Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction
Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distrib...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 7; p. 129600 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs.
We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair.
We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear.
The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs “tug of war” situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity.
We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity.
•We used bioinformatics and MD simulation to predict structure of GAG.UAU sequence formed by sheared AA and GU basepairs.•Prediction of structures of UAG.UAG and GAU.GAU sequence motifs using same protocol reveal structural disorders.•Stacking energy analyses of A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC dinucleotide have been done using quantum chemistry.•The quantum chemical calculations prove the reason behind stability as well as conformational plasticity. |
---|---|
AbstractList | Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs.
We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair.
We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear.
The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs "tug of war" situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity.
We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity. Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs.BACKGROUNDMolecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs.We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair.METHODSWe employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair.We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear.RESULTSWe noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear.The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs "tug of war" situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity.CONCLUSIONSThe quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs "tug of war" situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity.We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity.GENERAL SIGNIFICANCEWe have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity. Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs.We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair.We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear.The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs “tug of war” situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity.We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity. Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs. We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair. We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear. The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs “tug of war” situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity. We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity. •We used bioinformatics and MD simulation to predict structure of GAG.UAU sequence formed by sheared AA and GU basepairs.•Prediction of structures of UAG.UAG and GAU.GAU sequence motifs using same protocol reveal structural disorders.•Stacking energy analyses of A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC dinucleotide have been done using quantum chemistry.•The quantum chemical calculations prove the reason behind stability as well as conformational plasticity. |
ArticleNumber | 129600 |
Author | Maiti, Satyabrata Mukherjee, Debasish Roy, Parthajit Chakrabarti, Jaydeb Bhattacharyya, Dhananjay |
Author_xml | – sequence: 1 givenname: Satyabrata surname: Maiti fullname: Maiti, Satyabrata organization: Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India – sequence: 2 givenname: Debasish surname: Mukherjee fullname: Mukherjee, Debasish organization: Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India – sequence: 3 givenname: Parthajit surname: Roy fullname: Roy, Parthajit organization: Dept. of Computer Science, The University of Burdwan, Rajbati, Golapbag, Burdwan 713104, India – sequence: 4 givenname: Jaydeb surname: Chakrabarti fullname: Chakrabarti, Jaydeb organization: S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098, India – sequence: 5 givenname: Dhananjay surname: Bhattacharyya fullname: Bhattacharyya, Dhananjay email: dhananjay.bhattacharyya@saha.ac.in organization: Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32179130$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv3CAUhVGVqpmk_QdVxbIbT3kZ4ywqVaO-pEhZNFWXCOPrCRMbXGASzb8vEyebLhI2SPCdc-GcM3TigweE3lOypoTKT7t115kt-DUjrByxVhLyCq2oalilCJEnaEU4EZWgsj5FZyntSFl1W79Bp5zRpqWcrNDhVzb21vkt3kKYIMcD7iDfA3ic7wNON2Ai9PiPySn4ahOdvcWdSTAbF9MF3oRp3meTXfBmxPYGJpeOHsb3uHPB-SHEqVzb9KDq8VzcnD3yb9HrwYwJ3j3u5-j3t6_Xmx_V5dX3n5svl5XlbZ0r1YiOUaWoYVZyIyQBNUjBGWMge9LTrlGkoZaCIsApsPK3emgtpVL0cpD8HH1cfOcY_u4hZV3eaGEcjYewT5qJppG0FVy8jPIyizCueEE_PKL7boJez9FNJh70U7IFuFgAG0NKEQZt3RJUjsaNmhJ9rFHv9FKjPtaolxqLWPwnfvJ_QfZ5kUHJ885B1Mk68LZEHsFm3Qf3vME_z-u4jw |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_025_06000_0 crossref_primary_10_1016_j_inoche_2020_108078 crossref_primary_10_1007_s12539_022_00528_w crossref_primary_10_1016_j_jmgm_2020_107722 |
Cites_doi | 10.1093/nar/gkj470 10.1063/1.328693 10.1093/nar/gkg680 10.1021/bi00064a004 10.1063/1.462569 10.1017/S1355838201002515 10.1016/j.softx.2015.06.001 10.1038/330221a0 10.1016/0009-2614(90)80029-D 10.1093/nar/gkp011 10.1529/biophysj.106.097782 10.1073/pnas.93.23.12851 10.1093/database/bav011 10.1002/jcc.21287 10.1002/bip.20542 10.1093/nar/gkn112 10.1093/nar/17.5.1797 10.1021/bi0524464 10.1021/bi992055n 10.1038/nature09775 10.1063/1.477788 10.1261/rna.036905.112 10.1016/j.bpj.2012.12.058 10.1039/b810189b 10.1016/S0959-440X(97)80045-0 10.1002/bip.22616 10.1080/07391102.2006.10507108 10.1021/ct900440t 10.1006/jmbi.1994.1134 10.1371/journal.pcbi.1002099 10.1021/ct501170h 10.1021/jp305628v 10.1063/1.2408420 10.1021/ct200162x 10.1261/rna.039438.113 10.1007/s10822-016-0007-0 10.1093/nar/gkl025 10.1006/jmbi.2001.4807 10.1007/s10822-006-9083-x 10.1007/s00214-007-0310-x 10.1007/s10822-014-9767-6 10.1039/C7CP04904H 10.1063/1.456153 10.1021/jp953306e 10.1093/nar/gkp608 10.1093/nar/gkf481 10.1006/jmbi.2000.3690 10.1080/00268977000101561 10.1021/jp102835t 10.1021/acs.jpcb.8b09098 10.1093/nar/gky1141 10.1021/jp076921e 10.1021/ct100481h 10.1021/jp9716997 10.1080/07391102.1996.10508916 10.1063/1.5070152 10.1021/acs.jctc.8b00643 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129600 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 32179130 10_1016_j_bbagen_2020_129600 S0304416520301124 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c395t-874b21881a2c63a460e8f643222e6d0d1b78071c1e80e31e23215f9c1164d6f63 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Mon Jul 21 09:17:02 EDT 2025 Fri Jul 11 10:25:59 EDT 2025 Wed Feb 19 02:30:18 EST 2025 Tue Jul 01 00:22:13 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Fri Feb 23 02:48:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Density functional theory Flanking basepair effect Molecular dynamics simulation RNA double helices Conformational plasticity Basepair stacking |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-874b21881a2c63a460e8f643222e6d0d1b78071c1e80e31e23215f9c1164d6f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32179130 |
PQID | 2378002383 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2477619434 proquest_miscellaneous_2378002383 pubmed_primary_32179130 crossref_citationtrail_10_1016_j_bbagen_2020_129600 crossref_primary_10_1016_j_bbagen_2020_129600 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129600 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 2020-Jul 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bansal, Bhattacharyya, Ravi (bb0140) 1995; 11 Halder, Bhattacharyya (bb0065) 2012; 116 Šponer, Leszczyński, Hobza (bb0180) 1996; 100 Lu (bb0085) 2003; 31 Chen, Kennedy, Qiao, Krugh, Turner (bb0125) 2006; 45 Leontis, Westhof (bb0025) 2001; 7 Bussi, Donadio, Parrinello (bb0245) 2007; 126 Ananth, Goldsmith, Yathindra (bb0005) 2013; 19 Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bb0230) 2015; 1 Bandyopadhyay, Bhattacharyya (bb0310) 2006; 83 Chai, Head-Gordon (bb0160) 2008; 10 Mokdad, Krasovska, Sponer, Leontis (bb0010) 2006; 34 Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Petersson, Nakatsuji, Li, Caricato, Marenich, Bloino, Janesko, Gomperts, Mennucci, Hratchian, Ortiz, Izmaylov (bb0190) 2016 Frisch, Head-Gordon, Pople (bb0185) 1990; 166 Kruse, Banáš, Šponer (bb0095) 2019; 15 Chandrasekaran, Arnott (bb0205) 1996; 13 Zgarbová, Otyepka, Šponer, Mládek, BanáŠ, Cheatham, Jurečka (bb0225) 2011; 7 Egli, Usman, Rich (bb0110) 1993; 32 Schrödinger (bb0315) 2015 Das, Chakrabarti, Ghosh (bb0250) 2013; 104 Banáš, Hollas, Zgarbová, Jurečka, Orozco, Cheatham, Šponer, Otyepka (bb0220) 2010; 6 Spackova, Šponer (bb0045) 2006; 34 Kondo, Westhof (bb0050) 2008; 36 Pérez, Marchán, Svozil, Sponer, Cheatham, Laughton, Orozco, Orozco (bb0215) 2007; 92 Romanowska, McCammon, Trylska (bb0270) 2011; 7 Bhattacharyya, Halder, Basu, Mukherjee, Kumar, Bansal (bb0080) 2017; 31 Réblová, Střelcová, Kulhánek, Beššeová, Mathews, Van Nostrand, Yildirim, Turner, Šponer (bb0285) 2010; 6 Nelson, Finch, Luisi, Klug (bb0305) 1987; 330 Lindqvist, Sarkar, Winqvist, Rozners, Strömberg, Gräslund (bb0120) 2000; 39 Chakraborty, Wales (bb0130) 2019; 150 Réblová, Střelcová, Kulhánek, Beššeová, Mathews, Van Nostrand, Yildirim, Turner, Šponer (bb0060) 2010; 6 Lavery, Moakher, Maddocks, Petkeviciute, Zakrzewska (bb0280) 2009; 37 Bhattacharya, Mittal, Panigrahi, Sharma, Paul, Halder, Halder, Bhattacharyya, Mitra (bb0020) 2015; 2015 Leontis, Stombaugh, Westhof (bb0015) 2002; 30 Halder, Bhattacharyya (bb0070) 2010; 114 Mukherjee, Bansal, Bhattacharyya (bb0145) 2006; 20 Häse, Zacharias (bb0295) 2016; 44 Stombaugh, Zirbel, Westhof, Leontis (bb0260) 2009; 37 Roy, Panigrahi, Bhattacharyya, Bhattacharyya (bb0200) 2008; 112 Nikolova, Kim, Wise, O’Brien, Andricioaei, Al-Hashimi (bb0275) 2011; 470 Kendall, Dunning, Harrison (bb0165) 1992; 96 Sarkar, Maity, Sarma Phukon, Ghosh, Chakrabarti (bb0255) 2019; 123 Barone, Cossi (bb0195) 1998; 102 Das, Mukherjee, Mitra, Bhattacharyya (bb0135) 2006; 24 Dickerson (bb0075) 1989; 17 Lu, Shakked, Olson (bb0300) 2000; 300 Zhao, Truhlar (bb0175) 2008; 120 Pingali, Halder, Mukherjee, Basu, Banerjee, Choudhury, Bhattacharyya (bb0150) 2014; 28 Mondal, Mukherjee, Halder, Bhattacharyya (bb0100) 2015; 103 Petrov, Zirbel, Leontis (bb0090) 2013; 19 Doudna, Cate (bb0035) 1997; 7 Boys, Bernardi (bb0155) 1970; 19 Maiti, Bhattacharyya (bb0105) 2017; 19 Saenger (bb0265) 1984 Ban, Ramakrishnan, Sundaralingam (bb0115) 1994; 236 Kozomara, Birgaoanu, Griffiths-Jones (bb0055) 2019; 47 Elgavish, Cannone, Lee, Harvey, Gutell (bb0040) 2001; 310 Brooks, Brooks, Mackerell, Nilsson, Petrella, Roux, Won, Archontis, Bartels, Boresch, Caflisch, Caves, Cui, Dinner, Feig, Fischer, Gao, Hodoscek, Im, Kuczera (bb0210) 2009; 30 Baeyens, De Bondt, Pardi, Holbrook (bb0030) 1996; 93 Brown, Andrews, Elcock (bb0290) 2015; 11 Darden, Pearlman, Pedersen (bb0235) 1998; 109 Dunning (bb0170) 1989; 90 Parrinello, Rahman (bb0240) 1981; 52 Ban (10.1016/j.bbagen.2020.129600_bb0115) 1994; 236 Bussi (10.1016/j.bbagen.2020.129600_bb0245) 2007; 126 Dunning (10.1016/j.bbagen.2020.129600_bb0170) 1989; 90 Chen (10.1016/j.bbagen.2020.129600_bb0125) 2006; 45 Zgarbová (10.1016/j.bbagen.2020.129600_bb0225) 2011; 7 Das (10.1016/j.bbagen.2020.129600_bb0250) 2013; 104 Chakraborty (10.1016/j.bbagen.2020.129600_bb0130) 2019; 150 Saenger (10.1016/j.bbagen.2020.129600_bb0265) 1984 Banáš (10.1016/j.bbagen.2020.129600_bb0220) 2010; 6 Lindqvist (10.1016/j.bbagen.2020.129600_bb0120) 2000; 39 Nikolova (10.1016/j.bbagen.2020.129600_bb0275) 2011; 470 Kondo (10.1016/j.bbagen.2020.129600_bb0050) 2008; 36 Abraham (10.1016/j.bbagen.2020.129600_bb0230) 2015; 1 Maiti (10.1016/j.bbagen.2020.129600_bb0105) 2017; 19 Halder (10.1016/j.bbagen.2020.129600_bb0065) 2012; 116 Lavery (10.1016/j.bbagen.2020.129600_bb0280) 2009; 37 Petrov (10.1016/j.bbagen.2020.129600_bb0090) 2013; 19 Das (10.1016/j.bbagen.2020.129600_bb0135) 2006; 24 Nelson (10.1016/j.bbagen.2020.129600_bb0305) 1987; 330 Bandyopadhyay (10.1016/j.bbagen.2020.129600_bb0310) 2006; 83 Doudna (10.1016/j.bbagen.2020.129600_bb0035) 1997; 7 Mukherjee (10.1016/j.bbagen.2020.129600_bb0145) 2006; 20 Boys (10.1016/j.bbagen.2020.129600_bb0155) 1970; 19 Elgavish (10.1016/j.bbagen.2020.129600_bb0040) 2001; 310 Roy (10.1016/j.bbagen.2020.129600_bb0200) 2008; 112 Réblová (10.1016/j.bbagen.2020.129600_bb0060) 2010; 6 Bhattacharya (10.1016/j.bbagen.2020.129600_bb0020) 2015; 2015 Réblová (10.1016/j.bbagen.2020.129600_bb0285) 2010; 6 Šponer (10.1016/j.bbagen.2020.129600_bb0180) 1996; 100 Egli (10.1016/j.bbagen.2020.129600_bb0110) 1993; 32 Dickerson (10.1016/j.bbagen.2020.129600_bb0075) 1989; 17 Chai (10.1016/j.bbagen.2020.129600_bb0160) 2008; 10 Sarkar (10.1016/j.bbagen.2020.129600_bb0255) 2019; 123 Kozomara (10.1016/j.bbagen.2020.129600_bb0055) 2019; 47 Pingali (10.1016/j.bbagen.2020.129600_bb0150) 2014; 28 Leontis (10.1016/j.bbagen.2020.129600_bb0015) 2002; 30 Parrinello (10.1016/j.bbagen.2020.129600_bb0240) 1981; 52 Stombaugh (10.1016/j.bbagen.2020.129600_bb0260) 2009; 37 Mokdad (10.1016/j.bbagen.2020.129600_bb0010) 2006; 34 Lu (10.1016/j.bbagen.2020.129600_bb0085) 2003; 31 Frisch (10.1016/j.bbagen.2020.129600_bb0190) 2016 Darden (10.1016/j.bbagen.2020.129600_bb0235) 1998; 109 Schrödinger (10.1016/j.bbagen.2020.129600_bb0315) 2015 Halder (10.1016/j.bbagen.2020.129600_bb0070) 2010; 114 Chandrasekaran (10.1016/j.bbagen.2020.129600_bb0205) 1996; 13 Frisch (10.1016/j.bbagen.2020.129600_bb0185) 1990; 166 Bhattacharyya (10.1016/j.bbagen.2020.129600_bb0080) 2017; 31 Kruse (10.1016/j.bbagen.2020.129600_bb0095) 2019; 15 Bansal (10.1016/j.bbagen.2020.129600_bb0140) 1995; 11 Brown (10.1016/j.bbagen.2020.129600_bb0290) 2015; 11 Brooks (10.1016/j.bbagen.2020.129600_bb0210) 2009; 30 Häse (10.1016/j.bbagen.2020.129600_bb0295) 2016; 44 Pérez (10.1016/j.bbagen.2020.129600_bb0215) 2007; 92 Spackova (10.1016/j.bbagen.2020.129600_bb0045) 2006; 34 Leontis (10.1016/j.bbagen.2020.129600_bb0025) 2001; 7 Barone (10.1016/j.bbagen.2020.129600_bb0195) 1998; 102 Ananth (10.1016/j.bbagen.2020.129600_bb0005) 2013; 19 Romanowska (10.1016/j.bbagen.2020.129600_bb0270) 2011; 7 Kendall (10.1016/j.bbagen.2020.129600_bb0165) 1992; 96 Baeyens (10.1016/j.bbagen.2020.129600_bb0030) 1996; 93 Zhao (10.1016/j.bbagen.2020.129600_bb0175) 2008; 120 Lu (10.1016/j.bbagen.2020.129600_bb0300) 2000; 300 Mondal (10.1016/j.bbagen.2020.129600_bb0100) 2015; 103 |
References_xml | – volume: 52 start-page: 7182 year: 1981 end-page: 7190 ident: bb0240 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J. Appl. Phys. – volume: 30 start-page: 3497 year: 2002 end-page: 3531 ident: bb0015 article-title: The non-Watson-Crick base pairs and their associated isostericity matrices publication-title: Nucleic Acids Res. – volume: 116 start-page: 11845 year: 2012 end-page: 11856 ident: bb0065 article-title: Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis publication-title: J. Phys. Chem. B – volume: 20 start-page: 629 year: 2006 end-page: 645 ident: bb0145 article-title: Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis publication-title: J. Comput. Aided Mol. Des. – volume: 15 start-page: 95 year: 2019 end-page: 115 ident: bb0095 article-title: Investigations of stacked DNA base-pair steps: highly accurate stacking interaction energies, energy decomposition, and many-body stacking effects publication-title: J. Chem. Theory Comput. – volume: 126 year: 2007 ident: bb0245 article-title: Canonical sampling through velocity rescaling publication-title: J. Chem. Phys. – year: 2015 ident: bb0315 article-title: The PyMOL Molecular Graphics System, Version~18 – volume: 310 start-page: 735 year: 2001 end-page: 753 ident: bb0040 article-title: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices publication-title: J. Mol. Biol. – volume: 112 start-page: 3786 year: 2008 end-page: 3796 ident: bb0200 article-title: Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies publication-title: J. Phys. Chem. B – volume: 6 start-page: 910 year: 2010 end-page: 929 ident: bb0285 article-title: An RNA molecular switch: intrinsic flexibility of 23S rRNA helices 40 and 68 5′-UAA/5′-GAN internal loops studied by molecular dynamics methods publication-title: J. Chem. Theory Comput. – volume: 30 start-page: 1545 year: 2009 end-page: 1614 ident: bb0210 article-title: CHARMM: the biomolecular simulation program publication-title: J. Comput. Chem. – volume: 470 start-page: 498 year: 2011 end-page: 502 ident: bb0275 article-title: Transient Hoogsteen base pairs in canonical duplex DNA publication-title: Nature – volume: 36 start-page: 2654 year: 2008 end-page: 2666 ident: bb0050 article-title: The bacterial and mitochondrial ribosomal A-site molecular switches possess different conformational substates publication-title: Nucleic Acids Res. – volume: 93 start-page: 12851 year: 1996 end-page: 12855 ident: bb0030 article-title: A curved RNA helix incorporating an internal loop with G{middle dot}A and A{middle dot}A non-Watson-Crick base pairing publication-title: Proc. Natl. Acad. Sci. – volume: 150 start-page: 125101 year: 2019 ident: bb0130 article-title: Dynamics of an adenine-adenine RNA conformational switch from discrete path sampling publication-title: J. Chem. Phys. – volume: 104 start-page: 1274 year: 2013 end-page: 1284 ident: bb0250 article-title: Conformational contribution to thermodynamics of binding in protein-peptide complexes through microscopic simulation publication-title: Biophys. J. – volume: 109 start-page: 10921 year: 1998 end-page: 10935 ident: bb0235 article-title: Ionic charging free energies: spherical versus periodic boundary conditions publication-title: J. Chem. Phys. – volume: 17 start-page: 1797 year: 1989 end-page: 1803 ident: bb0075 article-title: Definitions and nomenclature of nucleic acid structure components publication-title: Nucleic Acids Res. – volume: 31 start-page: 219 year: 2017 end-page: 235 ident: bb0080 article-title: RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs publication-title: J. Comput. Aided Mol. Des. – volume: 37 start-page: 5917 year: 2009 end-page: 5929 ident: bb0280 article-title: Conformational analysis of nucleic acids revisited: curves+ publication-title: Nucleic Acids Res. – volume: 7 start-page: 499 year: 2001 end-page: 512 ident: bb0025 article-title: Geometric nomenclature and classification of RNA base pairs publication-title: RNA – volume: 7 start-page: 310 year: 1997 end-page: 316 ident: bb0035 article-title: RNA structure: crystal clear? publication-title: Curr. Opin. Struct. Biol. – volume: 11 start-page: 281 year: 1995 end-page: 287 ident: bb0140 article-title: NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures publication-title: Comput. Appl. Biosci. – volume: 236 start-page: 275 year: 1994 end-page: 285 ident: bb0115 article-title: A single 2′-hydroxyl group converts B-DNA to A-DNA: crystal structure of the DNA-RNA chimeric Decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G·C Base-paired quadruplet publication-title: J. Mol. Biol. – volume: 19 start-page: 553 year: 1970 end-page: 566 ident: bb0155 article-title: The calculation of small molecular interactions by the differences of separate total energies some procedures with reduced errors publication-title: Mol. Phys. – volume: 123 start-page: 47 year: 2019 end-page: 56 ident: bb0255 article-title: Salt induced structural collapse, swelling, and signature of aggregation of two ssDNA strands: insights from molecular dynamics simulation publication-title: J. Phys. Chem. B – volume: 44 start-page: 7100 year: 2016 end-page: 7108 ident: bb0295 article-title: Free energy analysis and mechanism of base pair stacking in nicked DNA publication-title: Nucleic Acids Res. – volume: 2015 year: 2015 ident: bb0020 article-title: RNABP COGEST: a resource for investigating functional RNAs publication-title: Database (Oxford) – volume: 1 start-page: 19 year: 2015 end-page: 25 ident: bb0230 article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX – volume: 32 start-page: 3221 year: 1993 end-page: 3237 ident: bb0110 article-title: Conformational influence of the ribose 2′-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes publication-title: Biochemistry – volume: 37 start-page: 2294 year: 2009 end-page: 2312 ident: bb0260 article-title: Frequency and isostericity of RNA base pairs publication-title: Nucleic Acids Res. – volume: 6 start-page: 3836 year: 2010 end-page: 3849 ident: bb0220 article-title: Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins publication-title: J. Chem. Theory Comput. – volume: 39 start-page: 1693 year: 2000 end-page: 1701 ident: bb0120 article-title: Optical spectroscopic study of the effects of a single deoxyribose substitution in a ribose backbone: implications in RNA-RNA interaction publication-title: Biochemistry – volume: 45 start-page: 6889 year: 2006 end-page: 6903 ident: bb0125 article-title: An alternating sheared AA pair and elements of stability for a single sheared purine-purine pair flanked by sheared GA pairs in RNA publication-title: Biochemistry – volume: 166 start-page: 275 year: 1990 end-page: 280 ident: bb0185 article-title: A direct MP2 gradient method publication-title: Chem. Phys. Lett. – year: 2016 ident: bb0190 article-title: Gaussian 16 Revision A03 Wallingford CT – volume: 120 start-page: 215 year: 2008 end-page: 241 ident: bb0175 article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function publication-title: Theor. Chem. Accounts – volume: 103 start-page: 328 year: 2015 end-page: 338 ident: bb0100 article-title: Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study publication-title: Biopolymers – volume: 7 year: 2011 ident: bb0270 article-title: Understanding the origins of bacterial resistance to aminoglycosides through molecular dynamics mutational study of the ribosomal A-site publication-title: PLoS Comput. Biol. – volume: 13 start-page: 1015 year: 1996 end-page: 1027 ident: bb0205 article-title: The structure of publication-title: J. Biomol. Struct. Dyn. – volume: 19 start-page: 28718 year: 2017 end-page: 28730 ident: bb0105 article-title: Stacking interactions involving non-Watson–crick basepairs: dispersion corrected density functional theory studies publication-title: Phys. Chem. Chem. Phys. – volume: 47 year: 2019 ident: bb0055 article-title: miRBase: from microRNA sequences to function publication-title: Nucleic Acids Res. – volume: 300 start-page: 819 year: 2000 end-page: 840 ident: bb0300 article-title: A-form conformational motifs in ligand-bound DNA structures publication-title: J. Mol. Biol. – volume: 6 start-page: 910 year: 2010 end-page: 929 ident: bb0060 article-title: An RNA molecular switch: intrinsic flexibility of 23S rRNA helices 40 and 68 5′-UAA/5′-GAN internal loops studied by molecular dynamics methods publication-title: J. Chem. Theory Comput. – volume: 11 start-page: 2315 year: 2015 end-page: 2328 ident: bb0290 article-title: Stacking free energies of all DNA and RNA nucleoside pairs and dinucleoside-monophosphates computed using recently revised AMBER parameters and compared with experiment publication-title: J. Chem. Theory Comput. – volume: 19 start-page: 1038 year: 2013 ident: bb0005 article-title: An innate twist between Crick’s wobble and Watson-Crick base pairs publication-title: RNA – volume: 24 start-page: 149 year: 2006 end-page: 161 ident: bb0135 article-title: Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis publication-title: J. Biomol. Struct. Dyn. – volume: 28 start-page: 851 year: 2014 end-page: 867 ident: bb0150 article-title: Analysis of stacking overlap in nucleic acid structures: algorithm and application publication-title: J. Comput. Aided Mol. Des. – volume: 96 start-page: 6796 year: 1992 end-page: 6806 ident: bb0165 article-title: Electron affinities of the first-row atoms revisited systematic basis sets and wave functions publication-title: J. Chem. Phys. – volume: 31 start-page: 5108 year: 2003 end-page: 5121 ident: bb0085 article-title: 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures publication-title: Nucleic Acids Res. – volume: 19 start-page: 1327 year: 2013 end-page: 1340 ident: bb0090 article-title: Automated classification of RNA 3D motifs and the RNA 3D motif atlas publication-title: RNA – volume: 92 start-page: 3817 year: 2007 end-page: 3829 ident: bb0215 article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers publication-title: Biophys. J. – volume: 34 start-page: 1326 year: 2006 end-page: 1341 ident: bb0010 article-title: Structural and evolutionary classification of G/U wobble basepairs in the ribosome publication-title: Nucleic Acids Res. – volume: 102 start-page: 1995 year: 1998 end-page: 2001 ident: bb0195 article-title: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model publication-title: J. Phys. Chem. A – volume: 34 start-page: 697 year: 2006 end-page: 708 ident: bb0045 article-title: Molecular dynamics simulations of sarcin-ricin rRNA motif publication-title: Nucleic Acids Res. – volume: 330 start-page: 221 year: 1987 end-page: 226 ident: bb0305 article-title: The structure of an oligo(dA)·oligo(dT) tract and its biological implications publication-title: Nature – volume: 100 start-page: 5590 year: 1996 end-page: 5596 ident: bb0180 article-title: Nature of nucleic acid−base stacking: nonempirical ab initio and empirical potential characterization of 10 stacked base dimers comparison of stacked and H-bonded base pairs publication-title: J. Phys. Chem. – volume: 83 start-page: 313 year: 2006 end-page: 325 ident: bb0310 article-title: Estimation of strength in different extra Watson–crick hydrogen bonds in DNA double helices through quantum chemical studies publication-title: Biopolymers – volume: 114 start-page: 14028 year: 2010 end-page: 14040 ident: bb0070 article-title: Structural stability of Tandemly occurring noncanonical basepairs within double helical fragments: molecular dynamics studies of functional RNA publication-title: J. Phys. Chem. B – volume: 7 start-page: 2886 year: 2011 end-page: 2902 ident: bb0225 article-title: Refinement of the Cornell et al nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles publication-title: J. Chem. Theory Comput. – volume: 10 start-page: 6615 year: 2008 end-page: 6620 ident: bb0160 article-title: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections publication-title: Phys. Chem. Chem. Phys. – year: 1984 ident: bb0265 article-title: Principles of Nucleic Acid Structure – volume: 90 start-page: 1007 year: 1989 end-page: 1023 ident: bb0170 article-title: Gaussian basis sets for use in correlated molecular calculations I the atoms boron through neon and hydrogen publication-title: J. Chem. Phys. – volume: 34 start-page: 697 year: 2006 ident: 10.1016/j.bbagen.2020.129600_bb0045 article-title: Molecular dynamics simulations of sarcin-ricin rRNA motif publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj470 – volume: 52 start-page: 7182 year: 1981 ident: 10.1016/j.bbagen.2020.129600_bb0240 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J. Appl. Phys. doi: 10.1063/1.328693 – volume: 31 start-page: 5108 year: 2003 ident: 10.1016/j.bbagen.2020.129600_bb0085 article-title: 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg680 – volume: 32 start-page: 3221 year: 1993 ident: 10.1016/j.bbagen.2020.129600_bb0110 article-title: Conformational influence of the ribose 2′-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes publication-title: Biochemistry doi: 10.1021/bi00064a004 – volume: 96 start-page: 6796 year: 1992 ident: 10.1016/j.bbagen.2020.129600_bb0165 article-title: Electron affinities of the first-row atoms revisited systematic basis sets and wave functions publication-title: J. Chem. Phys. doi: 10.1063/1.462569 – volume: 7 start-page: 499 year: 2001 ident: 10.1016/j.bbagen.2020.129600_bb0025 article-title: Geometric nomenclature and classification of RNA base pairs publication-title: RNA doi: 10.1017/S1355838201002515 – volume: 1 start-page: 19 year: 2015 ident: 10.1016/j.bbagen.2020.129600_bb0230 article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 330 start-page: 221 year: 1987 ident: 10.1016/j.bbagen.2020.129600_bb0305 article-title: The structure of an oligo(dA)·oligo(dT) tract and its biological implications publication-title: Nature doi: 10.1038/330221a0 – volume: 166 start-page: 275 year: 1990 ident: 10.1016/j.bbagen.2020.129600_bb0185 article-title: A direct MP2 gradient method publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(90)80029-D – volume: 37 start-page: 2294 year: 2009 ident: 10.1016/j.bbagen.2020.129600_bb0260 article-title: Frequency and isostericity of RNA base pairs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp011 – volume: 92 start-page: 3817 year: 2007 ident: 10.1016/j.bbagen.2020.129600_bb0215 article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers publication-title: Biophys. J. doi: 10.1529/biophysj.106.097782 – volume: 93 start-page: 12851 year: 1996 ident: 10.1016/j.bbagen.2020.129600_bb0030 article-title: A curved RNA helix incorporating an internal loop with G{middle dot}A and A{middle dot}A non-Watson-Crick base pairing publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.93.23.12851 – volume: 2015 year: 2015 ident: 10.1016/j.bbagen.2020.129600_bb0020 article-title: RNABP COGEST: a resource for investigating functional RNAs publication-title: Database (Oxford) doi: 10.1093/database/bav011 – volume: 30 start-page: 1545 year: 2009 ident: 10.1016/j.bbagen.2020.129600_bb0210 article-title: CHARMM: the biomolecular simulation program publication-title: J. Comput. Chem. doi: 10.1002/jcc.21287 – volume: 83 start-page: 313 year: 2006 ident: 10.1016/j.bbagen.2020.129600_bb0310 article-title: Estimation of strength in different extra Watson–crick hydrogen bonds in DNA double helices through quantum chemical studies publication-title: Biopolymers doi: 10.1002/bip.20542 – volume: 36 start-page: 2654 year: 2008 ident: 10.1016/j.bbagen.2020.129600_bb0050 article-title: The bacterial and mitochondrial ribosomal A-site molecular switches possess different conformational substates publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn112 – year: 2016 ident: 10.1016/j.bbagen.2020.129600_bb0190 – year: 1984 ident: 10.1016/j.bbagen.2020.129600_bb0265 – volume: 17 start-page: 1797 year: 1989 ident: 10.1016/j.bbagen.2020.129600_bb0075 article-title: Definitions and nomenclature of nucleic acid structure components publication-title: Nucleic Acids Res. doi: 10.1093/nar/17.5.1797 – volume: 45 start-page: 6889 year: 2006 ident: 10.1016/j.bbagen.2020.129600_bb0125 article-title: An alternating sheared AA pair and elements of stability for a single sheared purine-purine pair flanked by sheared GA pairs in RNA publication-title: Biochemistry doi: 10.1021/bi0524464 – volume: 39 start-page: 1693 year: 2000 ident: 10.1016/j.bbagen.2020.129600_bb0120 article-title: Optical spectroscopic study of the effects of a single deoxyribose substitution in a ribose backbone: implications in RNA-RNA interaction publication-title: Biochemistry doi: 10.1021/bi992055n – volume: 470 start-page: 498 year: 2011 ident: 10.1016/j.bbagen.2020.129600_bb0275 article-title: Transient Hoogsteen base pairs in canonical duplex DNA publication-title: Nature doi: 10.1038/nature09775 – volume: 109 start-page: 10921 year: 1998 ident: 10.1016/j.bbagen.2020.129600_bb0235 article-title: Ionic charging free energies: spherical versus periodic boundary conditions publication-title: J. Chem. Phys. doi: 10.1063/1.477788 – volume: 19 start-page: 1038 year: 2013 ident: 10.1016/j.bbagen.2020.129600_bb0005 article-title: An innate twist between Crick’s wobble and Watson-Crick base pairs publication-title: RNA doi: 10.1261/rna.036905.112 – volume: 104 start-page: 1274 year: 2013 ident: 10.1016/j.bbagen.2020.129600_bb0250 article-title: Conformational contribution to thermodynamics of binding in protein-peptide complexes through microscopic simulation publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.12.058 – volume: 10 start-page: 6615 year: 2008 ident: 10.1016/j.bbagen.2020.129600_bb0160 article-title: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b810189b – volume: 7 start-page: 310 year: 1997 ident: 10.1016/j.bbagen.2020.129600_bb0035 article-title: RNA structure: crystal clear? publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(97)80045-0 – volume: 103 start-page: 328 year: 2015 ident: 10.1016/j.bbagen.2020.129600_bb0100 article-title: Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study publication-title: Biopolymers doi: 10.1002/bip.22616 – volume: 24 start-page: 149 year: 2006 ident: 10.1016/j.bbagen.2020.129600_bb0135 article-title: Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2006.10507108 – volume: 6 start-page: 910 year: 2010 ident: 10.1016/j.bbagen.2020.129600_bb0285 article-title: An RNA molecular switch: intrinsic flexibility of 23S rRNA helices 40 and 68 5′-UAA/5′-GAN internal loops studied by molecular dynamics methods publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900440t – volume: 236 start-page: 275 year: 1994 ident: 10.1016/j.bbagen.2020.129600_bb0115 article-title: A single 2′-hydroxyl group converts B-DNA to A-DNA: crystal structure of the DNA-RNA chimeric Decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G·C Base-paired quadruplet publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.1134 – volume: 7 year: 2011 ident: 10.1016/j.bbagen.2020.129600_bb0270 article-title: Understanding the origins of bacterial resistance to aminoglycosides through molecular dynamics mutational study of the ribosomal A-site publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002099 – volume: 11 start-page: 2315 year: 2015 ident: 10.1016/j.bbagen.2020.129600_bb0290 article-title: Stacking free energies of all DNA and RNA nucleoside pairs and dinucleoside-monophosphates computed using recently revised AMBER parameters and compared with experiment publication-title: J. Chem. Theory Comput. doi: 10.1021/ct501170h – volume: 116 start-page: 11845 year: 2012 ident: 10.1016/j.bbagen.2020.129600_bb0065 article-title: Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis publication-title: J. Phys. Chem. B doi: 10.1021/jp305628v – volume: 126 year: 2007 ident: 10.1016/j.bbagen.2020.129600_bb0245 article-title: Canonical sampling through velocity rescaling publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 – volume: 7 start-page: 2886 year: 2011 ident: 10.1016/j.bbagen.2020.129600_bb0225 article-title: Refinement of the Cornell et al nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200162x – volume: 19 start-page: 1327 year: 2013 ident: 10.1016/j.bbagen.2020.129600_bb0090 article-title: Automated classification of RNA 3D motifs and the RNA 3D motif atlas publication-title: RNA doi: 10.1261/rna.039438.113 – volume: 44 start-page: 7100 year: 2016 ident: 10.1016/j.bbagen.2020.129600_bb0295 article-title: Free energy analysis and mechanism of base pair stacking in nicked DNA publication-title: Nucleic Acids Res. – volume: 6 start-page: 910 year: 2010 ident: 10.1016/j.bbagen.2020.129600_bb0060 article-title: An RNA molecular switch: intrinsic flexibility of 23S rRNA helices 40 and 68 5′-UAA/5′-GAN internal loops studied by molecular dynamics methods publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900440t – volume: 31 start-page: 219 year: 2017 ident: 10.1016/j.bbagen.2020.129600_bb0080 article-title: RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-016-0007-0 – volume: 34 start-page: 1326 year: 2006 ident: 10.1016/j.bbagen.2020.129600_bb0010 article-title: Structural and evolutionary classification of G/U wobble basepairs in the ribosome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl025 – volume: 310 start-page: 735 year: 2001 ident: 10.1016/j.bbagen.2020.129600_bb0040 article-title: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4807 – volume: 20 start-page: 629 year: 2006 ident: 10.1016/j.bbagen.2020.129600_bb0145 article-title: Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-006-9083-x – volume: 120 start-page: 215 year: 2008 ident: 10.1016/j.bbagen.2020.129600_bb0175 article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function publication-title: Theor. Chem. Accounts doi: 10.1007/s00214-007-0310-x – volume: 28 start-page: 851 year: 2014 ident: 10.1016/j.bbagen.2020.129600_bb0150 article-title: Analysis of stacking overlap in nucleic acid structures: algorithm and application publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-014-9767-6 – volume: 19 start-page: 28718 year: 2017 ident: 10.1016/j.bbagen.2020.129600_bb0105 article-title: Stacking interactions involving non-Watson–crick basepairs: dispersion corrected density functional theory studies publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP04904H – volume: 90 start-page: 1007 year: 1989 ident: 10.1016/j.bbagen.2020.129600_bb0170 article-title: Gaussian basis sets for use in correlated molecular calculations I the atoms boron through neon and hydrogen publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 100 start-page: 5590 year: 1996 ident: 10.1016/j.bbagen.2020.129600_bb0180 article-title: Nature of nucleic acid−base stacking: nonempirical ab initio and empirical potential characterization of 10 stacked base dimers comparison of stacked and H-bonded base pairs publication-title: J. Phys. Chem. doi: 10.1021/jp953306e – volume: 37 start-page: 5917 year: 2009 ident: 10.1016/j.bbagen.2020.129600_bb0280 article-title: Conformational analysis of nucleic acids revisited: curves+ publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp608 – volume: 30 start-page: 3497 year: 2002 ident: 10.1016/j.bbagen.2020.129600_bb0015 article-title: The non-Watson-Crick base pairs and their associated isostericity matrices publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf481 – volume: 300 start-page: 819 year: 2000 ident: 10.1016/j.bbagen.2020.129600_bb0300 article-title: A-form conformational motifs in ligand-bound DNA structures publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3690 – volume: 19 start-page: 553 year: 1970 ident: 10.1016/j.bbagen.2020.129600_bb0155 article-title: The calculation of small molecular interactions by the differences of separate total energies some procedures with reduced errors publication-title: Mol. Phys. doi: 10.1080/00268977000101561 – volume: 114 start-page: 14028 year: 2010 ident: 10.1016/j.bbagen.2020.129600_bb0070 article-title: Structural stability of Tandemly occurring noncanonical basepairs within double helical fragments: molecular dynamics studies of functional RNA publication-title: J. Phys. Chem. B doi: 10.1021/jp102835t – year: 2015 ident: 10.1016/j.bbagen.2020.129600_bb0315 – volume: 11 start-page: 281 year: 1995 ident: 10.1016/j.bbagen.2020.129600_bb0140 article-title: NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures publication-title: Comput. Appl. Biosci. – volume: 123 start-page: 47 year: 2019 ident: 10.1016/j.bbagen.2020.129600_bb0255 article-title: Salt induced structural collapse, swelling, and signature of aggregation of two ssDNA strands: insights from molecular dynamics simulation publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b09098 – volume: 47 year: 2019 ident: 10.1016/j.bbagen.2020.129600_bb0055 article-title: miRBase: from microRNA sequences to function publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1141 – volume: 112 start-page: 3786 year: 2008 ident: 10.1016/j.bbagen.2020.129600_bb0200 article-title: Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies publication-title: J. Phys. Chem. B doi: 10.1021/jp076921e – volume: 6 start-page: 3836 year: 2010 ident: 10.1016/j.bbagen.2020.129600_bb0220 article-title: Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100481h – volume: 102 start-page: 1995 year: 1998 ident: 10.1016/j.bbagen.2020.129600_bb0195 article-title: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model publication-title: J. Phys. Chem. A doi: 10.1021/jp9716997 – volume: 13 start-page: 1015 year: 1996 ident: 10.1016/j.bbagen.2020.129600_bb0205 article-title: The structure of B -DNA in oriented fibers publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.1996.10508916 – volume: 150 start-page: 125101 year: 2019 ident: 10.1016/j.bbagen.2020.129600_bb0130 article-title: Dynamics of an adenine-adenine RNA conformational switch from discrete path sampling publication-title: J. Chem. Phys. doi: 10.1063/1.5070152 – volume: 15 start-page: 95 year: 2019 ident: 10.1016/j.bbagen.2020.129600_bb0095 article-title: Investigations of stacked DNA base-pair steps: highly accurate stacking interaction energies, energy decomposition, and many-body stacking effects publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00643 |
SSID | ssj0000595 |
Score | 2.3340619 |
Snippet | Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129600 |
SubjectTerms | adenines Basepair stacking bioinformatics Conformational plasticity crystal structure Density functional theory energy Flanking basepair effect geometry hydrogen bonding molecular dynamics Molecular dynamics simulation molecular models prediction quantum mechanics RNA RNA double helices simulation models |
Title | Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129600 https://www.ncbi.nlm.nih.gov/pubmed/32179130 https://www.proquest.com/docview/2378002383 https://www.proquest.com/docview/2477619434 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NSx0xEMCDKNJeirVfr1VJodf0bTbJZrc3eSivil5aqbeQTfLKE9196Erx0r-9M0nW4sEKPe6SLCGTnfklM5kh5JNrXMG9VaxVtmAylJKBnVdM-yA596GyDV5OPjmt5mfy6Fydr5HZeBcGwyqz7k86PWrr_GaaZ3O6Wi6n39CpBzihykj1JeYElVLjKv_8-2-YB-CDSp4EybD1eH0uxni1Lfy0mAW1xDQLAPPFY-bpMfyMZuhwi7zI_Ej30xBfkrXQbZPNVFHybps8m40F3F6ROwBJhyfh9GforwK8ozkqiw6_enoTa1l7-sMOwNxshvnxKRq1Fbp4vtBU7yGfFVI3fpfaztN22eeMq5jlOfbydHWNTh9s_5qcHR58n81ZrrTAnGjUACpRtmDra25LVwkrqyLUC2AVgIdQ-cLzVtfAIo6HugiCB8AwrhaN47DZ8tWiEm_Ietd34R2hjW6AAbRXsO0GOHNWLArtuau5gK2OsBMixgk2Lqchx2oYl2aMN7swSSwGxWKSWCaE3fdapTQcT7TXo-zMg-VkwFI80fPjKGoD84ruE9uF_vbGlELXEXHEP9pIHc-FhJyQt2md3I8X5kw3gAzv_3tsH8hzfErRwjtkfbi-DbvAREO7Fxf9HtnY_3o8P_0DUR0J9Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfGTWh7QTC-js8g8Vpd0yRNy9t0Yrqx7V7YxN6iNMmhQ9Cetk7T_nvsJh3iYUziNbWryE7sX2LHBvjoapdzb1XWKJtnMhQyQz-vMu2D5NyH0tb0OPlkWS7O5Jdzdb4F8_EtDKVVJtsfbfpgrdPILElztlmvZ18pqIdwQhUDqi_kA9im6lRqAtv7h0eL5R-DrIbmK0SfEcP4gm5I82oa3LdUCLWgSguI5_O7PNRdCHTwRAeP4VGCkGw_zvIJbIV2Dx7GppI3e7AzH3u4PYUbxJKOLsPZ99D9CjjGUmIW6687djm0s_bsm-0RdmdzKpHPyK9tKMrzicWWD-m6kLnxv8y2njXrLhVdpULPA5dnmwuK-xD9Mzg7-Hw6X2Sp2ULmRK16tIqyQXdfcVu4UlhZ5qFaIVxB_BBKn3ve6ArhiOOhyoPgAZEYV6vacTxv-XJViucwabs2vARW6xphgPYKT96Iz5wVq1x77iou8LQj7BTEKGDjUiVyaojx04wpZz9MVIshtZiolilkt1ybWInjHno96s78taIMOot7OD-MqjYoV4qg2DZ0V5emELoaUI74B43Uw9WQkFN4EdfJ7XxRZrpG1PDqv-f2HnYWpyfH5vhwefQadulLTB5-A5P-4iq8RYjUN-_SFvgNZ_gMpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+geometry+between+two+sheared+Watson-Crick+basepairs%3A+Computational+chemistry+and+bioinformatics+based+prediction&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Maiti%2C+Satyabrata&rft.au=Mukherjee%2C+Debasish&rft.au=Roy%2C+Parthajit&rft.au=Chakrabarti%2C+Jaydeb&rft.date=2020-07-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1864&rft.issue=7&rft.spage=129600&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129600&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |