Non-local model for surface tension in fluid-fluid simulations

•A non-local model for calculating the surface tension in multiscale simulations.•Easy-to-implement, partial-differential-equation-based model.•Implemented with the Conservative Level Set method.•Valid at both nano and macroscopic scales. We propose a non-local model for surface tension obtained in...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 421; p. 109732
Main Authors Howard, Amanda A., Tartakovsky, Alexandre M.
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 15.11.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A non-local model for calculating the surface tension in multiscale simulations.•Easy-to-implement, partial-differential-equation-based model.•Implemented with the Conservative Level Set method.•Valid at both nano and macroscopic scales. We propose a non-local model for surface tension obtained in the form of an integral of a molecular-force-like function with support 3.5ε added to the Navier-Stokes momentum conservation equation. We demonstrate analytically and numerically that with the non-local model interfaces with a radius of curvature larger than the support length behave macroscopically and microscopically, otherwise. For static droplets, the pressure difference Pε,in−Pε,out satisfies the Young-Laplace law for droplet radius greater than 3.5ε and otherwise deviates from the Young-Laplace law. The latter indicates that the surface tension in the proposed model decreases with decreasing radius of curvature, which agrees with molecular dynamics and experimental studies of nanodroplets. Using the non-local model we perform numerical simulations of droplets under dynamic conditions, including a rising droplet, a droplet in shear flow, and two colliding droplets in shear flow, and compare results with a standard Navier-Stokes model subject to the Young-Laplace boundary condition at the fluid-fluid interface implemented via the Conservative Level Set (CLS) method. We find good agreement with existing numerical methods and analytical results for a rising macroscopic droplet and a droplet in a shear flow. For colliding droplets in shear flow, the non-local model converges (with respect to the grid size) to the correct behavior, including sliding, coalescence, and merging and breaking of two droplets depending on the capillary number. In contrast, we find that the results of the CLS model are highly grid-size dependent.
AbstractList We propose a non-local model for surface tension obtained in the form of an integral of a molecular-force-like function with support 3.5ε added to the Navier-Stokes momentum conservation equation. We demonstrate analytically and numerically that with the non-local model interfaces with a radius of curvature larger than the support length behave macroscopically and microscopically, otherwise. For static droplets, the pressure difference Pε,in - Pε,out
•A non-local model for calculating the surface tension in multiscale simulations.•Easy-to-implement, partial-differential-equation-based model.•Implemented with the Conservative Level Set method.•Valid at both nano and macroscopic scales. We propose a non-local model for surface tension obtained in the form of an integral of a molecular-force-like function with support 3.5ε added to the Navier-Stokes momentum conservation equation. We demonstrate analytically and numerically that with the non-local model interfaces with a radius of curvature larger than the support length behave macroscopically and microscopically, otherwise. For static droplets, the pressure difference Pε,in−Pε,out satisfies the Young-Laplace law for droplet radius greater than 3.5ε and otherwise deviates from the Young-Laplace law. The latter indicates that the surface tension in the proposed model decreases with decreasing radius of curvature, which agrees with molecular dynamics and experimental studies of nanodroplets. Using the non-local model we perform numerical simulations of droplets under dynamic conditions, including a rising droplet, a droplet in shear flow, and two colliding droplets in shear flow, and compare results with a standard Navier-Stokes model subject to the Young-Laplace boundary condition at the fluid-fluid interface implemented via the Conservative Level Set (CLS) method. We find good agreement with existing numerical methods and analytical results for a rising macroscopic droplet and a droplet in a shear flow. For colliding droplets in shear flow, the non-local model converges (with respect to the grid size) to the correct behavior, including sliding, coalescence, and merging and breaking of two droplets depending on the capillary number. In contrast, we find that the results of the CLS model are highly grid-size dependent.
ArticleNumber 109732
Author Tartakovsky, Alexandre M.
Howard, Amanda A.
Author_xml – sequence: 1
  givenname: Amanda A.
  orcidid: 0000-0002-6411-6198
  surname: Howard
  fullname: Howard, Amanda A.
  organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 2
  givenname: Alexandre M.
  orcidid: 0000-0003-2375-318X
  surname: Tartakovsky
  fullname: Tartakovsky, Alexandre M.
  email: alexandre.tartakovsky@pnnl.gov
  organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA
BookMark eNp9kEtLxDAQx4Os4O7qB_BW8Nw1SdM2RRBk8QWLXvQcstMJpHSTNWkFv73ZrScPe5kHM795_Bdk5rxDQq4ZXTHKqttu1cF-xSk_5E1d8DMyTwHNec2qGZlTylneNA27IIsYO0qpLIWck_s37_Leg-6znW-xz4wPWRyD0YDZgC5a7zLrMtOPts2PNot2N_Z6SJV4Sc6N7iNe_fkl-Xx6_Fi_5Jv359f1wyaHoimHXHIJAtCUW6nbYisEpqOBS8Y1r6QAbhgaWvJa0BZLzYsinVpxANEUgktdLMnNNHcf_NeIcVCdH4NLKxUXFWVUSlmlLjZ1QfAxBjRqH-xOhx_FqDrIpDqVZFIHmdQkU2LqfwzY4fjcELTtT5J3E4np8W-LQUWw6ABbGxAG1Xp7gv4FgweCXw
CitedBy_id crossref_primary_10_1016_j_compfluid_2020_104540
crossref_primary_10_1021_acs_langmuir_4c00327
crossref_primary_10_1063_5_0072710
Cites_doi 10.1021/acs.langmuir.6b01004
10.1006/jcph.1995.1098
10.1103/PhysRevE.72.026301
10.1038/s41598-017-13741-1
10.1021/la901807k
10.1063/1.858893
10.1146/annurev-fluid-122316-045034
10.1016/j.jcp.2013.07.005
10.1002/fld.2611
10.1002/fld.1934
10.1016/j.ces.2013.02.004
10.1002/fld.3692
10.1016/j.jnnfm.2004.02.005
10.1016/j.cis.2017.06.011
10.1122/1.550942
10.1186/1556-276X-6-295
10.1016/j.ijheatfluidflow.2009.02.009
10.1063/1.2841055
10.1002/fld.2643
10.1016/S0017-9310(00)00244-1
10.1146/annurev.fluid.35.101101.161105
10.1371/journal.pone.0065339
10.1016/j.ces.2009.10.003
10.1016/j.jhazmat.2017.08.030
10.1016/j.jcp.2015.08.037
10.1103/PhysRevE.93.053104
10.1098/rspa.1934.0169
10.1016/0021-9991(88)90002-2
10.1016/j.jcp.2006.12.027
10.1063/1.2009527
10.1016/S0045-7930(97)00053-4
10.1063/1.1576218
10.1016/j.jnnfm.2014.08.011
10.1007/s11095-013-1100-x
10.1016/j.jcp.2005.04.007
10.1021/acs.accounts.8b00606
10.1016/j.chemosphere.2011.05.054
10.1016/j.jcp.2009.03.014
10.1006/jcph.1994.1123
10.1021/acsami.7b19755
10.1021/acs.langmuir.9b03532
10.1016/j.biortech.2018.10.077
10.1021/acs.langmuir.9b00462
10.1017/S0022112097007921
10.1021/la304919p
10.1006/jcph.2002.7190
10.1016/0021-9797(67)90229-9
10.1063/1.3626410
10.1007/s10665-006-9091-9
10.1016/j.cocis.2010.12.001
10.1016/j.jcis.2019.12.093
10.1016/j.chemosphere.2015.12.023
10.1088/1361-648X/aab196
10.1002/cpa.3160300506
10.1006/jcph.2002.7165
10.1016/0021-9991(92)90240-Y
10.1140/epjd/e2011-10444-6
10.1016/j.nano.2016.08.020
10.1016/j.jocs.2016.03.009
10.1038/s41598-019-41617-z
10.1006/jcph.2000.6537
10.1016/S0252-9602(10)60062-8
ContentType Journal Article
Copyright 2020
Copyright Elsevier Science Ltd. Nov 15, 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier Science Ltd. Nov 15, 2020
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2020.109732
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2020_109732
S0021999120305064
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
RIG
SBC
SEW
SHN
SPG
SSH
T9H
UQL
WUQ
ZY4
7SC
7SP
7U5
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c395t-828c4cef5b8ad3b44e101c2812a2684c2f1ef052740de5a23399962cc493428a3
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Fri Jul 25 05:37:49 EDT 2025
Thu Apr 24 22:59:06 EDT 2025
Tue Jul 01 01:54:48 EDT 2025
Fri Feb 23 02:47:06 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Surface tension
Non-local method
Finite volume
Two-phase flows
Level set method
Spurious currents
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-828c4cef5b8ad3b44e101c2812a2684c2f1ef052740de5a23399962cc493428a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6411-6198
0000-0003-2375-318X
OpenAccessLink https://doi.org/10.1016/j.jcp.2020.109732
PQID 2460108886
PQPubID 2047462
ParticipantIDs proquest_journals_2460108886
crossref_primary_10_1016_j_jcp_2020_109732
crossref_citationtrail_10_1016_j_jcp_2020_109732
elsevier_sciencedirect_doi_10_1016_j_jcp_2020_109732
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-15
PublicationDateYYYYMMDD 2020-11-15
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Kashchiev (br0030) 2003; 118
Osher, Sethian (br0470) 1988; 79
Park, Weng, Tien (br0410) 2001; 44
Bardia, Liang, Keblinski, Trujillo (br0050) 2016; 93
Liu, Kawagoe, Makino, Oshita (br0100) 2013; 93
Brackbill, Kothe, Zemach (br0370) 1992; 100
Atkinson, Apul, Schneider, Garcia-Segura, Westerhoff (br0200) 2019; 52
Guido, Simeone (br0640) 1998; 357
Zahedi, Kronbichler, Kreiss (br0540) 2012; 69
Chen, Phan-Thien, Fan, Khoo, Khan (br0620) 2004; 118
Lafaurie, Nardone, Scardovelli, Zaleski, Zanetti (br0690) 1994; 113
Hysing, Turek, Kuzmin, Parolini, Burman, Ganesan, Tobiska (br0500) 2009; 60
Hernandez, Gulati, Fioravanti, Stewart, Exner (br0140) 2017; 7
Tartakovsky, Panchenko (br0390) 2016; 305
Ioannou, Liu, Zhang (br0580) 2016; 17
Sussman, Puckett (br0300) 2000; 162
Pan, Phan-Thien, Khoo (br0630) 2014; 212
Hernandez, Nieves, de Leon, Advincula, Exner (br0110) 2018; 10
Chen, Cardinaels, Moldenaers (br0210) 2009; 25
Chan, Urzay, Moin (br0360) 2018
Ghadimkhani, Zhang, Marhaba (br0230) 2016; 146
Jadhav, Barigou (br0060) 2020; 36
Ohgaki, Khanh, Joden, Tsuji, Nakagawa (br0090) 2010; 65
Aland, Voigt (br0530) 2012; 69
Zhou, Li, Liu, Wang, Muhammad (br0250) 2019; 9
Malek, Sciortino, Poole, Saika-Voivod (br0420) 2018; 30
Klostermann, Schaake, Schwarze (br0520) 2013; 71
Pan, Suga (br0290) 2005; 17
Mason, Stevens, Harvie (br0320) 2012
Taylor (br0560) 1934; 146
Olsson, Kreiss, Zahedi (br0460) 2007; 225
Olsson, Kreiss (br0450) 2005; 210
Agarwal, Ng, Liu (br0150) 2011; 84
Guido (br0600) 2011; 16
Landau, Lifshitz (br0040) 1987; vol. 6
Tryggvason (br0430) 2012
Sussman, Fatemi, Smereka, Osher (br0480) 1998; 27
Kwakkel, Breugem, Boersma (br0340) 2013; 253
Hu, Xia (br0190) 2018; 342
Chaffey, Brenner (br0610) 1967; 24
Renardy, Renardy (br0680) 2002; 183
Uchida, Oshita, Ohmori, Tsuno, Soejima, Shinozaki, Take, Mitsuda (br0160) 2011; 6
Wang, Yang, Tian, Lei, Kobayashi, Kobayashi, Adachi, Shimizu, Zhang (br0180) 2019; 273
Tartakovsky, Meakin (br0380) 2005; 72
Tryggvason, Thomas, Lu, Aboulhasanzadeh (br0350) 2010; 30B
Guido, Villone (br0590) 1998; 42
Shardt, Derksen, Mitra (br0650) 2013; 29
Zhou, Pozrikidis (br0570) 1993; 5
Perera, Wu, Peiris, Hernandez, Burke, Zhang, Exner (br0080) 2017; 13
Fan, Tao, Honaker, Luo (br0240) 2010; 20
Nakamura, Shinoda, Ikeshoji (br0020) 2011; 135
Howard, Zhou, Tartakovsky (br0400) may 2019
Jamet, Torres, Brackbill (br0700) 2002; 182
Perera, Solorio, Wu, Gangolli, Silverman, Hernandez, Peiris, Broome, Exner (br0130) 2014; 31
Coyajee, Jan Boersma (br0280) 2009; 228
Masuda, Sawada (br0010) 2011; 61
Jiang, James (br0270) 2007; 59
Štrubelj, Tiselj, Mavko (br0510) 2009; 30
Liu, Bothe (br0330) 2018
Temesgen, Bui, Han, Kim, Park (br0170) 2017; 246
Zhu, An, Alheshibri, Liu, Terpstra, Liu, Craig (br0220) 2016; 32
Abenojar, Nittayacharn, De Leon, Perera, Wang, Bederman, Exner (br0120) 2019
Adalsteinsson, Sethian (br0660) 1995; 118
Pan, Law, Zhou (br0310) 2008; 103
Popinet (br0670) 2018; 50
Ebina, Shi, Hirao, Hashimoto, Kawato, Kaneshiro, Morimoto, Koizumi, Yoshikawa (br0260) 2013; 8
Michailidi, Bomis, Varoutoglou, Kyzas, Mitrikas, Mitropoulos, Efthimiadou, Favvas (br0070) 2020; 564
Taylor (br0550) 1932; 138
Sethian, Smereka (br0440) 2003; 35
Harten (br0490) 1977; 30
Chaffey (10.1016/j.jcp.2020.109732_br0610) 1967; 24
Atkinson (10.1016/j.jcp.2020.109732_br0200) 2019; 52
Hernandez (10.1016/j.jcp.2020.109732_br0110) 2018; 10
Tartakovsky (10.1016/j.jcp.2020.109732_br0380) 2005; 72
Temesgen (10.1016/j.jcp.2020.109732_br0170) 2017; 246
Landau (10.1016/j.jcp.2020.109732_br0040) 1987; vol. 6
Hernandez (10.1016/j.jcp.2020.109732_br0140) 2017; 7
Guido (10.1016/j.jcp.2020.109732_br0600) 2011; 16
Chen (10.1016/j.jcp.2020.109732_br0620) 2004; 118
Jamet (10.1016/j.jcp.2020.109732_br0700) 2002; 182
Park (10.1016/j.jcp.2020.109732_br0410) 2001; 44
Hu (10.1016/j.jcp.2020.109732_br0190) 2018; 342
Hysing (10.1016/j.jcp.2020.109732_br0500) 2009; 60
Shardt (10.1016/j.jcp.2020.109732_br0650) 2013; 29
Michailidi (10.1016/j.jcp.2020.109732_br0070) 2020; 564
Liu (10.1016/j.jcp.2020.109732_br0330) 2018
Mason (10.1016/j.jcp.2020.109732_br0320) 2012
Ohgaki (10.1016/j.jcp.2020.109732_br0090) 2010; 65
Olsson (10.1016/j.jcp.2020.109732_br0460) 2007; 225
Taylor (10.1016/j.jcp.2020.109732_br0550) 1932; 138
Sussman (10.1016/j.jcp.2020.109732_br0480) 1998; 27
Liu (10.1016/j.jcp.2020.109732_br0100) 2013; 93
Jadhav (10.1016/j.jcp.2020.109732_br0060) 2020; 36
Štrubelj (10.1016/j.jcp.2020.109732_br0510) 2009; 30
Tartakovsky (10.1016/j.jcp.2020.109732_br0390) 2016; 305
Masuda (10.1016/j.jcp.2020.109732_br0010) 2011; 61
Wang (10.1016/j.jcp.2020.109732_br0180) 2019; 273
Guido (10.1016/j.jcp.2020.109732_br0590) 1998; 42
Pan (10.1016/j.jcp.2020.109732_br0310) 2008; 103
Brackbill (10.1016/j.jcp.2020.109732_br0370) 1992; 100
Sussman (10.1016/j.jcp.2020.109732_br0300) 2000; 162
Jiang (10.1016/j.jcp.2020.109732_br0270) 2007; 59
Guido (10.1016/j.jcp.2020.109732_br0640) 1998; 357
Osher (10.1016/j.jcp.2020.109732_br0470) 1988; 79
Sethian (10.1016/j.jcp.2020.109732_br0440) 2003; 35
Agarwal (10.1016/j.jcp.2020.109732_br0150) 2011; 84
Uchida (10.1016/j.jcp.2020.109732_br0160) 2011; 6
Nakamura (10.1016/j.jcp.2020.109732_br0020) 2011; 135
Kwakkel (10.1016/j.jcp.2020.109732_br0340) 2013; 253
Taylor (10.1016/j.jcp.2020.109732_br0560) 1934; 146
Lafaurie (10.1016/j.jcp.2020.109732_br0690) 1994; 113
Tryggvason (10.1016/j.jcp.2020.109732_br0430) 2012
Pan (10.1016/j.jcp.2020.109732_br0630) 2014; 212
Ebina (10.1016/j.jcp.2020.109732_br0260) 2013; 8
Pan (10.1016/j.jcp.2020.109732_br0290) 2005; 17
Tryggvason (10.1016/j.jcp.2020.109732_br0350) 2010; 30B
Perera (10.1016/j.jcp.2020.109732_br0080) 2017; 13
Renardy (10.1016/j.jcp.2020.109732_br0680) 2002; 183
Perera (10.1016/j.jcp.2020.109732_br0130) 2014; 31
Klostermann (10.1016/j.jcp.2020.109732_br0520) 2013; 71
Bardia (10.1016/j.jcp.2020.109732_br0050) 2016; 93
Zahedi (10.1016/j.jcp.2020.109732_br0540) 2012; 69
Aland (10.1016/j.jcp.2020.109732_br0530) 2012; 69
Malek (10.1016/j.jcp.2020.109732_br0420) 2018; 30
Howard (10.1016/j.jcp.2020.109732_br0400)
Harten (10.1016/j.jcp.2020.109732_br0490) 1977; 30
Popinet (10.1016/j.jcp.2020.109732_br0670) 2018; 50
Fan (10.1016/j.jcp.2020.109732_br0240) 2010; 20
Kashchiev (10.1016/j.jcp.2020.109732_br0030) 2003; 118
Zhu (10.1016/j.jcp.2020.109732_br0220) 2016; 32
Abenojar (10.1016/j.jcp.2020.109732_br0120) 2019
Chen (10.1016/j.jcp.2020.109732_br0210) 2009; 25
Ghadimkhani (10.1016/j.jcp.2020.109732_br0230) 2016; 146
Adalsteinsson (10.1016/j.jcp.2020.109732_br0660) 1995; 118
Olsson (10.1016/j.jcp.2020.109732_br0450) 2005; 210
Coyajee (10.1016/j.jcp.2020.109732_br0280) 2009; 228
Zhou (10.1016/j.jcp.2020.109732_br0250) 2019; 9
Chan (10.1016/j.jcp.2020.109732_br0360) 2018
Zhou (10.1016/j.jcp.2020.109732_br0570) 1993; 5
Ioannou (10.1016/j.jcp.2020.109732_br0580) 2016; 17
References_xml – volume: 60
  start-page: 1259
  year: 2009
  end-page: 1288
  ident: br0500
  article-title: Quantitative benchmark computations of two-dimensional bubble dynamics
  publication-title: Int. J. Numer. Methods Fluids
– volume: 52
  start-page: 1196
  year: 2019
  end-page: 1205
  ident: br0200
  article-title: Nanobubble Technologies Offer Opportunities To Improve Water Treatment
  publication-title: Acc. Chem. Res.
– volume: 8
  year: 2013
  ident: br0260
  article-title: Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice
  publication-title: PLoS ONE
– volume: 69
  start-page: 747
  year: 2012
  end-page: 761
  ident: br0530
  article-title: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics
  publication-title: Int. J. Numer. Methods Fluids
– volume: 61
  start-page: 637
  year: 2011
  end-page: 644
  ident: br0010
  article-title: Molecular dynamics study of size effect on surface tension of metal droplets
  publication-title: Eur. Phys. J. D
– volume: 100
  start-page: 335
  year: 1992
  end-page: 354
  ident: br0370
  article-title: A Continuum Method for Modeling Surface Tension
  publication-title: J. Comput. Phys.
– volume: 135
  year: 2011
  ident: br0020
  article-title: Novel numerical method for calculating the pressure tensor in spherical coordinates for molecular systems
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 463
  year: 2016
  end-page: 474
  ident: br0580
  article-title: Droplet dynamics in confinement
  publication-title: J. Comput. Sci.
– volume: 10
  start-page: 9949
  year: 2018
  end-page: 9956
  ident: br0110
  article-title: Role of Surface Tension in Gas Nanobubble Stability Under Ultrasound
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 61
  year: 2011
  end-page: 70
  ident: br0600
  article-title: Shear-induced droplet deformation: Effects of confined geometry and viscoelasticity
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 32
  start-page: 11203
  year: 2016
  end-page: 11211
  ident: br0220
  article-title: Cleaning with Bulk Nanobubbles
  publication-title: Langmuir
– volume: 30
  start-page: 611
  year: 1977
  end-page: 638
  ident: br0490
  article-title: The artificial compression method for computation of shocks and contact discontinuities. I. Single conservation laws
  publication-title: Commun. Pure Appl. Math.
– volume: 113
  start-page: 134
  year: 1994
  end-page: 147
  ident: br0690
  article-title: Modelling Merging and Fragmentation in Multiphase Flows with SURFER
  publication-title: J. Comput. Phys.
– volume: 72
  year: 2005
  ident: br0380
  article-title: Modeling of surface tension and contact angles with smoothed particle hydrodynamics
  publication-title: Phys. Rev. E
– volume: 146
  start-page: 501
  year: 1934
  end-page: 523
  ident: br0560
  article-title: The Formation of Emulsions in Definable Fields of Flow
  publication-title: Proc. R. Soc. Lond. A
– volume: 146
  start-page: 379
  year: 2016
  end-page: 384
  ident: br0230
  article-title: Ceramic membrane defouling (cleaning) by air Nano Bubbles
  publication-title: Chemosphere
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  ident: br0470
  article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
– volume: 7
  year: 2017
  ident: br0140
  article-title: Cryo-EM Visualization of Lipid and Polymer-Stabilized Perfluorocarbon Gas Nanobubbles - A Step Towards Nanobubble Mediated Drug Delivery
  publication-title: Sci. Rep.
– volume: 65
  start-page: 1296
  year: 2010
  end-page: 1300
  ident: br0090
  article-title: Physicochemical approach to nanobubble solutions
  publication-title: Chem. Eng. Sci.
– volume: 118
  start-page: 65
  year: 2004
  end-page: 81
  ident: br0620
  article-title: Dissipative particle dynamics simulation of polymer drops in a periodic shear flow
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 182
  start-page: 262
  year: 2002
  end-page: 276
  ident: br0700
  article-title: On the Theory and Computation of Surface Tension: The Elimination of Parasitic Currents through Energy Conservation in the Second-Gradient Method
  publication-title: J. Comput. Phys.
– volume: vol. 6
  year: 1987
  ident: br0040
  publication-title: Fluid Mechanics
– volume: 44
  start-page: 1849
  year: 2001
  end-page: 1856
  ident: br0410
  article-title: A molecular dynamics study on surface tension of microbubbles
  publication-title: Int. J. Heat Mass Transf.
– volume: 246
  start-page: 40
  year: 2017
  end-page: 51
  ident: br0170
  article-title: Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review
  publication-title: Adv. Colloid Interface Sci.
– volume: 25
  start-page: 12885
  year: 2009
  end-page: 12893
  ident: br0210
  article-title: Effect of Confinement on Droplet Coalescence in Shear Flow
  publication-title: Langmuir
– volume: 305
  start-page: 1119
  year: 2016
  end-page: 1146
  ident: br0390
  article-title: Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics
  publication-title: J. Comput. Phys.
– volume: 564
  start-page: 371
  year: 2020
  end-page: 380
  ident: br0070
  article-title: Bulk nanobubbles: Production and investigation of their formation/stability mechanism
  publication-title: J. Colloid Interface Sci.
– volume: 162
  start-page: 301
  year: 2000
  end-page: 337
  ident: br0300
  article-title: A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
  publication-title: J. Comput. Phys.
– volume: 69
  start-page: 1433
  year: 2012
  end-page: 1456
  ident: br0540
  article-title: Spurious currents in finite element based level set methods for two-phase flow
  publication-title: Int. J. Numer. Methods Fluids
– volume: 24
  start-page: 258
  year: 1967
  end-page: 269
  ident: br0610
  article-title: A second-order theory for shear deformation of drops
  publication-title: J. Colloid Interface Sci.
– start-page: 1
  year: 2018
  end-page: 22
  ident: br0330
  article-title: Toward the predictive simulation of bouncing versus coalescence in binary droplet collisions
  publication-title: Acta Mech.
– volume: 27
  start-page: 663
  year: 1998
  end-page: 680
  ident: br0480
  article-title: An improved level set method for incompressible two-phase flows
  publication-title: Comput. Fluids
– volume: 183
  start-page: 400
  year: 2002
  end-page: 421
  ident: br0680
  article-title: PROST: A Parabolic Reconstruction of Surface Tension for the Volume-of-Fluid Method
  publication-title: J. Comput. Phys.
– year: 2018
  ident: br0360
  article-title: Subgrid-scale modeling for microbubble generation amid colliding water surfaces
– volume: 225
  start-page: 785
  year: 2007
  end-page: 807
  ident: br0460
  article-title: A conservative level set method for two phase flow II
  publication-title: J. Comput. Phys.
– volume: 103
  year: 2008
  ident: br0310
  article-title: Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision
  publication-title: J. Appl. Phys.
– volume: 84
  start-page: 1175
  year: 2011
  end-page: 1180
  ident: br0150
  article-title: Principle and applications of microbubble and nanobubble technology for water treatment
  publication-title: Chemosphere
– volume: 17
  year: 2005
  ident: br0290
  article-title: Numerical simulation of binary liquid droplet collision
  publication-title: Phys. Fluids
– volume: 13
  start-page: 59
  year: 2017
  end-page: 67
  ident: br0080
  article-title: Improving performance of nanoscale ultrasound contrast agents using N,N-diethylacrylamide stabilization
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– year: may 2019
  ident: br0400
  article-title: Analytical steady-state solutions for pressure in multiscale non-local model for two-fluid systems
– volume: 5
  start-page: 311
  year: 1993
  end-page: 324
  ident: br0570
  article-title: The flow of suspensions in channels: Single files of drops
  publication-title: Phys. Fluids A, Fluid Dyn.
– volume: 118
  start-page: 9081
  year: 2003
  end-page: 9083
  ident: br0030
  article-title: Determining the curvature dependence of surface tension
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 295
  year: 2011
  ident: br0160
  article-title: Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater
  publication-title: Nanoscale Res. Lett.
– volume: 59
  start-page: 99
  year: 2007
  end-page: 121
  ident: br0270
  article-title: Numerical simulation of the head-on collision of two equal-sized drops with van der Waals forces
  publication-title: J. Eng. Math.
– volume: 35
  start-page: 341
  year: 2003
  end-page: 372
  ident: br0440
  article-title: Level Set Methods for Fluid Interfaces
  publication-title: Annu. Rev. Fluid Mech.
– volume: 30B
  start-page: 551
  year: 2010
  end-page: 562
  ident: br0350
  article-title: Multiscale Issues in DNS of Multiphase Flows
  publication-title: Acta Math. Sci.
– volume: 31
  start-page: 1407
  year: 2014
  end-page: 1417
  ident: br0130
  article-title: Nanobubble Ultrasound Contrast Agents for Enhanced Delivery of Thermal Sensitizer to Tumors Undergoing Radiofrequency Ablation
  publication-title: Pharm. Res.
– volume: 29
  start-page: 6201
  year: 2013
  end-page: 6212
  ident: br0650
  article-title: Simulations of Droplet Coalescence in Simple Shear Flow
  publication-title: Langmuir
– volume: 20
  start-page: 1
  year: 2010
  end-page: 19
  ident: br0240
  article-title: Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions
  publication-title: Min. Sci. Technol.
– volume: 212
  start-page: 63
  year: 2014
  end-page: 72
  ident: br0630
  article-title: Dissipative particle dynamics simulation of droplet suspension in shear flow at low Capillary number
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 228
  start-page: 4444
  year: 2009
  end-page: 4467
  ident: br0280
  article-title: Numerical simulation of drop impact on a liquid-liquid interface with a multiple marker front-capturing method
  publication-title: J. Comp. Physiol.
– volume: 30
  start-page: 741
  year: 2009
  end-page: 750
  ident: br0510
  article-title: Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model
  publication-title: Int. J. Heat Fluid Flow
– volume: 273
  start-page: 63
  year: 2019
  end-page: 69
  ident: br0180
  article-title: Characteristics of ultra-fine bubble water and its trials on enhanced methane production from waste activated sludge
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 5226
  year: 2019
  ident: br0250
  article-title: Synergistic improvement in spring maize yield and quality with micro/nanobubbles water oxygation
  publication-title: Sci. Rep.
– volume: 342
  start-page: 446
  year: 2018
  end-page: 453
  ident: br0190
  article-title: Application of ozone micro-nano-bubbles to groundwater remediation
  publication-title: J. Hazard. Mater.
– year: 2019
  ident: br0120
  article-title: Effect of Bubble Concentration on the in Vitro and in Vivo Performance of Highly Stable Lipid Shell-Stabilized Micro- and Nanoscale Ultrasound Contrast Agents
  publication-title: Langmuir
– volume: 138
  start-page: 41
  year: 1932
  end-page: 48
  ident: br0550
  article-title: The Viscosity of a Fluid Containing Small Drops of Another Fluid
  publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci.
– volume: 118
  start-page: 269
  year: 1995
  end-page: 277
  ident: br0660
  article-title: A Fast Level Set Method for Propagating Interfaces
  publication-title: J. Comput. Phys.
– volume: 93
  start-page: 250
  year: 2013
  end-page: 256
  ident: br0100
  article-title: Effects of nanobubbles on the physicochemical properties of water: The basis for peculiar properties of water containing nanobubbles
  publication-title: Chem. Eng. Sci.
– volume: 253
  start-page: 166
  year: 2013
  end-page: 188
  ident: br0340
  article-title: Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model
  publication-title: J. Comput. Phys.
– volume: 30
  year: 2018
  ident: br0420
  article-title: Evaluating the Laplace pressure of water nanodroplets from simulations
  publication-title: J. Phys. Condens. Matter
– volume: 36
  start-page: 1699
  year: 2020
  end-page: 1708
  ident: br0060
  article-title: Bulk Nanobubbles or Not Nanobubbles: That is the Question
  publication-title: Langmuir
– year: 2012
  ident: br0320
  article-title: Multiscale volume of fluid modelling of droplet coalescence
  publication-title: Ninth Int. Conf. CFD
– volume: 93
  year: 2016
  ident: br0050
  article-title: Continuum and molecular-dynamics simulation of nanodroplet collisions
  publication-title: Phys. Rev. E
– volume: 357
  year: 1998
  ident: br0640
  article-title: Binary collision of drops in simple shear flow by computer-assisted video optical microscopy
  publication-title: J. Fluid Mech.
– year: 2012
  ident: br0430
  article-title: A Front-tracking/Finite-Volume Navier-Stokes Solver for Direct Numerical Simulations of Multiphase Flows
– volume: 71
  start-page: 960
  year: 2013
  end-page: 982
  ident: br0520
  article-title: Numerical simulation of a single rising bubble by VOF with surface compression
  publication-title: Int. J. Numer. Methods Fluids
– volume: 50
  start-page: 1
  year: 2018
  end-page: 28
  ident: br0670
  article-title: Numerical Models of Surface Tension
  publication-title: Annu. Rev. Fluid Mech.
– volume: 210
  start-page: 225
  year: 2005
  end-page: 246
  ident: br0450
  article-title: A conservative level set method for two phase flow
  publication-title: J. Comput. Phys.
– volume: 42
  start-page: 395
  year: 1998
  ident: br0590
  article-title: Three-dimensional shape of a drop under simple shear flow
  publication-title: J. Rheol.
– volume: 32
  start-page: 11203
  year: 2016
  ident: 10.1016/j.jcp.2020.109732_br0220
  article-title: Cleaning with Bulk Nanobubbles
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b01004
– volume: 118
  start-page: 269
  issue: 2
  year: 1995
  ident: 10.1016/j.jcp.2020.109732_br0660
  article-title: A Fast Level Set Method for Propagating Interfaces
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1098
– volume: 72
  issue: 2
  year: 2005
  ident: 10.1016/j.jcp.2020.109732_br0380
  article-title: Modeling of surface tension and contact angles with smoothed particle hydrodynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.026301
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.jcp.2020.109732_br0140
  article-title: Cryo-EM Visualization of Lipid and Polymer-Stabilized Perfluorocarbon Gas Nanobubbles - A Step Towards Nanobubble Mediated Drug Delivery
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13741-1
– volume: 25
  start-page: 12885
  issue: 22
  year: 2009
  ident: 10.1016/j.jcp.2020.109732_br0210
  article-title: Effect of Confinement on Droplet Coalescence in Shear Flow
  publication-title: Langmuir
  doi: 10.1021/la901807k
– volume: 5
  start-page: 311
  issue: 2
  year: 1993
  ident: 10.1016/j.jcp.2020.109732_br0570
  article-title: The flow of suspensions in channels: Single files of drops
  publication-title: Phys. Fluids A, Fluid Dyn.
  doi: 10.1063/1.858893
– volume: 50
  start-page: 1
  year: 2018
  ident: 10.1016/j.jcp.2020.109732_br0670
  article-title: Numerical Models of Surface Tension
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122316-045034
– volume: vol. 6
  year: 1987
  ident: 10.1016/j.jcp.2020.109732_br0040
– volume: 253
  start-page: 166
  year: 2013
  ident: 10.1016/j.jcp.2020.109732_br0340
  article-title: Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.07.005
– volume: 69
  start-page: 747
  issue: 3
  year: 2012
  ident: 10.1016/j.jcp.2020.109732_br0530
  article-title: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2611
– volume: 60
  start-page: 1259
  issue: 11
  year: 2009
  ident: 10.1016/j.jcp.2020.109732_br0500
  article-title: Quantitative benchmark computations of two-dimensional bubble dynamics
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1934
– volume: 93
  start-page: 250
  year: 2013
  ident: 10.1016/j.jcp.2020.109732_br0100
  article-title: Effects of nanobubbles on the physicochemical properties of water: The basis for peculiar properties of water containing nanobubbles
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.02.004
– volume: 71
  start-page: 960
  issue: 8
  year: 2013
  ident: 10.1016/j.jcp.2020.109732_br0520
  article-title: Numerical simulation of a single rising bubble by VOF with surface compression
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3692
– volume: 118
  start-page: 65
  year: 2004
  ident: 10.1016/j.jcp.2020.109732_br0620
  article-title: Dissipative particle dynamics simulation of polymer drops in a periodic shear flow
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2004.02.005
– volume: 246
  start-page: 40
  year: 2017
  ident: 10.1016/j.jcp.2020.109732_br0170
  article-title: Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2017.06.011
– volume: 42
  start-page: 395
  issue: 2
  year: 1998
  ident: 10.1016/j.jcp.2020.109732_br0590
  article-title: Three-dimensional shape of a drop under simple shear flow
  publication-title: J. Rheol.
  doi: 10.1122/1.550942
– volume: 6
  start-page: 295
  issue: 1
  year: 2011
  ident: 10.1016/j.jcp.2020.109732_br0160
  article-title: Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-295
– volume: 30
  start-page: 741
  issue: 4
  year: 2009
  ident: 10.1016/j.jcp.2020.109732_br0510
  article-title: Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2009.02.009
– year: 2018
  ident: 10.1016/j.jcp.2020.109732_br0360
– volume: 103
  issue: 6
  year: 2008
  ident: 10.1016/j.jcp.2020.109732_br0310
  article-title: Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2841055
– volume: 69
  start-page: 1433
  year: 2012
  ident: 10.1016/j.jcp.2020.109732_br0540
  article-title: Spurious currents in finite element based level set methods for two-phase flow
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2643
– volume: 44
  start-page: 1849
  year: 2001
  ident: 10.1016/j.jcp.2020.109732_br0410
  article-title: A molecular dynamics study on surface tension of microbubbles
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(00)00244-1
– volume: 35
  start-page: 341
  year: 2003
  ident: 10.1016/j.jcp.2020.109732_br0440
  article-title: Level Set Methods for Fluid Interfaces
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.35.101101.161105
– volume: 8
  issue: 6
  year: 2013
  ident: 10.1016/j.jcp.2020.109732_br0260
  article-title: Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0065339
– volume: 138
  start-page: 41
  issue: 834
  year: 1932
  ident: 10.1016/j.jcp.2020.109732_br0550
  article-title: The Viscosity of a Fluid Containing Small Drops of Another Fluid
  publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci.
– volume: 65
  start-page: 1296
  issue: 3
  year: 2010
  ident: 10.1016/j.jcp.2020.109732_br0090
  article-title: Physicochemical approach to nanobubble solutions
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.10.003
– volume: 342
  start-page: 446
  year: 2018
  ident: 10.1016/j.jcp.2020.109732_br0190
  article-title: Application of ozone micro-nano-bubbles to groundwater remediation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.08.030
– volume: 305
  start-page: 1119
  year: 2016
  ident: 10.1016/j.jcp.2020.109732_br0390
  article-title: Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.08.037
– volume: 93
  issue: 5
  year: 2016
  ident: 10.1016/j.jcp.2020.109732_br0050
  article-title: Continuum and molecular-dynamics simulation of nanodroplet collisions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.053104
– start-page: 1
  year: 2018
  ident: 10.1016/j.jcp.2020.109732_br0330
  article-title: Toward the predictive simulation of bouncing versus coalescence in binary droplet collisions
  publication-title: Acta Mech.
– volume: 146
  start-page: 501
  issue: 858
  year: 1934
  ident: 10.1016/j.jcp.2020.109732_br0560
  article-title: The Formation of Emulsions in Definable Fields of Flow
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1934.0169
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  ident: 10.1016/j.jcp.2020.109732_br0470
  article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90002-2
– volume: 20
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.jcp.2020.109732_br0240
  article-title: Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions
  publication-title: Min. Sci. Technol.
– volume: 225
  start-page: 785
  issue: 1
  year: 2007
  ident: 10.1016/j.jcp.2020.109732_br0460
  article-title: A conservative level set method for two phase flow II
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.12.027
– volume: 17
  issue: 8
  year: 2005
  ident: 10.1016/j.jcp.2020.109732_br0290
  article-title: Numerical simulation of binary liquid droplet collision
  publication-title: Phys. Fluids
  doi: 10.1063/1.2009527
– volume: 27
  start-page: 663
  issue: 5–6
  year: 1998
  ident: 10.1016/j.jcp.2020.109732_br0480
  article-title: An improved level set method for incompressible two-phase flows
  publication-title: Comput. Fluids
  doi: 10.1016/S0045-7930(97)00053-4
– volume: 118
  start-page: 9081
  issue: 20
  year: 2003
  ident: 10.1016/j.jcp.2020.109732_br0030
  article-title: Determining the curvature dependence of surface tension
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1576218
– volume: 212
  start-page: 63
  year: 2014
  ident: 10.1016/j.jcp.2020.109732_br0630
  article-title: Dissipative particle dynamics simulation of droplet suspension in shear flow at low Capillary number
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2014.08.011
– volume: 31
  start-page: 1407
  issue: 6
  year: 2014
  ident: 10.1016/j.jcp.2020.109732_br0130
  article-title: Nanobubble Ultrasound Contrast Agents for Enhanced Delivery of Thermal Sensitizer to Tumors Undergoing Radiofrequency Ablation
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-013-1100-x
– volume: 210
  start-page: 225
  issue: 1
  year: 2005
  ident: 10.1016/j.jcp.2020.109732_br0450
  article-title: A conservative level set method for two phase flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.04.007
– volume: 52
  start-page: 1196
  issue: 5
  year: 2019
  ident: 10.1016/j.jcp.2020.109732_br0200
  article-title: Nanobubble Technologies Offer Opportunities To Improve Water Treatment
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00606
– volume: 84
  start-page: 1175
  issue: 9
  year: 2011
  ident: 10.1016/j.jcp.2020.109732_br0150
  article-title: Principle and applications of microbubble and nanobubble technology for water treatment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.05.054
– volume: 228
  start-page: 4444
  year: 2009
  ident: 10.1016/j.jcp.2020.109732_br0280
  article-title: Numerical simulation of drop impact on a liquid-liquid interface with a multiple marker front-capturing method
  publication-title: J. Comp. Physiol.
  doi: 10.1016/j.jcp.2009.03.014
– volume: 113
  start-page: 134
  issue: 1
  year: 1994
  ident: 10.1016/j.jcp.2020.109732_br0690
  article-title: Modelling Merging and Fragmentation in Multiphase Flows with SURFER
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1123
– volume: 10
  start-page: 9949
  issue: 12
  year: 2018
  ident: 10.1016/j.jcp.2020.109732_br0110
  article-title: Role of Surface Tension in Gas Nanobubble Stability Under Ultrasound
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19755
– volume: 36
  start-page: 1699
  year: 2020
  ident: 10.1016/j.jcp.2020.109732_br0060
  article-title: Bulk Nanobubbles or Not Nanobubbles: That is the Question
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b03532
– volume: 273
  start-page: 63
  year: 2019
  ident: 10.1016/j.jcp.2020.109732_br0180
  article-title: Characteristics of ultra-fine bubble water and its trials on enhanced methane production from waste activated sludge
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.10.077
– year: 2019
  ident: 10.1016/j.jcp.2020.109732_br0120
  article-title: Effect of Bubble Concentration on the in Vitro and in Vivo Performance of Highly Stable Lipid Shell-Stabilized Micro- and Nanoscale Ultrasound Contrast Agents
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00462
– volume: 357
  year: 1998
  ident: 10.1016/j.jcp.2020.109732_br0640
  article-title: Binary collision of drops in simple shear flow by computer-assisted video optical microscopy
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112097007921
– volume: 29
  start-page: 6201
  issue: 21
  year: 2013
  ident: 10.1016/j.jcp.2020.109732_br0650
  article-title: Simulations of Droplet Coalescence in Simple Shear Flow
  publication-title: Langmuir
  doi: 10.1021/la304919p
– volume: 183
  start-page: 400
  issue: 2
  year: 2002
  ident: 10.1016/j.jcp.2020.109732_br0680
  article-title: PROST: A Parabolic Reconstruction of Surface Tension for the Volume-of-Fluid Method
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7190
– volume: 24
  start-page: 258
  issue: 2
  year: 1967
  ident: 10.1016/j.jcp.2020.109732_br0610
  article-title: A second-order theory for shear deformation of drops
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(67)90229-9
– ident: 10.1016/j.jcp.2020.109732_br0400
– volume: 135
  year: 2011
  ident: 10.1016/j.jcp.2020.109732_br0020
  article-title: Novel numerical method for calculating the pressure tensor in spherical coordinates for molecular systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3626410
– volume: 59
  start-page: 99
  issue: 1
  year: 2007
  ident: 10.1016/j.jcp.2020.109732_br0270
  article-title: Numerical simulation of the head-on collision of two equal-sized drops with van der Waals forces
  publication-title: J. Eng. Math.
  doi: 10.1007/s10665-006-9091-9
– volume: 16
  start-page: 61
  issue: 1
  year: 2011
  ident: 10.1016/j.jcp.2020.109732_br0600
  article-title: Shear-induced droplet deformation: Effects of confined geometry and viscoelasticity
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2010.12.001
– volume: 564
  start-page: 371
  year: 2020
  ident: 10.1016/j.jcp.2020.109732_br0070
  article-title: Bulk nanobubbles: Production and investigation of their formation/stability mechanism
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.12.093
– volume: 146
  start-page: 379
  year: 2016
  ident: 10.1016/j.jcp.2020.109732_br0230
  article-title: Ceramic membrane defouling (cleaning) by air Nano Bubbles
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.12.023
– volume: 30
  issue: 14
  year: 2018
  ident: 10.1016/j.jcp.2020.109732_br0420
  article-title: Evaluating the Laplace pressure of water nanodroplets from simulations
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/aab196
– volume: 30
  start-page: 611
  issue: 5
  year: 1977
  ident: 10.1016/j.jcp.2020.109732_br0490
  article-title: The artificial compression method for computation of shocks and contact discontinuities. I. Single conservation laws
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160300506
– volume: 182
  start-page: 262
  issue: 1
  year: 2002
  ident: 10.1016/j.jcp.2020.109732_br0700
  article-title: On the Theory and Computation of Surface Tension: The Elimination of Parasitic Currents through Energy Conservation in the Second-Gradient Method
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7165
– year: 2012
  ident: 10.1016/j.jcp.2020.109732_br0430
– volume: 100
  start-page: 335
  year: 1992
  ident: 10.1016/j.jcp.2020.109732_br0370
  article-title: A Continuum Method for Modeling Surface Tension
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90240-Y
– volume: 61
  start-page: 637
  year: 2011
  ident: 10.1016/j.jcp.2020.109732_br0010
  article-title: Molecular dynamics study of size effect on surface tension of metal droplets
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2011-10444-6
– volume: 13
  start-page: 59
  issue: 1
  year: 2017
  ident: 10.1016/j.jcp.2020.109732_br0080
  article-title: Improving performance of nanoscale ultrasound contrast agents using N,N-diethylacrylamide stabilization
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2016.08.020
– volume: 17
  start-page: 463
  year: 2016
  ident: 10.1016/j.jcp.2020.109732_br0580
  article-title: Droplet dynamics in confinement
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2016.03.009
– volume: 9
  start-page: 5226
  year: 2019
  ident: 10.1016/j.jcp.2020.109732_br0250
  article-title: Synergistic improvement in spring maize yield and quality with micro/nanobubbles water oxygation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41617-z
– volume: 162
  start-page: 301
  issue: 2
  year: 2000
  ident: 10.1016/j.jcp.2020.109732_br0300
  article-title: A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6537
– volume: 30B
  start-page: 551
  issue: 2
  year: 2010
  ident: 10.1016/j.jcp.2020.109732_br0350
  article-title: Multiscale Issues in DNS of Multiphase Flows
  publication-title: Acta Math. Sci.
  doi: 10.1016/S0252-9602(10)60062-8
– year: 2012
  ident: 10.1016/j.jcp.2020.109732_br0320
  article-title: Multiscale volume of fluid modelling of droplet coalescence
SSID ssj0008548
Score 2.3564641
Snippet •A non-local model for calculating the surface tension in multiscale simulations.•Easy-to-implement, partial-differential-equation-based model.•Implemented...
We propose a non-local model for surface tension obtained in the form of an integral of a molecular-force-like function with support 3.5ε added to the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109732
SubjectTerms Computational fluid dynamics
Computational physics
Conservation equations
Finite volume
Level set method
Non-local method
Radius of curvature
Spurious currents
Surface tension
Two-phase flows
Title Non-local model for surface tension in fluid-fluid simulations
URI https://dx.doi.org/10.1016/j.jcp.2020.109732
https://www.proquest.com/docview/2460108886
Volume 421
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4LU7nyMGTUNfmY20vwhiOqbCTg91CmibQMbuxblf_dvPSVFFwBy-FlrzSviTvg_x-7yF0B2xMkjIdUM1owAgzgaScBplM0jiUMTR8AbTFdDCZsZc5n7fQqOHCAKzS2_7apjtr7Z_0vTb766IAji8BDn1EYM1azwoMdhbDKn_4-IZ5JJzV1higCHZ0c7LpMF4LBSUrSV3IkZK_fNMvK-1cz_gEHfmYEQ_rzzpFLV2eoWMfP2K_O6tz9DhdlYFzTtg1uME2IMXVbmOk0tgh1VclLkpslrsiD9wVV8W7b-BVXaDZ-OltNAl8f4RA0ZRvgQGumNKGZ4nMacaYtr-liHXZEmq4KGIibUJu884w11wSSiG7IUqxlNqsQ9JL1C5Xpb5C2OTUWIksDg2EFCpLGMkZJ5pqoyOjOihsNCOULx4OPSyWokGJLYRVpgBlilqZHXT_JbKuK2fsG8wadYsf0y-sZd8n1m2mRvi9VwnCIMm0mf3g-n9vvUGHcAeMw4h3UXu72elbG3pss55bWz10MHx-nUw_Af9B1R8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHPTi24ii7sGTSUPZB5SLCSESEOQECbdNu91NSrAQCv_fnXZLookevPTQdpr26-w3M9l5ADxjNSbtcu0xzZnHKTdeyATzojDodvywgwNfMNti2h7O-ftCLCrQL2thMK3ScX_B6TlbuzNNh2ZzkyRY40uxhr5FUWetZT2CGnanElWo9Ubj4fRAyIHgBSFjNoIVKDc38zSvpcKulbTo5cjob-bpB1Hn1mdwDqfObSS94s0uoKLTSzhzLiRxCzS7gtfpOvVy-0TyGTfE-qQk229NqDTJk9XXKUlSYlb7JPbyI8mSTzfDK7uG-eBt1h96bkSCp1hX7LAIXHGljYiCMGYR59p-lqLWaofYxkVR09LGFzb09GMtQsoYBjhUKd5lNvAI2Q1U03Wqb4GYmBkrEXV8g16FigJOYy6oZtrollF18EtkpHL9w3GMxUqWiWJLacGUCKYswKzDy0FkUzTP-OtmXsItv2mAtOT-l1ij_DXSLb9MUo5xpg3u23f_e-oTHA9nHxM5GU3H93CCV7AAsSUaUN1t9_rBeiK76NFp2hdgr9fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-local+model+for+surface+tension+in+fluid-fluid+simulations&rft.jtitle=Journal+of+computational+physics&rft.au=Howard%2C+Amanda+A.&rft.au=Tartakovsky%2C+Alexandre+M.&rft.date=2020-11-15&rft.issn=0021-9991&rft.volume=421&rft.spage=109732&rft_id=info:doi/10.1016%2Fj.jcp.2020.109732&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2020_109732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon