Pyranose ring puckering in aldopentoses, ketohexoses and deoxyaldohexoses. A molecular dynamics study
Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here...
Saved in:
Published in | Carbohydrate research Vol. 455; pp. 62 - 70 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
02.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-6215 1873-426X 1873-426X |
DOI | 10.1016/j.carres.2017.11.011 |
Cover
Loading…
Abstract | Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6CARBO force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses.
[Display omitted]
•The conformation of ketohexopyranoses, aldopentopyranoses and deoxy/dideoxyaldohexopyranoses was studied.•The influence of the ring-substituent type on the ring-distortion properties was analyzed.•The populations of the anomers and the rotamers of both lactol and hydroxymethyl groups were calculated. |
---|---|
AbstractList | Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6
force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses. Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6CARBO force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses. [Display omitted] •The conformation of ketohexopyranoses, aldopentopyranoses and deoxy/dideoxyaldohexopyranoses was studied.•The influence of the ring-substituent type on the ring-distortion properties was analyzed.•The populations of the anomers and the rotamers of both lactol and hydroxymethyl groups were calculated. Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6CARBO force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses. Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6CARBO force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses.Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most extensively studied pyranoses, there also exist other groups of saccharides that contain analogous chemical system of the six-membered ring. Here we describe in details the results of the molecular dynamics-based conformational analysis concerning a series of pyranoses, namely: d-aldopentoses, d-ketohexoses as well as deoxy- (d-quinovose, l-fucose, l-rhamnose) and dideoxy- (abequose, paratose, tyvelose, digitoxose) derivatives of aldohexoses. By using the carbohydrate-dedicated GROMOS 56a6CARBO force field, we determined the conformational properties of both the lactol and hydroxymethyl groups as well as the anomeric populations for all considered compounds. The orientation of the lactol group follows the trend expected on the basis of the exo-anomeric effect for all compounds whereas the conformation of the hydroxymethyl group in d-ketohexoses is represented by the two gauche (with respect to the ring oxygen atom) rotamers. The special emphasis is put on the ring-inversion properties studied in the context of both the full chair-chair inversion and the chair-boat/skew-boat rearrangement. The calculated ring-distortion energies, compared with those obtained for regular d-aldohexopyranoses allowed for estimating the influence of particular substituents on the ring flexibility. Overall, such influence is correlated with the dimension of the substituent and its orientation but is limited to the case of the chair-chair inversion whereas the chair-to-boat/skew-boat rearrangement exhibits roughly the same properties for all pyranoses. For all d-aldopyranoses the α anomers exhibit lower ring-inversion free energies in comparison to the β anomers whereas this trend is inverted in the case of d-ketohexopyranoses. |
Author | Panczyk, Karina Plazinski, Wojciech |
Author_xml | – sequence: 1 givenname: Karina surname: Panczyk fullname: Panczyk, Karina – sequence: 2 givenname: Wojciech surname: Plazinski fullname: Plazinski, Wojciech email: wojtek_plazinski@o2.pl, wojtek@vega.umcs.lublin.pl |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29175656$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS3Uim4L3wAhHzmQ1E5iO-4BqarKH6kSHFqJm-W1J-BtYm9tBzXfvl524cCBnuyZ-b2R5r1TdOSDB4TeUFJTQvn5pjY6Rkh1Q6ioKa0JpS_QivairbqGfz9CK0JIX_GGshN0mtKmlIQL_hKdNJIKxhlfIfi2RO1DAhyd_4G3s7mH3z_nsR5t2ILPZZre43vI4Sc87gqsvcUWwuOyQw7NGl_iKYxg5lFHbBevJ2cSTnm2yyt0POgxwevDe4buPl7fXn2ubr5--nJ1eVOZVrJc9XSth64DEF0rJGUD42BArntDBsFaDb2V3cAIcC7XRkhDmLCkK9e2jWgttGfo3X7vNoaHGVJWk0sGxlF7CHNSDWmIJKxY9CxKJZeyJU0nCvr2gM7rCazaRjfpuKg_Lhag2wMmhpQiDH8RStQuLLVR-7DULixFqSphFdnFPzLjss4u-By1G58Tf9iLofj5y0FUyTjwBqyLYLKywf1_wRNzsbNB |
CitedBy_id | crossref_primary_10_1016_j_molstruc_2024_139762 crossref_primary_10_1021_acs_jctc_8b00838 crossref_primary_10_1080_07391102_2019_1656670 crossref_primary_10_1016_j_jmgm_2020_107807 crossref_primary_10_1016_j_carres_2018_12_003 crossref_primary_10_1073_pnas_2004500118 crossref_primary_10_1021_acs_jpcb_0c01595 crossref_primary_10_1016_j_carres_2019_01_004 crossref_primary_10_1021_acs_jpcb_7b11548 crossref_primary_10_1021_acs_jpca_9b05184 crossref_primary_10_3390_ijms23010473 |
Cites_doi | 10.1021/jo00364a014 10.1021/bi00698a023 10.1515/pac-2016-0922 10.1002/jcc.21675 10.1039/C5CP03357H 10.1016/S0009-2614(99)01123-9 10.1002/jcc.24229 10.1063/1.469273 10.1039/C6CP00809G 10.1021/ja0306718 10.1016/j.softx.2015.06.001 10.1021/jo010985i 10.1139/v66-037 10.1016/j.carres.2016.01.007 10.1063/1.3476466 10.1016/S0008-6215(00)81292-6 10.1103/PhysRevLett.100.020603 10.1021/ct700200b 10.1080/00268976.2010.522208 10.1021/ct300479h 10.1063/1.328693 10.1093/bioinformatics/btt055 10.1063/1.2408420 10.1016/j.cpc.2009.05.011 10.1016/j.carres.2007.05.032 10.1016/j.cpc.2013.09.018 10.1039/C7CP02920A 10.1111/j.1749-6632.1986.tb20961.x 10.1071/CH9682737 10.1021/ja00839a011 10.1080/00268977300102101 10.1021/ja062463w 10.1016/S0040-4039(01)89691-X 10.1002/jcc.23563 10.1021/jp505719m 10.1063/1.1379764 10.1021/ja1054143 10.1016/j.carres.2009.12.011 10.1071/CH9721711 10.1002/mrc.1260321107 10.1002/anie.196901571 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H 10.1021/ja0001916 10.1021/ct1003065 10.1016/0040-4020(80)80155-4 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.carres.2017.11.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-426X |
EndPage | 70 |
ExternalDocumentID | 29175656 10_1016_j_carres_2017_11_011 S0008621517303865 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M2Z M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSU SSZ T5K YK3 ~02 ~G- .55 .GJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMS HVGLF HZ~ H~9 MVM R2- SCB SEW SOC SSH WUQ X7M XPP Y6R ZXP ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-81baf44ee7437915f56ece9b8c0f753ae8d94f50e669bc79c057d044263273de3 |
IEDL.DBID | .~1 |
ISSN | 0008-6215 1873-426X |
IngestDate | Thu Jul 10 18:53:40 EDT 2025 Thu Jul 10 23:00:44 EDT 2025 Wed Feb 19 02:42:39 EST 2025 Tue Jul 01 04:05:05 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Fri Feb 23 02:33:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Molecular dynamics Ring distortion Anomeric equilibria Pyranoses Conformational analysis |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-81baf44ee7437915f56ece9b8c0f753ae8d94f50e669bc79c057d044263273de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29175656 |
PQID | 1969930247 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2020905873 proquest_miscellaneous_1969930247 pubmed_primary_29175656 crossref_primary_10_1016_j_carres_2017_11_011 crossref_citationtrail_10_1016_j_carres_2017_11_011 elsevier_sciencedirect_doi_10_1016_j_carres_2017_11_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-02 |
PublicationDateYYYYMMDD | 2018-01-02 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Carbohydrate research |
PublicationTitleAlternate | Carbohydr Res |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hansen, Hünenberger (bib8) 2010; 6 Angyal (bib14) 1969; 8 Tironi, Sperb, Smith, van Gunsteren (bib32) 1995; 102 Plazinska, Plazinski, Jozwiak (bib9) 2014; 35 Jochims, Taigel, Seeliger, Lutz, Driesen (bib42) 1967; 44 Bussi, Donadio, Parrinello (bib24) 2007; 126 Angyal, Pickles (bib15) 1972; 25 Berendsen, van Gunsteren, Zwinderman, Geurtsen (bib30) 1986; 482 Vijayalakshmi, Rao (bib43) 1972; 22 Vogtherr, Peters (bib47) 2000; 122 Plazinski, Plazinska, Drach (bib44) 2015; 17 Berendsen, Postma, van Gunsteren, Hermans (bib29) 1981 Haasnoot, de Leeuw, Altona (bib3) 1980; 36 Plazinski, Plazinska, Drach (bib45) 2016; 18 Plazinski, Plazinska (bib39) 2017; 89 Altona, Francke, de Haan, Ippel, Daalmans, Hoekzema, van Wijk (bib4) 1994; 32 Hess, Bekker, Berendsen, Fraaije (bib27) 1997; 18 Pol-Fachin, Rusu, Verli, Lins (bib12) 2012; 8 Cremer, Pople (bib17) 1975; 97 Autieri, Sega, Pederiva, Guella (bib6) 2010; 133 Barker, Watts (bib31) 1973; 26 Szczepaniak, Moc (bib49) 2014; 118 Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bib20) 2015; 1–2 Barducci, Bussi, Parrinello (bib36) 2008; 100 Bussi, Gervasio, Laio, Parrinello (bib35) 2006; 128 Pronk, Páll, Schulz, Larsson, Bjelkmar, Apostolov, Shirts, Smith, Kasson, van der Spoel, Hess, Lindahl (bib18) 2013; 29 Sattelle, Hansen, Gardiner, Almond (bib7) 2010; 132 Hess (bib28) 2008; 4 Plazinski, Drach, Plazinska (bib38) 2016; 423 Sega, Autieri, Pederiva (bib11) 2011; 109 Thibaudeau, Stenutz, Hertz, Klepach, Zhao, Wu, Carmichael, Serianni (bib2) 2004; 126 Lemieux, Koto, Voisin (bib46) 1979; vol. 87 Que, Gray (bib16) 1974; 13 Gaweda, Plazinski (bib37) 2017; 19 Heinz, van Gunsteren, Hünenberger (bib33) 2001; 115 Lemieux, Stevens (bib41) 1966; 44 Spiwok, Králová, Tvaroška (bib13) 2010; 345 Sugita, Okamoto (bib34) 1999; 314 Tafazzoli, Ghiasi (bib48) 2007; 342 Hansen, Hünenberger (bib10) 2011; 32 Tribello, Bonomi, Branduardi, Camilloni, Bussi (bib21) 2014; 185 Angyal (bib40) 1968 Parrinello, Rahman (bib25) 1981; 52 Hockney (bib26) 1970; 9 Berendsen, Postma, van Gunsteren, Hermans (bib23) 1981 Stenutz, Carmichael, Widmalm, Serianni (bib1) 2002; 67 Bonomi, Branduardi, Bussi, Camilloni, Provasi, Raiteri, Donadio, Marinelli, Pietrucci, Broglia, Parrinello (bib19) 2009; 180 Plazinski, Lonardi, Hünenberger (bib22) 2016; 37 Snyder, Serianni (bib5) 1986; 51 Szczepaniak (10.1016/j.carres.2017.11.011_bib49) 2014; 118 Que (10.1016/j.carres.2017.11.011_bib16) 1974; 13 Gaweda (10.1016/j.carres.2017.11.011_bib37) 2017; 19 Hess (10.1016/j.carres.2017.11.011_bib28) 2008; 4 Autieri (10.1016/j.carres.2017.11.011_bib6) 2010; 133 Spiwok (10.1016/j.carres.2017.11.011_bib13) 2010; 345 Pronk (10.1016/j.carres.2017.11.011_bib18) 2013; 29 Plazinski (10.1016/j.carres.2017.11.011_bib38) 2016; 423 Tironi (10.1016/j.carres.2017.11.011_bib32) 1995; 102 Bonomi (10.1016/j.carres.2017.11.011_bib19) 2009; 180 Plazinski (10.1016/j.carres.2017.11.011_bib44) 2015; 17 Hockney (10.1016/j.carres.2017.11.011_bib26) 1970; 9 Barker (10.1016/j.carres.2017.11.011_bib31) 1973; 26 Barducci (10.1016/j.carres.2017.11.011_bib36) 2008; 100 Angyal (10.1016/j.carres.2017.11.011_bib40) 1968 Pol-Fachin (10.1016/j.carres.2017.11.011_bib12) 2012; 8 Altona (10.1016/j.carres.2017.11.011_bib4) 1994; 32 Snyder (10.1016/j.carres.2017.11.011_bib5) 1986; 51 Jochims (10.1016/j.carres.2017.11.011_bib42) 1967; 44 Thibaudeau (10.1016/j.carres.2017.11.011_bib2) 2004; 126 Parrinello (10.1016/j.carres.2017.11.011_bib25) 1981; 52 Tafazzoli (10.1016/j.carres.2017.11.011_bib48) 2007; 342 Bussi (10.1016/j.carres.2017.11.011_bib35) 2006; 128 Berendsen (10.1016/j.carres.2017.11.011_bib29) 1981 Hansen (10.1016/j.carres.2017.11.011_bib10) 2011; 32 Plazinski (10.1016/j.carres.2017.11.011_bib39) 2017; 89 Haasnoot (10.1016/j.carres.2017.11.011_bib3) 1980; 36 Hansen (10.1016/j.carres.2017.11.011_bib8) 2010; 6 Heinz (10.1016/j.carres.2017.11.011_bib33) 2001; 115 Berendsen (10.1016/j.carres.2017.11.011_bib30) 1986; 482 Tribello (10.1016/j.carres.2017.11.011_bib21) 2014; 185 Angyal (10.1016/j.carres.2017.11.011_bib14) 1969; 8 Hess (10.1016/j.carres.2017.11.011_bib27) 1997; 18 Vijayalakshmi (10.1016/j.carres.2017.11.011_bib43) 1972; 22 Plazinski (10.1016/j.carres.2017.11.011_bib45) 2016; 18 Lemieux (10.1016/j.carres.2017.11.011_bib41) 1966; 44 Berendsen (10.1016/j.carres.2017.11.011_bib23) 1981 Bussi (10.1016/j.carres.2017.11.011_bib24) 2007; 126 Angyal (10.1016/j.carres.2017.11.011_bib15) 1972; 25 Vogtherr (10.1016/j.carres.2017.11.011_bib47) 2000; 122 Plazinska (10.1016/j.carres.2017.11.011_bib9) 2014; 35 Abraham (10.1016/j.carres.2017.11.011_bib20) 2015; 1–2 Sattelle (10.1016/j.carres.2017.11.011_bib7) 2010; 132 Lemieux (10.1016/j.carres.2017.11.011_bib46) 1979; vol. 87 Sugita (10.1016/j.carres.2017.11.011_bib34) 1999; 314 Stenutz (10.1016/j.carres.2017.11.011_bib1) 2002; 67 Cremer (10.1016/j.carres.2017.11.011_bib17) 1975; 97 Plazinski (10.1016/j.carres.2017.11.011_bib22) 2016; 37 Sega (10.1016/j.carres.2017.11.011_bib11) 2011; 109 |
References_xml | – volume: vol. 87 start-page: 17 year: 1979 end-page: 29 ident: bib46 publication-title: In Anomeric Effect, Origin and Consequences – volume: 482 start-page: 269 year: 1986 end-page: 286 ident: bib30 publication-title: Ann. N. Y. Acad. Sci. – volume: 36 start-page: 2783 year: 1980 end-page: 2792 ident: bib3 publication-title: Tetrahedron – volume: 9 start-page: 135 year: 1970 end-page: 211 ident: bib26 publication-title: Methods Comput. Phys. – volume: 4 start-page: 116 year: 2008 end-page: 122 ident: bib28 publication-title: J. Chem. Theory Comput. – volume: 89 start-page: 1283 year: 2017 end-page: 1294 ident: bib39 publication-title: Pure Appl. Chem. – volume: 25 start-page: 1711 year: 1972 end-page: 1718 ident: bib15 publication-title: Aust. J. Chem. – volume: 423 start-page: 43 year: 2016 end-page: 48 ident: bib38 publication-title: Carbohydr. Res. – volume: 32 start-page: 998 year: 2011 end-page: 1032 ident: bib10 publication-title: J. Comput. Chem. – start-page: 331 year: 1981 ident: bib23 publication-title: Handbook of Intermolecular Forces – volume: 8 start-page: 4681 year: 2012 end-page: 4690 ident: bib12 publication-title: J. Chem. Theory Comput. – volume: 185 start-page: 604 year: 2014 end-page: 613 ident: bib21 publication-title: Comput. Phys. Commun. – volume: 122 start-page: 6093 year: 2000 end-page: 6099 ident: bib47 publication-title: J. Am. Chem. Soc. – volume: 342 start-page: 2086 year: 2007 end-page: 2096 ident: bib48 publication-title: Carbohydr. Res. – volume: 314 start-page: 141 year: 1999 end-page: 151 ident: bib34 publication-title: Chem. Phys. Lett. – volume: 102 start-page: 5451 year: 1995 end-page: 5459 ident: bib32 publication-title: J. Chem. Phys. – volume: 118 start-page: 7925 year: 2014 end-page: 7938 ident: bib49 publication-title: J. Phys. Chem. A – start-page: 331 year: 1981 end-page: 342 ident: bib29 publication-title: Interaction Models for Water in Relation to Protein Hydration in Intermolecular Forces – volume: 128 start-page: 13435 year: 2006 end-page: 13441 ident: bib35 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 876 year: 2014 end-page: 882 ident: bib9 publication-title: J. Comput. Chem. – start-page: 2737 year: 1968 end-page: 2746 ident: bib40 publication-title: Aust. J. Chem. – volume: 133 start-page: 095104 year: 2010 ident: bib6 publication-title: J. Chem. Phys. – volume: 19 start-page: 20760 year: 2017 end-page: 20772 ident: bib37 publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: 413 year: 1972 end-page: 424 ident: bib43 publication-title: Carbohydr. Res. – volume: 44 start-page: 249 year: 1966 end-page: 262 ident: bib41 publication-title: Can. J. Chem. – volume: 126 start-page: 15668 year: 2004 end-page: 15685 ident: bib2 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 7182 year: 1981 end-page: 7190 ident: bib25 publication-title: J. Appl. Phys. – volume: 44 start-page: 4363 year: 1967 end-page: 4369 ident: bib42 publication-title: Tetrahedron Lett. – volume: 17 start-page: 21622 year: 2015 end-page: 21629 ident: bib44 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 157 year: 1969 end-page: 166 ident: bib14 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 18 start-page: 1463 year: 1997 end-page: 1472 ident: bib27 publication-title: J. Comput. Chem. – volume: 132 start-page: 13132 year: 2010 end-page: 13134 ident: bib7 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 141 year: 2011 end-page: 148 ident: bib11 publication-title: Mol. Phys. – volume: 13 start-page: 146 year: 1974 end-page: 153 ident: bib16 publication-title: Biochemistry – volume: 51 start-page: 2694 year: 1986 end-page: 2702 ident: bib5 publication-title: J. Org. Chem. – volume: 345 start-page: 530 year: 2010 end-page: 537 ident: bib13 publication-title: Carbohydr. Res. – volume: 1–2 start-page: 19 year: 2015 end-page: 25 ident: bib20 publication-title: SoftwareX – volume: 37 start-page: 354 year: 2016 end-page: 365 ident: bib22 publication-title: J. Comput. Chem. – volume: 26 start-page: 789 year: 1973 end-page: 792 ident: bib31 publication-title: Mol. Phys. – volume: 29 start-page: 845 year: 2013 end-page: 854 ident: bib18 publication-title: Bioinformatics – volume: 32 start-page: 670 year: 1994 end-page: 678 ident: bib4 publication-title: Magn. Reson. Chem. – volume: 97 start-page: 1354 year: 1975 end-page: 1358 ident: bib17 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 014101 year: 2007 ident: bib24 publication-title: J. Chem. Phys. – volume: 115 start-page: 1125 year: 2001 end-page: 1136 ident: bib33 publication-title: J. Chem. Phys. – volume: 6 start-page: 2622 year: 2010 end-page: 2646 ident: bib8 publication-title: J. Chem. Theory Comput. – volume: 100 start-page: 020603 year: 2008 ident: bib36 publication-title: Phys. Rev. Lett. – volume: 180 start-page: 1961 year: 2009 end-page: 1972 ident: bib19 publication-title: Comput. Phys. Commun. – volume: 67 start-page: 949 year: 2002 end-page: 958 ident: bib1 publication-title: J. Org. Chem. – volume: 18 start-page: 9626 year: 2016 end-page: 9635 ident: bib45 publication-title: Phys. Chem. Chem. Phys. – volume: 51 start-page: 2694 year: 1986 ident: 10.1016/j.carres.2017.11.011_bib5 publication-title: J. Org. Chem. doi: 10.1021/jo00364a014 – volume: 13 start-page: 146 year: 1974 ident: 10.1016/j.carres.2017.11.011_bib16 publication-title: Biochemistry doi: 10.1021/bi00698a023 – volume: 89 start-page: 1283 year: 2017 ident: 10.1016/j.carres.2017.11.011_bib39 publication-title: Pure Appl. Chem. doi: 10.1515/pac-2016-0922 – volume: 32 start-page: 998 year: 2011 ident: 10.1016/j.carres.2017.11.011_bib10 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21675 – volume: 17 start-page: 21622 year: 2015 ident: 10.1016/j.carres.2017.11.011_bib44 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP03357H – volume: 9 start-page: 135 year: 1970 ident: 10.1016/j.carres.2017.11.011_bib26 publication-title: Methods Comput. Phys. – volume: 314 start-page: 141 year: 1999 ident: 10.1016/j.carres.2017.11.011_bib34 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01123-9 – volume: 37 start-page: 354 year: 2016 ident: 10.1016/j.carres.2017.11.011_bib22 publication-title: J. Comput. Chem. doi: 10.1002/jcc.24229 – volume: 102 start-page: 5451 year: 1995 ident: 10.1016/j.carres.2017.11.011_bib32 publication-title: J. Chem. Phys. doi: 10.1063/1.469273 – volume: 18 start-page: 9626 year: 2016 ident: 10.1016/j.carres.2017.11.011_bib45 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00809G – volume: 126 start-page: 15668 year: 2004 ident: 10.1016/j.carres.2017.11.011_bib2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0306718 – volume: 1–2 start-page: 19 year: 2015 ident: 10.1016/j.carres.2017.11.011_bib20 publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 67 start-page: 949 year: 2002 ident: 10.1016/j.carres.2017.11.011_bib1 publication-title: J. Org. Chem. doi: 10.1021/jo010985i – volume: 44 start-page: 249 year: 1966 ident: 10.1016/j.carres.2017.11.011_bib41 publication-title: Can. J. Chem. doi: 10.1139/v66-037 – volume: 423 start-page: 43 year: 2016 ident: 10.1016/j.carres.2017.11.011_bib38 publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2016.01.007 – volume: vol. 87 start-page: 17 year: 1979 ident: 10.1016/j.carres.2017.11.011_bib46 – volume: 133 start-page: 095104 year: 2010 ident: 10.1016/j.carres.2017.11.011_bib6 publication-title: J. Chem. Phys. doi: 10.1063/1.3476466 – volume: 22 start-page: 413 year: 1972 ident: 10.1016/j.carres.2017.11.011_bib43 publication-title: Carbohydr. Res. doi: 10.1016/S0008-6215(00)81292-6 – volume: 100 start-page: 020603 year: 2008 ident: 10.1016/j.carres.2017.11.011_bib36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.020603 – volume: 4 start-page: 116 year: 2008 ident: 10.1016/j.carres.2017.11.011_bib28 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700200b – volume: 109 start-page: 141 year: 2011 ident: 10.1016/j.carres.2017.11.011_bib11 publication-title: Mol. Phys. doi: 10.1080/00268976.2010.522208 – volume: 8 start-page: 4681 year: 2012 ident: 10.1016/j.carres.2017.11.011_bib12 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300479h – volume: 52 start-page: 7182 year: 1981 ident: 10.1016/j.carres.2017.11.011_bib25 publication-title: J. Appl. Phys. doi: 10.1063/1.328693 – volume: 29 start-page: 845 year: 2013 ident: 10.1016/j.carres.2017.11.011_bib18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt055 – volume: 126 start-page: 014101 year: 2007 ident: 10.1016/j.carres.2017.11.011_bib24 publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 – volume: 180 start-page: 1961 year: 2009 ident: 10.1016/j.carres.2017.11.011_bib19 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.05.011 – start-page: 331 year: 1981 ident: 10.1016/j.carres.2017.11.011_bib29 – volume: 342 start-page: 2086 year: 2007 ident: 10.1016/j.carres.2017.11.011_bib48 publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2007.05.032 – volume: 185 start-page: 604 year: 2014 ident: 10.1016/j.carres.2017.11.011_bib21 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.09.018 – volume: 19 start-page: 20760 year: 2017 ident: 10.1016/j.carres.2017.11.011_bib37 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP02920A – volume: 482 start-page: 269 year: 1986 ident: 10.1016/j.carres.2017.11.011_bib30 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1986.tb20961.x – start-page: 2737 year: 1968 ident: 10.1016/j.carres.2017.11.011_bib40 publication-title: Aust. J. Chem. doi: 10.1071/CH9682737 – volume: 97 start-page: 1354 year: 1975 ident: 10.1016/j.carres.2017.11.011_bib17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00839a011 – volume: 26 start-page: 789 year: 1973 ident: 10.1016/j.carres.2017.11.011_bib31 publication-title: Mol. Phys. doi: 10.1080/00268977300102101 – volume: 128 start-page: 13435 year: 2006 ident: 10.1016/j.carres.2017.11.011_bib35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062463w – volume: 44 start-page: 4363 year: 1967 ident: 10.1016/j.carres.2017.11.011_bib42 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(01)89691-X – volume: 35 start-page: 876 year: 2014 ident: 10.1016/j.carres.2017.11.011_bib9 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23563 – volume: 118 start-page: 7925 year: 2014 ident: 10.1016/j.carres.2017.11.011_bib49 publication-title: J. Phys. Chem. A doi: 10.1021/jp505719m – volume: 115 start-page: 1125 year: 2001 ident: 10.1016/j.carres.2017.11.011_bib33 publication-title: J. Chem. Phys. doi: 10.1063/1.1379764 – volume: 132 start-page: 13132 issue: 38 year: 2010 ident: 10.1016/j.carres.2017.11.011_bib7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1054143 – volume: 345 start-page: 530 year: 2010 ident: 10.1016/j.carres.2017.11.011_bib13 publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2009.12.011 – volume: 25 start-page: 1711 year: 1972 ident: 10.1016/j.carres.2017.11.011_bib15 publication-title: Aust. J. Chem. doi: 10.1071/CH9721711 – volume: 32 start-page: 670 year: 1994 ident: 10.1016/j.carres.2017.11.011_bib4 publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.1260321107 – volume: 8 start-page: 157 year: 1969 ident: 10.1016/j.carres.2017.11.011_bib14 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.196901571 – start-page: 331 year: 1981 ident: 10.1016/j.carres.2017.11.011_bib23 – volume: 18 start-page: 1463 year: 1997 ident: 10.1016/j.carres.2017.11.011_bib27 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H – volume: 122 start-page: 6093 year: 2000 ident: 10.1016/j.carres.2017.11.011_bib47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0001916 – volume: 6 start-page: 2622 year: 2010 ident: 10.1016/j.carres.2017.11.011_bib8 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct1003065 – volume: 36 start-page: 2783 year: 1980 ident: 10.1016/j.carres.2017.11.011_bib3 publication-title: Tetrahedron doi: 10.1016/0040-4020(80)80155-4 |
SSID | ssj0000676 |
Score | 2.2837398 |
Snippet | Conformation of monosaccharides, including the ring shape, has for years been the subject of intensive research. Although d-aldohexopyranoses are the most... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 62 |
SubjectTerms | aldohexoses Anomeric equilibria Carbohydrate Conformation Conformational analysis fucose Hexoses - chemistry moieties molecular conformation Molecular dynamics Molecular Dynamics Simulation oxygen Pentoses - chemistry Pyranoses rhamnose Ring distortion |
Title | Pyranose ring puckering in aldopentoses, ketohexoses and deoxyaldohexoses. A molecular dynamics study |
URI | https://dx.doi.org/10.1016/j.carres.2017.11.011 https://www.ncbi.nlm.nih.gov/pubmed/29175656 https://www.proquest.com/docview/1969930247 https://www.proquest.com/docview/2020905873 |
Volume | 455 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBehe-heRtfuI-0WVNhjndqxJFuPIaxkDQ1lNKxvwpLPLP2wQ-1A-tK_vXf-KOtDKOzJlnwS4nTc_STfB2M_tLQIqsF5UtrMEyIBLxbkAaB958TIT1VGwckXczVdiPNred1jky4WhtwqW93f6PRaW7c9py03T1fLJcX4EhxHi4VCSpUrKYJdRCTlw6fgX22sGggce0Tdhc_VPl6O3GEpaXcQDSmXZxBsM0_b4Gdths722IcWP_Jxs8SPrAf5PtuddGXbDhhcPqL5KUrgdGPHV7XfBL0tc57cpVQtq8Kv5Qm_har4Cxtq8CRPeQrF5pFI2s4hH_P7rnouT5vS9SWvE9J-Youzn1eTqdfWUvBcqGXlITpNMiEAIkpAGMhMKnCgbez8DE8sCcSpFpn0QSltXaQd4rjUF3U69yhMIfzMdvIih6-MI2YLVawUUFV1RHvWIujEeXCC0Gba9lnYsdC4NtE41bu4M51H2Y1pGG-I8XgGMcj4PvNeRq2aRBtv0Efd7phXAmPQFrwx8rjbTIN7Qz9IkhyKdWkoVZAOEbVE22lGiK-1L-Mo7LMvjSS8rHeEZ18CyIf_vbYj9h5bcX3HM_rGdqqHNXxH1FPZQS3WA_Zu_Gs2ndNz9vvP7BkVrQOM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cBeVsA-KCxgJI4E0sZ24mNVLSqvag8gcbNiZ6LtLiTVNkjw75nJA8GhQuKWxA9Z49HMZ2fmG4BDoxyBavSBUi4PpEwxSCRHAJjQezkMM51zcvLVVE9u5Pmtul2BcZcLw2GVre1vbHptrdsvJ600T-azGef4Mhwnj0VKypUrP8Eqs1OpHqyOzi4m09cGWTcoOAl4QJdBV4d5eY6IZd7uQXzMdJ6DwTIPtQyB1p7odB2-tBBSjJpVbsAKFpuwNu4qt30F_P1EHqhcoOBLOzGvQyf4aVaI9C7jglkVtS6OxD-syj_4yC8iLTKRYfn4xF3aj8diJO67Aroia6rXL0TNSfsNbk5_XY8nQVtOIfCRUVVAADXNpUSMmYNwoHKl0aNxiQ9zOrSkmGRG5ipErY3zsfEE5bJQ1ozucZRh9B16RVngFgiCbZFOtEYurE6AzznCnTQPTRC53Lg-RJ0IrW-5xrnkxZ3tgsr-2kbwlgVPxxBLgu9D8DJq3nBtvNM_7nbHvtEZS-7gnZEH3WZa2hv-R5IWWD4sLLMFmYiAS7y8z5AgtglVEkd9-NFowst6h3T8ZYy8_eG17cPa5Prq0l6eTS924DO1JPWVz_An9Kr_D7hLIKhye62SPwPQCwSa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyranose+ring+puckering+in+aldopentoses%2C+ketohexoses+and+deoxyaldohexoses.+A+molecular+dynamics+study&rft.jtitle=Carbohydrate+research&rft.au=Panczyk%2C+Karina&rft.au=Plazinski%2C+Wojciech&rft.date=2018-01-02&rft.issn=0008-6215&rft.volume=455&rft.spage=62&rft.epage=70&rft_id=info:doi/10.1016%2Fj.carres.2017.11.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carres_2017_11_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6215&client=summon |