
– volume: 7
  start-page: 310
  year: 1997
  ident: 10.1016/j.bbagen.2020.129600_bb0035
  article-title: RNA structure: crystal clear?
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(97)80045-0
– volume: 103
  start-page: 328
  year: 2015
  ident: 10.1016/j.bbagen.2020.129600_bb0100
  article-title: Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study
  publication-title: Biopolymers
  doi: 10.1002/bip.22616
– volume: 24
  start-page: 149
  year: 2006
  ident: 10.1016/j.bbagen.2020.129600_bb0135
  article-title: Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2006.10507108
– volume: 6
  start-page: 910
  year: 2010
  ident: 10.1016/j.bbagen.2020.129600_bb0285
  article-title: An RNA molecular switch: intrinsic flexibility of 23S rRNA helices 40 and 68 5′-UAA/5′-GAN internal loops studied by molecular dynamics methods
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900440t
– volume: 236
  start-page: 275
  year: 1994
  ident: 10.1016/j.bbagen.2020.129600_bb0115
  article-title: A single 2′-hydroxyl group converts B-DNA to A-DNA: crystal structure of the DNA-RNA chimeric Decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G·C Base-paired quadruplet
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.1134
– volume: 7
  year: 2011
  ident: 10.1016/j.bbagen.2020.129600_bb0270
  article-title: Understanding the origins of bacterial resistance to aminoglycosides through molecular dynamics mutational study of the ribosomal A-site
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002099
– volume: 11
  start-page: 2315
  year: 2015
  ident: 10.1016/j.bbagen.2020.129600_bb0290
  article-title: Stacking free energies of all DNA and RNA nucleoside pairs and dinucleoside-monophosphates computed using recently revised AMBER parameters and compared with experiment
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct501170h
– volume: 116
  start-page: 11845
  year: 2012
  ident: 10.1016/j.bbagen.2020.129600_bb0065
  article-title: Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp305628v
– volume: 126
  year: 2007
  ident: 10.1016/j.bbagen.2020.129600_bb0245
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 7
  start-page: 2886
  year: 2011
  ident: 10.1016/j.bbagen.2020.129600_bb0225
  article-title: Refinement of the Cornell et al nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200162x
– volume: 19
  start-page: 1327
  year: 2013
  ident: 10.1016/j.bbagen.2020.129600_bb0090
  article-title: Automated classification of RNA 3D motifs and the RNA 3D motif atlas
  publication-title: RNA
  doi: 10.1261/rna.039438.113
– volume: 44
  start-page: 7100
  year: 2016
  ident: 10.1016/j.bbagen.2020.129600_bb0295
  article-title: Free energy analysis and mechanism of base pair stacking in nicked DNA
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 910
  year: 2010
  ident: 10.1016/j.bbagen.2020.129600_bb0060
  article-title: An RNA molecular switch: intrinsic flexibility of 23S rRNA helices 40 and 68 5′-UAA/5′-GAN internal loops studied by molecular dynamics methods
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900440t
– volume: 31
  start-page: 219
  year: 2017
  ident: 10.1016/j.bbagen.2020.129600_bb0080
  article-title: RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-016-0007-0
– volume: 34
  start-page: 1326
  year: 2006
  ident: 10.1016/j.bbagen.2020.129600_bb0010
  article-title: Structural and evolutionary classification of G/U wobble basepairs in the ribosome
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl025
– volume: 310
  start-page: 735
  year: 2001
  ident: 10.1016/j.bbagen.2020.129600_bb0040
  article-title: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4807
– volume: 20
  start-page: 629
  year: 2006
  ident: 10.1016/j.bbagen.2020.129600_bb0145
  article-title: Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-006-9083-x
– volume: 120
  start-page: 215
  year: 2008
  ident: 10.1016/j.bbagen.2020.129600_bb0175
  article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function
  publication-title: Theor. Chem. Accounts
  doi: 10.1007/s00214-007-0310-x
– volume: 28
  start-page: 851
  year: 2014
  ident: 10.1016/j.bbagen.2020.129600_bb0150
  article-title: Analysis of stacking overlap in nucleic acid structures: algorithm and application
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-014-9767-6
– volume: 19
  start-page: 28718
  year: 2017
  ident: 10.1016/j.bbagen.2020.129600_bb0105
  article-title: Stacking interactions involving non-Watson–crick basepairs: dispersion corrected density functional theory studies
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP04904H
– volume: 90
  start-page: 1007
  year: 1989
  ident: 10.1016/j.bbagen.2020.129600_bb0170
  article-title: Gaussian basis sets for use in correlated molecular calculations I the atoms boron through neon and hydrogen
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 100
  start-page: 5590
  year: 1996
  ident: 10.1016/j.bbagen.2020.129600_bb0180
  article-title: Nature of nucleic acid−base stacking: nonempirical ab initio and empirical potential characterization of 10 stacked base dimers comparison of stacked and H-bonded base pairs
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp953306e
– volume: 37
  start-page: 5917
  year: 2009
  ident: 10.1016/j.bbagen.2020.129600_bb0280
  article-title: Conformational analysis of nucleic acids revisited: curves+
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp608
– volume: 30
  start-page: 3497
  year: 2002
  ident: 10.1016/j.bbagen.2020.129600_bb0015
  article-title: The non-Watson-Crick base pairs and their associated isostericity matrices
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf481
– volume: 300
  start-page: 819
  year: 2000
  ident: 10.1016/j.bbagen.2020.129600_bb0300
  article-title: A-form conformational motifs in ligand-bound DNA structures
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3690
– volume: 19
  start-page: 553
  year: 1970
  ident: 10.1016/j.bbagen.2020.129600_bb0155
  article-title: The calculation of small molecular interactions by the differences of separate total energies some procedures with reduced errors
  publication-title: Mol. Phys.
  doi: 10.1080/00268977000101561
– volume: 114
  start-page: 14028
  year: 2010
  ident: 10.1016/j.bbagen.2020.129600_bb0070
  article-title: Structural stability of Tandemly occurring noncanonical basepairs within double helical fragments: molecular dynamics studies of functional RNA
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp102835t
– year: 2015
  ident: 10.1016/j.bbagen.2020.129600_bb0315
– volume: 11
  start-page: 281
  year: 1995
  ident: 10.1016/j.bbagen.2020.129600_bb0140
  article-title: NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures
  publication-title: Comput. Appl. Biosci.
– volume: 123
  start-page: 47
  year: 2019
  ident: 10.1016/j.bbagen.2020.129600_bb0255
  article-title: Salt induced structural collapse, swelling, and signature of aggregation of two ssDNA strands: insights from molecular dynamics simulation
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b09098
– volume: 47
  year: 2019
  ident: 10.1016/j.bbagen.2020.129600_bb0055
  article-title: miRBase: from microRNA sequences to function
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1141
– volume: 112
  start-page: 3786
  year: 2008
  ident: 10.1016/j.bbagen.2020.129600_bb0200
  article-title: Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp076921e
– volume: 6
  start-page: 3836
  year: 2010
  ident: 10.1016/j.bbagen.2020.129600_bb0220
  article-title: Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100481h
– volume: 102
  start-page: 1995
  year: 1998
  ident: 10.1016/j.bbagen.2020.129600_bb0195
  article-title: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9716997
– volume: 13
  start-page: 1015
  year: 1996
  ident: 10.1016/j.bbagen.2020.129600_bb0205
  article-title: The structure of B -DNA in oriented fibers
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.1996.10508916
– volume: 150
  start-page: 125101
  year: 2019
  ident: 10.1016/j.bbagen.2020.129600_bb0130
  article-title: Dynamics of an adenine-adenine RNA conformational switch from discrete path sampling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5070152
– volume: 15
  start-page: 95
  year: 2019
  ident: 10.1016/j.bbagen.2020.129600_bb0095
  article-title: Investigations of stacked DNA base-pair steps: highly accurate stacking interaction energies, energy decomposition, and many-body stacking effects
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00643
SSID ssj0000595
Score 2.3340619
Snippet Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129600
SubjectTerms adenines
Basepair stacking
bioinformatics
Conformational plasticity
crystal structure
Density functional theory
energy
Flanking basepair effect
geometry
hydrogen bonding
molecular dynamics
Molecular dynamics simulation
molecular models
prediction
quantum mechanics
RNA
RNA double helices
simulation models
Title Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction
URI https://dx.doi.org/10.1016/j.bbagen.2020.129600
https://www.ncbi.nlm.nih.gov/pubmed/32179130
https://www.proquest.com/docview/2378002383
https://www.proquest.com/docview/2477619434
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NSx0xEMCDKNJeirVfr1VJodf0bTbJZrc3eSivil5aqbeQTfLKE9196Erx0r-9M0nW4sEKPe6SLCGTnfklM5kh5JNrXMG9VaxVtmAylJKBnVdM-yA596GyDV5OPjmt5mfy6Fydr5HZeBcGwyqz7k86PWrr_GaaZ3O6Wi6n39CpBzihykj1JeYElVLjKv_8-2-YB-CDSp4EybD1eH0uxni1Lfy0mAW1xDQLAPPFY-bpMfyMZuhwi7zI_Ej30xBfkrXQbZPNVFHybps8m40F3F6ROwBJhyfh9GforwK8ozkqiw6_enoTa1l7-sMOwNxshvnxKRq1Fbp4vtBU7yGfFVI3fpfaztN22eeMq5jlOfbydHWNTh9s_5qcHR58n81ZrrTAnGjUACpRtmDra25LVwkrqyLUC2AVgIdQ-cLzVtfAIo6HugiCB8AwrhaN47DZ8tWiEm_Ietd34R2hjW6AAbRXsO0GOHNWLArtuau5gK2OsBMixgk2Lqchx2oYl2aMN7swSSwGxWKSWCaE3fdapTQcT7TXo-zMg-VkwFI80fPjKGoD84ruE9uF_vbGlELXEXHEP9pIHc-FhJyQt2md3I8X5kw3gAzv_3tsH8hzfErRwjtkfbi-DbvAREO7Fxf9HtnY_3o8P_0DUR0J9Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfGTWh7QTC-js8g8Vpd0yRNy9t0Yrqx7V7YxN6iNMmhQ9Cetk7T_nvsJh3iYUziNbWryE7sX2LHBvjoapdzb1XWKJtnMhQyQz-vMu2D5NyH0tb0OPlkWS7O5Jdzdb4F8_EtDKVVJtsfbfpgrdPILElztlmvZ18pqIdwQhUDqi_kA9im6lRqAtv7h0eL5R-DrIbmK0SfEcP4gm5I82oa3LdUCLWgSguI5_O7PNRdCHTwRAeP4VGCkGw_zvIJbIV2Dx7GppI3e7AzH3u4PYUbxJKOLsPZ99D9CjjGUmIW6687djm0s_bsm-0RdmdzKpHPyK9tKMrzicWWD-m6kLnxv8y2njXrLhVdpULPA5dnmwuK-xD9Mzg7-Hw6X2Sp2ULmRK16tIqyQXdfcVu4UlhZ5qFaIVxB_BBKn3ve6ArhiOOhyoPgAZEYV6vacTxv-XJViucwabs2vARW6xphgPYKT96Iz5wVq1x77iou8LQj7BTEKGDjUiVyaojx04wpZz9MVIshtZiolilkt1ybWInjHno96s78taIMOot7OD-MqjYoV4qg2DZ0V5emELoaUI74B43Uw9WQkFN4EdfJ7XxRZrpG1PDqv-f2HnYWpyfH5vhwefQadulLTB5-A5P-4iq8RYjUN-_SFvgNZ_gMpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+geometry+between+two+sheared+Watson-Crick+basepairs%3A+Computational+chemistry+and+bioinformatics+based+prediction&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Maiti%2C+Satyabrata&rft.au=Mukherjee%2C+Debasish&rft.au=Roy%2C+Parthajit&rft.au=Chakrabarti%2C+Jaydeb&rft.date=2020-07-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1864&rft.issue=7&rft.spage=129600&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129600&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon