High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies
High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 2; p. 129325 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2019.03.011 |
Cover
Loading…
Abstract | High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.
Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.
In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.
This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.
We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.
•High-speed AFM is combined with tip-enhanced TIRFM/SNOM for biological research•Fluorescence SNOM images can be captured in synchrony with high-speed AFM imaging•Resolutions of 39 nm and 3 s/frame are achieved for fluorescence SNOM imaging•Improved correlation between fluorescence/AFM topography images is achieved |
---|---|
AbstractList | High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.
Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.
In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.
This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.
We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.
•High-speed AFM is combined with tip-enhanced TIRFM/SNOM for biological research•Fluorescence SNOM images can be captured in synchrony with high-speed AFM imaging•Resolutions of 39 nm and 3 s/frame are achieved for fluorescence SNOM imaging•Improved correlation between fluorescence/AFM topography images is achieved High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy. Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever. In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated. This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research. We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution. High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution. High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.BACKGROUNDHigh-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.METHODSScanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.RESULTSIn tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.CONCLUSIONSThis study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.GENERAL SIGNIFICANCEWe achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution. |
ArticleNumber | 129325 |
Author | Ando, Toshio Iino, Ryota Uchihashi, Takayuki Umakoshi, Takayuki Fukuda, Shingo |
Author_xml | – sequence: 1 givenname: Takayuki surname: Umakoshi fullname: Umakoshi, Takayuki organization: Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan – sequence: 2 givenname: Shingo surname: Fukuda fullname: Fukuda, Shingo organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan – sequence: 3 givenname: Ryota surname: Iino fullname: Iino, Ryota organization: Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan – sequence: 4 givenname: Takayuki surname: Uchihashi fullname: Uchihashi, Takayuki organization: Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan – sequence: 5 givenname: Toshio surname: Ando fullname: Ando, Toshio email: tando@staff.kanazawa-u.ac.jp organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30890438$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFf4BQjlySjr8SmwMSqoBWqsQFzpbjjHe9SuLFTqj67_FqCwgOdC6WRs8zkt_3gpzNcUZCXlNoKND2at_0vd3i3DCgugHeAKXPyIaqjtUKoD0jG-AgakFbeU4uct5DGanlC3LOQWkQXG3IehO2uzofEIdqRptqH3AcKj-uMWF2ODuspuBSzC4eHioXpz7Mhb0Py67a_XHtEgtW-Zj-Fsqi6kMc4zY4O1Z5WYeA-SV57u2Y8dXje0m-ffr49fqmvvvy-fb6w13tuJZLrWjXWiY6JzsrrHQShJPKM5St0J62GrnmtNdKoxqcagfft7S3wCRnYLnnl-Tt6e4hxe8r5sVMoXxqHO2Mcc2GMUYBGGXiaZRqITVAxwr65hFd-wkHc0hhsunB_Eq1AOIEHGPICf1vhII5lmf25lSeOZZngJtSXtHe_aO5sNglxHlJNoxPye9PMpY8fwRMJrtwrG8ICd1ihhj-f-AnmZK30A |
CitedBy_id | crossref_primary_10_1038_s41598_022_17170_7 crossref_primary_10_1155_2021_8827721 crossref_primary_10_3390_ijms22083823 crossref_primary_10_1063_5_0111017 crossref_primary_10_1049_mnl_2019_0313 crossref_primary_10_1073_pnas_2212419119 crossref_primary_10_1021_acsnano_3c00857 crossref_primary_10_1038_s41598_020_57885_z crossref_primary_10_1007_s12551_020_00670_z crossref_primary_10_2142_biophysico_bppb_v20_0011 crossref_primary_10_1039_D2CS00525E crossref_primary_10_2142_biophys_62_128 crossref_primary_10_3390_bios12121116 crossref_primary_10_1021_acs_nanolett_3c04877 crossref_primary_10_1177_10775463211050157 crossref_primary_10_1021_acs_jpclett_0c01769 crossref_primary_10_1038_s41598_020_62529_3 crossref_primary_10_1039_D0NR07203F crossref_primary_10_1002_advs_202102789 |
Cites_doi | 10.1126/science.1127344 10.1002/adfm.200901930 10.1002/jrs.4032 10.1038/s41467-018-04587-w 10.1063/1.2115073 10.1002/anie.200704054 10.1039/C5NR05022G 10.1126/sciadv.aao4119 10.1098/rstb.2017.0180 10.1038/nprot.2012.047 10.1021/acsnano.7b05434 10.1002/anie.201610399 10.1073/pnas.1616413114 10.1016/j.bpj.2010.01.011 10.1103/PhysRevLett.90.095503 10.1016/j.ultramic.2006.01.015 10.1126/science.aau1044 10.1021/acsanm.7b00083 10.1039/C3CS60258C 10.1016/j.progsurf.2008.09.001 10.1063/1.4813280 10.1073/pnas.211400898 10.1063/1.1903123 10.1063/1.112931 10.1016/j.bbagen.2017.07.003 10.1038/nature11254 10.1021/cr4003837 10.1088/1361-6463/aad055 10.1063/1.4922381 10.1039/C5NR08548A 10.1364/OE.14.002921 10.1038/nmat3006 10.1063/1.2336113 10.1038/nature12151 10.1038/nnano.2010.7 10.1103/PhysRevLett.109.017402 10.1016/j.polymer.2009.05.003 10.1039/C7CP04606E 10.1038/nnano.2010.29 10.1021/ac800726g 10.1038/s41467-018-06362-3 10.1002/smll.201401318 10.1038/srep08724 10.1063/1.2458343 10.1364/OL.19.000159 10.1038/nature09450 10.1126/science.1205510 10.1038/nphoton.2009.111 10.1021/acsnano.7b06183 10.1063/1.4803449 10.1038/nature04592 10.1038/ncomms8993 10.1103/PhysRevLett.96.113002 10.1038/nbt0901-861 10.1063/1.3138132 10.1016/S0009-2614(03)00883-2 10.1103/PhysRevLett.93.180801 10.1038/nnano.2016.62 10.1126/sciadv.1601006 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2019.03.011 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 30890438 10_1016_j_bbagen_2019_03_011 S0304416519300613 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-8176a247c57a4a5c504c58f2e5649f169e3931b989e8dc86dfb61ba025320a3f3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 03:58:31 EDT 2025 Fri Jul 11 03:31:55 EDT 2025 Wed Feb 19 02:30:40 EST 2025 Thu Apr 24 23:07:35 EDT 2025 Tue Jul 01 00:22:12 EDT 2025 Fri Feb 23 02:50:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Scanning near-field fluorescence microscopy HS-AFM Single molecule analysis TIRFM HS-SNOM High-speed atomic force microscopy Super-resolution optical microscopy Plasmonics SNOM |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-8176a247c57a4a5c504c58f2e5649f169e3931b989e8dc86dfb61ba025320a3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30890438 |
PQID | 2194590072 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2221002124 proquest_miscellaneous_2194590072 pubmed_primary_30890438 crossref_primary_10_1016_j_bbagen_2019_03_011 crossref_citationtrail_10_1016_j_bbagen_2019_03_011 elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_03_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 2020-Feb 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kodera, Yamashita, Ando (bb0015) 2005; 76 Muller, Pollard, Bechtel, Van Blerkom, Raschke (bb0200) 2016; 2 Gerton, Wade, Lessard, Ma, Quake (bb0205) 2004; 93 Hayazawa, Yano, Kawata (bb0290) 2012; 43 Terahara, Kodera, Uchihashi, Ando, Namba, Minamino (bb0070) 2017; 3 Ando, Uchihashi, Scheuring (bb0030) 2014; 114 Betzig, Patterson, Sougrat, Lindwasser, Olenych, Bonifacino (bb0120) 2006 Watanabe, Uchihashi, Kobashi, Shibata, Nishiyama, Yasuda, Ando (bb0095) 2013; 84 Hayazawa, Furusawa, Taguchi, Kawata, Abe (bb0170) 2009; 94 Fukuda, Uchihashi, Iino, Okazaki, Yoshida, Igarashi (bb0100) 2013; 84 Kawata, Inouye, Verma (bb0140) 2009; 3 Chen, Badioli, Alonso-González, Thongrattanasiri, Huth, Osmond (bb0155) 2012; 487 Wang, Zhang, Braun, Egelhaaf, Brabec, Meixner (bb0215) 2010; 20 Nakamura, Tasaki, Okuni, Song, Murata (bb0250) 2018; 20 Miyake, Tanii, Sonobe, Akahori (bb0310) 2008; 80 Chen, Hayazawa, Kawata (bb0225) 2014; 5 Sigal, Zhou, Zhuang (bb0125) 2018; 361 Höppener, Lapin, Bharadwaj, Novotny (bb0295) 2012; 109 Willig, Rizzoli, Westphal, Jahn, Hell (bb0115) 2006; 440 Ashtikar, Langelüddecke, Fahr, Deckert (bb0195) 2017; 1861 Suzuki, Sakai, Yoshida, Uekusa, Yagi, Imaoka (bb0110) 2013 Ando, Kodera, Takai, Maruyama, Saito, Toda (bb0005) 2001; 98 Hayazawa, Yano, Watanabe (bb0150) 2003; 376 Fantner, Schitter, Kindt, Ivanov, Ivanova, Patel (bb0025) 2006; 106 Umakoshi, Yano, Saito, Verma (bb0165) 2012; vol. 5 Kodera, Yamamot, Isikawa, Ando (bb0035) 2010; 468 Sakiyama, Mazur, Kapinos, Lim (bb0060) 2016; 11 Roth, Panoiu, Adams, Osgood, Neacsu, Raschke (bb0300) 2006; 14 Umakoshi, Saito, Verma (bb0160) 2016 Zenhausern, O'Boyle, Wickramasinghe (bb0135) 1994; 65 Smithe, Krayev, Bailey, Lee, Yalon, Aslan (bb0185) 2018; 1 Taguchi, Yu, Verma, Kawata (bb0285) 2015; 7 Nakamura, Okazaki, Furuta, Sakurai, Iino (bb0280) 2018; 9 Anger, Bharadwaj, Novotny (bb0255) 2006; 96 Ando, Uchihashi, Fukuma (bb0010) 2008; 83 Huang, Festy, Richards (bb0315) 2005; 87 Uchihashi, Iino, Ando, Noji (bb0040) 2011; 333 Inouye, Kawata (bb0130) 1994; 19 Lee, Tallarida, Chen, Liu, Jensen, Apkarian (bb0230) 2017; 11 Hartschuh, Sanchez, Xie, Novotny (bb0145) 2003; 90 Matsui, Verma, Ichimura, Inouye, Kawata, Matsui (bb0175) 2007; 90 Katan, Vlijm, Lusser, Dekker (bb0050) 2015; 11 Bao, Borys, Ko, Suh, Fan, Thron (bb0210) 2015; 6 Fukuda, Uchihashi, Ando (bb0105) 2015; 86 Huth, Schnell, Wittborn, Ocelic, Hillenbrand (bb0180) 2011; 10 Uchihashi, Kodera, Ando (bb0260) 2012; 7 Bonhommeau, Talaga, Hunel, Cullin, Lecomte (bb0190) 2017 Ando, Bhamidimarri, Brending, Colin-York (bb0320) 2018; 51 Kodera, Sakashita, Ando (bb0020) 2006; 77 Ueno, Nishikawa, Iino, Tabata, Sakakihara, Yanagida, Noji (bb0265) 2010; 98 Mauser, Hartschuh (bb0235) 2014; 43 Banerjee, Sun, Hayden, Teplow, Lyubchenko (bb0065) 2017 Noshiro, Ando (bb0080) 2018; 373 Ruan, Miyagi, Wang, Chami, Boudker, Scheuring (bb0055) 2017; 114 Berweger, Nguyen, Muller, Bechtel, Perkins, Raschke (bb0245) 2013 Uchihashi, Watanabe, Nakazaki, Yamasaki, Watanabe, Maruno, Ishii, Uchiyama, Song, Murata, Iino, Ando (bb0075) 2018; 9 Balan, Malval, Schneider, Le Nouen, Lougnot (bb0270) 2010; 51 Fantner, Barbero, Gray, Belcher (bb0085) 2010; 5 Bailo, Deckert (bb0240) 2008; 47 Shibata, Uchihashi, Ando, Yasuda (bb0090) 2015; 5 Zhang, Zhang, Dong, Jiang, Zhang, Chen (bb0220) 2013; 498 Shibata, Yamashita, Uchihashi, Kandori, Ando (bb0045) 2010; 5 Taguchi, Ueno, Tadakuma, Yoshida, Funatsu (bb0275) 2001; 19 Hayazawa, Yano, Kawata (bb0305) 2012; 43 Katan (10.1016/j.bbagen.2019.03.011_bb0050) 2015; 11 Uchihashi (10.1016/j.bbagen.2019.03.011_bb0040) 2011; 333 Sigal (10.1016/j.bbagen.2019.03.011_bb0125) 2018; 361 Mauser (10.1016/j.bbagen.2019.03.011_bb0235) 2014; 43 Shibata (10.1016/j.bbagen.2019.03.011_bb0045) 2010; 5 Banerjee (10.1016/j.bbagen.2019.03.011_bb0065) 2017 Huang (10.1016/j.bbagen.2019.03.011_bb0315) 2005; 87 Fukuda (10.1016/j.bbagen.2019.03.011_bb0105) 2015; 86 Lee (10.1016/j.bbagen.2019.03.011_bb0230) 2017; 11 Bailo (10.1016/j.bbagen.2019.03.011_bb0240) 2008; 47 Kodera (10.1016/j.bbagen.2019.03.011_bb0015) 2005; 76 Nakamura (10.1016/j.bbagen.2019.03.011_bb0280) 2018; 9 Fantner (10.1016/j.bbagen.2019.03.011_bb0085) 2010; 5 Chen (10.1016/j.bbagen.2019.03.011_bb0225) 2014; 5 Ashtikar (10.1016/j.bbagen.2019.03.011_bb0195) 2017; 1861 Willig (10.1016/j.bbagen.2019.03.011_bb0115) 2006; 440 Inouye (10.1016/j.bbagen.2019.03.011_bb0130) 1994; 19 Bonhommeau (10.1016/j.bbagen.2019.03.011_bb0190) 2017 Hayazawa (10.1016/j.bbagen.2019.03.011_bb0305) 2012; 43 Betzig (10.1016/j.bbagen.2019.03.011_bb0120) 2006 Bao (10.1016/j.bbagen.2019.03.011_bb0210) 2015; 6 Hayazawa (10.1016/j.bbagen.2019.03.011_bb0170) 2009; 94 Ueno (10.1016/j.bbagen.2019.03.011_bb0265) 2010; 98 Ando (10.1016/j.bbagen.2019.03.011_bb0005) 2001; 98 Balan (10.1016/j.bbagen.2019.03.011_bb0270) 2010; 51 Hartschuh (10.1016/j.bbagen.2019.03.011_bb0145) 2003; 90 Roth (10.1016/j.bbagen.2019.03.011_bb0300) 2006; 14 Noshiro (10.1016/j.bbagen.2019.03.011_bb0080) 2018; 373 Watanabe (10.1016/j.bbagen.2019.03.011_bb0095) 2013; 84 Muller (10.1016/j.bbagen.2019.03.011_bb0200) 2016; 2 Ruan (10.1016/j.bbagen.2019.03.011_bb0055) 2017; 114 Berweger (10.1016/j.bbagen.2019.03.011_bb0245) 2013 Uchihashi (10.1016/j.bbagen.2019.03.011_bb0075) 2018; 9 Kodera (10.1016/j.bbagen.2019.03.011_bb0035) 2010; 468 Wang (10.1016/j.bbagen.2019.03.011_bb0215) 2010; 20 Chen (10.1016/j.bbagen.2019.03.011_bb0155) 2012; 487 Suzuki (10.1016/j.bbagen.2019.03.011_bb0110) 2013 Kawata (10.1016/j.bbagen.2019.03.011_bb0140) 2009; 3 Sakiyama (10.1016/j.bbagen.2019.03.011_bb0060) 2016; 11 Taguchi (10.1016/j.bbagen.2019.03.011_bb0275) 2001; 19 Fukuda (10.1016/j.bbagen.2019.03.011_bb0100) 2013; 84 Gerton (10.1016/j.bbagen.2019.03.011_bb0205) 2004; 93 Miyake (10.1016/j.bbagen.2019.03.011_bb0310) 2008; 80 Matsui (10.1016/j.bbagen.2019.03.011_bb0175) 2007; 90 Smithe (10.1016/j.bbagen.2019.03.011_bb0185) 2018; 1 Fantner (10.1016/j.bbagen.2019.03.011_bb0025) 2006; 106 Umakoshi (10.1016/j.bbagen.2019.03.011_bb0160) 2016 Ando (10.1016/j.bbagen.2019.03.011_bb0010) 2008; 83 Nakamura (10.1016/j.bbagen.2019.03.011_bb0250) 2018; 20 Hayazawa (10.1016/j.bbagen.2019.03.011_bb0290) 2012; 43 Zenhausern (10.1016/j.bbagen.2019.03.011_bb0135) 1994; 65 Höppener (10.1016/j.bbagen.2019.03.011_bb0295) 2012; 109 Ando (10.1016/j.bbagen.2019.03.011_bb0320) 2018; 51 Uchihashi (10.1016/j.bbagen.2019.03.011_bb0260) 2012; 7 Huth (10.1016/j.bbagen.2019.03.011_bb0180) 2011; 10 Ando (10.1016/j.bbagen.2019.03.011_bb0030) 2014; 114 Shibata (10.1016/j.bbagen.2019.03.011_bb0090) 2015; 5 Hayazawa (10.1016/j.bbagen.2019.03.011_bb0150) 2003; 376 Anger (10.1016/j.bbagen.2019.03.011_bb0255) 2006; 96 Umakoshi (10.1016/j.bbagen.2019.03.011_bb0165) 2012; vol. 5 Terahara (10.1016/j.bbagen.2019.03.011_bb0070) 2017; 3 Taguchi (10.1016/j.bbagen.2019.03.011_bb0285) 2015; 7 Zhang (10.1016/j.bbagen.2019.03.011_bb0220) 2013; 498 Kodera (10.1016/j.bbagen.2019.03.011_bb0020) 2006; 77 |
References_xml | – volume: 76 start-page: 1 year: 2005 end-page: 5 ident: bb0015 article-title: Active damping of the scanner for high-speed atomic force microscopy publication-title: Rev. Sci. Instrum. – volume: 84 year: 2013 ident: bb0095 article-title: Wide-area scanner for high-speed atomic force microscopy publication-title: Rev. Sci. Instrum. – volume: 7 start-page: 1193 year: 2012 end-page: 1206 ident: bb0260 article-title: Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy publication-title: Nat. Protoc. – volume: 106 start-page: 881 year: 2006 end-page: 887 ident: bb0025 article-title: Components for high speed atomic force microscopy publication-title: Ultramicroscopy. – volume: 5 start-page: 8724 year: 2015 ident: bb0090 article-title: Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells publication-title: Sci. Rep. – volume: 3 start-page: 388 year: 2009 end-page: 394 ident: bb0140 article-title: Plasmonics for near-field nano-imaging and superlensing publication-title: Nat. Photonics – volume: 10 start-page: 352 year: 2011 end-page: 356 ident: bb0180 article-title: Infrared-spectroscopic nanoimaging with a thermal source publication-title: Nat. Mater. – volume: 43 start-page: 1177 year: 2012 end-page: 1182 ident: bb0290 article-title: Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone publication-title: J. Raman Spectrosc. – volume: 43 start-page: 1248 year: 2014 end-page: 1262 ident: bb0235 article-title: Tip-enhanced near-field optical microscopy publication-title: Chem. Soc. Rev. – volume: 376 start-page: 174 year: 2003 end-page: 180 ident: bb0150 article-title: Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy publication-title: Chem. Phys. Lett. – start-page: 5634 year: 2016 end-page: 5640 ident: bb0160 article-title: Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy publication-title: Nanoscale – volume: 65 start-page: 1623 year: 1994 end-page: 1625 ident: bb0135 article-title: Apertureless near-field optical microscope publication-title: Appl. Phys. Lett. – volume: 87 year: 2005 ident: bb0315 article-title: Tip-enhanced fluorescence imaging of quantum dots publication-title: Appl. Phys. Lett. – volume: 1861 ( start-page: 2630 year: 2017 end-page: 2639 ident: bb0195 article-title: Tip-enhanced Raman scattering for tracking of invasomes in the stratum corneum publication-title: Biochem. Biophys. Acta - Gen. Subj. – volume: 333 start-page: 755 year: 2011 end-page: 758 ident: bb0040 article-title: High-speed atomic force microscopy reveals rotary catalysis of rotorless F publication-title: Science – year: 2017 ident: bb0065 article-title: Nanoscale dynamics of amyloid β-42 oligomers as revealed by high-speed atomic force microscopy publication-title: ACS Nano – volume: 98 start-page: 12468 year: 2001 end-page: 12472 ident: bb0005 article-title: A high-speed atomic force microscope for studying biological macromolecules publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 208 year: 2010 end-page: 212 ident: bb0045 article-title: High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin publication-title: Nat. Nanotechnol. – start-page: 1642 year: 2006 end-page: 1646 ident: bb0120 article-title: Imaging intracellular fluorescent proteins at nanometer resolution publication-title: Science – volume: 84 year: 2013 ident: bb0100 article-title: High-speed atomic force microscope combined with single-molecule fluorescence microscope publication-title: Rev. Sci. Instrum. – volume: 98 start-page: 2014 year: 2010 end-page: 2023 ident: bb0265 article-title: Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution publication-title: Biophys. J. – start-page: 1771 year: 2017 end-page: 1774 ident: bb0190 article-title: Tip-enhanced Raman spectroscopy to distinguish toxic oligomers from Aβ publication-title: Angew. Chem. Int. Ed. – volume: 2 year: 2016 ident: bb0200 article-title: Infrared vibrational nano-crystallography and nano-imaging publication-title: Sci. Adv. – volume: 11 start-page: 11466 year: 2017 end-page: 11474 ident: bb0230 article-title: Tip-enhanced Raman spectromicroscopy of Co(II)-tetraphenylporphyrin on Au(111): toward the chemists' microscope publication-title: ACS Nano – volume: 19 start-page: 159 year: 1994 end-page: 161 ident: bb0130 article-title: Near-field scanning optical microscope with a metallic probe tip publication-title: Opt. Lett. – volume: 498 start-page: 82 year: 2013 end-page: 86 ident: bb0220 article-title: Chemical mapping of a single molecule by plasmon-enhanced Raman scattering publication-title: Nature. – volume: 373 start-page: 20170180 year: 2018 ident: bb0080 article-title: Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed AFM imaging publication-title: Phil. Trans. Roy. Soc. B – volume: 93 start-page: 5 year: 2004 end-page: 8 ident: bb0205 article-title: Tip-enhanced fluorescence microscopy at 10 nanometer resolution publication-title: Phys. Rev. Lett. – volume: 7 start-page: 17424 year: 2015 end-page: 17433 ident: bb0285 article-title: Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy publication-title: Nanoscale – volume: 109 year: 2012 ident: bb0295 article-title: Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field publication-title: Phys. Rev. Lett. – volume: 77 year: 2006 ident: bb0020 article-title: Dynamic proportional-integral-differential controller for high-speed atomic force microscopy publication-title: Rev. Sci. Instrum. – volume: 468 start-page: 72 year: 2010 end-page: 76 ident: bb0035 article-title: Video imaging of walking myosin V by high-speed atomic force microscopy publication-title: Nature – volume: 96 year: 2006 ident: bb0255 article-title: Enhancement and quenching of single-molecule fluorescence publication-title: Phys. Rev. Lett. – volume: 43 start-page: 1177 year: 2012 end-page: 1182 ident: bb0305 article-title: Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone publication-title: J. Raman Spectrosc. – volume: 80 start-page: 6018 year: 2008 end-page: 6022 ident: bb0310 article-title: Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein−protein interaction publication-title: Anal. Chem. – volume: 440 start-page: 935 year: 2006 end-page: 939 ident: bb0115 article-title: STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis publication-title: Nature – volume: 90 start-page: 7 year: 2003 end-page: 10 ident: bb0145 article-title: High-resolution near-field Raman microscopy of single-walled carbon nanotubes publication-title: Phys. Rev. Lett. – volume: 94 start-page: 2 year: 2009 end-page: 4 ident: bb0170 article-title: Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip publication-title: Appl. Phys. Lett. – volume: 3 year: 2017 ident: bb0070 article-title: Na publication-title: Sci. Adv. – volume: vol. 5 start-page: 1 year: 2012 end-page: 3 ident: bb0165 article-title: Fabrication of Near-Field Plasmonic Tip by Photoreduction for Strong Enhancement in Tip-Enhanced Raman Spectroscopy – volume: 9 start-page: 2147 year: 2018 ident: bb0075 article-title: Dynamic structural states of ClpB involved in its disaggregation function publication-title: Nat. Commun. – volume: 90 year: 2007 ident: bb0175 article-title: Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy publication-title: Appl. Phys. Lett. – volume: 361 start-page: 880 year: 2018 end-page: 887 ident: bb0125 article-title: Visualizing and discovering cellular structures with super-resolution microscopy publication-title: Science – volume: 83 start-page: 337 year: 2008 end-page: 437 ident: bb0010 article-title: High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes publication-title: Prog. Surf. Sci. – volume: 20 start-page: 3010 year: 2018 end-page: 3018 ident: bb0250 article-title: Rate constants, processivity, and productive binding ratio of chitinase a revealed by single-molecule analysis publication-title: Phys. Chem. Chem. Phys. – volume: 47 start-page: 1658 year: 2008 end-page: 1661 ident: bb0240 article-title: Tip-enhanced Raman spectroscopy of single RNA strands : towards a novel direct-sequencing method publication-title: Angew. Chem. Int. Ed. – volume: 86 year: 2015 ident: bb0105 article-title: Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope publication-title: Rev. Sci. Instrum. – volume: 14 start-page: 2921 year: 2006 end-page: 2931 ident: bb0300 article-title: Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips publication-title: Opt. Express – volume: 19 start-page: 861 year: 2001 end-page: 865 ident: bb0275 article-title: Single-molecule observation of protein–protein interactions in the chaperonin system publication-title: Nat. Biotechnol. – volume: 114 start-page: 3120 year: 2014 end-page: 3188 ident: bb0030 article-title: Filming biomolecular processes by high-speed atomic force microscopy publication-title: Chem. Rev. – volume: 11 start-page: 719 year: 2016 end-page: 723 ident: bb0060 article-title: Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy publication-title: Nat. Nanotechnol. – volume: 5 start-page: 1 year: 2014 end-page: 5 ident: bb0225 article-title: A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient publication-title: Nat. Commun. – volume: 51 year: 2018 ident: bb0320 article-title: The 2018 correlative microscopy techniques roadmap publication-title: J. Phys. D. Appl. Phys. – volume: 9 year: 2018 ident: bb0280 article-title: Processive chitinase is Broownian monorail operated by fast catalysis after peeling rail from crystalline chitin publication-title: Nat. Commun. – volume: 1 start-page: 572 year: 2018 end-page: 579 ident: bb0185 article-title: Nanoscale heterogeneities in monolayer MoSe publication-title: Appl. Nano Material – volume: 5 start-page: 280 year: 2010 end-page: 285 ident: bb0085 article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy publication-title: Nat. Nanotechnol. – volume: 6 start-page: 1 year: 2015 end-page: 7 ident: bb0210 article-title: Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide publication-title: Nat. Commun. – start-page: 1 year: 2013 end-page: 4 ident: bb0245 article-title: Nano-chemical infrared imaging of membrane proteins in lipid bilayers publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 976 year: 2015 end-page: 984 ident: bb0050 article-title: Dynamics of nucleosomal structures measured by high-speed atomic force microscopy publication-title: Small. – volume: 487 start-page: 77 year: 2012 end-page: 81 ident: bb0155 article-title: Optical nano-imaging of gate-tunable graphene plasmons publication-title: Nature. – volume: 20 start-page: 492 year: 2010 end-page: 499 ident: bb0215 article-title: High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT:PCBM organic blend films for solar-cell applications publication-title: Adv. Funt. Mater. – volume: 51 start-page: 1363 year: 2010 end-page: 1369 ident: bb0270 article-title: In-situ fabrication of polyacrylate–silver nanocomposite through photoinduced tandem reactions involving eosin dye publication-title: Polymer – volume: 114 start-page: 1584 year: 2017 end-page: 1588 ident: bb0055 article-title: Direct visualization of glutamate transporter elevator mechanism by high-speed AFM publication-title: Proc. Natl. Acad. Sci. – start-page: 1 year: 2013 end-page: 7 ident: bb0110 article-title: High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events publication-title: Sci. Rep. – start-page: 1642 year: 2006 ident: 10.1016/j.bbagen.2019.03.011_bb0120 article-title: Imaging intracellular fluorescent proteins at nanometer resolution publication-title: Science doi: 10.1126/science.1127344 – volume: 20 start-page: 492 year: 2010 ident: 10.1016/j.bbagen.2019.03.011_bb0215 article-title: High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT:PCBM organic blend films for solar-cell applications publication-title: Adv. Funt. Mater. doi: 10.1002/adfm.200901930 – volume: 43 start-page: 1177 year: 2012 ident: 10.1016/j.bbagen.2019.03.011_bb0290 article-title: Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4032 – volume: 9 start-page: 2147 year: 2018 ident: 10.1016/j.bbagen.2019.03.011_bb0075 article-title: Dynamic structural states of ClpB involved in its disaggregation function publication-title: Nat. Commun. doi: 10.1038/s41467-018-04587-w – volume: 87 year: 2005 ident: 10.1016/j.bbagen.2019.03.011_bb0315 article-title: Tip-enhanced fluorescence imaging of quantum dots publication-title: Appl. Phys. Lett. doi: 10.1063/1.2115073 – start-page: 1 year: 2013 ident: 10.1016/j.bbagen.2019.03.011_bb0245 article-title: Nano-chemical infrared imaging of membrane proteins in lipid bilayers publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 1658 year: 2008 ident: 10.1016/j.bbagen.2019.03.011_bb0240 article-title: Tip-enhanced Raman spectroscopy of single RNA strands : towards a novel direct-sequencing method publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200704054 – volume: 7 start-page: 17424 year: 2015 ident: 10.1016/j.bbagen.2019.03.011_bb0285 article-title: Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy publication-title: Nanoscale doi: 10.1039/C5NR05022G – volume: 3 year: 2017 ident: 10.1016/j.bbagen.2019.03.011_bb0070 article-title: Na+-induced structurak transition of MotPS for stator assembly of the Bacillus fragellar motor publication-title: Sci. Adv. doi: 10.1126/sciadv.aao4119 – volume: 373 start-page: 20170180 year: 2018 ident: 10.1016/j.bbagen.2019.03.011_bb0080 article-title: Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed AFM imaging publication-title: Phil. Trans. Roy. Soc. B doi: 10.1098/rstb.2017.0180 – volume: 7 start-page: 1193 year: 2012 ident: 10.1016/j.bbagen.2019.03.011_bb0260 article-title: Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.047 – year: 2017 ident: 10.1016/j.bbagen.2019.03.011_bb0065 article-title: Nanoscale dynamics of amyloid β-42 oligomers as revealed by high-speed atomic force microscopy publication-title: ACS Nano doi: 10.1021/acsnano.7b05434 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.bbagen.2019.03.011_bb0225 article-title: A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient publication-title: Nat. Commun. – start-page: 1771 year: 2017 ident: 10.1016/j.bbagen.2019.03.011_bb0190 article-title: Tip-enhanced Raman spectroscopy to distinguish toxic oligomers from Aβ1–42 fibrils at the nanometer scale publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610399 – volume: 114 start-page: 1584 year: 2017 ident: 10.1016/j.bbagen.2019.03.011_bb0055 article-title: Direct visualization of glutamate transporter elevator mechanism by high-speed AFM publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1616413114 – volume: 98 start-page: 2014 year: 2010 ident: 10.1016/j.bbagen.2019.03.011_bb0265 article-title: Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.01.011 – volume: 90 start-page: 7 year: 2003 ident: 10.1016/j.bbagen.2019.03.011_bb0145 article-title: High-resolution near-field Raman microscopy of single-walled carbon nanotubes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.095503 – volume: 106 start-page: 881 year: 2006 ident: 10.1016/j.bbagen.2019.03.011_bb0025 article-title: Components for high speed atomic force microscopy publication-title: Ultramicroscopy. doi: 10.1016/j.ultramic.2006.01.015 – volume: 361 start-page: 880 year: 2018 ident: 10.1016/j.bbagen.2019.03.011_bb0125 article-title: Visualizing and discovering cellular structures with super-resolution microscopy publication-title: Science doi: 10.1126/science.aau1044 – volume: 1 start-page: 572 year: 2018 ident: 10.1016/j.bbagen.2019.03.011_bb0185 article-title: Nanoscale heterogeneities in monolayer MoSe2 revealed by correlated scanning probe microscopy and tip-enhanced Raman spectroscopy publication-title: Appl. Nano Material doi: 10.1021/acsanm.7b00083 – volume: 43 start-page: 1248 year: 2014 ident: 10.1016/j.bbagen.2019.03.011_bb0235 article-title: Tip-enhanced near-field optical microscopy publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60258C – volume: 83 start-page: 337 year: 2008 ident: 10.1016/j.bbagen.2019.03.011_bb0010 article-title: High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2008.09.001 – volume: 84 year: 2013 ident: 10.1016/j.bbagen.2019.03.011_bb0100 article-title: High-speed atomic force microscope combined with single-molecule fluorescence microscope publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4813280 – volume: 98 start-page: 12468 year: 2001 ident: 10.1016/j.bbagen.2019.03.011_bb0005 article-title: A high-speed atomic force microscope for studying biological macromolecules publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.211400898 – volume: 76 start-page: 1 year: 2005 ident: 10.1016/j.bbagen.2019.03.011_bb0015 article-title: Active damping of the scanner for high-speed atomic force microscopy publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1903123 – volume: 65 start-page: 1623 year: 1994 ident: 10.1016/j.bbagen.2019.03.011_bb0135 article-title: Apertureless near-field optical microscope publication-title: Appl. Phys. Lett. doi: 10.1063/1.112931 – volume: 1861 ( start-page: 2630 year: 2017 ident: 10.1016/j.bbagen.2019.03.011_bb0195 article-title: Tip-enhanced Raman scattering for tracking of invasomes in the stratum corneum publication-title: Biochem. Biophys. Acta - Gen. Subj. doi: 10.1016/j.bbagen.2017.07.003 – volume: vol. 5 start-page: 1 year: 2012 ident: 10.1016/j.bbagen.2019.03.011_bb0165 – volume: 487 start-page: 77 year: 2012 ident: 10.1016/j.bbagen.2019.03.011_bb0155 article-title: Optical nano-imaging of gate-tunable graphene plasmons publication-title: Nature. doi: 10.1038/nature11254 – volume: 114 start-page: 3120 year: 2014 ident: 10.1016/j.bbagen.2019.03.011_bb0030 article-title: Filming biomolecular processes by high-speed atomic force microscopy publication-title: Chem. Rev. doi: 10.1021/cr4003837 – volume: 51 year: 2018 ident: 10.1016/j.bbagen.2019.03.011_bb0320 article-title: The 2018 correlative microscopy techniques roadmap publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/aad055 – volume: 86 year: 2015 ident: 10.1016/j.bbagen.2019.03.011_bb0105 article-title: Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4922381 – start-page: 5634 year: 2016 ident: 10.1016/j.bbagen.2019.03.011_bb0160 article-title: Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy publication-title: Nanoscale doi: 10.1039/C5NR08548A – volume: 14 start-page: 2921 year: 2006 ident: 10.1016/j.bbagen.2019.03.011_bb0300 article-title: Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips publication-title: Opt. Express doi: 10.1364/OE.14.002921 – volume: 10 start-page: 352 year: 2011 ident: 10.1016/j.bbagen.2019.03.011_bb0180 article-title: Infrared-spectroscopic nanoimaging with a thermal source publication-title: Nat. Mater. doi: 10.1038/nmat3006 – volume: 77 year: 2006 ident: 10.1016/j.bbagen.2019.03.011_bb0020 article-title: Dynamic proportional-integral-differential controller for high-speed atomic force microscopy publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2336113 – volume: 498 start-page: 82 year: 2013 ident: 10.1016/j.bbagen.2019.03.011_bb0220 article-title: Chemical mapping of a single molecule by plasmon-enhanced Raman scattering publication-title: Nature. doi: 10.1038/nature12151 – volume: 5 start-page: 208 year: 2010 ident: 10.1016/j.bbagen.2019.03.011_bb0045 article-title: High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.7 – volume: 109 year: 2012 ident: 10.1016/j.bbagen.2019.03.011_bb0295 article-title: Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.017402 – volume: 51 start-page: 1363 year: 2010 ident: 10.1016/j.bbagen.2019.03.011_bb0270 article-title: In-situ fabrication of polyacrylate–silver nanocomposite through photoinduced tandem reactions involving eosin dye publication-title: Polymer doi: 10.1016/j.polymer.2009.05.003 – volume: 20 start-page: 3010 year: 2018 ident: 10.1016/j.bbagen.2019.03.011_bb0250 article-title: Rate constants, processivity, and productive binding ratio of chitinase a revealed by single-molecule analysis publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP04606E – volume: 5 start-page: 280 year: 2010 ident: 10.1016/j.bbagen.2019.03.011_bb0085 article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.29 – volume: 80 start-page: 6018 year: 2008 ident: 10.1016/j.bbagen.2019.03.011_bb0310 article-title: Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein−protein interaction publication-title: Anal. Chem. doi: 10.1021/ac800726g – volume: 9 year: 2018 ident: 10.1016/j.bbagen.2019.03.011_bb0280 article-title: Processive chitinase is Broownian monorail operated by fast catalysis after peeling rail from crystalline chitin publication-title: Nat. Commun. doi: 10.1038/s41467-018-06362-3 – volume: 11 start-page: 976 year: 2015 ident: 10.1016/j.bbagen.2019.03.011_bb0050 article-title: Dynamics of nucleosomal structures measured by high-speed atomic force microscopy publication-title: Small. doi: 10.1002/smll.201401318 – volume: 5 start-page: 8724 year: 2015 ident: 10.1016/j.bbagen.2019.03.011_bb0090 article-title: Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells publication-title: Sci. Rep. doi: 10.1038/srep08724 – volume: 90 year: 2007 ident: 10.1016/j.bbagen.2019.03.011_bb0175 article-title: Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.2458343 – volume: 19 start-page: 159 year: 1994 ident: 10.1016/j.bbagen.2019.03.011_bb0130 article-title: Near-field scanning optical microscope with a metallic probe tip publication-title: Opt. Lett. doi: 10.1364/OL.19.000159 – volume: 468 start-page: 72 year: 2010 ident: 10.1016/j.bbagen.2019.03.011_bb0035 article-title: Video imaging of walking myosin V by high-speed atomic force microscopy publication-title: Nature doi: 10.1038/nature09450 – volume: 333 start-page: 755 year: 2011 ident: 10.1016/j.bbagen.2019.03.011_bb0040 article-title: High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase publication-title: Science doi: 10.1126/science.1205510 – volume: 3 start-page: 388 year: 2009 ident: 10.1016/j.bbagen.2019.03.011_bb0140 article-title: Plasmonics for near-field nano-imaging and superlensing publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.111 – volume: 11 start-page: 11466 year: 2017 ident: 10.1016/j.bbagen.2019.03.011_bb0230 article-title: Tip-enhanced Raman spectromicroscopy of Co(II)-tetraphenylporphyrin on Au(111): toward the chemists' microscope publication-title: ACS Nano doi: 10.1021/acsnano.7b06183 – volume: 84 year: 2013 ident: 10.1016/j.bbagen.2019.03.011_bb0095 article-title: Wide-area scanner for high-speed atomic force microscopy publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4803449 – volume: 440 start-page: 935 year: 2006 ident: 10.1016/j.bbagen.2019.03.011_bb0115 article-title: STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis publication-title: Nature doi: 10.1038/nature04592 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.bbagen.2019.03.011_bb0210 article-title: Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide publication-title: Nat. Commun. doi: 10.1038/ncomms8993 – start-page: 1 year: 2013 ident: 10.1016/j.bbagen.2019.03.011_bb0110 article-title: High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events publication-title: Sci. Rep. – volume: 96 year: 2006 ident: 10.1016/j.bbagen.2019.03.011_bb0255 article-title: Enhancement and quenching of single-molecule fluorescence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.113002 – volume: 19 start-page: 861 year: 2001 ident: 10.1016/j.bbagen.2019.03.011_bb0275 article-title: Single-molecule observation of protein–protein interactions in the chaperonin system publication-title: Nat. Biotechnol. doi: 10.1038/nbt0901-861 – volume: 94 start-page: 2 year: 2009 ident: 10.1016/j.bbagen.2019.03.011_bb0170 article-title: Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip publication-title: Appl. Phys. Lett. doi: 10.1063/1.3138132 – volume: 43 start-page: 1177 year: 2012 ident: 10.1016/j.bbagen.2019.03.011_bb0305 article-title: Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4032 – volume: 376 start-page: 174 year: 2003 ident: 10.1016/j.bbagen.2019.03.011_bb0150 article-title: Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(03)00883-2 – volume: 93 start-page: 5 year: 2004 ident: 10.1016/j.bbagen.2019.03.011_bb0205 article-title: Tip-enhanced fluorescence microscopy at 10 nanometer resolution publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.180801 – volume: 11 start-page: 719 year: 2016 ident: 10.1016/j.bbagen.2019.03.011_bb0060 article-title: Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.62 – volume: 2 year: 2016 ident: 10.1016/j.bbagen.2019.03.011_bb0200 article-title: Infrared vibrational nano-crystallography and nano-imaging publication-title: Sci. Adv. doi: 10.1126/sciadv.1601006 |
SSID | ssj0000595 |
Score | 2.4376276 |
Snippet | High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129325 |
SubjectTerms | accuracy atomic force microscopy DNA fluorescence microscopy High-speed atomic force microscopy image analysis light microscopy Plasmonics proteins Scanning near-field fluorescence microscopy Single molecule analysis Super-resolution optical microscopy |
Title | High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies |
URI | https://dx.doi.org/10.1016/j.bbagen.2019.03.011 https://www.ncbi.nlm.nih.gov/pubmed/30890438 https://www.proquest.com/docview/2194590072 https://www.proquest.com/docview/2221002124 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQCLUXROmDQItcqVc3fu_6iKKitFW5UCRultdZq1SwiUhy4MJvZ8beBXGgSL2uxpblGc9j55sZQr7MBEqNhIcko2NaJs4c54kFPYMIWxsecnn0r1M7Pdc_LszFBpkMtTAIq-x1f9HpWVv3X8b9bY4Xl5fjM0zqgTuBLggaYuz4qXWFUv717hHmAe6DKZkEzZB6KJ_LGK-mgUeLXVBFaXUqxHPm6Tn3M5uhk12y0_uP9Lgc8Q3ZaLs9sl0mSt7ukVeTYYDbW7JGDAdbLsA-0Q4EmmW0Gk1X6_lNbuIUW3qNeDysTLmlcAMQJQMt_pqlfx7XQlgOZBS826cL4AMtPZyQ0XRZEInvyPnJt9-TKeunLLConFmxWlQ2SF1FUwUdTDRcR1Mn2RqrXRLWtcop0bjatfUs1naWGiuaAL6SkjyopN6TzW7etfuEBqGjBRKI1o2GDQK3ATZLSieL6dQRUcPl-ti3IMdJGFd-wJr99YUlHlniufLAkhFhD6sWpQXHC_TVwDf_RJQ8WIkXVn4e2OyBV5g6CV07Xy896HWN81Ur-Q8aKUXumK9H5EORkYfzKl47zLke_PfZDslriaF-Box_JJurm3X7CfyhVXOUBf6IbB1__zk9vQeJVgjk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FEN3GbbulT01YFchetrWsQhWpGuby1qgN0F2LKxD5wRNcui_HynZLXroCuxqkIIgUnxY5EeAbwtJWqPwIqnGcaOi4E6IyINZYIZtrAipPfp0XszOzY8Le7ED06EXhsoqe9ufbXqy1v2XSX-ak9Xl5eQnPephOEEhCDli_QR2CZ3KjmD34Oh4Nr8zyDYNXyF6TgxDB10q86prvLcEhCoz2qmUD3mohyLQ5IkOX8DzPoRkB3mXL2Gn7fbhaR4qebMPe9Nhhtsr2FIZB1-v0EWxDnWap4I1Fq-2y-uE49S07A-V5FFzyg3DQ8BEGWnp7yz7dceLmTmSMQxw7zPgB5ZhnEjWbJ2LEl_D-eH3s-mM94MWeKOd3fBKlkVQpmxsGUywjRWmsVVUrS2Mi7JwrXZa1q5ybbVoqmIR60LWAcMlrUTQUb-BUbfs2nfAgjRNgSSYsFuDCwRRBFwsahMLelEdgx4O1zc9CjkNw7jyQ7nZb59F4kkkXmiPIhkDv-VaZRSOR-jLQW7-njZ5dBSPcH4dxOxRVvR6Erp2uV17NO2GRqyW6h80SskEmm_G8DbryO1-tagcPbu-_--9fYG92dnpiT85mh9_gGeKMv9UP_4RRpvrbfsJw6NN_blX_7-ToguV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-speed+near-field+fluorescence+microscopy+combined+with+high-speed+atomic+force+microscopy+for+biological+studies&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Umakoshi%2C+Takayuki&rft.au=Fukuda%2C+Shingo&rft.au=Iino%2C+Ryota&rft.au=Uchihashi%2C+Takayuki&rft.date=2020-02-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1864&rft.issue=2&rft.spage=129325&rft_id=info:doi/10.1016%2Fj.bbagen.2019.03.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |