High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies

High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 2; p. 129325
Main Authors Umakoshi, Takayuki, Fukuda, Shingo, Iino, Ryota, Uchihashi, Takayuki, Ando, Toshio
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2020
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2019.03.011

Cover

Loading…
Abstract High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy. Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever. In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated. This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research. We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution. •High-speed AFM is combined with tip-enhanced TIRFM/SNOM for biological research•Fluorescence SNOM images can be captured in synchrony with high-speed AFM imaging•Resolutions of 39 nm and 3 s/frame are achieved for fluorescence SNOM imaging•Improved correlation between fluorescence/AFM topography images is achieved
AbstractList High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy. Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever. In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated. This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research. We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution. •High-speed AFM is combined with tip-enhanced TIRFM/SNOM for biological research•Fluorescence SNOM images can be captured in synchrony with high-speed AFM imaging•Resolutions of 39 nm and 3 s/frame are achieved for fluorescence SNOM imaging•Improved correlation between fluorescence/AFM topography images is achieved
High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy. Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever. In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated. This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research. We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.
High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.
High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.BACKGROUNDHigh-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.METHODSScanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.RESULTSIn tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.CONCLUSIONSThis study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.GENERAL SIGNIFICANCEWe achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.
ArticleNumber 129325
Author Ando, Toshio
Iino, Ryota
Uchihashi, Takayuki
Umakoshi, Takayuki
Fukuda, Shingo
Author_xml – sequence: 1
  givenname: Takayuki
  surname: Umakoshi
  fullname: Umakoshi, Takayuki
  organization: Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
– sequence: 2
  givenname: Shingo
  surname: Fukuda
  fullname: Fukuda, Shingo
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
– sequence: 3
  givenname: Ryota
  surname: Iino
  fullname: Iino, Ryota
  organization: Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
– sequence: 4
  givenname: Takayuki
  surname: Uchihashi
  fullname: Uchihashi, Takayuki
  organization: Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
– sequence: 5
  givenname: Toshio
  surname: Ando
  fullname: Ando, Toshio
  email: tando@staff.kanazawa-u.ac.jp
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30890438$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFf4BQjlySjr8SmwMSqoBWqsQFzpbjjHe9SuLFTqj67_FqCwgOdC6WRs8zkt_3gpzNcUZCXlNoKND2at_0vd3i3DCgugHeAKXPyIaqjtUKoD0jG-AgakFbeU4uct5DGanlC3LOQWkQXG3IehO2uzofEIdqRptqH3AcKj-uMWF2ODuspuBSzC4eHioXpz7Mhb0Py67a_XHtEgtW-Zj-Fsqi6kMc4zY4O1Z5WYeA-SV57u2Y8dXje0m-ffr49fqmvvvy-fb6w13tuJZLrWjXWiY6JzsrrHQShJPKM5St0J62GrnmtNdKoxqcagfft7S3wCRnYLnnl-Tt6e4hxe8r5sVMoXxqHO2Mcc2GMUYBGGXiaZRqITVAxwr65hFd-wkHc0hhsunB_Eq1AOIEHGPICf1vhII5lmf25lSeOZZngJtSXtHe_aO5sNglxHlJNoxPye9PMpY8fwRMJrtwrG8ICd1ihhj-f-AnmZK30A
CitedBy_id crossref_primary_10_1038_s41598_022_17170_7
crossref_primary_10_1155_2021_8827721
crossref_primary_10_3390_ijms22083823
crossref_primary_10_1063_5_0111017
crossref_primary_10_1049_mnl_2019_0313
crossref_primary_10_1073_pnas_2212419119
crossref_primary_10_1021_acsnano_3c00857
crossref_primary_10_1038_s41598_020_57885_z
crossref_primary_10_1007_s12551_020_00670_z
crossref_primary_10_2142_biophysico_bppb_v20_0011
crossref_primary_10_1039_D2CS00525E
crossref_primary_10_2142_biophys_62_128
crossref_primary_10_3390_bios12121116
crossref_primary_10_1021_acs_nanolett_3c04877
crossref_primary_10_1177_10775463211050157
crossref_primary_10_1021_acs_jpclett_0c01769
crossref_primary_10_1038_s41598_020_62529_3
crossref_primary_10_1039_D0NR07203F
crossref_primary_10_1002_advs_202102789
Cites_doi 10.1126/science.1127344
10.1002/adfm.200901930
10.1002/jrs.4032
10.1038/s41467-018-04587-w
10.1063/1.2115073
10.1002/anie.200704054
10.1039/C5NR05022G
10.1126/sciadv.aao4119
10.1098/rstb.2017.0180
10.1038/nprot.2012.047
10.1021/acsnano.7b05434
10.1002/anie.201610399
10.1073/pnas.1616413114
10.1016/j.bpj.2010.01.011
10.1103/PhysRevLett.90.095503
10.1016/j.ultramic.2006.01.015
10.1126/science.aau1044
10.1021/acsanm.7b00083
10.1039/C3CS60258C
10.1016/j.progsurf.2008.09.001
10.1063/1.4813280
10.1073/pnas.211400898
10.1063/1.1903123
10.1063/1.112931
10.1016/j.bbagen.2017.07.003
10.1038/nature11254
10.1021/cr4003837
10.1088/1361-6463/aad055
10.1063/1.4922381
10.1039/C5NR08548A
10.1364/OE.14.002921
10.1038/nmat3006
10.1063/1.2336113
10.1038/nature12151
10.1038/nnano.2010.7
10.1103/PhysRevLett.109.017402
10.1016/j.polymer.2009.05.003
10.1039/C7CP04606E
10.1038/nnano.2010.29
10.1021/ac800726g
10.1038/s41467-018-06362-3
10.1002/smll.201401318
10.1038/srep08724
10.1063/1.2458343
10.1364/OL.19.000159
10.1038/nature09450
10.1126/science.1205510
10.1038/nphoton.2009.111
10.1021/acsnano.7b06183
10.1063/1.4803449
10.1038/nature04592
10.1038/ncomms8993
10.1103/PhysRevLett.96.113002
10.1038/nbt0901-861
10.1063/1.3138132
10.1016/S0009-2614(03)00883-2
10.1103/PhysRevLett.93.180801
10.1038/nnano.2016.62
10.1126/sciadv.1601006
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2019.03.011
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 30890438
10_1016_j_bbagen_2019_03_011
S0304416519300613
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-8176a247c57a4a5c504c58f2e5649f169e3931b989e8dc86dfb61ba025320a3f3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 03:58:31 EDT 2025
Fri Jul 11 03:31:55 EDT 2025
Wed Feb 19 02:30:40 EST 2025
Thu Apr 24 23:07:35 EDT 2025
Tue Jul 01 00:22:12 EDT 2025
Fri Feb 23 02:50:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Scanning near-field fluorescence microscopy
HS-AFM
Single molecule analysis
TIRFM
HS-SNOM
High-speed atomic force microscopy
Super-resolution optical microscopy
Plasmonics
SNOM
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-8176a247c57a4a5c504c58f2e5649f169e3931b989e8dc86dfb61ba025320a3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30890438
PQID 2194590072
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2221002124
proquest_miscellaneous_2194590072
pubmed_primary_30890438
crossref_primary_10_1016_j_bbagen_2019_03_011
crossref_citationtrail_10_1016_j_bbagen_2019_03_011
elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_03_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
2020-Feb
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kodera, Yamashita, Ando (bb0015) 2005; 76
Muller, Pollard, Bechtel, Van Blerkom, Raschke (bb0200) 2016; 2
Gerton, Wade, Lessard, Ma, Quake (bb0205) 2004; 93
Hayazawa, Yano, Kawata (bb0290) 2012; 43
Terahara, Kodera, Uchihashi, Ando, Namba, Minamino (bb0070) 2017; 3
Ando, Uchihashi, Scheuring (bb0030) 2014; 114
Betzig, Patterson, Sougrat, Lindwasser, Olenych, Bonifacino (bb0120) 2006
Watanabe, Uchihashi, Kobashi, Shibata, Nishiyama, Yasuda, Ando (bb0095) 2013; 84
Hayazawa, Furusawa, Taguchi, Kawata, Abe (bb0170) 2009; 94
Fukuda, Uchihashi, Iino, Okazaki, Yoshida, Igarashi (bb0100) 2013; 84
Kawata, Inouye, Verma (bb0140) 2009; 3
Chen, Badioli, Alonso-González, Thongrattanasiri, Huth, Osmond (bb0155) 2012; 487
Wang, Zhang, Braun, Egelhaaf, Brabec, Meixner (bb0215) 2010; 20
Nakamura, Tasaki, Okuni, Song, Murata (bb0250) 2018; 20
Miyake, Tanii, Sonobe, Akahori (bb0310) 2008; 80
Chen, Hayazawa, Kawata (bb0225) 2014; 5
Sigal, Zhou, Zhuang (bb0125) 2018; 361
Höppener, Lapin, Bharadwaj, Novotny (bb0295) 2012; 109
Willig, Rizzoli, Westphal, Jahn, Hell (bb0115) 2006; 440
Ashtikar, Langelüddecke, Fahr, Deckert (bb0195) 2017; 1861
Suzuki, Sakai, Yoshida, Uekusa, Yagi, Imaoka (bb0110) 2013
Ando, Kodera, Takai, Maruyama, Saito, Toda (bb0005) 2001; 98
Hayazawa, Yano, Watanabe (bb0150) 2003; 376
Fantner, Schitter, Kindt, Ivanov, Ivanova, Patel (bb0025) 2006; 106
Umakoshi, Yano, Saito, Verma (bb0165) 2012; vol. 5
Kodera, Yamamot, Isikawa, Ando (bb0035) 2010; 468
Sakiyama, Mazur, Kapinos, Lim (bb0060) 2016; 11
Roth, Panoiu, Adams, Osgood, Neacsu, Raschke (bb0300) 2006; 14
Umakoshi, Saito, Verma (bb0160) 2016
Zenhausern, O'Boyle, Wickramasinghe (bb0135) 1994; 65
Smithe, Krayev, Bailey, Lee, Yalon, Aslan (bb0185) 2018; 1
Taguchi, Yu, Verma, Kawata (bb0285) 2015; 7
Nakamura, Okazaki, Furuta, Sakurai, Iino (bb0280) 2018; 9
Anger, Bharadwaj, Novotny (bb0255) 2006; 96
Ando, Uchihashi, Fukuma (bb0010) 2008; 83
Huang, Festy, Richards (bb0315) 2005; 87
Uchihashi, Iino, Ando, Noji (bb0040) 2011; 333
Inouye, Kawata (bb0130) 1994; 19
Lee, Tallarida, Chen, Liu, Jensen, Apkarian (bb0230) 2017; 11
Hartschuh, Sanchez, Xie, Novotny (bb0145) 2003; 90
Matsui, Verma, Ichimura, Inouye, Kawata, Matsui (bb0175) 2007; 90
Katan, Vlijm, Lusser, Dekker (bb0050) 2015; 11
Bao, Borys, Ko, Suh, Fan, Thron (bb0210) 2015; 6
Fukuda, Uchihashi, Ando (bb0105) 2015; 86
Huth, Schnell, Wittborn, Ocelic, Hillenbrand (bb0180) 2011; 10
Uchihashi, Kodera, Ando (bb0260) 2012; 7
Bonhommeau, Talaga, Hunel, Cullin, Lecomte (bb0190) 2017
Ando, Bhamidimarri, Brending, Colin-York (bb0320) 2018; 51
Kodera, Sakashita, Ando (bb0020) 2006; 77
Ueno, Nishikawa, Iino, Tabata, Sakakihara, Yanagida, Noji (bb0265) 2010; 98
Mauser, Hartschuh (bb0235) 2014; 43
Banerjee, Sun, Hayden, Teplow, Lyubchenko (bb0065) 2017
Noshiro, Ando (bb0080) 2018; 373
Ruan, Miyagi, Wang, Chami, Boudker, Scheuring (bb0055) 2017; 114
Berweger, Nguyen, Muller, Bechtel, Perkins, Raschke (bb0245) 2013
Uchihashi, Watanabe, Nakazaki, Yamasaki, Watanabe, Maruno, Ishii, Uchiyama, Song, Murata, Iino, Ando (bb0075) 2018; 9
Balan, Malval, Schneider, Le Nouen, Lougnot (bb0270) 2010; 51
Fantner, Barbero, Gray, Belcher (bb0085) 2010; 5
Bailo, Deckert (bb0240) 2008; 47
Shibata, Uchihashi, Ando, Yasuda (bb0090) 2015; 5
Zhang, Zhang, Dong, Jiang, Zhang, Chen (bb0220) 2013; 498
Shibata, Yamashita, Uchihashi, Kandori, Ando (bb0045) 2010; 5
Taguchi, Ueno, Tadakuma, Yoshida, Funatsu (bb0275) 2001; 19
Hayazawa, Yano, Kawata (bb0305) 2012; 43
Katan (10.1016/j.bbagen.2019.03.011_bb0050) 2015; 11
Uchihashi (10.1016/j.bbagen.2019.03.011_bb0040) 2011; 333
Sigal (10.1016/j.bbagen.2019.03.011_bb0125) 2018; 361
Mauser (10.1016/j.bbagen.2019.03.011_bb0235) 2014; 43
Shibata (10.1016/j.bbagen.2019.03.011_bb0045) 2010; 5
Banerjee (10.1016/j.bbagen.2019.03.011_bb0065) 2017
Huang (10.1016/j.bbagen.2019.03.011_bb0315) 2005; 87
Fukuda (10.1016/j.bbagen.2019.03.011_bb0105) 2015; 86
Lee (10.1016/j.bbagen.2019.03.011_bb0230) 2017; 11
Bailo (10.1016/j.bbagen.2019.03.011_bb0240) 2008; 47
Kodera (10.1016/j.bbagen.2019.03.011_bb0015) 2005; 76
Nakamura (10.1016/j.bbagen.2019.03.011_bb0280) 2018; 9
Fantner (10.1016/j.bbagen.2019.03.011_bb0085) 2010; 5
Chen (10.1016/j.bbagen.2019.03.011_bb0225) 2014; 5
Ashtikar (10.1016/j.bbagen.2019.03.011_bb0195) 2017; 1861
Willig (10.1016/j.bbagen.2019.03.011_bb0115) 2006; 440
Inouye (10.1016/j.bbagen.2019.03.011_bb0130) 1994; 19
Bonhommeau (10.1016/j.bbagen.2019.03.011_bb0190) 2017
Hayazawa (10.1016/j.bbagen.2019.03.011_bb0305) 2012; 43
Betzig (10.1016/j.bbagen.2019.03.011_bb0120) 2006
Bao (10.1016/j.bbagen.2019.03.011_bb0210) 2015; 6
Hayazawa (10.1016/j.bbagen.2019.03.011_bb0170) 2009; 94
Ueno (10.1016/j.bbagen.2019.03.011_bb0265) 2010; 98
Ando (10.1016/j.bbagen.2019.03.011_bb0005) 2001; 98
Balan (10.1016/j.bbagen.2019.03.011_bb0270) 2010; 51
Hartschuh (10.1016/j.bbagen.2019.03.011_bb0145) 2003; 90
Roth (10.1016/j.bbagen.2019.03.011_bb0300) 2006; 14
Noshiro (10.1016/j.bbagen.2019.03.011_bb0080) 2018; 373
Watanabe (10.1016/j.bbagen.2019.03.011_bb0095) 2013; 84
Muller (10.1016/j.bbagen.2019.03.011_bb0200) 2016; 2
Ruan (10.1016/j.bbagen.2019.03.011_bb0055) 2017; 114
Berweger (10.1016/j.bbagen.2019.03.011_bb0245) 2013
Uchihashi (10.1016/j.bbagen.2019.03.011_bb0075) 2018; 9
Kodera (10.1016/j.bbagen.2019.03.011_bb0035) 2010; 468
Wang (10.1016/j.bbagen.2019.03.011_bb0215) 2010; 20
Chen (10.1016/j.bbagen.2019.03.011_bb0155) 2012; 487
Suzuki (10.1016/j.bbagen.2019.03.011_bb0110) 2013
Kawata (10.1016/j.bbagen.2019.03.011_bb0140) 2009; 3
Sakiyama (10.1016/j.bbagen.2019.03.011_bb0060) 2016; 11
Taguchi (10.1016/j.bbagen.2019.03.011_bb0275) 2001; 19
Fukuda (10.1016/j.bbagen.2019.03.011_bb0100) 2013; 84
Gerton (10.1016/j.bbagen.2019.03.011_bb0205) 2004; 93
Miyake (10.1016/j.bbagen.2019.03.011_bb0310) 2008; 80
Matsui (10.1016/j.bbagen.2019.03.011_bb0175) 2007; 90
Smithe (10.1016/j.bbagen.2019.03.011_bb0185) 2018; 1
Fantner (10.1016/j.bbagen.2019.03.011_bb0025) 2006; 106
Umakoshi (10.1016/j.bbagen.2019.03.011_bb0160) 2016
Ando (10.1016/j.bbagen.2019.03.011_bb0010) 2008; 83
Nakamura (10.1016/j.bbagen.2019.03.011_bb0250) 2018; 20
Hayazawa (10.1016/j.bbagen.2019.03.011_bb0290) 2012; 43
Zenhausern (10.1016/j.bbagen.2019.03.011_bb0135) 1994; 65
Höppener (10.1016/j.bbagen.2019.03.011_bb0295) 2012; 109
Ando (10.1016/j.bbagen.2019.03.011_bb0320) 2018; 51
Uchihashi (10.1016/j.bbagen.2019.03.011_bb0260) 2012; 7
Huth (10.1016/j.bbagen.2019.03.011_bb0180) 2011; 10
Ando (10.1016/j.bbagen.2019.03.011_bb0030) 2014; 114
Shibata (10.1016/j.bbagen.2019.03.011_bb0090) 2015; 5
Hayazawa (10.1016/j.bbagen.2019.03.011_bb0150) 2003; 376
Anger (10.1016/j.bbagen.2019.03.011_bb0255) 2006; 96
Umakoshi (10.1016/j.bbagen.2019.03.011_bb0165) 2012; vol. 5
Terahara (10.1016/j.bbagen.2019.03.011_bb0070) 2017; 3
Taguchi (10.1016/j.bbagen.2019.03.011_bb0285) 2015; 7
Zhang (10.1016/j.bbagen.2019.03.011_bb0220) 2013; 498
Kodera (10.1016/j.bbagen.2019.03.011_bb0020) 2006; 77
References_xml – volume: 76
  start-page: 1
  year: 2005
  end-page: 5
  ident: bb0015
  article-title: Active damping of the scanner for high-speed atomic force microscopy
  publication-title: Rev. Sci. Instrum.
– volume: 84
  year: 2013
  ident: bb0095
  article-title: Wide-area scanner for high-speed atomic force microscopy
  publication-title: Rev. Sci. Instrum.
– volume: 7
  start-page: 1193
  year: 2012
  end-page: 1206
  ident: bb0260
  article-title: Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy
  publication-title: Nat. Protoc.
– volume: 106
  start-page: 881
  year: 2006
  end-page: 887
  ident: bb0025
  article-title: Components for high speed atomic force microscopy
  publication-title: Ultramicroscopy.
– volume: 5
  start-page: 8724
  year: 2015
  ident: bb0090
  article-title: Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells
  publication-title: Sci. Rep.
– volume: 3
  start-page: 388
  year: 2009
  end-page: 394
  ident: bb0140
  article-title: Plasmonics for near-field nano-imaging and superlensing
  publication-title: Nat. Photonics
– volume: 10
  start-page: 352
  year: 2011
  end-page: 356
  ident: bb0180
  article-title: Infrared-spectroscopic nanoimaging with a thermal source
  publication-title: Nat. Mater.
– volume: 43
  start-page: 1177
  year: 2012
  end-page: 1182
  ident: bb0290
  article-title: Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone
  publication-title: J. Raman Spectrosc.
– volume: 43
  start-page: 1248
  year: 2014
  end-page: 1262
  ident: bb0235
  article-title: Tip-enhanced near-field optical microscopy
  publication-title: Chem. Soc. Rev.
– volume: 376
  start-page: 174
  year: 2003
  end-page: 180
  ident: bb0150
  article-title: Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy
  publication-title: Chem. Phys. Lett.
– start-page: 5634
  year: 2016
  end-page: 5640
  ident: bb0160
  article-title: Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy
  publication-title: Nanoscale
– volume: 65
  start-page: 1623
  year: 1994
  end-page: 1625
  ident: bb0135
  article-title: Apertureless near-field optical microscope
  publication-title: Appl. Phys. Lett.
– volume: 87
  year: 2005
  ident: bb0315
  article-title: Tip-enhanced fluorescence imaging of quantum dots
  publication-title: Appl. Phys. Lett.
– volume: 1861 (
  start-page: 2630
  year: 2017
  end-page: 2639
  ident: bb0195
  article-title: Tip-enhanced Raman scattering for tracking of invasomes in the stratum corneum
  publication-title: Biochem. Biophys. Acta - Gen. Subj.
– volume: 333
  start-page: 755
  year: 2011
  end-page: 758
  ident: bb0040
  article-title: High-speed atomic force microscopy reveals rotary catalysis of rotorless F
  publication-title: Science
– year: 2017
  ident: bb0065
  article-title: Nanoscale dynamics of amyloid β-42 oligomers as revealed by high-speed atomic force microscopy
  publication-title: ACS Nano
– volume: 98
  start-page: 12468
  year: 2001
  end-page: 12472
  ident: bb0005
  article-title: A high-speed atomic force microscope for studying biological macromolecules
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 208
  year: 2010
  end-page: 212
  ident: bb0045
  article-title: High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin
  publication-title: Nat. Nanotechnol.
– start-page: 1642
  year: 2006
  end-page: 1646
  ident: bb0120
  article-title: Imaging intracellular fluorescent proteins at nanometer resolution
  publication-title: Science
– volume: 84
  year: 2013
  ident: bb0100
  article-title: High-speed atomic force microscope combined with single-molecule fluorescence microscope
  publication-title: Rev. Sci. Instrum.
– volume: 98
  start-page: 2014
  year: 2010
  end-page: 2023
  ident: bb0265
  article-title: Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution
  publication-title: Biophys. J.
– start-page: 1771
  year: 2017
  end-page: 1774
  ident: bb0190
  article-title: Tip-enhanced Raman spectroscopy to distinguish toxic oligomers from Aβ
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  year: 2016
  ident: bb0200
  article-title: Infrared vibrational nano-crystallography and nano-imaging
  publication-title: Sci. Adv.
– volume: 11
  start-page: 11466
  year: 2017
  end-page: 11474
  ident: bb0230
  article-title: Tip-enhanced Raman spectromicroscopy of Co(II)-tetraphenylporphyrin on Au(111): toward the chemists' microscope
  publication-title: ACS Nano
– volume: 19
  start-page: 159
  year: 1994
  end-page: 161
  ident: bb0130
  article-title: Near-field scanning optical microscope with a metallic probe tip
  publication-title: Opt. Lett.
– volume: 498
  start-page: 82
  year: 2013
  end-page: 86
  ident: bb0220
  article-title: Chemical mapping of a single molecule by plasmon-enhanced Raman scattering
  publication-title: Nature.
– volume: 373
  start-page: 20170180
  year: 2018
  ident: bb0080
  article-title: Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed AFM imaging
  publication-title: Phil. Trans. Roy. Soc. B
– volume: 93
  start-page: 5
  year: 2004
  end-page: 8
  ident: bb0205
  article-title: Tip-enhanced fluorescence microscopy at 10 nanometer resolution
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 17424
  year: 2015
  end-page: 17433
  ident: bb0285
  article-title: Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy
  publication-title: Nanoscale
– volume: 109
  year: 2012
  ident: bb0295
  article-title: Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field
  publication-title: Phys. Rev. Lett.
– volume: 77
  year: 2006
  ident: bb0020
  article-title: Dynamic proportional-integral-differential controller for high-speed atomic force microscopy
  publication-title: Rev. Sci. Instrum.
– volume: 468
  start-page: 72
  year: 2010
  end-page: 76
  ident: bb0035
  article-title: Video imaging of walking myosin V by high-speed atomic force microscopy
  publication-title: Nature
– volume: 96
  year: 2006
  ident: bb0255
  article-title: Enhancement and quenching of single-molecule fluorescence
  publication-title: Phys. Rev. Lett.
– volume: 43
  start-page: 1177
  year: 2012
  end-page: 1182
  ident: bb0305
  article-title: Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone
  publication-title: J. Raman Spectrosc.
– volume: 80
  start-page: 6018
  year: 2008
  end-page: 6022
  ident: bb0310
  article-title: Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein−protein interaction
  publication-title: Anal. Chem.
– volume: 440
  start-page: 935
  year: 2006
  end-page: 939
  ident: bb0115
  article-title: STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis
  publication-title: Nature
– volume: 90
  start-page: 7
  year: 2003
  end-page: 10
  ident: bb0145
  article-title: High-resolution near-field Raman microscopy of single-walled carbon nanotubes
  publication-title: Phys. Rev. Lett.
– volume: 94
  start-page: 2
  year: 2009
  end-page: 4
  ident: bb0170
  article-title: Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip
  publication-title: Appl. Phys. Lett.
– volume: 3
  year: 2017
  ident: bb0070
  article-title: Na
  publication-title: Sci. Adv.
– volume: vol. 5
  start-page: 1
  year: 2012
  end-page: 3
  ident: bb0165
  article-title: Fabrication of Near-Field Plasmonic Tip by Photoreduction for Strong Enhancement in Tip-Enhanced Raman Spectroscopy
– volume: 9
  start-page: 2147
  year: 2018
  ident: bb0075
  article-title: Dynamic structural states of ClpB involved in its disaggregation function
  publication-title: Nat. Commun.
– volume: 90
  year: 2007
  ident: bb0175
  article-title: Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy
  publication-title: Appl. Phys. Lett.
– volume: 361
  start-page: 880
  year: 2018
  end-page: 887
  ident: bb0125
  article-title: Visualizing and discovering cellular structures with super-resolution microscopy
  publication-title: Science
– volume: 83
  start-page: 337
  year: 2008
  end-page: 437
  ident: bb0010
  article-title: High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes
  publication-title: Prog. Surf. Sci.
– volume: 20
  start-page: 3010
  year: 2018
  end-page: 3018
  ident: bb0250
  article-title: Rate constants, processivity, and productive binding ratio of chitinase a revealed by single-molecule analysis
  publication-title: Phys. Chem. Chem. Phys.
– volume: 47
  start-page: 1658
  year: 2008
  end-page: 1661
  ident: bb0240
  article-title: Tip-enhanced Raman spectroscopy of single RNA strands : towards a novel direct-sequencing method
  publication-title: Angew. Chem. Int. Ed.
– volume: 86
  year: 2015
  ident: bb0105
  article-title: Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope
  publication-title: Rev. Sci. Instrum.
– volume: 14
  start-page: 2921
  year: 2006
  end-page: 2931
  ident: bb0300
  article-title: Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips
  publication-title: Opt. Express
– volume: 19
  start-page: 861
  year: 2001
  end-page: 865
  ident: bb0275
  article-title: Single-molecule observation of protein–protein interactions in the chaperonin system
  publication-title: Nat. Biotechnol.
– volume: 114
  start-page: 3120
  year: 2014
  end-page: 3188
  ident: bb0030
  article-title: Filming biomolecular processes by high-speed atomic force microscopy
  publication-title: Chem. Rev.
– volume: 11
  start-page: 719
  year: 2016
  end-page: 723
  ident: bb0060
  article-title: Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 5
  ident: bb0225
  article-title: A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient
  publication-title: Nat. Commun.
– volume: 51
  year: 2018
  ident: bb0320
  article-title: The 2018 correlative microscopy techniques roadmap
  publication-title: J. Phys. D. Appl. Phys.
– volume: 9
  year: 2018
  ident: bb0280
  article-title: Processive chitinase is Broownian monorail operated by fast catalysis after peeling rail from crystalline chitin
  publication-title: Nat. Commun.
– volume: 1
  start-page: 572
  year: 2018
  end-page: 579
  ident: bb0185
  article-title: Nanoscale heterogeneities in monolayer MoSe
  publication-title: Appl. Nano Material
– volume: 5
  start-page: 280
  year: 2010
  end-page: 285
  ident: bb0085
  article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 7
  ident: bb0210
  article-title: Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide
  publication-title: Nat. Commun.
– start-page: 1
  year: 2013
  end-page: 4
  ident: bb0245
  article-title: Nano-chemical infrared imaging of membrane proteins in lipid bilayers
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 976
  year: 2015
  end-page: 984
  ident: bb0050
  article-title: Dynamics of nucleosomal structures measured by high-speed atomic force microscopy
  publication-title: Small.
– volume: 487
  start-page: 77
  year: 2012
  end-page: 81
  ident: bb0155
  article-title: Optical nano-imaging of gate-tunable graphene plasmons
  publication-title: Nature.
– volume: 20
  start-page: 492
  year: 2010
  end-page: 499
  ident: bb0215
  article-title: High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT:PCBM organic blend films for solar-cell applications
  publication-title: Adv. Funt. Mater.
– volume: 51
  start-page: 1363
  year: 2010
  end-page: 1369
  ident: bb0270
  article-title: In-situ fabrication of polyacrylate–silver nanocomposite through photoinduced tandem reactions involving eosin dye
  publication-title: Polymer
– volume: 114
  start-page: 1584
  year: 2017
  end-page: 1588
  ident: bb0055
  article-title: Direct visualization of glutamate transporter elevator mechanism by high-speed AFM
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 1
  year: 2013
  end-page: 7
  ident: bb0110
  article-title: High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events
  publication-title: Sci. Rep.
– start-page: 1642
  year: 2006
  ident: 10.1016/j.bbagen.2019.03.011_bb0120
  article-title: Imaging intracellular fluorescent proteins at nanometer resolution
  publication-title: Science
  doi: 10.1126/science.1127344
– volume: 20
  start-page: 492
  year: 2010
  ident: 10.1016/j.bbagen.2019.03.011_bb0215
  article-title: High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT:PCBM organic blend films for solar-cell applications
  publication-title: Adv. Funt. Mater.
  doi: 10.1002/adfm.200901930
– volume: 43
  start-page: 1177
  year: 2012
  ident: 10.1016/j.bbagen.2019.03.011_bb0290
  article-title: Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4032
– volume: 9
  start-page: 2147
  year: 2018
  ident: 10.1016/j.bbagen.2019.03.011_bb0075
  article-title: Dynamic structural states of ClpB involved in its disaggregation function
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04587-w
– volume: 87
  year: 2005
  ident: 10.1016/j.bbagen.2019.03.011_bb0315
  article-title: Tip-enhanced fluorescence imaging of quantum dots
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2115073
– start-page: 1
  year: 2013
  ident: 10.1016/j.bbagen.2019.03.011_bb0245
  article-title: Nano-chemical infrared imaging of membrane proteins in lipid bilayers
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 1658
  year: 2008
  ident: 10.1016/j.bbagen.2019.03.011_bb0240
  article-title: Tip-enhanced Raman spectroscopy of single RNA strands : towards a novel direct-sequencing method
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200704054
– volume: 7
  start-page: 17424
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.011_bb0285
  article-title: Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy
  publication-title: Nanoscale
  doi: 10.1039/C5NR05022G
– volume: 3
  year: 2017
  ident: 10.1016/j.bbagen.2019.03.011_bb0070
  article-title: Na+-induced structurak transition of MotPS for stator assembly of the Bacillus fragellar motor
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao4119
– volume: 373
  start-page: 20170180
  year: 2018
  ident: 10.1016/j.bbagen.2019.03.011_bb0080
  article-title: Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed AFM imaging
  publication-title: Phil. Trans. Roy. Soc. B
  doi: 10.1098/rstb.2017.0180
– volume: 7
  start-page: 1193
  year: 2012
  ident: 10.1016/j.bbagen.2019.03.011_bb0260
  article-title: Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.047
– year: 2017
  ident: 10.1016/j.bbagen.2019.03.011_bb0065
  article-title: Nanoscale dynamics of amyloid β-42 oligomers as revealed by high-speed atomic force microscopy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05434
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.bbagen.2019.03.011_bb0225
  article-title: A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient
  publication-title: Nat. Commun.
– start-page: 1771
  year: 2017
  ident: 10.1016/j.bbagen.2019.03.011_bb0190
  article-title: Tip-enhanced Raman spectroscopy to distinguish toxic oligomers from Aβ1–42 fibrils at the nanometer scale
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610399
– volume: 114
  start-page: 1584
  year: 2017
  ident: 10.1016/j.bbagen.2019.03.011_bb0055
  article-title: Direct visualization of glutamate transporter elevator mechanism by high-speed AFM
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1616413114
– volume: 98
  start-page: 2014
  year: 2010
  ident: 10.1016/j.bbagen.2019.03.011_bb0265
  article-title: Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.01.011
– volume: 90
  start-page: 7
  year: 2003
  ident: 10.1016/j.bbagen.2019.03.011_bb0145
  article-title: High-resolution near-field Raman microscopy of single-walled carbon nanotubes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.095503
– volume: 106
  start-page: 881
  year: 2006
  ident: 10.1016/j.bbagen.2019.03.011_bb0025
  article-title: Components for high speed atomic force microscopy
  publication-title: Ultramicroscopy.
  doi: 10.1016/j.ultramic.2006.01.015
– volume: 361
  start-page: 880
  year: 2018
  ident: 10.1016/j.bbagen.2019.03.011_bb0125
  article-title: Visualizing and discovering cellular structures with super-resolution microscopy
  publication-title: Science
  doi: 10.1126/science.aau1044
– volume: 1
  start-page: 572
  year: 2018
  ident: 10.1016/j.bbagen.2019.03.011_bb0185
  article-title: Nanoscale heterogeneities in monolayer MoSe2 revealed by correlated scanning probe microscopy and tip-enhanced Raman spectroscopy
  publication-title: Appl. Nano Material
  doi: 10.1021/acsanm.7b00083
– volume: 43
  start-page: 1248
  year: 2014
  ident: 10.1016/j.bbagen.2019.03.011_bb0235
  article-title: Tip-enhanced near-field optical microscopy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60258C
– volume: 83
  start-page: 337
  year: 2008
  ident: 10.1016/j.bbagen.2019.03.011_bb0010
  article-title: High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2008.09.001
– volume: 84
  year: 2013
  ident: 10.1016/j.bbagen.2019.03.011_bb0100
  article-title: High-speed atomic force microscope combined with single-molecule fluorescence microscope
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4813280
– volume: 98
  start-page: 12468
  year: 2001
  ident: 10.1016/j.bbagen.2019.03.011_bb0005
  article-title: A high-speed atomic force microscope for studying biological macromolecules
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.211400898
– volume: 76
  start-page: 1
  year: 2005
  ident: 10.1016/j.bbagen.2019.03.011_bb0015
  article-title: Active damping of the scanner for high-speed atomic force microscopy
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1903123
– volume: 65
  start-page: 1623
  year: 1994
  ident: 10.1016/j.bbagen.2019.03.011_bb0135
  article-title: Apertureless near-field optical microscope
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.112931
– volume: 1861 (
  start-page: 2630
  year: 2017
  ident: 10.1016/j.bbagen.2019.03.011_bb0195
  article-title: Tip-enhanced Raman scattering for tracking of invasomes in the stratum corneum
  publication-title: Biochem. Biophys. Acta - Gen. Subj.
  doi: 10.1016/j.bbagen.2017.07.003
– volume: vol. 5
  start-page: 1
  year: 2012
  ident: 10.1016/j.bbagen.2019.03.011_bb0165
– volume: 487
  start-page: 77
  year: 2012
  ident: 10.1016/j.bbagen.2019.03.011_bb0155
  article-title: Optical nano-imaging of gate-tunable graphene plasmons
  publication-title: Nature.
  doi: 10.1038/nature11254
– volume: 114
  start-page: 3120
  year: 2014
  ident: 10.1016/j.bbagen.2019.03.011_bb0030
  article-title: Filming biomolecular processes by high-speed atomic force microscopy
  publication-title: Chem. Rev.
  doi: 10.1021/cr4003837
– volume: 51
  year: 2018
  ident: 10.1016/j.bbagen.2019.03.011_bb0320
  article-title: The 2018 correlative microscopy techniques roadmap
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/aad055
– volume: 86
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.011_bb0105
  article-title: Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4922381
– start-page: 5634
  year: 2016
  ident: 10.1016/j.bbagen.2019.03.011_bb0160
  article-title: Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy
  publication-title: Nanoscale
  doi: 10.1039/C5NR08548A
– volume: 14
  start-page: 2921
  year: 2006
  ident: 10.1016/j.bbagen.2019.03.011_bb0300
  article-title: Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips
  publication-title: Opt. Express
  doi: 10.1364/OE.14.002921
– volume: 10
  start-page: 352
  year: 2011
  ident: 10.1016/j.bbagen.2019.03.011_bb0180
  article-title: Infrared-spectroscopic nanoimaging with a thermal source
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3006
– volume: 77
  year: 2006
  ident: 10.1016/j.bbagen.2019.03.011_bb0020
  article-title: Dynamic proportional-integral-differential controller for high-speed atomic force microscopy
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2336113
– volume: 498
  start-page: 82
  year: 2013
  ident: 10.1016/j.bbagen.2019.03.011_bb0220
  article-title: Chemical mapping of a single molecule by plasmon-enhanced Raman scattering
  publication-title: Nature.
  doi: 10.1038/nature12151
– volume: 5
  start-page: 208
  year: 2010
  ident: 10.1016/j.bbagen.2019.03.011_bb0045
  article-title: High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.7
– volume: 109
  year: 2012
  ident: 10.1016/j.bbagen.2019.03.011_bb0295
  article-title: Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.017402
– volume: 51
  start-page: 1363
  year: 2010
  ident: 10.1016/j.bbagen.2019.03.011_bb0270
  article-title: In-situ fabrication of polyacrylate–silver nanocomposite through photoinduced tandem reactions involving eosin dye
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.05.003
– volume: 20
  start-page: 3010
  year: 2018
  ident: 10.1016/j.bbagen.2019.03.011_bb0250
  article-title: Rate constants, processivity, and productive binding ratio of chitinase a revealed by single-molecule analysis
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP04606E
– volume: 5
  start-page: 280
  year: 2010
  ident: 10.1016/j.bbagen.2019.03.011_bb0085
  article-title: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.29
– volume: 80
  start-page: 6018
  year: 2008
  ident: 10.1016/j.bbagen.2019.03.011_bb0310
  article-title: Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein−protein interaction
  publication-title: Anal. Chem.
  doi: 10.1021/ac800726g
– volume: 9
  year: 2018
  ident: 10.1016/j.bbagen.2019.03.011_bb0280
  article-title: Processive chitinase is Broownian monorail operated by fast catalysis after peeling rail from crystalline chitin
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06362-3
– volume: 11
  start-page: 976
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.011_bb0050
  article-title: Dynamics of nucleosomal structures measured by high-speed atomic force microscopy
  publication-title: Small.
  doi: 10.1002/smll.201401318
– volume: 5
  start-page: 8724
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.011_bb0090
  article-title: Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep08724
– volume: 90
  year: 2007
  ident: 10.1016/j.bbagen.2019.03.011_bb0175
  article-title: Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2458343
– volume: 19
  start-page: 159
  year: 1994
  ident: 10.1016/j.bbagen.2019.03.011_bb0130
  article-title: Near-field scanning optical microscope with a metallic probe tip
  publication-title: Opt. Lett.
  doi: 10.1364/OL.19.000159
– volume: 468
  start-page: 72
  year: 2010
  ident: 10.1016/j.bbagen.2019.03.011_bb0035
  article-title: Video imaging of walking myosin V by high-speed atomic force microscopy
  publication-title: Nature
  doi: 10.1038/nature09450
– volume: 333
  start-page: 755
  year: 2011
  ident: 10.1016/j.bbagen.2019.03.011_bb0040
  article-title: High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase
  publication-title: Science
  doi: 10.1126/science.1205510
– volume: 3
  start-page: 388
  year: 2009
  ident: 10.1016/j.bbagen.2019.03.011_bb0140
  article-title: Plasmonics for near-field nano-imaging and superlensing
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.111
– volume: 11
  start-page: 11466
  year: 2017
  ident: 10.1016/j.bbagen.2019.03.011_bb0230
  article-title: Tip-enhanced Raman spectromicroscopy of Co(II)-tetraphenylporphyrin on Au(111): toward the chemists' microscope
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06183
– volume: 84
  year: 2013
  ident: 10.1016/j.bbagen.2019.03.011_bb0095
  article-title: Wide-area scanner for high-speed atomic force microscopy
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4803449
– volume: 440
  start-page: 935
  year: 2006
  ident: 10.1016/j.bbagen.2019.03.011_bb0115
  article-title: STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis
  publication-title: Nature
  doi: 10.1038/nature04592
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.011_bb0210
  article-title: Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8993
– start-page: 1
  year: 2013
  ident: 10.1016/j.bbagen.2019.03.011_bb0110
  article-title: High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events
  publication-title: Sci. Rep.
– volume: 96
  year: 2006
  ident: 10.1016/j.bbagen.2019.03.011_bb0255
  article-title: Enhancement and quenching of single-molecule fluorescence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.113002
– volume: 19
  start-page: 861
  year: 2001
  ident: 10.1016/j.bbagen.2019.03.011_bb0275
  article-title: Single-molecule observation of protein–protein interactions in the chaperonin system
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0901-861
– volume: 94
  start-page: 2
  year: 2009
  ident: 10.1016/j.bbagen.2019.03.011_bb0170
  article-title: Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3138132
– volume: 43
  start-page: 1177
  year: 2012
  ident: 10.1016/j.bbagen.2019.03.011_bb0305
  article-title: Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4032
– volume: 376
  start-page: 174
  year: 2003
  ident: 10.1016/j.bbagen.2019.03.011_bb0150
  article-title: Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(03)00883-2
– volume: 93
  start-page: 5
  year: 2004
  ident: 10.1016/j.bbagen.2019.03.011_bb0205
  article-title: Tip-enhanced fluorescence microscopy at 10 nanometer resolution
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.180801
– volume: 11
  start-page: 719
  year: 2016
  ident: 10.1016/j.bbagen.2019.03.011_bb0060
  article-title: Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.62
– volume: 2
  year: 2016
  ident: 10.1016/j.bbagen.2019.03.011_bb0200
  article-title: Infrared vibrational nano-crystallography and nano-imaging
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601006
SSID ssj0000595
Score 2.4376276
Snippet High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129325
SubjectTerms accuracy
atomic force microscopy
DNA
fluorescence microscopy
High-speed atomic force microscopy
image analysis
light microscopy
Plasmonics
proteins
Scanning near-field fluorescence microscopy
Single molecule analysis
Super-resolution optical microscopy
Title High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies
URI https://dx.doi.org/10.1016/j.bbagen.2019.03.011
https://www.ncbi.nlm.nih.gov/pubmed/30890438
https://www.proquest.com/docview/2194590072
https://www.proquest.com/docview/2221002124
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQCLUXROmDQItcqVc3fu_6iKKitFW5UCRultdZq1SwiUhy4MJvZ8beBXGgSL2uxpblGc9j55sZQr7MBEqNhIcko2NaJs4c54kFPYMIWxsecnn0r1M7Pdc_LszFBpkMtTAIq-x1f9HpWVv3X8b9bY4Xl5fjM0zqgTuBLggaYuz4qXWFUv717hHmAe6DKZkEzZB6KJ_LGK-mgUeLXVBFaXUqxHPm6Tn3M5uhk12y0_uP9Lgc8Q3ZaLs9sl0mSt7ukVeTYYDbW7JGDAdbLsA-0Q4EmmW0Gk1X6_lNbuIUW3qNeDysTLmlcAMQJQMt_pqlfx7XQlgOZBS826cL4AMtPZyQ0XRZEInvyPnJt9-TKeunLLConFmxWlQ2SF1FUwUdTDRcR1Mn2RqrXRLWtcop0bjatfUs1naWGiuaAL6SkjyopN6TzW7etfuEBqGjBRKI1o2GDQK3ATZLSieL6dQRUcPl-ti3IMdJGFd-wJr99YUlHlniufLAkhFhD6sWpQXHC_TVwDf_RJQ8WIkXVn4e2OyBV5g6CV07Xy896HWN81Ur-Q8aKUXumK9H5EORkYfzKl47zLke_PfZDslriaF-Box_JJurm3X7CfyhVXOUBf6IbB1__zk9vQeJVgjk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FEN3GbbulT01YFchetrWsQhWpGuby1qgN0F2LKxD5wRNcui_HynZLXroCuxqkIIgUnxY5EeAbwtJWqPwIqnGcaOi4E6IyINZYIZtrAipPfp0XszOzY8Le7ED06EXhsoqe9ufbXqy1v2XSX-ak9Xl5eQnPephOEEhCDli_QR2CZ3KjmD34Oh4Nr8zyDYNXyF6TgxDB10q86prvLcEhCoz2qmUD3mohyLQ5IkOX8DzPoRkB3mXL2Gn7fbhaR4qebMPe9Nhhtsr2FIZB1-v0EWxDnWap4I1Fq-2y-uE49S07A-V5FFzyg3DQ8BEGWnp7yz7dceLmTmSMQxw7zPgB5ZhnEjWbJ2LEl_D-eH3s-mM94MWeKOd3fBKlkVQpmxsGUywjRWmsVVUrS2Mi7JwrXZa1q5ybbVoqmIR60LWAcMlrUTQUb-BUbfs2nfAgjRNgSSYsFuDCwRRBFwsahMLelEdgx4O1zc9CjkNw7jyQ7nZb59F4kkkXmiPIhkDv-VaZRSOR-jLQW7-njZ5dBSPcH4dxOxRVvR6Erp2uV17NO2GRqyW6h80SskEmm_G8DbryO1-tagcPbu-_--9fYG92dnpiT85mh9_gGeKMv9UP_4RRpvrbfsJw6NN_blX_7-ToguV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-speed+near-field+fluorescence+microscopy+combined+with+high-speed+atomic+force+microscopy+for+biological+studies&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Umakoshi%2C+Takayuki&rft.au=Fukuda%2C+Shingo&rft.au=Iino%2C+Ryota&rft.au=Uchihashi%2C+Takayuki&rft.date=2020-02-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1864&rft.issue=2&rft.spage=129325&rft_id=info:doi/10.1016%2Fj.bbagen.2019.03.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon