EXISTENCE OF POSITIVE SOLUTIONS FOR SUPERLINEAR SEMIPOSITONE $m$-POINT BOUNDARY-VALUE PROBLEMS
In this paper we consider the existence of positive solutions to the boundary-value problems \begin{align*} (p(t)u')'-q(t)u+\lambda f(t,u)\amp=0,\quad r\ltt\ltR, \\[2pt] au(r)-bp(r)u'(r)\amp=\sum^{m-2}_{i=1}\alpha_iu(\xi_i), \\ cu(R)+dp(R)u'(R)\amp=\sum^{m-2}_{i=1}\beta_iu(\xi_i)...
Saved in:
Published in | Proceedings of the Edinburgh Mathematical Society Vol. 46; no. 2; pp. 279 - 292 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.06.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper we consider the existence of positive solutions to the boundary-value problems \begin{align*} (p(t)u')'-q(t)u+\lambda f(t,u)\amp=0,\quad r\ltt\ltR, \\[2pt] au(r)-bp(r)u'(r)\amp=\sum^{m-2}_{i=1}\alpha_iu(\xi_i), \\ cu(R)+dp(R)u'(R)\amp=\sum^{m-2}_{i=1}\beta_iu(\xi_i), \end{align*} where $\lambda$ is a positive parameter, $a,b,c,d\in[0,\infty)$, $\xi_i\in(r,R)$, $\alpha_i,\beta_i\in[0,\infty)$ (for $i\in\{1,\dots m-2\}$) are given constants satisfying some suitable conditions. Our results extend some of the existing literature on superlinear semipositone problems. The proofs are based on the fixed-point theorem in cones. AMS 2000 Mathematics subject classification: Primary 34B10, 34B18, 34B15 |
---|---|
Bibliography: | istex:06C421B30937913A01D897867D84588E01B16271 PII:S0013091502000391 ark:/67375/6GQ-W3PVT58V-9 ArticleID:00039 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091502000391 |