Pyranose ring puckering in aldopentoses, ketohexoses and deoxyaldohexoses. A molecular dynamics study

Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate research Vol. 455; pp. 62 - 70
Main Authors Panczyk, Karina, Plazinski, Wojciech
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 02.01.2018
Subjects
Online AccessGet full text
ISSN0008-6215
1873-426X
1873-426X
DOI10.1016/j.carres.2017.11.011

Cover

Loading…
Abstract Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6CARBO force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses. [Display omitted] •The conformation of ketohexopyranoses, aldopentopyranoses and deoxy/dideoxyaldohexopyranoses was studied.•The influence of the ring-substituent type on the ring-distortion properties was analyzed.•The populations of the anomers and the rotamers of both lactol and hydroxymethyl groups were calculated.
AbstractList Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6 force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses.
Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6CARBO force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses. [Display omitted] •The conformation of ketohexopyranoses, aldopentopyranoses and deoxy/dideoxyaldohexopyranoses was studied.•The influence of the ring-substituent type on the ring-distortion properties was analyzed.•The populations of the anomers and the rotamers of both lactol and hydroxymethyl groups were calculated.
Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6CARBO force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses.
Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6CARBO force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses.Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6CARBO force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses.
Author Panczyk, Karina
Plazinski, Wojciech
Author_xml – sequence: 1
  givenname: Karina
  surname: Panczyk
  fullname: Panczyk, Karina
– sequence: 2
  givenname: Wojciech
  surname: Plazinski
  fullname: Plazinski, Wojciech
  email: wojtek_plazinski@o2.pl, wojtek@vega.umcs.lublin.pl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29175656$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS3Uim4L3wAhHzmQ1E5iO-4BqarKH6kSHFqJm-W1J-BtYm9tBzXfvl524cCBnuyZ-b2R5r1TdOSDB4TeUFJTQvn5pjY6Rkh1Q6ioKa0JpS_QivairbqGfz9CK0JIX_GGshN0mtKmlIQL_hKdNJIKxhlfIfi2RO1DAhyd_4G3s7mH3z_nsR5t2ILPZZre43vI4Sc87gqsvcUWwuOyQw7NGl_iKYxg5lFHbBevJ2cSTnm2yyt0POgxwevDe4buPl7fXn2ubr5--nJ1eVOZVrJc9XSth64DEF0rJGUD42BArntDBsFaDb2V3cAIcC7XRkhDmLCkK9e2jWgttGfo3X7vNoaHGVJWk0sGxlF7CHNSDWmIJKxY9CxKJZeyJU0nCvr2gM7rCazaRjfpuKg_Lhag2wMmhpQiDH8RStQuLLVR-7DULixFqSphFdnFPzLjss4u-By1G58Tf9iLofj5y0FUyTjwBqyLYLKywf1_wRNzsbNB
CitedBy_id crossref_primary_10_1016_j_molstruc_2024_139762
crossref_primary_10_1021_acs_jctc_8b00838
crossref_primary_10_1080_07391102_2019_1656670
crossref_primary_10_1016_j_jmgm_2020_107807
crossref_primary_10_1016_j_carres_2018_12_003
crossref_primary_10_1073_pnas_2004500118
crossref_primary_10_1021_acs_jpcb_0c01595
crossref_primary_10_1016_j_carres_2019_01_004
crossref_primary_10_1021_acs_jpcb_7b11548
crossref_primary_10_1021_acs_jpca_9b05184
crossref_primary_10_3390_ijms23010473
Cites_doi 10.1021/jo00364a014
10.1021/bi00698a023
10.1515/pac-2016-0922
10.1002/jcc.21675
10.1039/C5CP03357H
10.1016/S0009-2614(99)01123-9
10.1002/jcc.24229
10.1063/1.469273
10.1039/C6CP00809G
10.1021/ja0306718
10.1016/j.softx.2015.06.001
10.1021/jo010985i
10.1139/v66-037
10.1016/j.carres.2016.01.007
10.1063/1.3476466
10.1016/S0008-6215(00)81292-6
10.1103/PhysRevLett.100.020603
10.1021/ct700200b
10.1080/00268976.2010.522208
10.1021/ct300479h
10.1063/1.328693
10.1093/bioinformatics/btt055
10.1063/1.2408420
10.1016/j.cpc.2009.05.011
10.1016/j.carres.2007.05.032
10.1016/j.cpc.2013.09.018
10.1039/C7CP02920A
10.1111/j.1749-6632.1986.tb20961.x
10.1071/CH9682737
10.1021/ja00839a011
10.1080/00268977300102101
10.1021/ja062463w
10.1016/S0040-4039(01)89691-X
10.1002/jcc.23563
10.1021/jp505719m
10.1063/1.1379764
10.1021/ja1054143
10.1016/j.carres.2009.12.011
10.1071/CH9721711
10.1002/mrc.1260321107
10.1002/anie.196901571
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1021/ja0001916
10.1021/ct1003065
10.1016/0040-4020(80)80155-4
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.carres.2017.11.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-426X
EndPage 70
ExternalDocumentID 29175656
10_1016_j_carres_2017_11_011
S0008621517303865
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M2Z
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSU
SSZ
T5K
YK3
~02
~G-
.55
.GJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMS
HVGLF
HZ~
H~9
MVM
R2-
SCB
SEW
SOC
SSH
WUQ
X7M
XPP
Y6R
ZXP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-81baf44ee7437915f56ece9b8c0f753ae8d94f50e669bc79c057d044263273de3
IEDL.DBID .~1
ISSN 0008-6215
1873-426X
IngestDate Thu Jul 10 18:53:40 EDT 2025
Thu Jul 10 23:00:44 EDT 2025
Wed Feb 19 02:42:39 EST 2025
Tue Jul 01 04:05:05 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Fri Feb 23 02:33:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Molecular dynamics
Ring distortion
Anomeric equilibria
Pyranoses
Conformational analysis
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-81baf44ee7437915f56ece9b8c0f753ae8d94f50e669bc79c057d044263273de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29175656
PQID 1969930247
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2020905873
proquest_miscellaneous_1969930247
pubmed_primary_29175656
crossref_primary_10_1016_j_carres_2017_11_011
crossref_citationtrail_10_1016_j_carres_2017_11_011
elsevier_sciencedirect_doi_10_1016_j_carres_2017_11_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-02
PublicationDateYYYYMMDD 2018-01-02
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Carbohydrate research
PublicationTitleAlternate Carbohydr Res
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hansen, Hünenberger (bib8) 2010; 6
Angyal (bib14) 1969; 8
Tironi, Sperb, Smith, van Gunsteren (bib32) 1995; 102
Plazinska, Plazinski, Jozwiak (bib9) 2014; 35
Jochims, Taigel, Seeliger, Lutz, Driesen (bib42) 1967; 44
Bussi, Donadio, Parrinello (bib24) 2007; 126
Angyal, Pickles (bib15) 1972; 25
Berendsen, van Gunsteren, Zwinderman, Geurtsen (bib30) 1986; 482
Vijayalakshmi, Rao (bib43) 1972; 22
Vogtherr, Peters (bib47) 2000; 122
Plazinski, Plazinska, Drach (bib44) 2015; 17
Berendsen, Postma, van Gunsteren, Hermans (bib29) 1981
Haasnoot, de Leeuw, Altona (bib3) 1980; 36
Plazinski, Plazinska, Drach (bib45) 2016; 18
Plazinski, Plazinska (bib39) 2017; 89
Altona, Francke, de Haan, Ippel, Daalmans, Hoekzema, van Wijk (bib4) 1994; 32
Hess, Bekker, Berendsen, Fraaije (bib27) 1997; 18
Pol-Fachin, Rusu, Verli, Lins (bib12) 2012; 8
Cremer, Pople (bib17) 1975; 97
Autieri, Sega, Pederiva, Guella (bib6) 2010; 133
Barker, Watts (bib31) 1973; 26
Szczepaniak, Moc (bib49) 2014; 118
Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bib20) 2015; 1–2
Barducci, Bussi, Parrinello (bib36) 2008; 100
Bussi, Gervasio, Laio, Parrinello (bib35) 2006; 128
Pronk, Páll, Schulz, Larsson, Bjelkmar, Apostolov, Shirts, Smith, Kasson, van der Spoel, Hess, Lindahl (bib18) 2013; 29
Sattelle, Hansen, Gardiner, Almond (bib7) 2010; 132
Hess (bib28) 2008; 4
Plazinski, Drach, Plazinska (bib38) 2016; 423
Sega, Autieri, Pederiva (bib11) 2011; 109
Thibaudeau, Stenutz, Hertz, Klepach, Zhao, Wu, Carmichael, Serianni (bib2) 2004; 126
Lemieux, Koto, Voisin (bib46) 1979; vol. 87
Que, Gray (bib16) 1974; 13
Gaweda, Plazinski (bib37) 2017; 19
Heinz, van Gunsteren, Hünenberger (bib33) 2001; 115
Lemieux, Stevens (bib41) 1966; 44
Spiwok, Králová, Tvaroška (bib13) 2010; 345
Sugita, Okamoto (bib34) 1999; 314
Tafazzoli, Ghiasi (bib48) 2007; 342
Hansen, Hünenberger (bib10) 2011; 32
Tribello, Bonomi, Branduardi, Camilloni, Bussi (bib21) 2014; 185
Angyal (bib40) 1968
Parrinello, Rahman (bib25) 1981; 52
Hockney (bib26) 1970; 9
Berendsen, Postma, van Gunsteren, Hermans (bib23) 1981
Stenutz, Carmichael, Widmalm, Serianni (bib1) 2002; 67
Bonomi, Branduardi, Bussi, Camilloni, Provasi, Raiteri, Donadio, Marinelli, Pietrucci, Broglia, Parrinello (bib19) 2009; 180
Plazinski, Lonardi, Hünenberger (bib22) 2016; 37
Snyder, Serianni (bib5) 1986; 51
Szczepaniak (10.1016/j.carres.2017.11.011_bib49) 2014; 118
Que (10.1016/j.carres.2017.11.011_bib16) 1974; 13
Gaweda (10.1016/j.carres.2017.11.011_bib37) 2017; 19
Hess (10.1016/j.carres.2017.11.011_bib28) 2008; 4
Autieri (10.1016/j.carres.2017.11.011_bib6) 2010; 133
Spiwok (10.1016/j.carres.2017.11.011_bib13) 2010; 345
Pronk (10.1016/j.carres.2017.11.011_bib18) 2013; 29
Plazinski (10.1016/j.carres.2017.11.011_bib38) 2016; 423
Tironi (10.1016/j.carres.2017.11.011_bib32) 1995; 102
Bonomi (10.1016/j.carres.2017.11.011_bib19) 2009; 180
Plazinski (10.1016/j.carres.2017.11.011_bib44) 2015; 17
Hockney (10.1016/j.carres.2017.11.011_bib26) 1970; 9
Barker (10.1016/j.carres.2017.11.011_bib31) 1973; 26
Barducci (10.1016/j.carres.2017.11.011_bib36) 2008; 100
Angyal (10.1016/j.carres.2017.11.011_bib40) 1968
Pol-Fachin (10.1016/j.carres.2017.11.011_bib12) 2012; 8
Altona (10.1016/j.carres.2017.11.011_bib4) 1994; 32
Snyder (10.1016/j.carres.2017.11.011_bib5) 1986; 51
Jochims (10.1016/j.carres.2017.11.011_bib42) 1967; 44
Thibaudeau (10.1016/j.carres.2017.11.011_bib2) 2004; 126
Parrinello (10.1016/j.carres.2017.11.011_bib25) 1981; 52
Tafazzoli (10.1016/j.carres.2017.11.011_bib48) 2007; 342
Bussi (10.1016/j.carres.2017.11.011_bib35) 2006; 128
Berendsen (10.1016/j.carres.2017.11.011_bib29) 1981
Hansen (10.1016/j.carres.2017.11.011_bib10) 2011; 32
Plazinski (10.1016/j.carres.2017.11.011_bib39) 2017; 89
Haasnoot (10.1016/j.carres.2017.11.011_bib3) 1980; 36
Hansen (10.1016/j.carres.2017.11.011_bib8) 2010; 6
Heinz (10.1016/j.carres.2017.11.011_bib33) 2001; 115
Berendsen (10.1016/j.carres.2017.11.011_bib30) 1986; 482
Tribello (10.1016/j.carres.2017.11.011_bib21) 2014; 185
Angyal (10.1016/j.carres.2017.11.011_bib14) 1969; 8
Hess (10.1016/j.carres.2017.11.011_bib27) 1997; 18
Vijayalakshmi (10.1016/j.carres.2017.11.011_bib43) 1972; 22
Plazinski (10.1016/j.carres.2017.11.011_bib45) 2016; 18
Lemieux (10.1016/j.carres.2017.11.011_bib41) 1966; 44
Berendsen (10.1016/j.carres.2017.11.011_bib23) 1981
Bussi (10.1016/j.carres.2017.11.011_bib24) 2007; 126
Angyal (10.1016/j.carres.2017.11.011_bib15) 1972; 25
Vogtherr (10.1016/j.carres.2017.11.011_bib47) 2000; 122
Plazinska (10.1016/j.carres.2017.11.011_bib9) 2014; 35
Abraham (10.1016/j.carres.2017.11.011_bib20) 2015; 1–2
Sattelle (10.1016/j.carres.2017.11.011_bib7) 2010; 132
Lemieux (10.1016/j.carres.2017.11.011_bib46) 1979; vol. 87
Sugita (10.1016/j.carres.2017.11.011_bib34) 1999; 314
Stenutz (10.1016/j.carres.2017.11.011_bib1) 2002; 67
Cremer (10.1016/j.carres.2017.11.011_bib17) 1975; 97
Plazinski (10.1016/j.carres.2017.11.011_bib22) 2016; 37
Sega (10.1016/j.carres.2017.11.011_bib11) 2011; 109
References_xml – volume: vol. 87
  start-page: 17
  year: 1979
  end-page: 29
  ident: bib46
  publication-title: In Anomeric Effect, Origin and Consequences
– volume: 482
  start-page: 269
  year: 1986
  end-page: 286
  ident: bib30
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 36
  start-page: 2783
  year: 1980
  end-page: 2792
  ident: bib3
  publication-title: Tetrahedron
– volume: 9
  start-page: 135
  year: 1970
  end-page: 211
  ident: bib26
  publication-title: Methods Comput. Phys.
– volume: 4
  start-page: 116
  year: 2008
  end-page: 122
  ident: bib28
  publication-title: J. Chem. Theory Comput.
– volume: 89
  start-page: 1283
  year: 2017
  end-page: 1294
  ident: bib39
  publication-title: Pure Appl. Chem.
– volume: 25
  start-page: 1711
  year: 1972
  end-page: 1718
  ident: bib15
  publication-title: Aust. J. Chem.
– volume: 423
  start-page: 43
  year: 2016
  end-page: 48
  ident: bib38
  publication-title: Carbohydr. Res.
– volume: 32
  start-page: 998
  year: 2011
  end-page: 1032
  ident: bib10
  publication-title: J. Comput. Chem.
– start-page: 331
  year: 1981
  ident: bib23
  publication-title: Handbook of Intermolecular Forces
– volume: 8
  start-page: 4681
  year: 2012
  end-page: 4690
  ident: bib12
  publication-title: J. Chem. Theory Comput.
– volume: 185
  start-page: 604
  year: 2014
  end-page: 613
  ident: bib21
  publication-title: Comput. Phys. Commun.
– volume: 122
  start-page: 6093
  year: 2000
  end-page: 6099
  ident: bib47
  publication-title: J. Am. Chem. Soc.
– volume: 342
  start-page: 2086
  year: 2007
  end-page: 2096
  ident: bib48
  publication-title: Carbohydr. Res.
– volume: 314
  start-page: 141
  year: 1999
  end-page: 151
  ident: bib34
  publication-title: Chem. Phys. Lett.
– volume: 102
  start-page: 5451
  year: 1995
  end-page: 5459
  ident: bib32
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 7925
  year: 2014
  end-page: 7938
  ident: bib49
  publication-title: J. Phys. Chem. A
– start-page: 331
  year: 1981
  end-page: 342
  ident: bib29
  publication-title: Interaction Models for Water in Relation to Protein Hydration in Intermolecular Forces
– volume: 128
  start-page: 13435
  year: 2006
  end-page: 13441
  ident: bib35
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 876
  year: 2014
  end-page: 882
  ident: bib9
  publication-title: J. Comput. Chem.
– start-page: 2737
  year: 1968
  end-page: 2746
  ident: bib40
  publication-title: Aust. J. Chem.
– volume: 133
  start-page: 095104
  year: 2010
  ident: bib6
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 20760
  year: 2017
  end-page: 20772
  ident: bib37
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 413
  year: 1972
  end-page: 424
  ident: bib43
  publication-title: Carbohydr. Res.
– volume: 44
  start-page: 249
  year: 1966
  end-page: 262
  ident: bib41
  publication-title: Can. J. Chem.
– volume: 126
  start-page: 15668
  year: 2004
  end-page: 15685
  ident: bib2
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  ident: bib25
  publication-title: J. Appl. Phys.
– volume: 44
  start-page: 4363
  year: 1967
  end-page: 4369
  ident: bib42
  publication-title: Tetrahedron Lett.
– volume: 17
  start-page: 21622
  year: 2015
  end-page: 21629
  ident: bib44
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 157
  year: 1969
  end-page: 166
  ident: bib14
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 18
  start-page: 1463
  year: 1997
  end-page: 1472
  ident: bib27
  publication-title: J. Comput. Chem.
– volume: 132
  start-page: 13132
  year: 2010
  end-page: 13134
  ident: bib7
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 141
  year: 2011
  end-page: 148
  ident: bib11
  publication-title: Mol. Phys.
– volume: 13
  start-page: 146
  year: 1974
  end-page: 153
  ident: bib16
  publication-title: Biochemistry
– volume: 51
  start-page: 2694
  year: 1986
  end-page: 2702
  ident: bib5
  publication-title: J. Org. Chem.
– volume: 345
  start-page: 530
  year: 2010
  end-page: 537
  ident: bib13
  publication-title: Carbohydr. Res.
– volume: 1–2
  start-page: 19
  year: 2015
  end-page: 25
  ident: bib20
  publication-title: SoftwareX
– volume: 37
  start-page: 354
  year: 2016
  end-page: 365
  ident: bib22
  publication-title: J. Comput. Chem.
– volume: 26
  start-page: 789
  year: 1973
  end-page: 792
  ident: bib31
  publication-title: Mol. Phys.
– volume: 29
  start-page: 845
  year: 2013
  end-page: 854
  ident: bib18
  publication-title: Bioinformatics
– volume: 32
  start-page: 670
  year: 1994
  end-page: 678
  ident: bib4
  publication-title: Magn. Reson. Chem.
– volume: 97
  start-page: 1354
  year: 1975
  end-page: 1358
  ident: bib17
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 014101
  year: 2007
  ident: bib24
  publication-title: J. Chem. Phys.
– volume: 115
  start-page: 1125
  year: 2001
  end-page: 1136
  ident: bib33
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 2622
  year: 2010
  end-page: 2646
  ident: bib8
  publication-title: J. Chem. Theory Comput.
– volume: 100
  start-page: 020603
  year: 2008
  ident: bib36
  publication-title: Phys. Rev. Lett.
– volume: 180
  start-page: 1961
  year: 2009
  end-page: 1972
  ident: bib19
  publication-title: Comput. Phys. Commun.
– volume: 67
  start-page: 949
  year: 2002
  end-page: 958
  ident: bib1
  publication-title: J. Org. Chem.
– volume: 18
  start-page: 9626
  year: 2016
  end-page: 9635
  ident: bib45
  publication-title: Phys. Chem. Chem. Phys.
– volume: 51
  start-page: 2694
  year: 1986
  ident: 10.1016/j.carres.2017.11.011_bib5
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00364a014
– volume: 13
  start-page: 146
  year: 1974
  ident: 10.1016/j.carres.2017.11.011_bib16
  publication-title: Biochemistry
  doi: 10.1021/bi00698a023
– volume: 89
  start-page: 1283
  year: 2017
  ident: 10.1016/j.carres.2017.11.011_bib39
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2016-0922
– volume: 32
  start-page: 998
  year: 2011
  ident: 10.1016/j.carres.2017.11.011_bib10
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21675
– volume: 17
  start-page: 21622
  year: 2015
  ident: 10.1016/j.carres.2017.11.011_bib44
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP03357H
– volume: 9
  start-page: 135
  year: 1970
  ident: 10.1016/j.carres.2017.11.011_bib26
  publication-title: Methods Comput. Phys.
– volume: 314
  start-page: 141
  year: 1999
  ident: 10.1016/j.carres.2017.11.011_bib34
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01123-9
– volume: 37
  start-page: 354
  year: 2016
  ident: 10.1016/j.carres.2017.11.011_bib22
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24229
– volume: 102
  start-page: 5451
  year: 1995
  ident: 10.1016/j.carres.2017.11.011_bib32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469273
– volume: 18
  start-page: 9626
  year: 2016
  ident: 10.1016/j.carres.2017.11.011_bib45
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00809G
– volume: 126
  start-page: 15668
  year: 2004
  ident: 10.1016/j.carres.2017.11.011_bib2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0306718
– volume: 1–2
  start-page: 19
  year: 2015
  ident: 10.1016/j.carres.2017.11.011_bib20
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 67
  start-page: 949
  year: 2002
  ident: 10.1016/j.carres.2017.11.011_bib1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo010985i
– volume: 44
  start-page: 249
  year: 1966
  ident: 10.1016/j.carres.2017.11.011_bib41
  publication-title: Can. J. Chem.
  doi: 10.1139/v66-037
– volume: 423
  start-page: 43
  year: 2016
  ident: 10.1016/j.carres.2017.11.011_bib38
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2016.01.007
– volume: vol. 87
  start-page: 17
  year: 1979
  ident: 10.1016/j.carres.2017.11.011_bib46
– volume: 133
  start-page: 095104
  year: 2010
  ident: 10.1016/j.carres.2017.11.011_bib6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3476466
– volume: 22
  start-page: 413
  year: 1972
  ident: 10.1016/j.carres.2017.11.011_bib43
  publication-title: Carbohydr. Res.
  doi: 10.1016/S0008-6215(00)81292-6
– volume: 100
  start-page: 020603
  year: 2008
  ident: 10.1016/j.carres.2017.11.011_bib36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.020603
– volume: 4
  start-page: 116
  year: 2008
  ident: 10.1016/j.carres.2017.11.011_bib28
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700200b
– volume: 109
  start-page: 141
  year: 2011
  ident: 10.1016/j.carres.2017.11.011_bib11
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2010.522208
– volume: 8
  start-page: 4681
  year: 2012
  ident: 10.1016/j.carres.2017.11.011_bib12
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300479h
– volume: 52
  start-page: 7182
  year: 1981
  ident: 10.1016/j.carres.2017.11.011_bib25
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 29
  start-page: 845
  year: 2013
  ident: 10.1016/j.carres.2017.11.011_bib18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt055
– volume: 126
  start-page: 014101
  year: 2007
  ident: 10.1016/j.carres.2017.11.011_bib24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 180
  start-page: 1961
  year: 2009
  ident: 10.1016/j.carres.2017.11.011_bib19
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.05.011
– start-page: 331
  year: 1981
  ident: 10.1016/j.carres.2017.11.011_bib29
– volume: 342
  start-page: 2086
  year: 2007
  ident: 10.1016/j.carres.2017.11.011_bib48
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2007.05.032
– volume: 185
  start-page: 604
  year: 2014
  ident: 10.1016/j.carres.2017.11.011_bib21
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.09.018
– volume: 19
  start-page: 20760
  year: 2017
  ident: 10.1016/j.carres.2017.11.011_bib37
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP02920A
– volume: 482
  start-page: 269
  year: 1986
  ident: 10.1016/j.carres.2017.11.011_bib30
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1986.tb20961.x
– start-page: 2737
  year: 1968
  ident: 10.1016/j.carres.2017.11.011_bib40
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH9682737
– volume: 97
  start-page: 1354
  year: 1975
  ident: 10.1016/j.carres.2017.11.011_bib17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00839a011
– volume: 26
  start-page: 789
  year: 1973
  ident: 10.1016/j.carres.2017.11.011_bib31
  publication-title: Mol. Phys.
  doi: 10.1080/00268977300102101
– volume: 128
  start-page: 13435
  year: 2006
  ident: 10.1016/j.carres.2017.11.011_bib35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062463w
– volume: 44
  start-page: 4363
  year: 1967
  ident: 10.1016/j.carres.2017.11.011_bib42
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(01)89691-X
– volume: 35
  start-page: 876
  year: 2014
  ident: 10.1016/j.carres.2017.11.011_bib9
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23563
– volume: 118
  start-page: 7925
  year: 2014
  ident: 10.1016/j.carres.2017.11.011_bib49
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp505719m
– volume: 115
  start-page: 1125
  year: 2001
  ident: 10.1016/j.carres.2017.11.011_bib33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1379764
– volume: 132
  start-page: 13132
  issue: 38
  year: 2010
  ident: 10.1016/j.carres.2017.11.011_bib7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1054143
– volume: 345
  start-page: 530
  year: 2010
  ident: 10.1016/j.carres.2017.11.011_bib13
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2009.12.011
– volume: 25
  start-page: 1711
  year: 1972
  ident: 10.1016/j.carres.2017.11.011_bib15
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH9721711
– volume: 32
  start-page: 670
  year: 1994
  ident: 10.1016/j.carres.2017.11.011_bib4
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.1260321107
– volume: 8
  start-page: 157
  year: 1969
  ident: 10.1016/j.carres.2017.11.011_bib14
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.196901571
– start-page: 331
  year: 1981
  ident: 10.1016/j.carres.2017.11.011_bib23
– volume: 18
  start-page: 1463
  year: 1997
  ident: 10.1016/j.carres.2017.11.011_bib27
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 122
  start-page: 6093
  year: 2000
  ident: 10.1016/j.carres.2017.11.011_bib47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0001916
– volume: 6
  start-page: 2622
  year: 2010
  ident: 10.1016/j.carres.2017.11.011_bib8
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct1003065
– volume: 36
  start-page: 2783
  year: 1980
  ident: 10.1016/j.carres.2017.11.011_bib3
  publication-title: Tetrahedron
  doi: 10.1016/0040-4020(80)80155-4
SSID ssj0000676
Score 2.2837398
Snippet Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 62
SubjectTerms aldohexoses
Anomeric equilibria
Carbohydrate Conformation
Conformational analysis
fucose
Hexoses - chemistry
moieties
molecular conformation
Molecular dynamics
Molecular Dynamics Simulation
oxygen
Pentoses - chemistry
Pyranoses
rhamnose
Ring distortion
Title Pyranose ring puckering in aldopentoses, ketohexoses and deoxyaldohexoses. A molecular dynamics study
URI https://dx.doi.org/10.1016/j.carres.2017.11.011
https://www.ncbi.nlm.nih.gov/pubmed/29175656
https://www.proquest.com/docview/1969930247
https://www.proquest.com/docview/2020905873
Volume 455
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBehe-heRtfuI-0WVNhjndqxJFuPIaxkDQ1lNKxvwpLPLP2wQ-1A-tK_vXf-KOtDKOzJlnwS4nTc_STfB2M_tLQIqsF5UtrMEyIBLxbkAaB958TIT1VGwckXczVdiPNred1jky4WhtwqW93f6PRaW7c9py03T1fLJcX4EhxHi4VCSpUrKYJdRCTlw6fgX22sGggce0Tdhc_VPl6O3GEpaXcQDSmXZxBsM0_b4Gdths722IcWP_Jxs8SPrAf5PtuddGXbDhhcPqL5KUrgdGPHV7XfBL0tc57cpVQtq8Kv5Qm_har4Cxtq8CRPeQrF5pFI2s4hH_P7rnouT5vS9SWvE9J-Youzn1eTqdfWUvBcqGXlITpNMiEAIkpAGMhMKnCgbez8DE8sCcSpFpn0QSltXaQd4rjUF3U69yhMIfzMdvIih6-MI2YLVawUUFV1RHvWIujEeXCC0Gba9lnYsdC4NtE41bu4M51H2Y1pGG-I8XgGMcj4PvNeRq2aRBtv0Efd7phXAmPQFrwx8rjbTIN7Qz9IkhyKdWkoVZAOEbVE22lGiK-1L-Mo7LMvjSS8rHeEZ18CyIf_vbYj9h5bcX3HM_rGdqqHNXxH1FPZQS3WA_Zu_Gs2ndNz9vvP7BkVrQOM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cBeVsA-KCxgJI4E0sZ24mNVLSqvag8gcbNiZ6LtLiTVNkjw75nJA8GhQuKWxA9Z49HMZ2fmG4BDoxyBavSBUi4PpEwxSCRHAJjQezkMM51zcvLVVE9u5Pmtul2BcZcLw2GVre1vbHptrdsvJ600T-azGef4Mhwnj0VKypUrP8Eqs1OpHqyOzi4m09cGWTcoOAl4QJdBV4d5eY6IZd7uQXzMdJ6DwTIPtQyB1p7odB2-tBBSjJpVbsAKFpuwNu4qt30F_P1EHqhcoOBLOzGvQyf4aVaI9C7jglkVtS6OxD-syj_4yC8iLTKRYfn4xF3aj8diJO67Aroia6rXL0TNSfsNbk5_XY8nQVtOIfCRUVVAADXNpUSMmYNwoHKl0aNxiQ9zOrSkmGRG5ipErY3zsfEE5bJQ1ozucZRh9B16RVngFgiCbZFOtEYurE6AzznCnTQPTRC53Lg-RJ0IrW-5xrnkxZ3tgsr-2kbwlgVPxxBLgu9D8DJq3nBtvNM_7nbHvtEZS-7gnZEH3WZa2hv-R5IWWD4sLLMFmYiAS7y8z5AgtglVEkd9-NFowst6h3T8ZYy8_eG17cPa5Prq0l6eTS924DO1JPWVz_An9Kr_D7hLIKhye62SPwPQCwSa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyranose+ring+puckering+in+aldopentoses%2C+ketohexoses+and+deoxyaldohexoses.+A+molecular+dynamics+study&rft.jtitle=Carbohydrate+research&rft.au=Panczyk%2C+Karina&rft.au=Plazinski%2C+Wojciech&rft.date=2018-01-02&rft.issn=0008-6215&rft.volume=455&rft.spage=62&rft.epage=70&rft_id=info:doi/10.1016%2Fj.carres.2017.11.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carres_2017_11_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6215&client=summon