An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli

Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1861; no. 11; pp. 3016 - 3023
Main Authors Lee, Byeong Sung, Kim, Suyeon, Ko, Byoung Joon, Yoo, Tae Hyeon
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed to incorporate UAAs in response to the amber codon, less research has been focused on four-base codons despites their advantages. In this study, we report an efficient method to incorporate UAA in response to an AGGA codon in Escherichia coli. The Methanococcus jannaschii tyrosyl-tRNA synthetase-tRNACUA(MjTyrRS-MjtRNACUA) orthogonal pair has been engineered to incorporate diverse UAAs in response to the amber codon. To apply the engineered MjTyrRS enzymes for UAAs to a four-base codon suppression, we developed an MjTyrRS-MjtRNAUCCU pair system that enabled incorporation of UAAs in response to the AGGA codon in E. coli. Using this system, we demonstrated that several UAAs could be incorporated quantitatively in the AGGA site. In addition, multiple AGGA codons were successfully suppressed in an E. coli strain when the endogenous tRNACCUArg gene was knocked out. An efficient system was developed for the incorporation of UAAs in response to the AGGA four-base codon in E. coli, and the method was successfully demonstrated for several UAAs and for multiple AGGA sites. The developed system can expand the repertoire of protein engineering tools based on amino acid analogues in combination with other UAA incorporation methods. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O’Donoghue. •A method for incorporation of unnatural amino acids in response to the AGGA codon is developed.•The method is based on an engineered orthogonal pair of aminoacyl-tRNA synthetase and tRNAUCCU.•The engineered tRNAUCCU improves the efficiency as well as the specificity of the method.•Knocking out a competitive tRNA gene of ArgW increases the AGGA suppression efficiency.•The method is demonstrated for several unnatural amino acids and for multiple AGGA sites.
AbstractList Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed to incorporate UAAs in response to the amber codon, less research has been focused on four-base codons despites their advantages. In this study, we report an efficient method to incorporate UAA in response to an AGGA codon in Escherichia coli. The Methanococcus jannaschii tyrosyl-tRNA synthetase-tRNACUA(MjTyrRS-MjtRNACUA) orthogonal pair has been engineered to incorporate diverse UAAs in response to the amber codon. To apply the engineered MjTyrRS enzymes for UAAs to a four-base codon suppression, we developed an MjTyrRS-MjtRNAUCCU pair system that enabled incorporation of UAAs in response to the AGGA codon in E. coli. Using this system, we demonstrated that several UAAs could be incorporated quantitatively in the AGGA site. In addition, multiple AGGA codons were successfully suppressed in an E. coli strain when the endogenous tRNACCUArg gene was knocked out. An efficient system was developed for the incorporation of UAAs in response to the AGGA four-base codon in E. coli, and the method was successfully demonstrated for several UAAs and for multiple AGGA sites. The developed system can expand the repertoire of protein engineering tools based on amino acid analogues in combination with other UAA incorporation methods. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O’Donoghue. •A method for incorporation of unnatural amino acids in response to the AGGA codon is developed.•The method is based on an engineered orthogonal pair of aminoacyl-tRNA synthetase and tRNAUCCU.•The engineered tRNAUCCU improves the efficiency as well as the specificity of the method.•Knocking out a competitive tRNA gene of ArgW increases the AGGA suppression efficiency.•The method is demonstrated for several unnatural amino acids and for multiple AGGA sites.
Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed to incorporate UAAs in response to the amber codon, less research has been focused on four-base codons despites their advantages. In this study, we report an efficient method to incorporate UAA in response to an AGGA codon in Escherichia coli. The Methanococcus jannaschii tyrosyl-tRNA synthetase-tRNA (MjTyrRS-MjtRNA ) orthogonal pair has been engineered to incorporate diverse UAAs in response to the amber codon. To apply the engineered MjTyrRS enzymes for UAAs to a four-base codon suppression, we developed an MjTyrRS-MjtRNA pair system that enabled incorporation of UAAs in response to the AGGA codon in E. coli. Using this system, we demonstrated that several UAAs could be incorporated quantitatively in the AGGA site. In addition, multiple AGGA codons were successfully suppressed in an E. coli strain when the endogenous tRNA gene was knocked out. An efficient system was developed for the incorporation of UAAs in response to the AGGA four-base codon in E. coli, and the method was successfully demonstrated for several UAAs and for multiple AGGA sites. The developed system can expand the repertoire of protein engineering tools based on amino acid analogues in combination with other UAA incorporation methods. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed to incorporate UAAs in response to the amber codon, less research has been focused on four-base codons despites their advantages. In this study, we report an efficient method to incorporate UAA in response to an AGGA codon in Escherichia coli.The Methanococcus jannaschii tyrosyl-tRNA synthetase-tRNACUA(MjTyrRS-MjtRNACUA) orthogonal pair has been engineered to incorporate diverse UAAs in response to the amber codon. To apply the engineered MjTyrRS enzymes for UAAs to a four-base codon suppression, we developed an MjTyrRS-MjtRNAUCCU pair system that enabled incorporation of UAAs in response to the AGGA codon in E. coli. Using this system, we demonstrated that several UAAs could be incorporated quantitatively in the AGGA site. In addition, multiple AGGA codons were successfully suppressed in an E. coli strain when the endogenous tRNACCUᴬʳᵍ gene was knocked out.An efficient system was developed for the incorporation of UAAs in response to the AGGA four-base codon in E. coli, and the method was successfully demonstrated for several UAAs and for multiple AGGA sites.The developed system can expand the repertoire of protein engineering tools based on amino acid analogues in combination with other UAA incorporation methods. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O’Donoghue.
Author Kim, Suyeon
Yoo, Tae Hyeon
Lee, Byeong Sung
Ko, Byoung Joon
Author_xml – sequence: 1
  givenname: Byeong Sung
  surname: Lee
  fullname: Lee, Byeong Sung
  organization: Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
– sequence: 2
  givenname: Suyeon
  surname: Kim
  fullname: Kim, Suyeon
  organization: Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
– sequence: 3
  givenname: Byoung Joon
  surname: Ko
  fullname: Ko, Byoung Joon
  organization: New Drug Development Center, Osong Medical Innovative Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Cheongju 28160, Republic of Korea
– sequence: 4
  givenname: Tae Hyeon
  surname: Yoo
  fullname: Yoo, Tae Hyeon
  email: taehyeonyoo@ajou.ac.kr
  organization: Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28212794$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAUhC3Uim4L_wAhH7kk2I6dZDkgrap2W6kSl3K2nJdn1qvEXmwHqfx6vN32wgF8GcnvmznMXJIzHzwS8oGzmjPeft7Xw2B-oK8F413NRF3kDVnxvhNVz1h7RlasYbKSvFUX5DKlPStPrdVbciF6wUW3livye-MpWuvAoc80PaWMM7UhUuchxEOIJrvgabB08d7kJZqJmtn5QA24MRWMRkyH4BPSHGjeYXEvsRpM-YAwFu9mu90cuZsEO4wOds6Uy-TekXNrpoTvX_SKfL-9eby-qx6-be-vNw8VNGuVq14NFiyqphXGtAhMMOADE7JFi0aqVvZdMzaScyVHA53hEpE1fIRetCCwuSKfTrmHGH4umLKeXQKcJuMxLEmLUksj11L1Bf34gi7DjKM-RDeb-KRf-yrAlxMAMaQU0Wpw-bmiHI2bNGf6OI7e69M4-jiOZkIXKWb5l_k1_z-2rycblpJ-OYw6HdcCHF1EyHoM7t8BfwB-16tU
CitedBy_id crossref_primary_10_1038_s41467_020_20373_z
crossref_primary_10_1016_j_jmb_2021_167440
crossref_primary_10_1021_acschembio_8b00520
crossref_primary_10_1016_j_talanta_2019_03_015
crossref_primary_10_1016_j_biotechadv_2021_107868
crossref_primary_10_1021_acs_bioconjchem_0c00456
crossref_primary_10_1021_acs_chemrev_3c00938
crossref_primary_10_1186_s12934_022_01828_y
crossref_primary_10_1016_j_jmb_2021_167346
crossref_primary_10_3390_microorganisms7010005
crossref_primary_10_1186_s13036_019_0188_x
crossref_primary_10_1080_15476286_2017_1356561
crossref_primary_10_1186_s12862_018_1304_0
crossref_primary_10_3389_fchem_2021_772648
Cites_doi 10.1111/j.1742-4658.2009.07178.x
10.1073/pnas.012583299
10.1021/cb4001662
10.1016/S1074-5521(01)00063-1
10.1111/j.1742-4658.2012.08722.x
10.1021/ac103334b
10.1002/biot.201100267
10.1016/j.bbapap.2014.03.002
10.1038/nature08817
10.1038/nn1932
10.1073/pnas.0611634104
10.1021/cb4005172
10.1021/bi0108204
10.1038/nchem.1919
10.1038/emboj.2011.160
10.1126/science.1207203
10.1016/0014-5793(87)80664-6
10.1002/anie.201105016
10.1021/ja900553w
10.1146/annurev.biochem.73.012803.092429
10.1038/nmeth739
10.1002/cbic.200500360
10.1006/jmbi.2001.4518
10.1016/j.febslet.2012.09.033
10.1021/acschembio.5b00230
10.1073/pnas.0510817103
10.1126/science.1060077
10.1016/S0014-5793(03)00717-8
10.1021/bi300535a
10.1016/j.copbio.2011.12.027
10.1021/ja207719f
10.1016/j.chembiol.2009.03.001
10.1016/j.cbpa.2005.10.011
10.1002/anie.200900683
10.1002/anie.200904035
10.1073/pnas.172226299
10.1073/pnas.1011569107
10.1073/pnas.231267998
10.1002/1873-3468.12182
10.1073/pnas.0401517101
10.1073/pnas.0701904104
10.1021/bi0300231
10.1002/cbic.201402104
10.1016/j.jmb.2009.10.030
10.1002/anie.201108275
10.1039/b901970g
10.1016/j.febslet.2012.01.029
10.1146/annurev.biochem.052308.105824
10.1021/ja303904e
10.1002/anie.201000465
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
DOI 10.1016/j.bbagen.2017.02.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 3023
ExternalDocumentID 28212794
10_1016_j_bbagen_2017_02_017
S030441651730065X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7S9
L.6
ID FETCH-LOGICAL-c395t-85bfcfe5362aa6ec020c1b0246efea4564873d341154dac7a14ee031dc826c2e3
IEDL.DBID .~1
ISSN 0304-4165
IngestDate Fri Jul 11 09:16:51 EDT 2025
Mon Jul 21 05:42:28 EDT 2025
Tue Jul 01 00:22:08 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 23 02:34:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Engineered tRNA
ArgW gene
Unnatural amino acid
Escherichia coli
Four-base AGGA codon
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-85bfcfe5362aa6ec020c1b0246efea4564873d341154dac7a14ee031dc826c2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28212794
PQID 2000349458
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2000349458
pubmed_primary_28212794
crossref_citationtrail_10_1016_j_bbagen_2017_02_017
crossref_primary_10_1016_j_bbagen_2017_02_017
elsevier_sciencedirect_doi_10_1016_j_bbagen_2017_02_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
2017-Nov
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zheng, Kwon (bb0065) 2012; 7
Kwon, Yoo, Tirrell, Othon, Zewaila (bb0055) 2010; 107
Chatterjee, Lajoie, Xiao, Church, Schultz (bb0240) 2014; 15
Konno, Sumida, Uchikawa, Mori, Yanagisawa, Sekine, Yokoyama (bb0175) 2009; 276
Chin, Martin, King, Wang, Schultz (bb0210) 2002; 99
O'Donoghue, Prat, Heinemann, Ling, Odoi, Liu, Soll (bb0270) 2012; 586
Wang, Parrish, Wang (bb0010) 2009; 16
Shimada, Nureki, Goto, Takahashi, Yokoyama (bb0185) 2001; 98
Taki, Matsushita, Sisido (bb0225) 2006; 7
Liu, Schultz (bb0005) 2010; 79
Wan, Tharp, Liu (bb0250) 2014; 1844
Chin (bb0015) 2011; 30
Loscha, Herlt, Qi, Huber, Ozawa, Otting (bb0050) 2012; 51
Hino, Okazaki, Kobayashi, Hayashi, Sakamoto, Yokoyama (bb0085) 2005; 2
Jewett, Bertozzi (bb0155) 2010; 39
Wang, Schmied, Chin (bb0100) 2012; 51
Anderson, Wu, Santoro, Lakshman, King, Schultz (bb0110) 2004; 101
Hohsaka, Ashizuka, Taira, Murakami, Sisido (bb0105) 2001; 40
Wang, Wang, Pai, Russell, Russell, Liu (bb0095) 2012; 51
Dumas, Lercher, Spicer, Davis (bb0020) 2015; 6
Wang, Sachdeva, Cox, Wilf, Lang, Wallace, Mehl, Chin (bb0120) 2014; 6
Hendrickson, Crécy-Lagard, Schimmel (bb0035) 2004; 73
Yao, Zhang, Yan, Zhu, Wang (bb0180) 2003; 547
Magliery, Anderson, Schultz (bb0230) 2001; 307
Kiick, Saxon, Tirrell, Bertozzi (bb0160) 2002; 99
Liu, Brock, Chen, Chen, Schultz (bb0170) 2007; 4
Javahishvili, Manibusan, Srinagesh, Lee, Ensari, Shimazu, Schultz (bb0150) 2014; 9
Aldinger, Leisinger, Igloi (bb0195) 2012; 279
Ambrogelly, Gundllapalli, Herring, Polycarpo, Frauer, Soll (bb0265) 2007; 104
Xie, Schultz (bb0145) 2005; 9
Seo, Han, Jin, Lee, Park, Kim (bb0045) 2011; 83
Rodriguez, Lester, Dougherty (bb0220) 2006; 103
Minnihan, Young, Schultz, Stubbe (bb0070) 2011; 133
Lee, Shin, Jeon, Jang, Lee, Choi, Yoo (bb0130) 2015; 10
Wang, Brock, Herberich, Schultz (bb0125) 2001; 292
Umehara, Kim, Lee, Guo, Soll, Park (bb0260) 2012; 586
Guo, Melancon, Lee, Groff, Schultz (bb0140) 2009; 48
Kim, Axup, Dubrovska, Kazane, Hutchins, Wold, Smider, Schultz (bb0040) 2012; 134
Nguyen, Lusic, Neumann, Kapadnis, Deiters, Chin (bb0255) 2009; 131
Yoo, Link, Tirrell (bb0060) 2007; 104
Park, Hohn, Umehara, Guo, Osborne, Benner, Noren, Rinehart, Soll (bb0090) 2011; 333
Beatty, Tirrell (bb0030) 2009
Young, Ahmad, Yin, Schultz (bb0135) 2010; 395
Wang, Schultz (bb0200) 2001; 8
Faulhammer, Joshi (bb0190) 1987; 217
Hoesl, Budisa (bb0025) 2012; 23
Wang, Takimoto, Louie, Baiga, Noel, Lee, Slesinger, Wang (bb0080) 2007; 10
Zhang, Smith, Wang, Brock, Cho, Schultz (bb0205) 2003; 42
Neumann, Wang, Davis, Garcia-Alai, Chin (bb0115) 2010; 464
Ikemura (bb0235) 1985; 2
Chen, Groff, Guo, Ou, Cellitti, Geierstanger, Schultz (bb0245) 2009; 48
George, Aguirre, Spratt, Bi, Jeffery, Shaw, O'Donoghue (bb0075) 2016; 590
Wan, Huang, Wang, Russell, Pai, Russell, Liu (bb0165) 2010; 49
Niu, Schultz, Guo (bb0215) 2013; 8
Hendrickson (10.1016/j.bbagen.2017.02.017_bb0035) 2004; 73
Liu (10.1016/j.bbagen.2017.02.017_bb0170) 2007; 4
George (10.1016/j.bbagen.2017.02.017_bb0075) 2016; 590
Wan (10.1016/j.bbagen.2017.02.017_bb0250) 2014; 1844
Umehara (10.1016/j.bbagen.2017.02.017_bb0260) 2012; 586
Hohsaka (10.1016/j.bbagen.2017.02.017_bb0105) 2001; 40
Neumann (10.1016/j.bbagen.2017.02.017_bb0115) 2010; 464
Chatterjee (10.1016/j.bbagen.2017.02.017_bb0240) 2014; 15
Wang (10.1016/j.bbagen.2017.02.017_bb0095) 2012; 51
Faulhammer (10.1016/j.bbagen.2017.02.017_bb0190) 1987; 217
Ikemura (10.1016/j.bbagen.2017.02.017_bb0235) 1985; 2
Dumas (10.1016/j.bbagen.2017.02.017_bb0020) 2015; 6
Park (10.1016/j.bbagen.2017.02.017_bb0090) 2011; 333
Konno (10.1016/j.bbagen.2017.02.017_bb0175) 2009; 276
Wan (10.1016/j.bbagen.2017.02.017_bb0165) 2010; 49
Javahishvili (10.1016/j.bbagen.2017.02.017_bb0150) 2014; 9
Chen (10.1016/j.bbagen.2017.02.017_bb0245) 2009; 48
Taki (10.1016/j.bbagen.2017.02.017_bb0225) 2006; 7
Chin (10.1016/j.bbagen.2017.02.017_bb0210) 2002; 99
Wang (10.1016/j.bbagen.2017.02.017_bb0010) 2009; 16
Beatty (10.1016/j.bbagen.2017.02.017_bb0030) 2009
Kiick (10.1016/j.bbagen.2017.02.017_bb0160) 2002; 99
Xie (10.1016/j.bbagen.2017.02.017_bb0145) 2005; 9
Aldinger (10.1016/j.bbagen.2017.02.017_bb0195) 2012; 279
Anderson (10.1016/j.bbagen.2017.02.017_bb0110) 2004; 101
Lee (10.1016/j.bbagen.2017.02.017_bb0130) 2015; 10
O'Donoghue (10.1016/j.bbagen.2017.02.017_bb0270) 2012; 586
Rodriguez (10.1016/j.bbagen.2017.02.017_bb0220) 2006; 103
Nguyen (10.1016/j.bbagen.2017.02.017_bb0255) 2009; 131
Yoo (10.1016/j.bbagen.2017.02.017_bb0060) 2007; 104
Wang (10.1016/j.bbagen.2017.02.017_bb0120) 2014; 6
Seo (10.1016/j.bbagen.2017.02.017_bb0045) 2011; 83
Ambrogelly (10.1016/j.bbagen.2017.02.017_bb0265) 2007; 104
Kim (10.1016/j.bbagen.2017.02.017_bb0040) 2012; 134
Liu (10.1016/j.bbagen.2017.02.017_bb0005) 2010; 79
Shimada (10.1016/j.bbagen.2017.02.017_bb0185) 2001; 98
Loscha (10.1016/j.bbagen.2017.02.017_bb0050) 2012; 51
Guo (10.1016/j.bbagen.2017.02.017_bb0140) 2009; 48
Young (10.1016/j.bbagen.2017.02.017_bb0135) 2010; 395
Wang (10.1016/j.bbagen.2017.02.017_bb0100) 2012; 51
Yao (10.1016/j.bbagen.2017.02.017_bb0180) 2003; 547
Hoesl (10.1016/j.bbagen.2017.02.017_bb0025) 2012; 23
Niu (10.1016/j.bbagen.2017.02.017_bb0215) 2013; 8
Wang (10.1016/j.bbagen.2017.02.017_bb0125) 2001; 292
Minnihan (10.1016/j.bbagen.2017.02.017_bb0070) 2011; 133
Zhang (10.1016/j.bbagen.2017.02.017_bb0205) 2003; 42
Kwon (10.1016/j.bbagen.2017.02.017_bb0055) 2010; 107
Wang (10.1016/j.bbagen.2017.02.017_bb0200) 2001; 8
Chin (10.1016/j.bbagen.2017.02.017_bb0015) 2011; 30
Wang (10.1016/j.bbagen.2017.02.017_bb0080) 2007; 10
Jewett (10.1016/j.bbagen.2017.02.017_bb0155) 2010; 39
Hino (10.1016/j.bbagen.2017.02.017_bb0085) 2005; 2
Zheng (10.1016/j.bbagen.2017.02.017_bb0065) 2012; 7
Magliery (10.1016/j.bbagen.2017.02.017_bb0230) 2001; 307
References_xml – volume: 101
  start-page: 7566
  year: 2004
  end-page: 7571
  ident: bb0110
  article-title: An expanded genetic code with a functional quadruplet codon
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 103
  start-page: 8650
  year: 2006
  end-page: 8655
  ident: bb0220
  article-title: In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression
  publication-title: Proc. Natl. Acad. Sci.
– volume: 73
  start-page: 147
  year: 2004
  end-page: 176
  ident: bb0035
  article-title: Incorporation of nonnatural amino acids into proteins
  publication-title: Biochemistry
– volume: 23
  start-page: 751
  year: 2012
  end-page: 757
  ident: bb0025
  article-title: Recent advances in genetic code engineering in
  publication-title: Curr. Opin. Biotechnol.
– volume: 8
  start-page: 883
  year: 2001
  end-page: 890
  ident: bb0200
  article-title: A general approach for the generation of orthogonal tRNAs
  publication-title: Chem. Biol.
– volume: 2
  start-page: 13
  year: 1985
  end-page: 34
  ident: bb0235
  article-title: Codon usage and tRNA content in unicellular and multicellular organisms
  publication-title: Mol. Bid. Evol.
– volume: 99
  start-page: 19
  year: 2002
  end-page: 24
  ident: bb0160
  article-title: Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 134
  start-page: 9918
  year: 2012
  end-page: 9921
  ident: bb0040
  article-title: Synthesis of bispecific antibodies using genetically encoded unnatural amino acids
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 47
  year: 2012
  end-page: 60
  ident: bb0065
  article-title: Manipulation of enzyme properties by noncanonical amino acid incorporation
  publication-title: Biotechnol. J.
– volume: 51
  start-page: 2243
  year: 2012
  end-page: 2246
  ident: bb0050
  article-title: Multiple-site labeling of proteins with unnatural amino acids
  publication-title: Angew. Chem.
– volume: 279
  start-page: 3622
  year: 2012
  end-page: 3638
  ident: bb0195
  article-title: The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and
  publication-title: FEBS J.
– volume: 15
  start-page: 1782
  year: 2014
  end-page: 1786
  ident: bb0240
  article-title: A bacterial strain with a unique quadruplet codon specifying non-native amino acids
  publication-title: Chembiochem
– volume: 83
  start-page: 2841
  year: 2011
  end-page: 2845
  ident: bb0045
  article-title: Controlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid
  publication-title: Anal. Chem.
– volume: 104
  start-page: 3141
  year: 2007
  end-page: 3146
  ident: bb0265
  article-title: Pyrrolysine is not hardwired for cotranslational insertion at UAG codons
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 292
  start-page: 498
  year: 2001
  end-page: 500
  ident: bb0125
  article-title: Expanding the genetic code of
  publication-title: Science
– volume: 395
  start-page: 361
  year: 2010
  end-page: 374
  ident: bb0135
  article-title: An enhanced system for unnatural amino acid mutagenesis in
  publication-title: J. Mol. Biol.
– volume: 133
  start-page: 15942
  year: 2011
  end-page: 15945
  ident: bb0070
  article-title: Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 393
  year: 2014
  end-page: 403
  ident: bb0120
  article-title: Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET
  publication-title: Nat. Chem.
– volume: 9
  start-page: 874
  year: 2014
  end-page: 879
  ident: bb0150
  article-title: Role of tRNA orthogonality in an expanded genetic code
  publication-title: ACS Chem. Biol.
– volume: 547
  start-page: 197
  year: 2003
  end-page: 200
  ident: bb0180
  article-title: Substrate-induced conformational changes in
  publication-title: FEBS Lett.
– volume: 30
  start-page: 2312
  year: 2011
  end-page: 2324
  ident: bb0015
  article-title: Reprogramming the genetic code
  publication-title: EMBO J.
– volume: 51
  start-page: 5232
  year: 2012
  end-page: 5234
  ident: bb0095
  article-title: A facile method to synthesize histones with posttranslational modification mimics
  publication-title: Biochemistry
– volume: 39
  start-page: 1272
  year: 2010
  ident: bb0155
  article-title: Cu-free click cycloaddition reactions in chemical biology
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 2288
  year: 2012
  end-page: 2297
  ident: bb0100
  article-title: Reprogramming the genetic code: from triplet to quadruplet codes
  publication-title: Angew. Chem.
– volume: 4
  year: 2007
  ident: bb0170
  publication-title: Genetic incorporation of unnatural amino acids into proteins in mammalian cells
– volume: 42
  start-page: 6735
  year: 2003
  end-page: 6746
  ident: bb0205
  article-title: A new strategy for the site-specific modification of proteins in vivo
  publication-title: Biochemistry
– volume: 276
  start-page: 4763
  year: 2009
  end-page: 4779
  ident: bb0175
  article-title: Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP)
  publication-title: FEBS J.
– volume: 586
  start-page: 729
  year: 2012
  end-page: 733
  ident: bb0260
  article-title: N-acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo
  publication-title: FEBS Lett.
– year: 2009
  ident: bb0030
  article-title: Noncanonical amino acids in protein science and engineering
  publication-title: Protein Engineering
– volume: 40
  start-page: 11060
  year: 2001
  end-page: 11064
  ident: bb0105
  article-title: Incorporation of nonnatural amino acids into proteins by using various four-base codons in an
  publication-title: Biochemistry
– volume: 99
  start-page: 11020
  year: 2002
  end-page: 11024
  ident: bb0210
  article-title: Addition of a photocrosslinking amino acid to the genetic code of
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 2
  start-page: 201
  year: 2005
  end-page: 206
  ident: bb0085
  article-title: Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid
  publication-title: Nat. Methods
– volume: 10
  start-page: 1648
  year: 2015
  end-page: 1653
  ident: bb0130
  article-title: Incorporation of unnatural amino acids in response to the AGG codon
  publication-title: ACS Chem. Biol.
– volume: 104
  start-page: 13887
  year: 2007
  end-page: 13890
  ident: bb0060
  article-title: Evolution of a fluorinated green fluorescent protein
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 333
  start-page: 1151
  year: 2011
  end-page: 1154
  ident: bb0090
  article-title: Expanding the genetic code of
  publication-title: Science
– volume: 6
  start-page: 50
  year: 2015
  end-page: 69
  ident: bb0020
  publication-title: Designing logical codon reassignment – expanding the chemistry in biology
– volume: 464
  start-page: 441
  year: 2010
  end-page: 444
  ident: bb0115
  article-title: Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome
  publication-title: Nature
– volume: 590
  start-page: 1530
  year: 2016
  end-page: 1542
  ident: bb0075
  article-title: Generation of phospho-ubiquitin variants by orthogonal translation reveals codon skipping
  publication-title: FEBS Lett.
– volume: 107
  start-page: 17101
  year: 2010
  end-page: 17106
  ident: bb0055
  article-title: Hydration dynamics at fluorinated protein surfaces
  publication-title: PNAS
– volume: 586
  start-page: 3931
  year: 2012
  end-page: 3937
  ident: bb0270
  article-title: Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion
  publication-title: FEBS Lett.
– volume: 48
  start-page: 9148
  year: 2009
  end-page: 9151
  ident: bb0140
  article-title: Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids
  publication-title: Angew. Chem.
– volume: 8
  start-page: 1640
  year: 2013
  end-page: 1645
  ident: bb0215
  article-title: An expanded genetic code in mammalian cells with a functional quadruplet codon
  publication-title: ACS Chem. Biol.
– volume: 131
  start-page: 8720
  year: 2009
  end-page: 8721
  ident: bb0255
  article-title: Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNA(CUA) pair and click chemistry
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 3211
  year: 2010
  end-page: 3214
  ident: bb0165
  article-title: A facile system for genetic incorporation of two different noncanonical amino acids into one protein in
  publication-title: Angew. Chem.
– volume: 79
  start-page: 413
  year: 2010
  end-page: 444
  ident: bb0005
  article-title: Adding new chemistries to the genetic code
  publication-title: Annu. Rev. Biochem.
– volume: 16
  start-page: 323
  year: 2009
  end-page: 336
  ident: bb0010
  article-title: Expanding the genetic code for biological studies
  publication-title: Chem. Biol.
– volume: 48
  start-page: 4052
  year: 2009
  end-page: 4055
  ident: bb0245
  article-title: A facile system for encoding unnatural amino acids in mammalian cells
  publication-title: Angew. Chem.
– volume: 10
  start-page: 1063
  year: 2007
  end-page: 1072
  ident: bb0080
  article-title: Genetically encoding unnatural amino acids for cellular and neuronal studies
  publication-title: Nat. Neurosci.
– volume: 9
  start-page: 548
  year: 2005
  end-page: 554
  ident: bb0145
  article-title: Adding amino acids to the genetic repertoire
  publication-title: Curr. Opin. Chem. Biol.
– volume: 98
  start-page: 13537
  year: 2001
  end-page: 13542
  ident: bb0185
  article-title: Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 307
  start-page: 755
  year: 2001
  end-page: 769
  ident: bb0230
  article-title: Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in
  publication-title: J. Mol. Biol.
– volume: 217
  start-page: 203
  year: 1987
  end-page: 211
  ident: bb0190
  article-title: Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu
  publication-title: FEBS Lett.
– volume: 1844
  start-page: 1059
  year: 2014
  end-page: 1070
  ident: bb0250
  article-title: Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool
  publication-title: Biochim. Biophys. Acta
– volume: 7
  start-page: 425
  year: 2006
  end-page: 428
  ident: bb0225
  article-title: Expanding the genetic code in a mammalian cell line by the introduction of four-base codon/anticodon pairs
  publication-title: Chembiochem
– volume: 276
  start-page: 4763
  year: 2009
  ident: 10.1016/j.bbagen.2017.02.017_bb0175
  article-title: Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP)
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.07178.x
– year: 2009
  ident: 10.1016/j.bbagen.2017.02.017_bb0030
  article-title: Noncanonical amino acids in protein science and engineering
– volume: 99
  start-page: 19
  year: 2002
  ident: 10.1016/j.bbagen.2017.02.017_bb0160
  article-title: Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.012583299
– volume: 8
  start-page: 1640
  year: 2013
  ident: 10.1016/j.bbagen.2017.02.017_bb0215
  article-title: An expanded genetic code in mammalian cells with a functional quadruplet codon
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb4001662
– volume: 8
  start-page: 883
  year: 2001
  ident: 10.1016/j.bbagen.2017.02.017_bb0200
  article-title: A general approach for the generation of orthogonal tRNAs
  publication-title: Chem. Biol.
  doi: 10.1016/S1074-5521(01)00063-1
– volume: 2
  start-page: 13
  year: 1985
  ident: 10.1016/j.bbagen.2017.02.017_bb0235
  article-title: Codon usage and tRNA content in unicellular and multicellular organisms
  publication-title: Mol. Bid. Evol.
– volume: 279
  start-page: 3622
  year: 2012
  ident: 10.1016/j.bbagen.2017.02.017_bb0195
  article-title: The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and Escherichia coli arginyl-tRNA synthetases
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2012.08722.x
– volume: 83
  start-page: 2841
  year: 2011
  ident: 10.1016/j.bbagen.2017.02.017_bb0045
  article-title: Controlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid
  publication-title: Anal. Chem.
  doi: 10.1021/ac103334b
– volume: 7
  start-page: 47
  year: 2012
  ident: 10.1016/j.bbagen.2017.02.017_bb0065
  article-title: Manipulation of enzyme properties by noncanonical amino acid incorporation
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201100267
– volume: 1844
  start-page: 1059
  year: 2014
  ident: 10.1016/j.bbagen.2017.02.017_bb0250
  article-title: Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2014.03.002
– volume: 464
  start-page: 441
  year: 2010
  ident: 10.1016/j.bbagen.2017.02.017_bb0115
  article-title: Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome
  publication-title: Nature
  doi: 10.1038/nature08817
– volume: 10
  start-page: 1063
  year: 2007
  ident: 10.1016/j.bbagen.2017.02.017_bb0080
  article-title: Genetically encoding unnatural amino acids for cellular and neuronal studies
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1932
– volume: 104
  start-page: 3141
  year: 2007
  ident: 10.1016/j.bbagen.2017.02.017_bb0265
  article-title: Pyrrolysine is not hardwired for cotranslational insertion at UAG codons
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0611634104
– volume: 9
  start-page: 874
  year: 2014
  ident: 10.1016/j.bbagen.2017.02.017_bb0150
  article-title: Role of tRNA orthogonality in an expanded genetic code
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb4005172
– volume: 40
  start-page: 11060
  year: 2001
  ident: 10.1016/j.bbagen.2017.02.017_bb0105
  article-title: Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system
  publication-title: Biochemistry
  doi: 10.1021/bi0108204
– volume: 6
  start-page: 393
  year: 2014
  ident: 10.1016/j.bbagen.2017.02.017_bb0120
  article-title: Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1919
– volume: 30
  start-page: 2312
  year: 2011
  ident: 10.1016/j.bbagen.2017.02.017_bb0015
  article-title: Reprogramming the genetic code
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.160
– volume: 333
  start-page: 1151
  year: 2011
  ident: 10.1016/j.bbagen.2017.02.017_bb0090
  article-title: Expanding the genetic code of Escherichia coli with phosphoserine
  publication-title: Science
  doi: 10.1126/science.1207203
– volume: 217
  start-page: 203
  year: 1987
  ident: 10.1016/j.bbagen.2017.02.017_bb0190
  article-title: Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(87)80664-6
– volume: 51
  start-page: 2288
  year: 2012
  ident: 10.1016/j.bbagen.2017.02.017_bb0100
  article-title: Reprogramming the genetic code: from triplet to quadruplet codes
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201105016
– volume: 131
  start-page: 8720
  year: 2009
  ident: 10.1016/j.bbagen.2017.02.017_bb0255
  article-title: Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNA(CUA) pair and click chemistry
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900553w
– volume: 73
  start-page: 147
  year: 2004
  ident: 10.1016/j.bbagen.2017.02.017_bb0035
  article-title: Incorporation of nonnatural amino acids into proteins
  publication-title: Biochemistry
  doi: 10.1146/annurev.biochem.73.012803.092429
– volume: 4
  year: 2007
  ident: 10.1016/j.bbagen.2017.02.017_bb0170
– volume: 2
  start-page: 201
  year: 2005
  ident: 10.1016/j.bbagen.2017.02.017_bb0085
  article-title: Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid
  publication-title: Nat. Methods
  doi: 10.1038/nmeth739
– volume: 7
  start-page: 425
  year: 2006
  ident: 10.1016/j.bbagen.2017.02.017_bb0225
  article-title: Expanding the genetic code in a mammalian cell line by the introduction of four-base codon/anticodon pairs
  publication-title: Chembiochem
  doi: 10.1002/cbic.200500360
– volume: 307
  start-page: 755
  year: 2001
  ident: 10.1016/j.bbagen.2017.02.017_bb0230
  article-title: Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in Escherichia coli
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4518
– volume: 586
  start-page: 3931
  year: 2012
  ident: 10.1016/j.bbagen.2017.02.017_bb0270
  article-title: Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.09.033
– volume: 6
  start-page: 50
  year: 2015
  ident: 10.1016/j.bbagen.2017.02.017_bb0020
– volume: 10
  start-page: 1648
  year: 2015
  ident: 10.1016/j.bbagen.2017.02.017_bb0130
  article-title: Incorporation of unnatural amino acids in response to the AGG codon
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00230
– volume: 103
  start-page: 8650
  year: 2006
  ident: 10.1016/j.bbagen.2017.02.017_bb0220
  article-title: In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0510817103
– volume: 292
  start-page: 498
  year: 2001
  ident: 10.1016/j.bbagen.2017.02.017_bb0125
  article-title: Expanding the genetic code of Escherichia coli
  publication-title: Science
  doi: 10.1126/science.1060077
– volume: 547
  start-page: 197
  year: 2003
  ident: 10.1016/j.bbagen.2017.02.017_bb0180
  article-title: Substrate-induced conformational changes in Escherichia coli arginyl-tRNA synthetase observed by19F NMR spectroscopy
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)00717-8
– volume: 51
  start-page: 5232
  year: 2012
  ident: 10.1016/j.bbagen.2017.02.017_bb0095
  article-title: A facile method to synthesize histones with posttranslational modification mimics
  publication-title: Biochemistry
  doi: 10.1021/bi300535a
– volume: 23
  start-page: 751
  year: 2012
  ident: 10.1016/j.bbagen.2017.02.017_bb0025
  article-title: Recent advances in genetic code engineering in Escherichia coli
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.12.027
– volume: 133
  start-page: 15942
  year: 2011
  ident: 10.1016/j.bbagen.2017.02.017_bb0070
  article-title: Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207719f
– volume: 16
  start-page: 323
  year: 2009
  ident: 10.1016/j.bbagen.2017.02.017_bb0010
  article-title: Expanding the genetic code for biological studies
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2009.03.001
– volume: 9
  start-page: 548
  year: 2005
  ident: 10.1016/j.bbagen.2017.02.017_bb0145
  article-title: Adding amino acids to the genetic repertoire
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2005.10.011
– volume: 48
  start-page: 4052
  year: 2009
  ident: 10.1016/j.bbagen.2017.02.017_bb0245
  article-title: A facile system for encoding unnatural amino acids in mammalian cells
  publication-title: Angew. Chem.
  doi: 10.1002/anie.200900683
– volume: 48
  start-page: 9148
  year: 2009
  ident: 10.1016/j.bbagen.2017.02.017_bb0140
  article-title: Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids
  publication-title: Angew. Chem.
  doi: 10.1002/anie.200904035
– volume: 99
  start-page: 11020
  year: 2002
  ident: 10.1016/j.bbagen.2017.02.017_bb0210
  article-title: Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.172226299
– volume: 107
  start-page: 17101
  year: 2010
  ident: 10.1016/j.bbagen.2017.02.017_bb0055
  article-title: Hydration dynamics at fluorinated protein surfaces
  publication-title: PNAS
  doi: 10.1073/pnas.1011569107
– volume: 98
  start-page: 13537
  year: 2001
  ident: 10.1016/j.bbagen.2017.02.017_bb0185
  article-title: Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.231267998
– volume: 590
  start-page: 1530
  year: 2016
  ident: 10.1016/j.bbagen.2017.02.017_bb0075
  article-title: Generation of phospho-ubiquitin variants by orthogonal translation reveals codon skipping
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12182
– volume: 101
  start-page: 7566
  year: 2004
  ident: 10.1016/j.bbagen.2017.02.017_bb0110
  article-title: An expanded genetic code with a functional quadruplet codon
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0401517101
– volume: 104
  start-page: 13887
  year: 2007
  ident: 10.1016/j.bbagen.2017.02.017_bb0060
  article-title: Evolution of a fluorinated green fluorescent protein
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0701904104
– volume: 42
  start-page: 6735
  year: 2003
  ident: 10.1016/j.bbagen.2017.02.017_bb0205
  article-title: A new strategy for the site-specific modification of proteins in vivo
  publication-title: Biochemistry
  doi: 10.1021/bi0300231
– volume: 15
  start-page: 1782
  year: 2014
  ident: 10.1016/j.bbagen.2017.02.017_bb0240
  article-title: A bacterial strain with a unique quadruplet codon specifying non-native amino acids
  publication-title: Chembiochem
  doi: 10.1002/cbic.201402104
– volume: 395
  start-page: 361
  year: 2010
  ident: 10.1016/j.bbagen.2017.02.017_bb0135
  article-title: An enhanced system for unnatural amino acid mutagenesis in E. coli
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.10.030
– volume: 51
  start-page: 2243
  year: 2012
  ident: 10.1016/j.bbagen.2017.02.017_bb0050
  article-title: Multiple-site labeling of proteins with unnatural amino acids
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201108275
– volume: 39
  start-page: 1272
  year: 2010
  ident: 10.1016/j.bbagen.2017.02.017_bb0155
  article-title: Cu-free click cycloaddition reactions in chemical biology
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b901970g
– volume: 586
  start-page: 729
  year: 2012
  ident: 10.1016/j.bbagen.2017.02.017_bb0260
  article-title: N-acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.01.029
– volume: 79
  start-page: 413
  year: 2010
  ident: 10.1016/j.bbagen.2017.02.017_bb0005
  article-title: Adding new chemistries to the genetic code
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.052308.105824
– volume: 134
  start-page: 9918
  year: 2012
  ident: 10.1016/j.bbagen.2017.02.017_bb0040
  article-title: Synthesis of bispecific antibodies using genetically encoded unnatural amino acids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303904e
– volume: 49
  start-page: 3211
  year: 2010
  ident: 10.1016/j.bbagen.2017.02.017_bb0165
  article-title: A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201000465
SSID ssj0000595
Score 2.3215854
Snippet Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3016
SubjectTerms amino acid derivatives
amino acids
Amino Acids - chemical synthesis
Amino Acids - metabolism
Amino Acyl-tRNA Synthetases - metabolism
aminoacyl tRNA ligases
ArgW gene
Cloning, Molecular - methods
Codon - chemical synthesis
Engineered tRNA
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Four-base AGGA codon
Genetic Code
Methanococcus
Methanococcus - genetics
Mutagenesis, Site-Directed - methods
protein engineering
Protein Engineering - methods
protein synthesis
proteins
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
stop codon
synthetic biology
Synthetic Biology - methods
transfer RNA
Unnatural amino acid
Title An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli
URI https://dx.doi.org/10.1016/j.bbagen.2017.02.017
https://www.ncbi.nlm.nih.gov/pubmed/28212794
https://www.proquest.com/docview/2000349458
Volume 1861
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhobSX0qavbdOgQq_qrmxJ9h7NkmTb0lzawN7EWJbAJbXDPg7NIb-9M5KdUEgJ9GRsS1hoxjPfoJlvGPvYgJnNESkLD7kWysgg5mUAMZsBSOnLRkUC02_nZnmhvqz0ao8txloYSqscbH-y6dFaD0-mw25Or9p2-p0O9RBOaEmU60avqIJdFaTln27u0jwQPuh0kqAEjR7L52KOV13jT0ssqLKIzJ2xbdm97ulf8DO6odNn7OmAH3mVlvic7fnukD1KHSV_H7LHi7GB2wt2XXXcR4YIdCw8UTZzxKicCBkSfzEKhfeBI4iFyL_B4Vfb9Rxc22xwGF-nDFrPtz1HpIizd2tBjo87DGc7Xp2dVTTuZEOybylvGt9cti_ZxenJj8VSDK0WhMvneitKXQcXvEZ3BmC8QxDpZI3-2_jggShnyiJv0OMh4mrAFSCV92gPGofhict8_ortd33n3zBuyiwEDHwVGEQHrgaVBxWkz0PWmNzAhOXjDls38JBTO4xLOyac_bRJLpbkYmeZxcuEidtZV4mH44HxxSg8-5c-WXQVD8z8MMraosDo_AQ63-821LEzsvnocsJeJyW4XQtGrjJD2_b2v7_7jj2hu1TneMT2t-udf4-AZ1sfR40-ZgfV56_L8z-x9f9G
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCAqULQWMBEez6yT2Zg89rErbLX1caKW9GcexpaCSVPtQVQ79U_2DzNhJERKoElJPkWI7cTyTmW_k8TcAH0qjBiNEytyZVPJMCc9HuTd8MDBGCJeXWSAwPT5Rk7Psy1ROV-CmOwtDaZWt7Y82PVjr9k6_Xc3-RVX1v9KmHsIJKYhyXclpm1l56K4uMW6bbx98RiF_TJK93dOdCW9LC3CbjuSC57Lw1juJ5tsY5SyCJisK9FfKeWeIYiUfpiVaeEQYpbFDIzLnUP9Li3DcJi7F5z6Ah_ghOZVN-HT9O68E8YqMWxcZp-l15_VCUllRoJUg2lUxDFShoU7aX_3hv_Bu8Ht7T-FJC1jZOK7JM1hx9To8iiUsr9ZhbaerGPccfo5r5gIlBXoyFjmiGYJiRgwQkTAZtYA1niFqNoHwg5kfVd0wY6tyjt3YLKbsOrZoGEJTHL2ccfK0zGL8XLPx_v6Y-u3OSdkqStTGlvPqBZzdiwBewmrd1O4VMJUn3mOknRmFcMQWJkt95oVLfVKqVJkepN0Ka9sSn1P9jXPdZbh911EumuSiB4nGSw_47aiLSPxxR_9hJzz9hwJr9E13jHzfyVqjwGjDxtSuWc6pRGigD5J5DzaiEtzOBUNlkaAx3fzv976Dtcnp8ZE-Ojg5fA2PqSUestyC1cVs6d4g2loUb4N2M_h237_TL9KLO0k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+system+for+incorporation+of+unnatural+amino+acids+in+response+to+the+four-base+codon+AGGA+in+Escherichia+coli&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Lee%2C+Byeong+Sung&rft.au=Kim%2C+Suyeon&rft.au=Ko%2C+Byoung+Joon&rft.au=Yoo%2C+Tae+Hyeon&rft.date=2017-11-01&rft.issn=0304-4165&rft.volume=1861&rft.issue=11&rft.spage=3016&rft.epage=3023&rft_id=info:doi/10.1016%2Fj.bbagen.2017.02.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2017_02_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon