An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli
Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1861; no. 11; pp. 3016 - 3023 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed to incorporate UAAs in response to the amber codon, less research has been focused on four-base codons despites their advantages. In this study, we report an efficient method to incorporate UAA in response to an AGGA codon in Escherichia coli.
The Methanococcus jannaschii tyrosyl-tRNA synthetase-tRNACUA(MjTyrRS-MjtRNACUA) orthogonal pair has been engineered to incorporate diverse UAAs in response to the amber codon. To apply the engineered MjTyrRS enzymes for UAAs to a four-base codon suppression, we developed an MjTyrRS-MjtRNAUCCU pair system that enabled incorporation of UAAs in response to the AGGA codon in E. coli. Using this system, we demonstrated that several UAAs could be incorporated quantitatively in the AGGA site. In addition, multiple AGGA codons were successfully suppressed in an E. coli strain when the endogenous tRNACCUArg gene was knocked out.
An efficient system was developed for the incorporation of UAAs in response to the AGGA four-base codon in E. coli, and the method was successfully demonstrated for several UAAs and for multiple AGGA sites.
The developed system can expand the repertoire of protein engineering tools based on amino acid analogues in combination with other UAA incorporation methods. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O’Donoghue.
•A method for incorporation of unnatural amino acids in response to the AGGA codon is developed.•The method is based on an engineered orthogonal pair of aminoacyl-tRNA synthetase and tRNAUCCU.•The engineered tRNAUCCU improves the efficiency as well as the specificity of the method.•Knocking out a competitive tRNA gene of ArgW increases the AGGA suppression efficiency.•The method is demonstrated for several unnatural amino acids and for multiple AGGA sites. |
---|---|
AbstractList | Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed to incorporate UAAs in response to the amber codon, less research has been focused on four-base codons despites their advantages. In this study, we report an efficient method to incorporate UAA in response to an AGGA codon in Escherichia coli.
The Methanococcus jannaschii tyrosyl-tRNA synthetase-tRNACUA(MjTyrRS-MjtRNACUA) orthogonal pair has been engineered to incorporate diverse UAAs in response to the amber codon. To apply the engineered MjTyrRS enzymes for UAAs to a four-base codon suppression, we developed an MjTyrRS-MjtRNAUCCU pair system that enabled incorporation of UAAs in response to the AGGA codon in E. coli. Using this system, we demonstrated that several UAAs could be incorporated quantitatively in the AGGA site. In addition, multiple AGGA codons were successfully suppressed in an E. coli strain when the endogenous tRNACCUArg gene was knocked out.
An efficient system was developed for the incorporation of UAAs in response to the AGGA four-base codon in E. coli, and the method was successfully demonstrated for several UAAs and for multiple AGGA sites.
The developed system can expand the repertoire of protein engineering tools based on amino acid analogues in combination with other UAA incorporation methods. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O’Donoghue.
•A method for incorporation of unnatural amino acids in response to the AGGA codon is developed.•The method is based on an engineered orthogonal pair of aminoacyl-tRNA synthetase and tRNAUCCU.•The engineered tRNAUCCU improves the efficiency as well as the specificity of the method.•Knocking out a competitive tRNA gene of ArgW increases the AGGA suppression efficiency.•The method is demonstrated for several unnatural amino acids and for multiple AGGA sites. Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed to incorporate UAAs in response to the amber codon, less research has been focused on four-base codons despites their advantages. In this study, we report an efficient method to incorporate UAA in response to an AGGA codon in Escherichia coli. The Methanococcus jannaschii tyrosyl-tRNA synthetase-tRNA (MjTyrRS-MjtRNA ) orthogonal pair has been engineered to incorporate diverse UAAs in response to the amber codon. To apply the engineered MjTyrRS enzymes for UAAs to a four-base codon suppression, we developed an MjTyrRS-MjtRNA pair system that enabled incorporation of UAAs in response to the AGGA codon in E. coli. Using this system, we demonstrated that several UAAs could be incorporated quantitatively in the AGGA site. In addition, multiple AGGA codons were successfully suppressed in an E. coli strain when the endogenous tRNA gene was knocked out. An efficient system was developed for the incorporation of UAAs in response to the AGGA four-base codon in E. coli, and the method was successfully demonstrated for several UAAs and for multiple AGGA sites. The developed system can expand the repertoire of protein engineering tools based on amino acid analogues in combination with other UAA incorporation methods. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed to incorporate UAAs in response to the amber codon, less research has been focused on four-base codons despites their advantages. In this study, we report an efficient method to incorporate UAA in response to an AGGA codon in Escherichia coli.The Methanococcus jannaschii tyrosyl-tRNA synthetase-tRNACUA(MjTyrRS-MjtRNACUA) orthogonal pair has been engineered to incorporate diverse UAAs in response to the amber codon. To apply the engineered MjTyrRS enzymes for UAAs to a four-base codon suppression, we developed an MjTyrRS-MjtRNAUCCU pair system that enabled incorporation of UAAs in response to the AGGA codon in E. coli. Using this system, we demonstrated that several UAAs could be incorporated quantitatively in the AGGA site. In addition, multiple AGGA codons were successfully suppressed in an E. coli strain when the endogenous tRNACCUᴬʳᵍ gene was knocked out.An efficient system was developed for the incorporation of UAAs in response to the AGGA four-base codon in E. coli, and the method was successfully demonstrated for several UAAs and for multiple AGGA sites.The developed system can expand the repertoire of protein engineering tools based on amino acid analogues in combination with other UAA incorporation methods. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O’Donoghue. |
Author | Kim, Suyeon Yoo, Tae Hyeon Lee, Byeong Sung Ko, Byoung Joon |
Author_xml | – sequence: 1 givenname: Byeong Sung surname: Lee fullname: Lee, Byeong Sung organization: Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea – sequence: 2 givenname: Suyeon surname: Kim fullname: Kim, Suyeon organization: Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea – sequence: 3 givenname: Byoung Joon surname: Ko fullname: Ko, Byoung Joon organization: New Drug Development Center, Osong Medical Innovative Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Cheongju 28160, Republic of Korea – sequence: 4 givenname: Tae Hyeon surname: Yoo fullname: Yoo, Tae Hyeon email: taehyeonyoo@ajou.ac.kr organization: Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28212794$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAUhC3Uim4L_wAhH7kk2I6dZDkgrap2W6kSl3K2nJdn1qvEXmwHqfx6vN32wgF8GcnvmznMXJIzHzwS8oGzmjPeft7Xw2B-oK8F413NRF3kDVnxvhNVz1h7RlasYbKSvFUX5DKlPStPrdVbciF6wUW3livye-MpWuvAoc80PaWMM7UhUuchxEOIJrvgabB08d7kJZqJmtn5QA24MRWMRkyH4BPSHGjeYXEvsRpM-YAwFu9mu90cuZsEO4wOds6Uy-TekXNrpoTvX_SKfL-9eby-qx6-be-vNw8VNGuVq14NFiyqphXGtAhMMOADE7JFi0aqVvZdMzaScyVHA53hEpE1fIRetCCwuSKfTrmHGH4umLKeXQKcJuMxLEmLUksj11L1Bf34gi7DjKM-RDeb-KRf-yrAlxMAMaQU0Wpw-bmiHI2bNGf6OI7e69M4-jiOZkIXKWb5l_k1_z-2rycblpJ-OYw6HdcCHF1EyHoM7t8BfwB-16tU |
CitedBy_id | crossref_primary_10_1038_s41467_020_20373_z crossref_primary_10_1016_j_jmb_2021_167440 crossref_primary_10_1021_acschembio_8b00520 crossref_primary_10_1016_j_talanta_2019_03_015 crossref_primary_10_1016_j_biotechadv_2021_107868 crossref_primary_10_1021_acs_bioconjchem_0c00456 crossref_primary_10_1021_acs_chemrev_3c00938 crossref_primary_10_1186_s12934_022_01828_y crossref_primary_10_1016_j_jmb_2021_167346 crossref_primary_10_3390_microorganisms7010005 crossref_primary_10_1186_s13036_019_0188_x crossref_primary_10_1080_15476286_2017_1356561 crossref_primary_10_1186_s12862_018_1304_0 crossref_primary_10_3389_fchem_2021_772648 |
Cites_doi | 10.1111/j.1742-4658.2009.07178.x 10.1073/pnas.012583299 10.1021/cb4001662 10.1016/S1074-5521(01)00063-1 10.1111/j.1742-4658.2012.08722.x 10.1021/ac103334b 10.1002/biot.201100267 10.1016/j.bbapap.2014.03.002 10.1038/nature08817 10.1038/nn1932 10.1073/pnas.0611634104 10.1021/cb4005172 10.1021/bi0108204 10.1038/nchem.1919 10.1038/emboj.2011.160 10.1126/science.1207203 10.1016/0014-5793(87)80664-6 10.1002/anie.201105016 10.1021/ja900553w 10.1146/annurev.biochem.73.012803.092429 10.1038/nmeth739 10.1002/cbic.200500360 10.1006/jmbi.2001.4518 10.1016/j.febslet.2012.09.033 10.1021/acschembio.5b00230 10.1073/pnas.0510817103 10.1126/science.1060077 10.1016/S0014-5793(03)00717-8 10.1021/bi300535a 10.1016/j.copbio.2011.12.027 10.1021/ja207719f 10.1016/j.chembiol.2009.03.001 10.1016/j.cbpa.2005.10.011 10.1002/anie.200900683 10.1002/anie.200904035 10.1073/pnas.172226299 10.1073/pnas.1011569107 10.1073/pnas.231267998 10.1002/1873-3468.12182 10.1073/pnas.0401517101 10.1073/pnas.0701904104 10.1021/bi0300231 10.1002/cbic.201402104 10.1016/j.jmb.2009.10.030 10.1002/anie.201108275 10.1039/b901970g 10.1016/j.febslet.2012.01.029 10.1146/annurev.biochem.052308.105824 10.1021/ja303904e 10.1002/anie.201000465 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 |
DOI | 10.1016/j.bbagen.2017.02.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 3023 |
ExternalDocumentID | 28212794 10_1016_j_bbagen_2017_02_017 S030441651730065X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-85bfcfe5362aa6ec020c1b0246efea4564873d341154dac7a14ee031dc826c2e3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 |
IngestDate | Fri Jul 11 09:16:51 EDT 2025 Mon Jul 21 05:42:28 EDT 2025 Tue Jul 01 00:22:08 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Fri Feb 23 02:34:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Engineered tRNA ArgW gene Unnatural amino acid Escherichia coli Four-base AGGA codon |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-85bfcfe5362aa6ec020c1b0246efea4564873d341154dac7a14ee031dc826c2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28212794 |
PQID | 2000349458 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000349458 pubmed_primary_28212794 crossref_citationtrail_10_1016_j_bbagen_2017_02_017 crossref_primary_10_1016_j_bbagen_2017_02_017 elsevier_sciencedirect_doi_10_1016_j_bbagen_2017_02_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2017 2017-11-00 2017-Nov 20171101 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zheng, Kwon (bb0065) 2012; 7 Kwon, Yoo, Tirrell, Othon, Zewaila (bb0055) 2010; 107 Chatterjee, Lajoie, Xiao, Church, Schultz (bb0240) 2014; 15 Konno, Sumida, Uchikawa, Mori, Yanagisawa, Sekine, Yokoyama (bb0175) 2009; 276 Chin, Martin, King, Wang, Schultz (bb0210) 2002; 99 O'Donoghue, Prat, Heinemann, Ling, Odoi, Liu, Soll (bb0270) 2012; 586 Wang, Parrish, Wang (bb0010) 2009; 16 Shimada, Nureki, Goto, Takahashi, Yokoyama (bb0185) 2001; 98 Taki, Matsushita, Sisido (bb0225) 2006; 7 Liu, Schultz (bb0005) 2010; 79 Wan, Tharp, Liu (bb0250) 2014; 1844 Chin (bb0015) 2011; 30 Loscha, Herlt, Qi, Huber, Ozawa, Otting (bb0050) 2012; 51 Hino, Okazaki, Kobayashi, Hayashi, Sakamoto, Yokoyama (bb0085) 2005; 2 Jewett, Bertozzi (bb0155) 2010; 39 Wang, Schmied, Chin (bb0100) 2012; 51 Anderson, Wu, Santoro, Lakshman, King, Schultz (bb0110) 2004; 101 Hohsaka, Ashizuka, Taira, Murakami, Sisido (bb0105) 2001; 40 Wang, Wang, Pai, Russell, Russell, Liu (bb0095) 2012; 51 Dumas, Lercher, Spicer, Davis (bb0020) 2015; 6 Wang, Sachdeva, Cox, Wilf, Lang, Wallace, Mehl, Chin (bb0120) 2014; 6 Hendrickson, Crécy-Lagard, Schimmel (bb0035) 2004; 73 Yao, Zhang, Yan, Zhu, Wang (bb0180) 2003; 547 Magliery, Anderson, Schultz (bb0230) 2001; 307 Kiick, Saxon, Tirrell, Bertozzi (bb0160) 2002; 99 Liu, Brock, Chen, Chen, Schultz (bb0170) 2007; 4 Javahishvili, Manibusan, Srinagesh, Lee, Ensari, Shimazu, Schultz (bb0150) 2014; 9 Aldinger, Leisinger, Igloi (bb0195) 2012; 279 Ambrogelly, Gundllapalli, Herring, Polycarpo, Frauer, Soll (bb0265) 2007; 104 Xie, Schultz (bb0145) 2005; 9 Seo, Han, Jin, Lee, Park, Kim (bb0045) 2011; 83 Rodriguez, Lester, Dougherty (bb0220) 2006; 103 Minnihan, Young, Schultz, Stubbe (bb0070) 2011; 133 Lee, Shin, Jeon, Jang, Lee, Choi, Yoo (bb0130) 2015; 10 Wang, Brock, Herberich, Schultz (bb0125) 2001; 292 Umehara, Kim, Lee, Guo, Soll, Park (bb0260) 2012; 586 Guo, Melancon, Lee, Groff, Schultz (bb0140) 2009; 48 Kim, Axup, Dubrovska, Kazane, Hutchins, Wold, Smider, Schultz (bb0040) 2012; 134 Nguyen, Lusic, Neumann, Kapadnis, Deiters, Chin (bb0255) 2009; 131 Yoo, Link, Tirrell (bb0060) 2007; 104 Park, Hohn, Umehara, Guo, Osborne, Benner, Noren, Rinehart, Soll (bb0090) 2011; 333 Beatty, Tirrell (bb0030) 2009 Young, Ahmad, Yin, Schultz (bb0135) 2010; 395 Wang, Schultz (bb0200) 2001; 8 Faulhammer, Joshi (bb0190) 1987; 217 Hoesl, Budisa (bb0025) 2012; 23 Wang, Takimoto, Louie, Baiga, Noel, Lee, Slesinger, Wang (bb0080) 2007; 10 Zhang, Smith, Wang, Brock, Cho, Schultz (bb0205) 2003; 42 Neumann, Wang, Davis, Garcia-Alai, Chin (bb0115) 2010; 464 Ikemura (bb0235) 1985; 2 Chen, Groff, Guo, Ou, Cellitti, Geierstanger, Schultz (bb0245) 2009; 48 George, Aguirre, Spratt, Bi, Jeffery, Shaw, O'Donoghue (bb0075) 2016; 590 Wan, Huang, Wang, Russell, Pai, Russell, Liu (bb0165) 2010; 49 Niu, Schultz, Guo (bb0215) 2013; 8 Hendrickson (10.1016/j.bbagen.2017.02.017_bb0035) 2004; 73 Liu (10.1016/j.bbagen.2017.02.017_bb0170) 2007; 4 George (10.1016/j.bbagen.2017.02.017_bb0075) 2016; 590 Wan (10.1016/j.bbagen.2017.02.017_bb0250) 2014; 1844 Umehara (10.1016/j.bbagen.2017.02.017_bb0260) 2012; 586 Hohsaka (10.1016/j.bbagen.2017.02.017_bb0105) 2001; 40 Neumann (10.1016/j.bbagen.2017.02.017_bb0115) 2010; 464 Chatterjee (10.1016/j.bbagen.2017.02.017_bb0240) 2014; 15 Wang (10.1016/j.bbagen.2017.02.017_bb0095) 2012; 51 Faulhammer (10.1016/j.bbagen.2017.02.017_bb0190) 1987; 217 Ikemura (10.1016/j.bbagen.2017.02.017_bb0235) 1985; 2 Dumas (10.1016/j.bbagen.2017.02.017_bb0020) 2015; 6 Park (10.1016/j.bbagen.2017.02.017_bb0090) 2011; 333 Konno (10.1016/j.bbagen.2017.02.017_bb0175) 2009; 276 Wan (10.1016/j.bbagen.2017.02.017_bb0165) 2010; 49 Javahishvili (10.1016/j.bbagen.2017.02.017_bb0150) 2014; 9 Chen (10.1016/j.bbagen.2017.02.017_bb0245) 2009; 48 Taki (10.1016/j.bbagen.2017.02.017_bb0225) 2006; 7 Chin (10.1016/j.bbagen.2017.02.017_bb0210) 2002; 99 Wang (10.1016/j.bbagen.2017.02.017_bb0010) 2009; 16 Beatty (10.1016/j.bbagen.2017.02.017_bb0030) 2009 Kiick (10.1016/j.bbagen.2017.02.017_bb0160) 2002; 99 Xie (10.1016/j.bbagen.2017.02.017_bb0145) 2005; 9 Aldinger (10.1016/j.bbagen.2017.02.017_bb0195) 2012; 279 Anderson (10.1016/j.bbagen.2017.02.017_bb0110) 2004; 101 Lee (10.1016/j.bbagen.2017.02.017_bb0130) 2015; 10 O'Donoghue (10.1016/j.bbagen.2017.02.017_bb0270) 2012; 586 Rodriguez (10.1016/j.bbagen.2017.02.017_bb0220) 2006; 103 Nguyen (10.1016/j.bbagen.2017.02.017_bb0255) 2009; 131 Yoo (10.1016/j.bbagen.2017.02.017_bb0060) 2007; 104 Wang (10.1016/j.bbagen.2017.02.017_bb0120) 2014; 6 Seo (10.1016/j.bbagen.2017.02.017_bb0045) 2011; 83 Ambrogelly (10.1016/j.bbagen.2017.02.017_bb0265) 2007; 104 Kim (10.1016/j.bbagen.2017.02.017_bb0040) 2012; 134 Liu (10.1016/j.bbagen.2017.02.017_bb0005) 2010; 79 Shimada (10.1016/j.bbagen.2017.02.017_bb0185) 2001; 98 Loscha (10.1016/j.bbagen.2017.02.017_bb0050) 2012; 51 Guo (10.1016/j.bbagen.2017.02.017_bb0140) 2009; 48 Young (10.1016/j.bbagen.2017.02.017_bb0135) 2010; 395 Wang (10.1016/j.bbagen.2017.02.017_bb0100) 2012; 51 Yao (10.1016/j.bbagen.2017.02.017_bb0180) 2003; 547 Hoesl (10.1016/j.bbagen.2017.02.017_bb0025) 2012; 23 Niu (10.1016/j.bbagen.2017.02.017_bb0215) 2013; 8 Wang (10.1016/j.bbagen.2017.02.017_bb0125) 2001; 292 Minnihan (10.1016/j.bbagen.2017.02.017_bb0070) 2011; 133 Zhang (10.1016/j.bbagen.2017.02.017_bb0205) 2003; 42 Kwon (10.1016/j.bbagen.2017.02.017_bb0055) 2010; 107 Wang (10.1016/j.bbagen.2017.02.017_bb0200) 2001; 8 Chin (10.1016/j.bbagen.2017.02.017_bb0015) 2011; 30 Wang (10.1016/j.bbagen.2017.02.017_bb0080) 2007; 10 Jewett (10.1016/j.bbagen.2017.02.017_bb0155) 2010; 39 Hino (10.1016/j.bbagen.2017.02.017_bb0085) 2005; 2 Zheng (10.1016/j.bbagen.2017.02.017_bb0065) 2012; 7 Magliery (10.1016/j.bbagen.2017.02.017_bb0230) 2001; 307 |
References_xml | – volume: 101 start-page: 7566 year: 2004 end-page: 7571 ident: bb0110 article-title: An expanded genetic code with a functional quadruplet codon publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 103 start-page: 8650 year: 2006 end-page: 8655 ident: bb0220 article-title: In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression publication-title: Proc. Natl. Acad. Sci. – volume: 73 start-page: 147 year: 2004 end-page: 176 ident: bb0035 article-title: Incorporation of nonnatural amino acids into proteins publication-title: Biochemistry – volume: 23 start-page: 751 year: 2012 end-page: 757 ident: bb0025 article-title: Recent advances in genetic code engineering in publication-title: Curr. Opin. Biotechnol. – volume: 8 start-page: 883 year: 2001 end-page: 890 ident: bb0200 article-title: A general approach for the generation of orthogonal tRNAs publication-title: Chem. Biol. – volume: 2 start-page: 13 year: 1985 end-page: 34 ident: bb0235 article-title: Codon usage and tRNA content in unicellular and multicellular organisms publication-title: Mol. Bid. Evol. – volume: 99 start-page: 19 year: 2002 end-page: 24 ident: bb0160 article-title: Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 134 start-page: 9918 year: 2012 end-page: 9921 ident: bb0040 article-title: Synthesis of bispecific antibodies using genetically encoded unnatural amino acids publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 47 year: 2012 end-page: 60 ident: bb0065 article-title: Manipulation of enzyme properties by noncanonical amino acid incorporation publication-title: Biotechnol. J. – volume: 51 start-page: 2243 year: 2012 end-page: 2246 ident: bb0050 article-title: Multiple-site labeling of proteins with unnatural amino acids publication-title: Angew. Chem. – volume: 279 start-page: 3622 year: 2012 end-page: 3638 ident: bb0195 article-title: The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and publication-title: FEBS J. – volume: 15 start-page: 1782 year: 2014 end-page: 1786 ident: bb0240 article-title: A bacterial strain with a unique quadruplet codon specifying non-native amino acids publication-title: Chembiochem – volume: 83 start-page: 2841 year: 2011 end-page: 2845 ident: bb0045 article-title: Controlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid publication-title: Anal. Chem. – volume: 104 start-page: 3141 year: 2007 end-page: 3146 ident: bb0265 article-title: Pyrrolysine is not hardwired for cotranslational insertion at UAG codons publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 292 start-page: 498 year: 2001 end-page: 500 ident: bb0125 article-title: Expanding the genetic code of publication-title: Science – volume: 395 start-page: 361 year: 2010 end-page: 374 ident: bb0135 article-title: An enhanced system for unnatural amino acid mutagenesis in publication-title: J. Mol. Biol. – volume: 133 start-page: 15942 year: 2011 end-page: 15945 ident: bb0070 article-title: Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 393 year: 2014 end-page: 403 ident: bb0120 article-title: Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET publication-title: Nat. Chem. – volume: 9 start-page: 874 year: 2014 end-page: 879 ident: bb0150 article-title: Role of tRNA orthogonality in an expanded genetic code publication-title: ACS Chem. Biol. – volume: 547 start-page: 197 year: 2003 end-page: 200 ident: bb0180 article-title: Substrate-induced conformational changes in publication-title: FEBS Lett. – volume: 30 start-page: 2312 year: 2011 end-page: 2324 ident: bb0015 article-title: Reprogramming the genetic code publication-title: EMBO J. – volume: 51 start-page: 5232 year: 2012 end-page: 5234 ident: bb0095 article-title: A facile method to synthesize histones with posttranslational modification mimics publication-title: Biochemistry – volume: 39 start-page: 1272 year: 2010 ident: bb0155 article-title: Cu-free click cycloaddition reactions in chemical biology publication-title: Chem. Soc. Rev. – volume: 51 start-page: 2288 year: 2012 end-page: 2297 ident: bb0100 article-title: Reprogramming the genetic code: from triplet to quadruplet codes publication-title: Angew. Chem. – volume: 4 year: 2007 ident: bb0170 publication-title: Genetic incorporation of unnatural amino acids into proteins in mammalian cells – volume: 42 start-page: 6735 year: 2003 end-page: 6746 ident: bb0205 article-title: A new strategy for the site-specific modification of proteins in vivo publication-title: Biochemistry – volume: 276 start-page: 4763 year: 2009 end-page: 4779 ident: bb0175 article-title: Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP) publication-title: FEBS J. – volume: 586 start-page: 729 year: 2012 end-page: 733 ident: bb0260 article-title: N-acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo publication-title: FEBS Lett. – year: 2009 ident: bb0030 article-title: Noncanonical amino acids in protein science and engineering publication-title: Protein Engineering – volume: 40 start-page: 11060 year: 2001 end-page: 11064 ident: bb0105 article-title: Incorporation of nonnatural amino acids into proteins by using various four-base codons in an publication-title: Biochemistry – volume: 99 start-page: 11020 year: 2002 end-page: 11024 ident: bb0210 article-title: Addition of a photocrosslinking amino acid to the genetic code of publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2 start-page: 201 year: 2005 end-page: 206 ident: bb0085 article-title: Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid publication-title: Nat. Methods – volume: 10 start-page: 1648 year: 2015 end-page: 1653 ident: bb0130 article-title: Incorporation of unnatural amino acids in response to the AGG codon publication-title: ACS Chem. Biol. – volume: 104 start-page: 13887 year: 2007 end-page: 13890 ident: bb0060 article-title: Evolution of a fluorinated green fluorescent protein publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 333 start-page: 1151 year: 2011 end-page: 1154 ident: bb0090 article-title: Expanding the genetic code of publication-title: Science – volume: 6 start-page: 50 year: 2015 end-page: 69 ident: bb0020 publication-title: Designing logical codon reassignment – expanding the chemistry in biology – volume: 464 start-page: 441 year: 2010 end-page: 444 ident: bb0115 article-title: Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome publication-title: Nature – volume: 590 start-page: 1530 year: 2016 end-page: 1542 ident: bb0075 article-title: Generation of phospho-ubiquitin variants by orthogonal translation reveals codon skipping publication-title: FEBS Lett. – volume: 107 start-page: 17101 year: 2010 end-page: 17106 ident: bb0055 article-title: Hydration dynamics at fluorinated protein surfaces publication-title: PNAS – volume: 586 start-page: 3931 year: 2012 end-page: 3937 ident: bb0270 article-title: Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion publication-title: FEBS Lett. – volume: 48 start-page: 9148 year: 2009 end-page: 9151 ident: bb0140 article-title: Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids publication-title: Angew. Chem. – volume: 8 start-page: 1640 year: 2013 end-page: 1645 ident: bb0215 article-title: An expanded genetic code in mammalian cells with a functional quadruplet codon publication-title: ACS Chem. Biol. – volume: 131 start-page: 8720 year: 2009 end-page: 8721 ident: bb0255 article-title: Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNA(CUA) pair and click chemistry publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 3211 year: 2010 end-page: 3214 ident: bb0165 article-title: A facile system for genetic incorporation of two different noncanonical amino acids into one protein in publication-title: Angew. Chem. – volume: 79 start-page: 413 year: 2010 end-page: 444 ident: bb0005 article-title: Adding new chemistries to the genetic code publication-title: Annu. Rev. Biochem. – volume: 16 start-page: 323 year: 2009 end-page: 336 ident: bb0010 article-title: Expanding the genetic code for biological studies publication-title: Chem. Biol. – volume: 48 start-page: 4052 year: 2009 end-page: 4055 ident: bb0245 article-title: A facile system for encoding unnatural amino acids in mammalian cells publication-title: Angew. Chem. – volume: 10 start-page: 1063 year: 2007 end-page: 1072 ident: bb0080 article-title: Genetically encoding unnatural amino acids for cellular and neuronal studies publication-title: Nat. Neurosci. – volume: 9 start-page: 548 year: 2005 end-page: 554 ident: bb0145 article-title: Adding amino acids to the genetic repertoire publication-title: Curr. Opin. Chem. Biol. – volume: 98 start-page: 13537 year: 2001 end-page: 13542 ident: bb0185 article-title: Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 307 start-page: 755 year: 2001 end-page: 769 ident: bb0230 article-title: Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in publication-title: J. Mol. Biol. – volume: 217 start-page: 203 year: 1987 end-page: 211 ident: bb0190 article-title: Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu publication-title: FEBS Lett. – volume: 1844 start-page: 1059 year: 2014 end-page: 1070 ident: bb0250 article-title: Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool publication-title: Biochim. Biophys. Acta – volume: 7 start-page: 425 year: 2006 end-page: 428 ident: bb0225 article-title: Expanding the genetic code in a mammalian cell line by the introduction of four-base codon/anticodon pairs publication-title: Chembiochem – volume: 276 start-page: 4763 year: 2009 ident: 10.1016/j.bbagen.2017.02.017_bb0175 article-title: Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP) publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.07178.x – year: 2009 ident: 10.1016/j.bbagen.2017.02.017_bb0030 article-title: Noncanonical amino acids in protein science and engineering – volume: 99 start-page: 19 year: 2002 ident: 10.1016/j.bbagen.2017.02.017_bb0160 article-title: Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.012583299 – volume: 8 start-page: 1640 year: 2013 ident: 10.1016/j.bbagen.2017.02.017_bb0215 article-title: An expanded genetic code in mammalian cells with a functional quadruplet codon publication-title: ACS Chem. Biol. doi: 10.1021/cb4001662 – volume: 8 start-page: 883 year: 2001 ident: 10.1016/j.bbagen.2017.02.017_bb0200 article-title: A general approach for the generation of orthogonal tRNAs publication-title: Chem. Biol. doi: 10.1016/S1074-5521(01)00063-1 – volume: 2 start-page: 13 year: 1985 ident: 10.1016/j.bbagen.2017.02.017_bb0235 article-title: Codon usage and tRNA content in unicellular and multicellular organisms publication-title: Mol. Bid. Evol. – volume: 279 start-page: 3622 year: 2012 ident: 10.1016/j.bbagen.2017.02.017_bb0195 article-title: The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and Escherichia coli arginyl-tRNA synthetases publication-title: FEBS J. doi: 10.1111/j.1742-4658.2012.08722.x – volume: 83 start-page: 2841 year: 2011 ident: 10.1016/j.bbagen.2017.02.017_bb0045 article-title: Controlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid publication-title: Anal. Chem. doi: 10.1021/ac103334b – volume: 7 start-page: 47 year: 2012 ident: 10.1016/j.bbagen.2017.02.017_bb0065 article-title: Manipulation of enzyme properties by noncanonical amino acid incorporation publication-title: Biotechnol. J. doi: 10.1002/biot.201100267 – volume: 1844 start-page: 1059 year: 2014 ident: 10.1016/j.bbagen.2017.02.017_bb0250 article-title: Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2014.03.002 – volume: 464 start-page: 441 year: 2010 ident: 10.1016/j.bbagen.2017.02.017_bb0115 article-title: Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome publication-title: Nature doi: 10.1038/nature08817 – volume: 10 start-page: 1063 year: 2007 ident: 10.1016/j.bbagen.2017.02.017_bb0080 article-title: Genetically encoding unnatural amino acids for cellular and neuronal studies publication-title: Nat. Neurosci. doi: 10.1038/nn1932 – volume: 104 start-page: 3141 year: 2007 ident: 10.1016/j.bbagen.2017.02.017_bb0265 article-title: Pyrrolysine is not hardwired for cotranslational insertion at UAG codons publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0611634104 – volume: 9 start-page: 874 year: 2014 ident: 10.1016/j.bbagen.2017.02.017_bb0150 article-title: Role of tRNA orthogonality in an expanded genetic code publication-title: ACS Chem. Biol. doi: 10.1021/cb4005172 – volume: 40 start-page: 11060 year: 2001 ident: 10.1016/j.bbagen.2017.02.017_bb0105 article-title: Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system publication-title: Biochemistry doi: 10.1021/bi0108204 – volume: 6 start-page: 393 year: 2014 ident: 10.1016/j.bbagen.2017.02.017_bb0120 article-title: Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET publication-title: Nat. Chem. doi: 10.1038/nchem.1919 – volume: 30 start-page: 2312 year: 2011 ident: 10.1016/j.bbagen.2017.02.017_bb0015 article-title: Reprogramming the genetic code publication-title: EMBO J. doi: 10.1038/emboj.2011.160 – volume: 333 start-page: 1151 year: 2011 ident: 10.1016/j.bbagen.2017.02.017_bb0090 article-title: Expanding the genetic code of Escherichia coli with phosphoserine publication-title: Science doi: 10.1126/science.1207203 – volume: 217 start-page: 203 year: 1987 ident: 10.1016/j.bbagen.2017.02.017_bb0190 article-title: Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu publication-title: FEBS Lett. doi: 10.1016/0014-5793(87)80664-6 – volume: 51 start-page: 2288 year: 2012 ident: 10.1016/j.bbagen.2017.02.017_bb0100 article-title: Reprogramming the genetic code: from triplet to quadruplet codes publication-title: Angew. Chem. doi: 10.1002/anie.201105016 – volume: 131 start-page: 8720 year: 2009 ident: 10.1016/j.bbagen.2017.02.017_bb0255 article-title: Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNA(CUA) pair and click chemistry publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900553w – volume: 73 start-page: 147 year: 2004 ident: 10.1016/j.bbagen.2017.02.017_bb0035 article-title: Incorporation of nonnatural amino acids into proteins publication-title: Biochemistry doi: 10.1146/annurev.biochem.73.012803.092429 – volume: 4 year: 2007 ident: 10.1016/j.bbagen.2017.02.017_bb0170 – volume: 2 start-page: 201 year: 2005 ident: 10.1016/j.bbagen.2017.02.017_bb0085 article-title: Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid publication-title: Nat. Methods doi: 10.1038/nmeth739 – volume: 7 start-page: 425 year: 2006 ident: 10.1016/j.bbagen.2017.02.017_bb0225 article-title: Expanding the genetic code in a mammalian cell line by the introduction of four-base codon/anticodon pairs publication-title: Chembiochem doi: 10.1002/cbic.200500360 – volume: 307 start-page: 755 year: 2001 ident: 10.1016/j.bbagen.2017.02.017_bb0230 article-title: Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in Escherichia coli publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4518 – volume: 586 start-page: 3931 year: 2012 ident: 10.1016/j.bbagen.2017.02.017_bb0270 article-title: Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.09.033 – volume: 6 start-page: 50 year: 2015 ident: 10.1016/j.bbagen.2017.02.017_bb0020 – volume: 10 start-page: 1648 year: 2015 ident: 10.1016/j.bbagen.2017.02.017_bb0130 article-title: Incorporation of unnatural amino acids in response to the AGG codon publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00230 – volume: 103 start-page: 8650 year: 2006 ident: 10.1016/j.bbagen.2017.02.017_bb0220 article-title: In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0510817103 – volume: 292 start-page: 498 year: 2001 ident: 10.1016/j.bbagen.2017.02.017_bb0125 article-title: Expanding the genetic code of Escherichia coli publication-title: Science doi: 10.1126/science.1060077 – volume: 547 start-page: 197 year: 2003 ident: 10.1016/j.bbagen.2017.02.017_bb0180 article-title: Substrate-induced conformational changes in Escherichia coli arginyl-tRNA synthetase observed by19F NMR spectroscopy publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)00717-8 – volume: 51 start-page: 5232 year: 2012 ident: 10.1016/j.bbagen.2017.02.017_bb0095 article-title: A facile method to synthesize histones with posttranslational modification mimics publication-title: Biochemistry doi: 10.1021/bi300535a – volume: 23 start-page: 751 year: 2012 ident: 10.1016/j.bbagen.2017.02.017_bb0025 article-title: Recent advances in genetic code engineering in Escherichia coli publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.12.027 – volume: 133 start-page: 15942 year: 2011 ident: 10.1016/j.bbagen.2017.02.017_bb0070 article-title: Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207719f – volume: 16 start-page: 323 year: 2009 ident: 10.1016/j.bbagen.2017.02.017_bb0010 article-title: Expanding the genetic code for biological studies publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2009.03.001 – volume: 9 start-page: 548 year: 2005 ident: 10.1016/j.bbagen.2017.02.017_bb0145 article-title: Adding amino acids to the genetic repertoire publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2005.10.011 – volume: 48 start-page: 4052 year: 2009 ident: 10.1016/j.bbagen.2017.02.017_bb0245 article-title: A facile system for encoding unnatural amino acids in mammalian cells publication-title: Angew. Chem. doi: 10.1002/anie.200900683 – volume: 48 start-page: 9148 year: 2009 ident: 10.1016/j.bbagen.2017.02.017_bb0140 article-title: Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids publication-title: Angew. Chem. doi: 10.1002/anie.200904035 – volume: 99 start-page: 11020 year: 2002 ident: 10.1016/j.bbagen.2017.02.017_bb0210 article-title: Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.172226299 – volume: 107 start-page: 17101 year: 2010 ident: 10.1016/j.bbagen.2017.02.017_bb0055 article-title: Hydration dynamics at fluorinated protein surfaces publication-title: PNAS doi: 10.1073/pnas.1011569107 – volume: 98 start-page: 13537 year: 2001 ident: 10.1016/j.bbagen.2017.02.017_bb0185 article-title: Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.231267998 – volume: 590 start-page: 1530 year: 2016 ident: 10.1016/j.bbagen.2017.02.017_bb0075 article-title: Generation of phospho-ubiquitin variants by orthogonal translation reveals codon skipping publication-title: FEBS Lett. doi: 10.1002/1873-3468.12182 – volume: 101 start-page: 7566 year: 2004 ident: 10.1016/j.bbagen.2017.02.017_bb0110 article-title: An expanded genetic code with a functional quadruplet codon publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0401517101 – volume: 104 start-page: 13887 year: 2007 ident: 10.1016/j.bbagen.2017.02.017_bb0060 article-title: Evolution of a fluorinated green fluorescent protein publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0701904104 – volume: 42 start-page: 6735 year: 2003 ident: 10.1016/j.bbagen.2017.02.017_bb0205 article-title: A new strategy for the site-specific modification of proteins in vivo publication-title: Biochemistry doi: 10.1021/bi0300231 – volume: 15 start-page: 1782 year: 2014 ident: 10.1016/j.bbagen.2017.02.017_bb0240 article-title: A bacterial strain with a unique quadruplet codon specifying non-native amino acids publication-title: Chembiochem doi: 10.1002/cbic.201402104 – volume: 395 start-page: 361 year: 2010 ident: 10.1016/j.bbagen.2017.02.017_bb0135 article-title: An enhanced system for unnatural amino acid mutagenesis in E. coli publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.10.030 – volume: 51 start-page: 2243 year: 2012 ident: 10.1016/j.bbagen.2017.02.017_bb0050 article-title: Multiple-site labeling of proteins with unnatural amino acids publication-title: Angew. Chem. doi: 10.1002/anie.201108275 – volume: 39 start-page: 1272 year: 2010 ident: 10.1016/j.bbagen.2017.02.017_bb0155 article-title: Cu-free click cycloaddition reactions in chemical biology publication-title: Chem. Soc. Rev. doi: 10.1039/b901970g – volume: 586 start-page: 729 year: 2012 ident: 10.1016/j.bbagen.2017.02.017_bb0260 article-title: N-acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.01.029 – volume: 79 start-page: 413 year: 2010 ident: 10.1016/j.bbagen.2017.02.017_bb0005 article-title: Adding new chemistries to the genetic code publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.052308.105824 – volume: 134 start-page: 9918 year: 2012 ident: 10.1016/j.bbagen.2017.02.017_bb0040 article-title: Synthesis of bispecific antibodies using genetically encoded unnatural amino acids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303904e – volume: 49 start-page: 3211 year: 2010 ident: 10.1016/j.bbagen.2017.02.017_bb0165 article-title: A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli publication-title: Angew. Chem. doi: 10.1002/anie.201000465 |
SSID | ssj0000595 |
Score | 2.3215854 |
Snippet | Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3016 |
SubjectTerms | amino acid derivatives amino acids Amino Acids - chemical synthesis Amino Acids - metabolism Amino Acyl-tRNA Synthetases - metabolism aminoacyl tRNA ligases ArgW gene Cloning, Molecular - methods Codon - chemical synthesis Engineered tRNA Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Four-base AGGA codon Genetic Code Methanococcus Methanococcus - genetics Mutagenesis, Site-Directed - methods protein engineering Protein Engineering - methods protein synthesis proteins Recombinant Proteins - genetics Recombinant Proteins - metabolism stop codon synthetic biology Synthetic Biology - methods transfer RNA Unnatural amino acid |
Title | An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli |
URI | https://dx.doi.org/10.1016/j.bbagen.2017.02.017 https://www.ncbi.nlm.nih.gov/pubmed/28212794 https://www.proquest.com/docview/2000349458 |
Volume | 1861 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhobSX0qavbdOgQq_qrmxJ9h7NkmTb0lzawN7EWJbAJbXDPg7NIb-9M5KdUEgJ9GRsS1hoxjPfoJlvGPvYgJnNESkLD7kWysgg5mUAMZsBSOnLRkUC02_nZnmhvqz0ao8txloYSqscbH-y6dFaD0-mw25Or9p2-p0O9RBOaEmU60avqIJdFaTln27u0jwQPuh0kqAEjR7L52KOV13jT0ssqLKIzJ2xbdm97ulf8DO6odNn7OmAH3mVlvic7fnukD1KHSV_H7LHi7GB2wt2XXXcR4YIdCw8UTZzxKicCBkSfzEKhfeBI4iFyL_B4Vfb9Rxc22xwGF-nDFrPtz1HpIizd2tBjo87DGc7Xp2dVTTuZEOybylvGt9cti_ZxenJj8VSDK0WhMvneitKXQcXvEZ3BmC8QxDpZI3-2_jggShnyiJv0OMh4mrAFSCV92gPGofhict8_ortd33n3zBuyiwEDHwVGEQHrgaVBxWkz0PWmNzAhOXjDls38JBTO4xLOyac_bRJLpbkYmeZxcuEidtZV4mH44HxxSg8-5c-WXQVD8z8MMraosDo_AQ63-821LEzsvnocsJeJyW4XQtGrjJD2_b2v7_7jj2hu1TneMT2t-udf4-AZ1sfR40-ZgfV56_L8z-x9f9G |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCAqULQWMBEez6yT2Zg89rErbLX1caKW9GcexpaCSVPtQVQ79U_2DzNhJERKoElJPkWI7cTyTmW_k8TcAH0qjBiNEytyZVPJMCc9HuTd8MDBGCJeXWSAwPT5Rk7Psy1ROV-CmOwtDaZWt7Y82PVjr9k6_Xc3-RVX1v9KmHsIJKYhyXclpm1l56K4uMW6bbx98RiF_TJK93dOdCW9LC3CbjuSC57Lw1juJ5tsY5SyCJisK9FfKeWeIYiUfpiVaeEQYpbFDIzLnUP9Li3DcJi7F5z6Ah_ghOZVN-HT9O68E8YqMWxcZp-l15_VCUllRoJUg2lUxDFShoU7aX_3hv_Bu8Ht7T-FJC1jZOK7JM1hx9To8iiUsr9ZhbaerGPccfo5r5gIlBXoyFjmiGYJiRgwQkTAZtYA1niFqNoHwg5kfVd0wY6tyjt3YLKbsOrZoGEJTHL2ccfK0zGL8XLPx_v6Y-u3OSdkqStTGlvPqBZzdiwBewmrd1O4VMJUn3mOknRmFcMQWJkt95oVLfVKqVJkepN0Ka9sSn1P9jXPdZbh911EumuSiB4nGSw_47aiLSPxxR_9hJzz9hwJr9E13jHzfyVqjwGjDxtSuWc6pRGigD5J5DzaiEtzOBUNlkaAx3fzv976Dtcnp8ZE-Ojg5fA2PqSUestyC1cVs6d4g2loUb4N2M_h237_TL9KLO0k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+system+for+incorporation+of+unnatural+amino+acids+in+response+to+the+four-base+codon+AGGA+in+Escherichia+coli&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Lee%2C+Byeong+Sung&rft.au=Kim%2C+Suyeon&rft.au=Ko%2C+Byoung+Joon&rft.au=Yoo%2C+Tae+Hyeon&rft.date=2017-11-01&rft.issn=0304-4165&rft.volume=1861&rft.issue=11&rft.spage=3016&rft.epage=3023&rft_id=info:doi/10.1016%2Fj.bbagen.2017.02.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2017_02_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |