Revealing the atomistic details behind the binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study
CD28 and CTLA-4 are homologous T-cell receptors that bind with B7–1 and produce two opposing immunological signals required for T-cell activation and inactivation, respectively. It has been clinically proven that specific blockade of these key protein-protein interactions at the synapse can offer im...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1862; no. 12; pp. 2764 - 2778 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2018.08.010 |
Cover
Loading…
Abstract | CD28 and CTLA-4 are homologous T-cell receptors that bind with B7–1 and produce two opposing immunological signals required for T-cell activation and inactivation, respectively. It has been clinically proven that specific blockade of these key protein-protein interactions at the synapse can offer immunotherapeutic benefits for cancers and autoimmune treatments. Hence, there is a growing interest towards developing anti-CD28 and anti-CTLA-4 small molecule inhibitors. To achieve this goal, it is important to understand unique molecular level fingerprint interactions that stabilize CTLA-4/B7–1 and CD28/B7–1 complexes. However, until recently, the structure of the human CD28/B7–1 complex has not been resolved experimentally, which remains a significant setback in achieving specific inhibitors against CTLA-4 or CD28.
Here, we employed a combination of advanced molecular modelling and extensive molecular dynamics (MD) simulations to model the CD28/B7–1 complex and characterize the key interactions that stabilize the complex.
Ensemble protein-protein docking and MD-based binding-free energy calculations were used to obtain a comprehensive structural model of the CD28/B7–1 complex, which was validated with various mutation-based experimental data from literature. Our CD28/B7–1 model has much weaker binding affinity than the CTLA-4/B7–1 complex, which is in agreement with the results from our binding assay experiments and previous studies.
Per-residue energy decomposition of the binding affinities of the two complexes revealed the unique fingerprint hot-spot sites in CTLA-4/B7–1 and CD28/B7–1 complexes.
The results presented in this work will, on a long-run, be useful to develop new generation of specific CD28 and CTLA-4 inhibitors for targeted immunotherapy.
•A model of human CD28/B7–1 complex is reported using rigorous in silico modelling approaches.•They key fingerprint interactions in the CD28/B7–1 and the CTLA-4/B7–1 complexes are analyzed.•Results propose a CTLA-4-like bivalent interactions between human CD28 and B7–1.•Key residues and potential hot-spots on the key immune checkpoints are reported. |
---|---|
AbstractList | CD28 and CTLA-4 are homologous T-cell receptors that bind with B7-1 and produce two opposing immunological signals required for T-cell activation and inactivation, respectively. It has been clinically proven that specific blockade of these key protein-protein interactions at the synapse can offer immunotherapeutic benefits for cancers and autoimmune treatments. Hence, there is a growing interest towards developing anti-CD28 and anti-CTLA-4 small molecule inhibitors. To achieve this goal, it is important to understand unique molecular level fingerprint interactions that stabilize CTLA-4/B7-1 and CD28/B7-1 complexes. However, until recently, the structure of the human CD28/B7-1 complex has not been resolved experimentally, which remains a significant setback in achieving specific inhibitors against CTLA-4 or CD28.
Here, we employed a combination of advanced molecular modelling and extensive molecular dynamics (MD) simulations to model the CD28/B7-1 complex and characterize the key interactions that stabilize the complex.
Ensemble protein-protein docking and MD-based binding-free energy calculations were used to obtain a comprehensive structural model of the CD28/B7-1 complex, which was validated with various mutation-based experimental data from literature. Our CD28/B7-1 model has much weaker binding affinity than the CTLA-4/B7-1 complex, which is in agreement with the results from our binding assay experiments and previous studies.
Per-residue energy decomposition of the binding affinities of the two complexes revealed the unique fingerprint hot-spot sites in CTLA-4/B7-1 and CD28/B7-1 complexes.
The results presented in this work will, on a long-run, be useful to develop new generation of specific CD28 and CTLA-4 inhibitors for targeted immunotherapy. CD28 and CTLA-4 are homologous T-cell receptors that bind with B7–1 and produce two opposing immunological signals required for T-cell activation and inactivation, respectively. It has been clinically proven that specific blockade of these key protein-protein interactions at the synapse can offer immunotherapeutic benefits for cancers and autoimmune treatments. Hence, there is a growing interest towards developing anti-CD28 and anti-CTLA-4 small molecule inhibitors. To achieve this goal, it is important to understand unique molecular level fingerprint interactions that stabilize CTLA-4/B7–1 and CD28/B7–1 complexes. However, until recently, the structure of the human CD28/B7–1 complex has not been resolved experimentally, which remains a significant setback in achieving specific inhibitors against CTLA-4 or CD28.Here, we employed a combination of advanced molecular modelling and extensive molecular dynamics (MD) simulations to model the CD28/B7–1 complex and characterize the key interactions that stabilize the complex.Ensemble protein-protein docking and MD-based binding-free energy calculations were used to obtain a comprehensive structural model of the CD28/B7–1 complex, which was validated with various mutation-based experimental data from literature. Our CD28/B7–1 model has much weaker binding affinity than the CTLA-4/B7–1 complex, which is in agreement with the results from our binding assay experiments and previous studies.Per-residue energy decomposition of the binding affinities of the two complexes revealed the unique fingerprint hot-spot sites in CTLA-4/B7–1 and CD28/B7–1 complexes.The results presented in this work will, on a long-run, be useful to develop new generation of specific CD28 and CTLA-4 inhibitors for targeted immunotherapy. CD28 and CTLA-4 are homologous T-cell receptors that bind with B7–1 and produce two opposing immunological signals required for T-cell activation and inactivation, respectively. It has been clinically proven that specific blockade of these key protein-protein interactions at the synapse can offer immunotherapeutic benefits for cancers and autoimmune treatments. Hence, there is a growing interest towards developing anti-CD28 and anti-CTLA-4 small molecule inhibitors. To achieve this goal, it is important to understand unique molecular level fingerprint interactions that stabilize CTLA-4/B7–1 and CD28/B7–1 complexes. However, until recently, the structure of the human CD28/B7–1 complex has not been resolved experimentally, which remains a significant setback in achieving specific inhibitors against CTLA-4 or CD28. Here, we employed a combination of advanced molecular modelling and extensive molecular dynamics (MD) simulations to model the CD28/B7–1 complex and characterize the key interactions that stabilize the complex. Ensemble protein-protein docking and MD-based binding-free energy calculations were used to obtain a comprehensive structural model of the CD28/B7–1 complex, which was validated with various mutation-based experimental data from literature. Our CD28/B7–1 model has much weaker binding affinity than the CTLA-4/B7–1 complex, which is in agreement with the results from our binding assay experiments and previous studies. Per-residue energy decomposition of the binding affinities of the two complexes revealed the unique fingerprint hot-spot sites in CTLA-4/B7–1 and CD28/B7–1 complexes. The results presented in this work will, on a long-run, be useful to develop new generation of specific CD28 and CTLA-4 inhibitors for targeted immunotherapy. •A model of human CD28/B7–1 complex is reported using rigorous in silico modelling approaches.•They key fingerprint interactions in the CD28/B7–1 and the CTLA-4/B7–1 complexes are analyzed.•Results propose a CTLA-4-like bivalent interactions between human CD28 and B7–1.•Key residues and potential hot-spots on the key immune checkpoints are reported. CD28 and CTLA-4 are homologous T-cell receptors that bind with B7-1 and produce two opposing immunological signals required for T-cell activation and inactivation, respectively. It has been clinically proven that specific blockade of these key protein-protein interactions at the synapse can offer immunotherapeutic benefits for cancers and autoimmune treatments. Hence, there is a growing interest towards developing anti-CD28 and anti-CTLA-4 small molecule inhibitors. To achieve this goal, it is important to understand unique molecular level fingerprint interactions that stabilize CTLA-4/B7-1 and CD28/B7-1 complexes. However, until recently, the structure of the human CD28/B7-1 complex has not been resolved experimentally, which remains a significant setback in achieving specific inhibitors against CTLA-4 or CD28.BACKGROUNDCD28 and CTLA-4 are homologous T-cell receptors that bind with B7-1 and produce two opposing immunological signals required for T-cell activation and inactivation, respectively. It has been clinically proven that specific blockade of these key protein-protein interactions at the synapse can offer immunotherapeutic benefits for cancers and autoimmune treatments. Hence, there is a growing interest towards developing anti-CD28 and anti-CTLA-4 small molecule inhibitors. To achieve this goal, it is important to understand unique molecular level fingerprint interactions that stabilize CTLA-4/B7-1 and CD28/B7-1 complexes. However, until recently, the structure of the human CD28/B7-1 complex has not been resolved experimentally, which remains a significant setback in achieving specific inhibitors against CTLA-4 or CD28.Here, we employed a combination of advanced molecular modelling and extensive molecular dynamics (MD) simulations to model the CD28/B7-1 complex and characterize the key interactions that stabilize the complex.METHODSHere, we employed a combination of advanced molecular modelling and extensive molecular dynamics (MD) simulations to model the CD28/B7-1 complex and characterize the key interactions that stabilize the complex.Ensemble protein-protein docking and MD-based binding-free energy calculations were used to obtain a comprehensive structural model of the CD28/B7-1 complex, which was validated with various mutation-based experimental data from literature. Our CD28/B7-1 model has much weaker binding affinity than the CTLA-4/B7-1 complex, which is in agreement with the results from our binding assay experiments and previous studies.RESULTSEnsemble protein-protein docking and MD-based binding-free energy calculations were used to obtain a comprehensive structural model of the CD28/B7-1 complex, which was validated with various mutation-based experimental data from literature. Our CD28/B7-1 model has much weaker binding affinity than the CTLA-4/B7-1 complex, which is in agreement with the results from our binding assay experiments and previous studies.Per-residue energy decomposition of the binding affinities of the two complexes revealed the unique fingerprint hot-spot sites in CTLA-4/B7-1 and CD28/B7-1 complexes.CONCLUSIONSPer-residue energy decomposition of the binding affinities of the two complexes revealed the unique fingerprint hot-spot sites in CTLA-4/B7-1 and CD28/B7-1 complexes.The results presented in this work will, on a long-run, be useful to develop new generation of specific CD28 and CTLA-4 inhibitors for targeted immunotherapy.GENERAL SIGNIFICANCEThe results presented in this work will, on a long-run, be useful to develop new generation of specific CD28 and CTLA-4 inhibitors for targeted immunotherapy. |
Author | Moon, Tae Chul Barakat, Khaled H. Ganesan, Aravindhan |
Author_xml | – sequence: 1 givenname: Aravindhan surname: Ganesan fullname: Ganesan, Aravindhan organization: Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada – sequence: 2 givenname: Tae Chul surname: Moon fullname: Moon, Tae Chul organization: Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada – sequence: 3 givenname: Khaled H. surname: Barakat fullname: Barakat, Khaled H. email: kbarakat@ualberta.ca organization: Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30251665$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctqGzEUhkVJaJy0b1CKlt2MK81ImlEWBddN24ChUNK10OVMLOOR3JFsyC7v0Dfsk0SOnU0WacWBI9D3_zqXc3QSYgCE3lEypYSKj6upMfoWwrQmtJuSEpS8QhPatXXVESJO0IQ0hFWMCn6GzlNakXK45K_RWUNqToXgE3T_E3ag1z7c4rwErHMcfMreYgdZ-3XCBpY-uMdHUy57MPb4c_v3_g_FOeL5l7rDuhDzm8WsYpd4hm0cNiMsISS_A7wZYwYfqmPGQ3Swfvww5a27e4NOe71O8PaYL9Cvr1c38-_V4se36_lsUdlG8lx1gukenHbSlbaNEI3mfWNZT4FJW1vnrOHQW-l6CZSxGoQ2rWRWirYFY5sL9OHgW-r4vYWUVWnUlkp0gLhNqqYN7UTdMPYfKK2pJK3gBX1_RLdmAKc2ox_0eKeeBlyAywNgx5jSCL2yPuvsY8hjma-iRO23qVbqsE2136YiJSgpYvZM_OT_D9mngwzKPHceRpWsh2DB-RFsVi76lw0eAJAOvHE |
CitedBy_id | crossref_primary_10_1007_s12094_021_02659_w crossref_primary_10_1002_med_21632 crossref_primary_10_1021_acsnano_4c05065 crossref_primary_10_1002_ptr_8082 crossref_primary_10_1016_j_intimp_2023_111055 crossref_primary_10_3390_cancers16101837 crossref_primary_10_1371_journal_pone_0233578 crossref_primary_10_3390_ijms232314785 crossref_primary_10_1080_07391102_2021_1891969 crossref_primary_10_3390_jfb13010006 crossref_primary_10_4254_wjh_v16_i10_1338 crossref_primary_10_4254_wjh_v16_i10_1158 crossref_primary_10_1016_j_bbrc_2019_04_041 crossref_primary_10_1016_j_jbc_2024_107134 crossref_primary_10_3389_fimmu_2021_783236 crossref_primary_10_1038_s41598_019_48826_6 crossref_primary_10_2174_1386207323666200127123349 crossref_primary_10_15407_visn2019_02_044 crossref_primary_10_1038_s41598_021_86471_0 crossref_primary_10_1021_acs_jcim_3c01579 crossref_primary_10_15789_1563_0625_EOC_2348 crossref_primary_10_1002_jcb_30409 crossref_primary_10_1080_13685538_2024_2310308 crossref_primary_10_20538_1682_0363_2020_4_179_188 crossref_primary_10_1021_acs_chemrev_9b00055 crossref_primary_10_3390_ijms23010488 crossref_primary_10_3390_biomedicines9091075 |
Cites_doi | 10.1016/0021-9991(77)90098-5 10.4049/jimmunol.149.12.3795 10.1074/jbc.M110162200 10.1039/C6CP03670H 10.1021/ct700119m 10.1021/ci100275a 10.1186/s12929-017-0341-0 10.1007/BF02786473 10.1038/ncomms13354 10.1021/ja026939x 10.1021/acs.jctc.5b00255 10.1126/scitranslmed.aah3560 10.1016/j.chembiol.2004.09.011 10.1002/jcc.20084 10.1016/j.drudis.2016.11.001 10.1038/nsb0797-527 10.1038/bjc.2017.136 10.1111/j.1742-7843.2009.00375.x 10.1016/j.jmb.2015.09.014 10.18632/oncotarget.18004 10.1084/jem.185.3.393 10.1074/jbc.271.43.26762 10.1084/jem.180.6.2049 10.1038/328267a0 10.1007/978-1-4419-5632-3_6 10.1084/jem.192.5.681 10.1165/ajrcmb.22.3.f179 10.1182/blood.V84.10.3261.3261 10.1002/jcc.24011 10.1084/jem.174.3.561 10.1021/ct400314y 10.1139/cjc-2012-0360 10.1021/ct400341p 10.1038/ni1170 10.1002/jlb.62.2.156 10.1109/TPAMI.1979.4766909 10.1517/17460441.2015.1032936 10.1021/ct3010485 10.1189/jlb.1212621 10.1016/j.jmgm.2010.12.003 10.1371/journal.pone.0089263 10.1084/jem.176.6.1595 10.1126/science.271.5256.1734 10.1073/pnas.1617941114 10.1002/jcc.21366 10.1084/jem.182.3.667 10.1016/S1074-7613(00)80158-2 10.1182/blood-2002-08-2480 10.1002/prot.20033 10.1084/jem.173.3.721 10.1016/j.critrevonc.2013.08.002 10.1074/jbc.270.25.15417 10.1016/j.jmgm.2015.01.015 10.1021/ct400045d 10.4049/jimmunol.156.3.1047 10.1111/j.1432-2277.2010.01176.x 10.1038/35069118 10.1074/jbc.270.36.21181 10.1200/JCO.2014.59.4358 10.1016/j.pbiomolbio.2013.06.004 10.1002/jcc.23095 10.1111/j.0105-2896.2005.00242.x 10.1016/j.jmgm.2017.09.019 10.1007/s00894-017-3482-x 10.1021/acs.jcim.6b00196 10.1615/CritRevImmunol.v18.i5.10 10.1006/jmbi.1993.1648 10.1172/JCI13220 10.1016/j.str.2015.09.010 10.1146/annurev.immunol.14.1.233 10.1016/j.cellimm.2007.02.014 10.1016/S0092-8674(00)80790-4 10.1016/0263-7855(96)00018-5 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2018.08.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 2778 |
ExternalDocumentID | 30251665 10_1016_j_bbagen_2018_08_010 S0304416518302587 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-864afedad9dbbab663a5f3c4f1e49c2cddcb5efc9df9e1442e6ab794c9677ebc3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 09:51:53 EDT 2025 Fri Jul 11 11:35:22 EDT 2025 Mon Jul 21 05:59:10 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 Tue Jul 01 00:22:11 EDT 2025 Fri Feb 23 02:45:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | CD28 Molecular dynamics B7–1 Protein-protein docking CTLA-4 Immune checkpoints |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-864afedad9dbbab663a5f3c4f1e49c2cddcb5efc9df9e1442e6ab794c9677ebc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30251665 |
PQID | 2112190765 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2131862344 proquest_miscellaneous_2112190765 pubmed_primary_30251665 crossref_citationtrail_10_1016_j_bbagen_2018_08_010 crossref_primary_10_1016_j_bbagen_2018_08_010 elsevier_sciencedirect_doi_10_1016_j_bbagen_2018_08_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Roh, Chen, Reuben, Spencer, Prieto, Miller, Gopalakrishnan, Wang, Cooper, Reddy, Gumbs, Little, Chang, Chen, Wani, De Macedo, Chen, Austin-Breneman, Jiang, Roszik, Tetzlaff, Davies, Gershenwald, Tawbi, Lazar, Hwu, Hwu, Diab, Glitza, Patel, Woodman, Amaria, Prieto, Hu, Sharma, Allison, Chin, Zhang, Wargo, Futreal (bb0160) 2017 Genheden, Ryde (bb0365) 2010; 31 Stamper, Zhang, Tobin, Erbe, Ikemizu, Davis, Stahl, Seehra, Somers, Mosyak (bb0205) 2001; 410 Zak, Kitel, Przetocka, Golik, Guzik, Musielak, Dömling, Dubin, Holak (bb0250) 2015; 23 Archdeacon, Dixon, Belen, Albrecht, Meyer (bb0155) 2012; 12 van Zundert, Rodrigues, Trellet, Schmitz, Kastritis, Karaca, Melquiond, van Dijk, de Vries, Bonvin (bb0320) 2016 Lazar-Molnar, Almo, Nathenson (bb0195) 2006; 244 Keir, Sharpe (bb0065) 2005; 204 Postow, Callahan, Wolchok (bb0095) 2015; 33 Linsley, Brady, Grosmaire, Aruffo, Damle, Ledbetter (bb0420) 1991; 173 Lenschow, W, Bluestone (bb0045) 1996 Gardner, Jeffery, Sansom (bb0150) 2014; 14 Brunet, Denizot, Luciani, Roux-Dosseto, Suzan, Mattei, Golstein (bb0120) 1987; 328 Kalyaanamoorthy, Chen (bb0335) 2014; 114 Grosso, Jure-Kunkel (bb0100) 2013; 13 Jonathan M. Pitt, M. Vétizou, R. Daillère, María Daikh, Wofsy, Imboden (bb0060) 1997; 62 Freeman, Lombard, Gimmi, Brod, Lee, Laning, Hafler, Dorf, Gray, Reiser (bb0110) 1992; 149 de Vries, Bonvin (bb0330) 2011; 6 Lee, Lee, Shin, Chae, Choi, Kim, Lim, Won Heo, Park, Lee, Ryu, Son, Lee, Heo (bb0025) 2016; 7 Linsley, Nadler, Bajorath, Peach, Leung, Rogers, Bradshaw, Stebbins, Leytze, Brady, Malacko, Marquardt, Shaw (bb0200) 1995; 270 Maffucci, Contini (bb0375) 2013; 9 Evans, Esnouf, Manso-Sancho, Gilbert, James, Yu, Fennelly, Vowles, Hanke, Walse, Hünig, Sørensen, Stuart, Davis (bb0210) 2005; 6 Tsai, Hsu (bb0020) 2017; 24 Merelli, Massi, Cattaneo, Mandalà (bb0125) 2014 Humphrey, Dalke, Schulten (bb0235) 1996; 14 Su, Tsai, Mehboob, Hevener, Johnson (bb0340) 2015; 36 Hou, Wang, Li, Wang (bb0355) 2011; 51 Fargeas, Truneh, Reddy, Hurle, Sweet, Sékaly (bb0435) 1995; 182 Wells, Walsh, Bluestone, Turka (bb0090) 2001; 108 Stamper, Zhang, Tobin, Erbe, Ikemizu, Davis, Stahl, Seehra, Somers, Mosyak (bb0215) 2001; 410 Metzler, Bajorath, Fenderson, Shaw, Constantine, Naemura, Leytze, Peach, Lavoie, Mueller, Linsley (bb0405) 1997; 4 Lawrence, Colman (bb0410) 1993; 234 Pettersen Eric, Goddard Thomas, Huang Conrad, Couch Gregory, Greenblatt Daniel, Meng Elaine, Ferrin Thomas (bb0285) 2004; 25 He, Chai, Qi, Zhang, Tong, Shi, Yan, Tan, Gao (bb0005) 2017; 8 Slavik, Hutchcroft, Bierer (bb0080) 1999; 19 , Ahmed, Barakat (bb0245) 2017; 23 Zaretsky, Garcia-Diaz, Shin, Escuin-Ordinas, Hugo, Hu-Lieskovan, Torrejon, Abril-Rodriguez, Sandoval, Barthly, Saco, Homet Moreno, Mezzadra, Chmielowski, Ruchalski, Shintaku, Sanchez, Puig-Saus, Cherry, Seja, Kong, Pang, Berent-Maoz, Comin-Anduix, Graeber, Tumeh, Schumacher, Lo, Ribas (bb0170) 2016; 375 Case, Darden, Cheatham, Simmerling, Wang, Duke, Luo, Walker, Zhang, Merz, Roberts, Hayik, Roitberg, Seabra, Swails, Goetz, Kolossváry, Wong, Paesani, Vanicek, Wolf, Liu, Wu, Brozell, Steinbrecher, Gohlke, Cai, Ye, Wang, Hsieh, Cui, Roe, Mathews, Seetin, Salomon-Ferrer, Sagui, Babin, Luchko, Gusarov, Kovalenko, Kollman (bb0290) 2012 Greene, Leytze, Emswiler, Peach, Bajorath, Cosand, Linsley (bb0185) 1996; 271 Pardoll (bb0030) 2012; 12 Jalily Hasani, Ahmed, Barakat (bb0325) 2017; 78 Case, Babin, Berryman, Betz, Cai, Cerutti, Cheatham, Darden, Duke, Gohlke, Goetz, Gusarov, Homeyer, Janowski, Kaus, Kolossváry, Kovalenko, Lee, LeGrand, Luchko, Luo, Madej, Merz, Paesani, Roe, Roitberg, Sagui, Salomon-Ferrer, Seabra, Simmerling, Smith, Swails, Walker, Wolf, Wu, Kollman (bb0265) 2014 Roe, Cheatham (bb0280) 2013; 9 Peach, Bajorath, Naemura, Leytze, Greene, Aruffo, Linsley (bb0230) 1995; 270 Linsley, Brady, Urnes, Grosmaire, Damle, Ledbetter (bb0425) 1991; 174 Korhonen, Moilanen (bb0140) 2009; 104 (bb0260) 2010 Salomon-Ferrer, Götz, Poole, Le Grand, Walker (bb0275) 2013; 9 Ganesan, Coote, Barakat (bb0395) 2017; 22 Snanoudj, Frangié, Deroure, François, Créput, Beaudreuil, Dürrbach, Charpentier (bb0145) 2007; 1 Shao, Tanner, Thompson, Cheatham (bb0300) 2007; 3 Chen, Liu, Sun, Pan, Li, Li, Hou (bb0430) 2016; 18 Peach, Bajorath, Brady, Leytze, Greene, Naemura, Linsley (bb0225) 1994; 180 Maier, Martinez, Kasavajhala, Wickstrom, Hauser, Simmerling (bb0255) 2015; 11 Maffucci, Hu, Fumagalli, Contini (bb0380) 2018 Davies, Bouldin (bb0295) 1979; PAMI-1 Maffucci, Contini (bb0370) 2016; 56 Ganesan, Coote, Barakat (bb0400) 2017 Ramagopal, Liu, Garrett-Thomson, Bonanno, Yan, Srinivasan, Wong, Bell, Mankikar, Rangan, Deshpande, Korman, Almo (bb0010) 2017; 114 Ryckaert, Ciccotti, Berendsen (bb0270) 1977; 23 van der Merwe, Bodian, Daenke, Linsley, Davis (bb0105) 1997; 185 Strutt, McKinstry, Swain (bb0070) 2011; 780 Poirier, Blancho, Vanhove (bb0135) 2011; 24 Erbe, Wang, Xing, Tobin (bb0035) 2002; 277 Dominguez, Boelens, Bonvin (bb0315) 2003; 125 Greenfield, Nguyen, Kuchroo (bb0040) 1998; 18 Oehme, Brownlee, Wilson (bb0350) 2012; 33 Leach, Krummel, Allison (bb0055) 1996; 271 Cogdill, Andrews, Wargo (bb0015) 2017; 117 Genheden, Ryde (bb0345) 2015; 10 1255–1269. Vanhove, Laflamme, Coulon, Mougin, Vusio, Haspot, Tiollier, Soulillou (bb0180) 2003; 102 Viricel, Ahmed, Barakat (bb0240) 2015; 57 Barakat, Tuszynski (bb0310) 2011; 29 Ikemizu, Gilbert, Fennelly, Collins, Harlos, Jones, Stuart, Davis (bb0390) 2000; 12 Morton, Fu, Stewart, Giacoletto, White, Leysath, Evans, Shieh, Karr (bb0220) 1996; 156 Huxley, Sutton, Debnam, Matthews, Brewer, Rose, Trickett, Williams, Andersen, Classon (bb0175) 2004; 11 T. Yamazaki, B. Routy, P. Lepage, Ivo G. Boneca, M. Chamaillard, G. Kroemer and L. Zitvogel Intlekofer, Thompson (bb0130) 2013; 94 Linsley, Greene, Tan, Bradshaw, Ledbetter, Anasetti, Damle (bb0115) 1992; 176 Wang, Smolyar, Tan, Liu, Kim, Sun, Wagner, Reinherz (bb0415) 1999 Abrams, Kelley, Hayes, Kikuchi, Brown, Kang, Lebwohl, Guzzo, Jegasothy, Linsley, Krueger (bb0050) 2000; 192 Nguyen, Roe, Simmerling (bb0385) 2013; 9 Guinan, Gribben, Boussiotis, Freeman, Nadler (bb0190) 1994; 84 Onufriev, Bashford, Case (bb0360) 2004; 55 Green (bb0075) 2000; 22 Sanchez-Lockhart, Rojas, Fettis, Bauserman, Higa, Miao, Waugh, Miller (bb0085) 2014; 9 Gajewski, Tuszynski, Barakat, Huzil, Klobukowski (bb0305) 2013; 91 Lee (10.1016/j.bbagen.2018.08.010_bb0025) 2016; 7 Merelli (10.1016/j.bbagen.2018.08.010_bb0125) 2014; 89 Evans (10.1016/j.bbagen.2018.08.010_bb0210) 2005; 6 Leach (10.1016/j.bbagen.2018.08.010_bb0055) 1996; 271 Sanchez-Lockhart (10.1016/j.bbagen.2018.08.010_bb0085) 2014; 9 van der Merwe (10.1016/j.bbagen.2018.08.010_bb0105) 1997; 185 Ganesan (10.1016/j.bbagen.2018.08.010_bb0395) 2017; 22 Dominguez (10.1016/j.bbagen.2018.08.010_bb0315) 2003; 125 Snanoudj (10.1016/j.bbagen.2018.08.010_bb0145) 2007; 1 Morton (10.1016/j.bbagen.2018.08.010_bb0220) 1996; 156 Pardoll (10.1016/j.bbagen.2018.08.010_bb0030) 2012; 12 Greenfield (10.1016/j.bbagen.2018.08.010_bb0040) 1998; 18 Linsley (10.1016/j.bbagen.2018.08.010_bb0115) 1992; 176 Salomon-Ferrer (10.1016/j.bbagen.2018.08.010_bb0275) 2013; 9 Davies (10.1016/j.bbagen.2018.08.010_bb0295) 1979; PAMI-1 Slavik (10.1016/j.bbagen.2018.08.010_bb0080) 1999; 19 Cogdill (10.1016/j.bbagen.2018.08.010_bb0015) 2017; 117 Case (10.1016/j.bbagen.2018.08.010_bb0290) 2012 (10.1016/j.bbagen.2018.08.010_bb0260) 2010 de Vries (10.1016/j.bbagen.2018.08.010_bb0330) 2011; 6 Maffucci (10.1016/j.bbagen.2018.08.010_bb0370) 2016; 56 Vanhove (10.1016/j.bbagen.2018.08.010_bb0180) 2003; 102 Barakat (10.1016/j.bbagen.2018.08.010_bb0310) 2011; 29 Intlekofer (10.1016/j.bbagen.2018.08.010_bb0130) 2013; 94 Korhonen (10.1016/j.bbagen.2018.08.010_bb0140) 2009; 104 Stamper (10.1016/j.bbagen.2018.08.010_bb0215) 2001; 410 10.1016/j.bbagen.2018.08.010_bb0165 Archdeacon (10.1016/j.bbagen.2018.08.010_bb0155) 2012; 12 He (10.1016/j.bbagen.2018.08.010_bb0005) 2017; 8 Wells (10.1016/j.bbagen.2018.08.010_bb0090) 2001; 108 Gardner (10.1016/j.bbagen.2018.08.010_bb0150) 2014; 14 Stamper (10.1016/j.bbagen.2018.08.010_bb0205) 2001; 410 Lazar-Molnar (10.1016/j.bbagen.2018.08.010_bb0195) 2006; 244 Oehme (10.1016/j.bbagen.2018.08.010_bb0350) 2012; 33 Tsai (10.1016/j.bbagen.2018.08.010_bb0020) 2017; 24 Linsley (10.1016/j.bbagen.2018.08.010_bb0420) 1991; 173 Strutt (10.1016/j.bbagen.2018.08.010_bb0070) 2011; 780 Wang (10.1016/j.bbagen.2018.08.010_bb0415) 1999; 97 Roe (10.1016/j.bbagen.2018.08.010_bb0280) 2013; 9 Linsley (10.1016/j.bbagen.2018.08.010_bb0200) 1995; 270 Peach (10.1016/j.bbagen.2018.08.010_bb0225) 1994; 180 Maffucci (10.1016/j.bbagen.2018.08.010_bb0375) 2013; 9 Ramagopal (10.1016/j.bbagen.2018.08.010_bb0010) 2017; 114 Roh (10.1016/j.bbagen.2018.08.010_bb0160) 2017; 9 Zaretsky (10.1016/j.bbagen.2018.08.010_bb0170) 2016; 375 Lenschow (10.1016/j.bbagen.2018.08.010_bb0045) 1996; 14 Su (10.1016/j.bbagen.2018.08.010_bb0340) 2015; 36 Linsley (10.1016/j.bbagen.2018.08.010_bb0425) 1991; 174 Kalyaanamoorthy (10.1016/j.bbagen.2018.08.010_bb0335) 2014; 114 Freeman (10.1016/j.bbagen.2018.08.010_bb0110) 1992; 149 Zak (10.1016/j.bbagen.2018.08.010_bb0250) 2015; 23 Guinan (10.1016/j.bbagen.2018.08.010_bb0190) 1994; 84 Peach (10.1016/j.bbagen.2018.08.010_bb0230) 1995; 270 Case (10.1016/j.bbagen.2018.08.010_bb0265) 2014 Daikh (10.1016/j.bbagen.2018.08.010_bb0060) 1997; 62 Abrams (10.1016/j.bbagen.2018.08.010_bb0050) 2000; 192 Nguyen (10.1016/j.bbagen.2018.08.010_bb0385) 2013; 9 Grosso (10.1016/j.bbagen.2018.08.010_bb0100) 2013; 13 van Zundert (10.1016/j.bbagen.2018.08.010_bb0320) 2016; 428 Hou (10.1016/j.bbagen.2018.08.010_bb0355) 2011; 51 Postow (10.1016/j.bbagen.2018.08.010_bb0095) 2015; 33 Humphrey (10.1016/j.bbagen.2018.08.010_bb0235) 1996; 14 Gajewski (10.1016/j.bbagen.2018.08.010_bb0305) 2013; 91 Maier (10.1016/j.bbagen.2018.08.010_bb0255) 2015; 11 Brunet (10.1016/j.bbagen.2018.08.010_bb0120) 1987; 328 Ikemizu (10.1016/j.bbagen.2018.08.010_bb0390) 2000; 12 Greene (10.1016/j.bbagen.2018.08.010_bb0185) 1996; 271 Metzler (10.1016/j.bbagen.2018.08.010_bb0405) 1997; 4 Keir (10.1016/j.bbagen.2018.08.010_bb0065) 2005; 204 Huxley (10.1016/j.bbagen.2018.08.010_bb0175) 2004; 11 Ahmed (10.1016/j.bbagen.2018.08.010_bb0245) 2017; 23 Jalily Hasani (10.1016/j.bbagen.2018.08.010_bb0325) 2017; 78 Chen (10.1016/j.bbagen.2018.08.010_bb0430) 2016; 18 Ryckaert (10.1016/j.bbagen.2018.08.010_bb0270) 1977; 23 Genheden (10.1016/j.bbagen.2018.08.010_bb0365) 2010; 31 Maffucci (10.1016/j.bbagen.2018.08.010_bb0380) 2018 Erbe (10.1016/j.bbagen.2018.08.010_bb0035) 2002; 277 Genheden (10.1016/j.bbagen.2018.08.010_bb0345) 2015; 10 Poirier (10.1016/j.bbagen.2018.08.010_bb0135) 2011; 24 Ganesan (10.1016/j.bbagen.2018.08.010_bb0400) 2017 Viricel (10.1016/j.bbagen.2018.08.010_bb0240) 2015; 57 Green (10.1016/j.bbagen.2018.08.010_bb0075) 2000; 22 Lawrence (10.1016/j.bbagen.2018.08.010_bb0410) 1993; 234 Shao (10.1016/j.bbagen.2018.08.010_bb0300) 2007; 3 Fargeas (10.1016/j.bbagen.2018.08.010_bb0435) 1995; 182 Onufriev (10.1016/j.bbagen.2018.08.010_bb0360) 2004; 55 Pettersen Eric (10.1016/j.bbagen.2018.08.010_bb0285) 2004; 25 |
References_xml | – volume: 9 start-page: 2020 year: 2013 end-page: 2034 ident: bb0385 publication-title: J. Chem. Theory Comput. – year: 2017 ident: bb0160 publication-title: Sci. Transl. Med. – start-page: 140 year: 2014 end-page: 165 ident: bb0125 publication-title: Crit. Rev. Oncol./Hematol. – start-page: 720 year: 2016 end-page: 725 ident: bb0320 publication-title: J. Mol. Biol. – volume: 6 start-page: 271 year: 2005 end-page: 279 ident: bb0210 publication-title: Nat. Immunol. – volume: 270 start-page: 21181 year: 1995 end-page: 21187 ident: bb0230 publication-title: J. Biol. Chem. – volume: 180 start-page: 2049 year: 1994 end-page: 2058 ident: bb0225 publication-title: J. Exp. Med. – volume: 270 start-page: 15417 year: 1995 end-page: 15424 ident: bb0200 publication-title: J. Biol. Chem. – volume: 3 start-page: 2312 year: 2007 end-page: 2334 ident: bb0300 publication-title: J. Chem. Theory Comput. – volume: 234 start-page: 946 year: 1993 end-page: 950 ident: bb0410 publication-title: J. Mol. Biol. – volume: 102 start-page: 564 year: 2003 end-page: 570 ident: bb0180 publication-title: Blood – volume: 31 start-page: 837 year: 2010 end-page: 846 ident: bb0365 publication-title: J. Comput. Chem. – volume: 33 start-page: 1974 year: 2015 end-page: 1982 ident: bb0095 publication-title: J. Clin. Oncol. – volume: 117 start-page: 1 year: 2017 end-page: 7 ident: bb0015 publication-title: Br. J. Cancer – volume: 271 start-page: 26762 year: 1996 end-page: 26771 ident: bb0185 publication-title: J. Biol. Chem. – start-page: 233 year: 1996 end-page: 258 ident: bb0045 publication-title: Annu. Rev. Immunol. – start-page: 7 year: 2017 ident: bb0400 article-title: e1306-n/a publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 174 start-page: 561 year: 1991 end-page: 569 ident: bb0425 publication-title: J. Exp. Med. – volume: 18 start-page: 389 year: 1998 end-page: 418 ident: bb0040 publication-title: Crit. Rev. Immunol. – volume: 12 start-page: 554 year: 2012 end-page: 562 ident: bb0155 article-title: Am. J publication-title: Transplantation – volume: 55 start-page: 383 year: 2004 end-page: 394 ident: bb0360 publication-title: Proteins: Struct – volume: 9 year: 2014 ident: bb0085 publication-title: PLoS One – volume: 7 start-page: 13354 year: 2016 ident: bb0025 publication-title: Nat. Commun. – volume: 149 start-page: 3795 year: 1992 end-page: 3801 ident: bb0110 publication-title: J. Immunol. – volume: 192 start-page: 681 year: 2000 end-page: 694 ident: bb0050 publication-title: J. Exp. Med. – volume: 23 start-page: 327 year: 1977 end-page: 341 ident: bb0270 publication-title: J. Comput. Phys. – volume: 62 start-page: 156 year: 1997 end-page: 162 ident: bb0060 publication-title: J. Leukoc. Biol. – reference: , 1255–1269. – volume: 176 start-page: 1595 year: 1992 end-page: 1604 ident: bb0115 publication-title: J. Exp. Med. – reference: Jonathan M. Pitt, M. Vétizou, R. Daillère, María – volume: 108 start-page: 895 year: 2001 end-page: 903 ident: bb0090 publication-title: J. Clin. Invest. – volume: 6 year: 2011 ident: bb0330 publication-title: PLoS One – volume: 104 start-page: 276 year: 2009 end-page: 284 ident: bb0140 publication-title: Basic Clin – volume: 11 start-page: 1651 year: 2004 end-page: 1658 ident: bb0175 publication-title: Chem. Biol. – volume: 244 start-page: 125 year: 2006 end-page: 129 ident: bb0195 publication-title: Cell. Immunol. – volume: 36 start-page: 1859 year: 2015 end-page: 1873 ident: bb0340 publication-title: J. Comput. Chem. – volume: 1 start-page: 203 year: 2007 end-page: 213 ident: bb0145 publication-title: Biologics: Targets & Therapy – volume: 22 start-page: 249 year: 2017 end-page: 269 ident: bb0395 publication-title: Drug Discov – volume: 9 start-page: 3878 year: 2013 end-page: 3888 ident: bb0275 publication-title: J. Chem. Theory Comput. – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bb0285 publication-title: J. Comput. Chem. – volume: 91 start-page: 511 year: 2013 end-page: 517 ident: bb0305 publication-title: Can. J. Chem. – volume: 13 start-page: 5 year: 2013 ident: bb0100 publication-title: Cancer Immun. – volume: 9 start-page: 3084 year: 2013 end-page: 3095 ident: bb0280 publication-title: J. Chem. Theory Comput. – volume: 18 start-page: 22129 year: 2016 end-page: 22139 ident: bb0430 publication-title: PCCP – reference: , T. Yamazaki, B. Routy, P. Lepage, Ivo G. Boneca, M. Chamaillard, G. Kroemer and L. Zitvogel, – volume: 94 start-page: 25 year: 2013 end-page: 39 ident: bb0130 publication-title: J. Leukoc. Biol. – start-page: 791 year: 1999 end-page: 803 ident: bb0415 publication-title: Cell – volume: 410 start-page: 608 year: 2001 end-page: 611 ident: bb0215 publication-title: Nature – volume: 22 start-page: 261 year: 2000 end-page: 264 ident: bb0075 publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 125 start-page: 1731 year: 2003 end-page: 1737 ident: bb0315 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 69 year: 2011 end-page: 82 ident: bb0355 publication-title: J. Chem. Inf. Model. – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: bb0235 publication-title: J. Mol. Graphics – start-page: 6 year: 2018 ident: bb0380 publication-title: Frontiers in Chemistry – volume: 271 start-page: 1734 year: 1996 end-page: 1736 ident: bb0055 publication-title: Science – reference: , – volume: 12 start-page: 252 year: 2012 end-page: 264 ident: bb0030 article-title: Nat. Rev. publication-title: Cancer – volume: 56 start-page: 1692 year: 2016 end-page: 1704 ident: bb0370 publication-title: J. Chem. Inf. Model. – year: 2012 ident: bb0290 article-title: AMBER 12 – volume: 277 start-page: 7363 year: 2002 end-page: 7368 ident: bb0035 publication-title: J. Biol. Chem. – volume: 10 start-page: 449 year: 2015 end-page: 461 ident: bb0345 publication-title: Expert Opin – volume: 57 start-page: 131 year: 2015 end-page: 142 ident: bb0240 publication-title: J. Mol. Graphics Model. – volume: 8 start-page: 67129 year: 2017 end-page: 67139 ident: bb0005 publication-title: Oncotarget – volume: 33 start-page: 2566 year: 2012 end-page: 2580 ident: bb0350 publication-title: J. Comput. Chem. – volume: 182 start-page: 667 year: 1995 end-page: 675 ident: bb0435 publication-title: J. Exp. Med. – volume: 84 start-page: 3261 year: 1994 end-page: 3282 ident: bb0190 publication-title: Blood – year: 2010 ident: bb0260 publication-title: Schrödinger Release 2010–4: Maestro, Schrödinger – volume: 114 start-page: 123 year: 2014 end-page: 136 ident: bb0335 publication-title: Prog. Biophys. Mol. Biol. – volume: 11 start-page: 3696 year: 2015 end-page: 3713 ident: bb0255 publication-title: J. Chem. Theory Comput. – volume: 185 start-page: 393 year: 1997 end-page: 404 ident: bb0105 publication-title: J. Exp. Med. – volume: PAMI-1 start-page: 224 year: 1979 end-page: 227 ident: bb0295 publication-title: IEEE Trans – volume: 4 start-page: 527 year: 1997 ident: bb0405 publication-title: Nat. Struct. Biol. – volume: 780 start-page: 57 year: 2011 end-page: 68 ident: bb0070 publication-title: Adv. Exp. Med. Biol. – volume: 156 start-page: 1047 year: 1996 end-page: 1054 ident: bb0220 publication-title: J. Immunol. – volume: 24 start-page: 2 year: 2011 end-page: 11 ident: bb0135 publication-title: Transplant Int. – year: 2014 ident: bb0265 article-title: Amber 14 – volume: 375 start-page: 819 year: 2016 end-page: 829 ident: bb0170 article-title: New Engl publication-title: J. Med. – volume: 9 start-page: 2706 year: 2013 end-page: 2717 ident: bb0375 publication-title: J. Chem. Theory Comput. – volume: 12 start-page: 51 year: 2000 end-page: 60 ident: bb0390 publication-title: Immunity – volume: 328 start-page: 267 year: 1987 end-page: 270 ident: bb0120 publication-title: Nature – volume: 114 start-page: E4223 year: 2017 end-page: E4232 ident: bb0010 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 204 start-page: 128 year: 2005 end-page: 143 ident: bb0065 publication-title: Immunol. Rev. – volume: 23 start-page: 308 year: 2017 ident: bb0245 publication-title: J. Mol. Model. – volume: 19 start-page: 1 year: 1999 end-page: 24 ident: bb0080 publication-title: Immunol. Res. – volume: 14 start-page: 1985 year: 2014 end-page: 1991 ident: bb0150 article-title: Am. J publication-title: Transplantation – volume: 23 start-page: 2341 year: 2015 end-page: 2348 ident: bb0250 publication-title: Structure – volume: 24 start-page: 35 year: 2017 ident: bb0020 publication-title: J. Biomed. Sci. – volume: 78 start-page: 26 year: 2017 end-page: 47 ident: bb0325 publication-title: J. Mol. Graphics Model. – volume: 29 start-page: 702 year: 2011 end-page: 716 ident: bb0310 publication-title: J. Mol. Graphics Model. – volume: 410 start-page: 608 year: 2001 ident: bb0205 publication-title: Nature – volume: 173 start-page: 721 year: 1991 end-page: 730 ident: bb0420 publication-title: J. Exp. Med. – volume: 23 start-page: 327 year: 1977 ident: 10.1016/j.bbagen.2018.08.010_bb0270 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 149 start-page: 3795 year: 1992 ident: 10.1016/j.bbagen.2018.08.010_bb0110 publication-title: J. Immunol. doi: 10.4049/jimmunol.149.12.3795 – volume: 277 start-page: 7363 year: 2002 ident: 10.1016/j.bbagen.2018.08.010_bb0035 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110162200 – volume: 18 start-page: 22129 year: 2016 ident: 10.1016/j.bbagen.2018.08.010_bb0430 publication-title: PCCP doi: 10.1039/C6CP03670H – volume: 3 start-page: 2312 year: 2007 ident: 10.1016/j.bbagen.2018.08.010_bb0300 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700119m – volume: 12 start-page: 554 year: 2012 ident: 10.1016/j.bbagen.2018.08.010_bb0155 article-title: Am. J publication-title: Transplantation – volume: 51 start-page: 69 year: 2011 ident: 10.1016/j.bbagen.2018.08.010_bb0355 publication-title: J. Chem. Inf. Model. doi: 10.1021/ci100275a – volume: 24 start-page: 35 year: 2017 ident: 10.1016/j.bbagen.2018.08.010_bb0020 publication-title: J. Biomed. Sci. doi: 10.1186/s12929-017-0341-0 – volume: 19 start-page: 1 year: 1999 ident: 10.1016/j.bbagen.2018.08.010_bb0080 publication-title: Immunol. Res. doi: 10.1007/BF02786473 – volume: 7 start-page: 13354 year: 2016 ident: 10.1016/j.bbagen.2018.08.010_bb0025 publication-title: Nat. Commun. doi: 10.1038/ncomms13354 – ident: 10.1016/j.bbagen.2018.08.010_bb0165 – volume: 125 start-page: 1731 year: 2003 ident: 10.1016/j.bbagen.2018.08.010_bb0315 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026939x – volume: 11 start-page: 3696 year: 2015 ident: 10.1016/j.bbagen.2018.08.010_bb0255 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00255 – volume: 9 year: 2017 ident: 10.1016/j.bbagen.2018.08.010_bb0160 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aah3560 – volume: 11 start-page: 1651 year: 2004 ident: 10.1016/j.bbagen.2018.08.010_bb0175 publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2004.09.011 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.bbagen.2018.08.010_bb0285 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 22 start-page: 249 year: 2017 ident: 10.1016/j.bbagen.2018.08.010_bb0395 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.11.001 – volume: 4 start-page: 527 year: 1997 ident: 10.1016/j.bbagen.2018.08.010_bb0405 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0797-527 – year: 2012 ident: 10.1016/j.bbagen.2018.08.010_bb0290 – volume: 13 start-page: 5 year: 2013 ident: 10.1016/j.bbagen.2018.08.010_bb0100 publication-title: Cancer Immun. – volume: 117 start-page: 1 year: 2017 ident: 10.1016/j.bbagen.2018.08.010_bb0015 publication-title: Br. J. Cancer doi: 10.1038/bjc.2017.136 – volume: 104 start-page: 276 year: 2009 ident: 10.1016/j.bbagen.2018.08.010_bb0140 publication-title: Basic Clin. Pharmacol. Toxicol. doi: 10.1111/j.1742-7843.2009.00375.x – volume: 428 start-page: 720 year: 2016 ident: 10.1016/j.bbagen.2018.08.010_bb0320 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.09.014 – volume: 8 start-page: 67129 year: 2017 ident: 10.1016/j.bbagen.2018.08.010_bb0005 publication-title: Oncotarget doi: 10.18632/oncotarget.18004 – volume: 185 start-page: 393 year: 1997 ident: 10.1016/j.bbagen.2018.08.010_bb0105 publication-title: J. Exp. Med. doi: 10.1084/jem.185.3.393 – volume: 6 year: 2011 ident: 10.1016/j.bbagen.2018.08.010_bb0330 publication-title: PLoS One – volume: 271 start-page: 26762 year: 1996 ident: 10.1016/j.bbagen.2018.08.010_bb0185 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.43.26762 – volume: 180 start-page: 2049 year: 1994 ident: 10.1016/j.bbagen.2018.08.010_bb0225 publication-title: J. Exp. Med. doi: 10.1084/jem.180.6.2049 – volume: 328 start-page: 267 year: 1987 ident: 10.1016/j.bbagen.2018.08.010_bb0120 publication-title: Nature doi: 10.1038/328267a0 – volume: 780 start-page: 57 year: 2011 ident: 10.1016/j.bbagen.2018.08.010_bb0070 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4419-5632-3_6 – volume: 192 start-page: 681 year: 2000 ident: 10.1016/j.bbagen.2018.08.010_bb0050 publication-title: J. Exp. Med. doi: 10.1084/jem.192.5.681 – volume: 22 start-page: 261 year: 2000 ident: 10.1016/j.bbagen.2018.08.010_bb0075 publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/ajrcmb.22.3.f179 – volume: 84 start-page: 3261 year: 1994 ident: 10.1016/j.bbagen.2018.08.010_bb0190 publication-title: Blood doi: 10.1182/blood.V84.10.3261.3261 – volume: 36 start-page: 1859 year: 2015 ident: 10.1016/j.bbagen.2018.08.010_bb0340 publication-title: J. Comput. Chem. doi: 10.1002/jcc.24011 – volume: 174 start-page: 561 year: 1991 ident: 10.1016/j.bbagen.2018.08.010_bb0425 publication-title: J. Exp. Med. doi: 10.1084/jem.174.3.561 – volume: 9 start-page: 3878 year: 2013 ident: 10.1016/j.bbagen.2018.08.010_bb0275 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400314y – volume: 91 start-page: 511 year: 2013 ident: 10.1016/j.bbagen.2018.08.010_bb0305 publication-title: Can. J. Chem. doi: 10.1139/cjc-2012-0360 – volume: 9 start-page: 3084 year: 2013 ident: 10.1016/j.bbagen.2018.08.010_bb0280 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400341p – volume: 6 start-page: 271 year: 2005 ident: 10.1016/j.bbagen.2018.08.010_bb0210 publication-title: Nat. Immunol. doi: 10.1038/ni1170 – volume: 62 start-page: 156 year: 1997 ident: 10.1016/j.bbagen.2018.08.010_bb0060 publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.62.2.156 – volume: PAMI-1 start-page: 224 year: 1979 ident: 10.1016/j.bbagen.2018.08.010_bb0295 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – volume: 10 start-page: 449 year: 2015 ident: 10.1016/j.bbagen.2018.08.010_bb0345 publication-title: Expert Opin. Drug Discov. doi: 10.1517/17460441.2015.1032936 – volume: 9 start-page: 2020 year: 2013 ident: 10.1016/j.bbagen.2018.08.010_bb0385 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct3010485 – volume: 94 start-page: 25 year: 2013 ident: 10.1016/j.bbagen.2018.08.010_bb0130 publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1212621 – volume: 29 start-page: 702 year: 2011 ident: 10.1016/j.bbagen.2018.08.010_bb0310 publication-title: J. Mol. Graphics Model. doi: 10.1016/j.jmgm.2010.12.003 – volume: 9 year: 2014 ident: 10.1016/j.bbagen.2018.08.010_bb0085 publication-title: PLoS One doi: 10.1371/journal.pone.0089263 – volume: 176 start-page: 1595 year: 1992 ident: 10.1016/j.bbagen.2018.08.010_bb0115 publication-title: J. Exp. Med. doi: 10.1084/jem.176.6.1595 – volume: 271 start-page: 1734 year: 1996 ident: 10.1016/j.bbagen.2018.08.010_bb0055 publication-title: Science doi: 10.1126/science.271.5256.1734 – volume: 114 start-page: E4223 year: 2017 ident: 10.1016/j.bbagen.2018.08.010_bb0010 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1617941114 – volume: 31 start-page: 837 year: 2010 ident: 10.1016/j.bbagen.2018.08.010_bb0365 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21366 – volume: 182 start-page: 667 year: 1995 ident: 10.1016/j.bbagen.2018.08.010_bb0435 publication-title: J. Exp. Med. doi: 10.1084/jem.182.3.667 – volume: 12 start-page: 51 year: 2000 ident: 10.1016/j.bbagen.2018.08.010_bb0390 publication-title: Immunity doi: 10.1016/S1074-7613(00)80158-2 – volume: 102 start-page: 564 year: 2003 ident: 10.1016/j.bbagen.2018.08.010_bb0180 publication-title: Blood doi: 10.1182/blood-2002-08-2480 – volume: 55 start-page: 383 year: 2004 ident: 10.1016/j.bbagen.2018.08.010_bb0360 publication-title: Proteins: Struct. Funct. Bioinform. doi: 10.1002/prot.20033 – volume: 173 start-page: 721 year: 1991 ident: 10.1016/j.bbagen.2018.08.010_bb0420 publication-title: J. Exp. Med. doi: 10.1084/jem.173.3.721 – volume: 89 start-page: 140 year: 2014 ident: 10.1016/j.bbagen.2018.08.010_bb0125 publication-title: Crit. Rev. Oncol./Hematol. doi: 10.1016/j.critrevonc.2013.08.002 – year: 2010 ident: 10.1016/j.bbagen.2018.08.010_bb0260 – volume: 14 start-page: 1985 year: 2014 ident: 10.1016/j.bbagen.2018.08.010_bb0150 article-title: Am. J publication-title: Transplantation – volume: 270 start-page: 15417 year: 1995 ident: 10.1016/j.bbagen.2018.08.010_bb0200 publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.25.15417 – volume: 57 start-page: 131 year: 2015 ident: 10.1016/j.bbagen.2018.08.010_bb0240 publication-title: J. Mol. Graphics Model. doi: 10.1016/j.jmgm.2015.01.015 – volume: 9 start-page: 2706 year: 2013 ident: 10.1016/j.bbagen.2018.08.010_bb0375 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400045d – volume: 156 start-page: 1047 year: 1996 ident: 10.1016/j.bbagen.2018.08.010_bb0220 publication-title: J. Immunol. doi: 10.4049/jimmunol.156.3.1047 – volume: 24 start-page: 2 year: 2011 ident: 10.1016/j.bbagen.2018.08.010_bb0135 publication-title: Transplant Int. doi: 10.1111/j.1432-2277.2010.01176.x – year: 2014 ident: 10.1016/j.bbagen.2018.08.010_bb0265 – volume: 410 start-page: 608 year: 2001 ident: 10.1016/j.bbagen.2018.08.010_bb0205 publication-title: Nature doi: 10.1038/35069118 – volume: 270 start-page: 21181 year: 1995 ident: 10.1016/j.bbagen.2018.08.010_bb0230 publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.36.21181 – volume: 33 start-page: 1974 year: 2015 ident: 10.1016/j.bbagen.2018.08.010_bb0095 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2014.59.4358 – volume: 114 start-page: 123 year: 2014 ident: 10.1016/j.bbagen.2018.08.010_bb0335 publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2013.06.004 – volume: 33 start-page: 2566 year: 2012 ident: 10.1016/j.bbagen.2018.08.010_bb0350 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23095 – volume: 204 start-page: 128 year: 2005 ident: 10.1016/j.bbagen.2018.08.010_bb0065 publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2005.00242.x – volume: 78 start-page: 26 year: 2017 ident: 10.1016/j.bbagen.2018.08.010_bb0325 publication-title: J. Mol. Graphics Model. doi: 10.1016/j.jmgm.2017.09.019 – volume: 23 start-page: 308 year: 2017 ident: 10.1016/j.bbagen.2018.08.010_bb0245 publication-title: J. Mol. Model. doi: 10.1007/s00894-017-3482-x – volume: 410 start-page: 608 year: 2001 ident: 10.1016/j.bbagen.2018.08.010_bb0215 publication-title: Nature doi: 10.1038/35069118 – volume: 375 start-page: 819 year: 2016 ident: 10.1016/j.bbagen.2018.08.010_bb0170 article-title: New Engl publication-title: J. Med. – volume: 56 start-page: 1692 year: 2016 ident: 10.1016/j.bbagen.2018.08.010_bb0370 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00196 – volume: 18 start-page: 389 year: 1998 ident: 10.1016/j.bbagen.2018.08.010_bb0040 publication-title: Crit. Rev. Immunol. doi: 10.1615/CritRevImmunol.v18.i5.10 – volume: 234 start-page: 946 year: 1993 ident: 10.1016/j.bbagen.2018.08.010_bb0410 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1648 – volume: 12 start-page: 252 year: 2012 ident: 10.1016/j.bbagen.2018.08.010_bb0030 article-title: Nat. Rev. publication-title: Cancer – volume: 108 start-page: 895 year: 2001 ident: 10.1016/j.bbagen.2018.08.010_bb0090 publication-title: J. Clin. Invest. doi: 10.1172/JCI13220 – start-page: 7 year: 2017 ident: 10.1016/j.bbagen.2018.08.010_bb0400 article-title: e1306-n/a publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 1 start-page: 203 year: 2007 ident: 10.1016/j.bbagen.2018.08.010_bb0145 publication-title: Biologics: Targets & Therapy – volume: 23 start-page: 2341 year: 2015 ident: 10.1016/j.bbagen.2018.08.010_bb0250 publication-title: Structure doi: 10.1016/j.str.2015.09.010 – volume: 14 start-page: 233 year: 1996 ident: 10.1016/j.bbagen.2018.08.010_bb0045 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.14.1.233 – volume: 244 start-page: 125 year: 2006 ident: 10.1016/j.bbagen.2018.08.010_bb0195 publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2007.02.014 – volume: 97 start-page: 791 year: 1999 ident: 10.1016/j.bbagen.2018.08.010_bb0415 publication-title: Cell doi: 10.1016/S0092-8674(00)80790-4 – volume: 14 start-page: 33 year: 1996 ident: 10.1016/j.bbagen.2018.08.010_bb0235 publication-title: J. Mol. Graphics doi: 10.1016/0263-7855(96)00018-5 – start-page: 6 year: 2018 ident: 10.1016/j.bbagen.2018.08.010_bb0380 publication-title: Frontiers in Chemistry |
SSID | ssj0000595 |
Score | 2.3991358 |
Snippet | CD28 and CTLA-4 are homologous T-cell receptors that bind with B7–1 and produce two opposing immunological signals required for T-cell activation and... CD28 and CTLA-4 are homologous T-cell receptors that bind with B7-1 and produce two opposing immunological signals required for T-cell activation and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2764 |
SubjectTerms | B7-1 Antigen - chemistry B7-1 Antigen - metabolism B7–1 binding capacity CD28 CD28 Antigens - chemistry CD28 Antigens - metabolism Cluster Analysis CTLA-4 CTLA-4 Antigen - metabolism energy Humans Immune checkpoints Immunotherapy Ligands Lymphocyte Activation Molecular dynamics Molecular Dynamics Simulation neoplasms Protein Binding Protein-protein docking protein-protein interactions receptors Reproducibility of Results synapse T-lymphocytes |
Title | Revealing the atomistic details behind the binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study |
URI | https://dx.doi.org/10.1016/j.bbagen.2018.08.010 https://www.ncbi.nlm.nih.gov/pubmed/30251665 https://www.proquest.com/docview/2112190765 https://www.proquest.com/docview/2131862344 |
Volume | 1862 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CSmkvpU1f20dQoVd17bUedm8bN2HTRw5tArkJSZbJhtYbkk2hl5L_0H_YX5IZyU4o5AE9LbuWWaEZzXxC33wD8FYXTuMDR-ypCReYInFLCcubVhbKaxdcrK_4sqNme-LjvtxfgXqohSFaZR_7U0yP0br_Zdyv5vhoPh9_o0s9hBMyJwkrWVJFOanXoU-_-31J80D4INNNguA0eiifixwv53DTkgpqXkYhT6qjvTo9XQc_YxraeggPevzIpmmKj2AldGtwN3WU_LUG9-qhgdtjOPsafiIMxNzEEOUxPF3_iKrMLNFGT5gLB3gijw_dPFa3sEXLNvTfsz85Wy5Y_WFSMosj6t3PUy7esykjBvpxOEisdxZFHuYd7z9ZbKsT_zCq1j6Bva3N3XrG-4YL3BeVXPJSCduGxjZVgyvjEIxY2RZetHkQlZ_4pvFOhtZXTVsFPIlNgrION7SvlNbB-eIprHaLLjwHZgs0eS5aoWwlRJG5UGaIBW3WUNrM9QiKYZ2N79XIqSnGdzPQzg5Nso4h6xjqlZlnI-AXbx0lNY5bxuvBhOYfrzKYMG55881gcYPGoVsU24XF6YnBEzNG-UwredMYDJUILIUYwbPkLhfzJWfNlZIv_ntuL-E-fUukmlewujw-Da8RGi3devT9dbgz3f402zkHzowNxw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRRW9VC19bZ-u1Ku1ycaPhNs2LVrKsgdYJG6W7ThiK8giWCr1xn_gH_JLGNsJqFIBiVOkeKxYHs_MZ2XmG4BvMjMSB4zPnhpShiESTYppWtU8E1YaZ0J9xc5UjPfZrwN-sAJlVwvj0ypb3x99evDW7ZtBu5uDk_l8sOd_6iGc4KmnsOK5fAKrnp2K9WB1tLU9nt46ZB6ar3h56id0FXQhzcsYtFtPhJrmgcvTl9L-P0LdhUBDJNp8Ac9bCElGcZUvYcU16_A0NpX8uw5rZdfD7RVc7Lo_iAQxPBEEegQv2MeBmJnEzNEzYtwhXsrDoJmHAheyqMl3eXVxmZLlgpQ_hjnRKFHOJiPKNsiI-CT0U3cYE99J4HmYN7R9ktBZJ3wwENe-hv3Nn7NyTNueC9RmBV_SXDBdu0pXRYU7YxCPaF5nltWpY4Ud2qqyhrvaFlVdOLyMDZ3QBm3aFkJKZ2z2BnrNonHvgOgMtZ6ymgldMJYlxuUJwkGdVD5yprIPWbfPyraE5L4vxpHqMs9-q6gd5bWjfLvMNOkDvZl1Egk5HpCXnQrVPwdLYcx4YObXTuMKleN_pOjGLc7PFF6a0dEnUvD7ZNBbIrZkrA9v43G5Wa8_r6kQ_P2j1_YF1saznYmabE23P8AzPxJzbD5Cb3l67j4hUlqaz60lXAMBSBB4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+atomistic+details+behind+the+binding+of+B7%E2%80%931+to+CD28+and+CTLA-4%3A+A+comprehensive+protein-protein+modelling+study&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Ganesan%2C+Aravindhan&rft.au=Moon%2C+Tae+Chul&rft.au=Barakat%2C+Khaled+H.&rft.date=2018-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1862&rft.issue=12&rft.spage=2764&rft.epage=2778&rft_id=info:doi/10.1016%2Fj.bbagen.2018.08.010&rft.externalDocID=S0304416518302587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |