ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification
Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classific...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 14; no. 4; pp. 692 - 704 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classification on a neural implant. By integrating model compression with probabilistic routing and implementing cost-aware learning, our proposed model could significantly reduce the memory and hardware cost compared to state-of-the-art models, while maintaining the classification accuracy. We trained the resource-efficient oblique tree with power-efficient regularization (ResOT-PE) on three neural classification tasks to evaluate the performance, memory, and hardware requirements. On seizure detection task, we were able to reduce the model size by 3.4× and the feature extraction cost by 14.6× compared to the ensemble of boosted trees, using the intracranial EEG from 10 epilepsy patients. In a second experiment, we tested the ResOT-PE model on tremor detection for Parkinson's disease, using the local field potentials from 12 patients implanted with a deep-brain stimulation (DBS) device. We achieved a comparable classification performance as the state-of-the-art boosted tree ensemble, while reducing the model size and feature extraction cost by 10.6× and 6.8×, respectively. We also tested on a 6-class finger movement detection task using ECoG recordings from 9 subjects, reducing the model size by 17.6× and feature computation cost by 5.1×. The proposed model can enable a low-power and memory-efficient implementation of classifiers for real-time neurological disease detection and motor decoding. |
---|---|
AbstractList | Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classification on a neural implant. By integrating model compression with probabilistic routing and implementing cost-aware learning, our proposed model could significantly reduce the memory and hardware cost compared to state-of-the-art models, while maintaining the classification accuracy. We trained the resource-efficient oblique tree with power-efficient regularization (ResOT-PE) on three neural classification tasks to evaluate the performance, memory, and hardware requirements. On seizure detection task, we were able to reduce the model size by 3.4× and the feature extraction cost by 14.6× compared to the ensemble of boosted trees, using the intracranial EEG from 10 epilepsy patients. In a second experiment, we tested the ResOT-PE model on tremor detection for Parkinson's disease, using the local field potentials from 12 patients implanted with a deep-brain stimulation (DBS) device. We achieved a comparable classification performance as the state-of-the-art boosted tree ensemble, while reducing the model size and feature extraction cost by 10.6× and 6.8×, respectively. We also tested on a 6-class finger movement detection task using ECoG recordings from 9 subjects, reducing the model size by 17.6× and feature computation cost by 5.1×. The proposed model can enable a low-power and memory-efficient implementation of classifiers for real-time neurological disease detection and motor decoding.Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classification on a neural implant. By integrating model compression with probabilistic routing and implementing cost-aware learning, our proposed model could significantly reduce the memory and hardware cost compared to state-of-the-art models, while maintaining the classification accuracy. We trained the resource-efficient oblique tree with power-efficient regularization (ResOT-PE) on three neural classification tasks to evaluate the performance, memory, and hardware requirements. On seizure detection task, we were able to reduce the model size by 3.4× and the feature extraction cost by 14.6× compared to the ensemble of boosted trees, using the intracranial EEG from 10 epilepsy patients. In a second experiment, we tested the ResOT-PE model on tremor detection for Parkinson's disease, using the local field potentials from 12 patients implanted with a deep-brain stimulation (DBS) device. We achieved a comparable classification performance as the state-of-the-art boosted tree ensemble, while reducing the model size and feature extraction cost by 10.6× and 6.8×, respectively. We also tested on a 6-class finger movement detection task using ECoG recordings from 9 subjects, reducing the model size by 17.6× and feature computation cost by 5.1×. The proposed model can enable a low-power and memory-efficient implementation of classifiers for real-time neurological disease detection and motor decoding. Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classification on a neural implant. By integrating model compression with probabilistic routing and implementing cost-aware learning, our proposed model could significantly reduce the memory and hardware cost compared to state-of-the-art models, while maintaining the classification accuracy. We trained the resource-efficient oblique tree with power-efficient regularization (ResOT-PE) on three neural classification tasks to evaluate the performance, memory, and hardware requirements. On seizure detection task, we were able to reduce the model size by 3.4× and the feature extraction cost by 14.6× compared to the ensemble of boosted trees, using the intracranial EEG from 10 epilepsy patients. In a second experiment, we tested the ResOT-PE model on tremor detection for Parkinson's disease, using the local field potentials from 12 patients implanted with a deep-brain stimulation (DBS) device. We achieved a comparable classification performance as the state-of-the-art boosted tree ensemble, while reducing the model size and feature extraction cost by 10.6× and 6.8×, respectively. We also tested on a 6-class finger movement detection task using ECoG recordings from 9 subjects, reducing the model size by 17.6× and feature computation cost by 5.1×. The proposed model can enable a low-power and memory-efficient implementation of classifiers for real-time neurological disease detection and motor decoding. |
Author | Zhu, Bingzhao Farivar, Masoud Shoaran, Mahsa |
Author_xml | – sequence: 1 givenname: Bingzhao orcidid: 0000-0001-7018-3074 surname: Zhu fullname: Zhu, Bingzhao email: bz323@cornell.edu organization: School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA – sequence: 2 givenname: Masoud orcidid: 0000-0001-7298-3526 surname: Farivar fullname: Farivar, Masoud email: mfarivar@gmail.com organization: Google, Mountain View, CA, USA – sequence: 3 givenname: Mahsa orcidid: 0000-0002-6426-4799 surname: Shoaran fullname: Shoaran, Mahsa email: mahsa.shoaran@epfl.ch organization: Center for Neuroprosthetics (CNP), Institute of Electrical Engineering, Geneva, EPFL, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32746347$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAUhYMoPkb_gIIU3LjpePNqJ-508AXigI7rkqQ3Eum0mrQL_72Zhy5cuDohfCe595wDst12LRJyTGFMKaiL-fX06mXMgMGYAwgpxBbZp0pArpSC7eWZszzdyz1yEOM7gCyYYrtkj7NSFFyU--T-GeNsfpkl6YZgMb9xzluPbZ_NTOM_B8zmATFmrgvZEw5BN9mLf2uTTBsdo0-07n3XHpIdp5uIRxsdkdfbm_n0Pn-c3T1Mrx5zy5Xs8wmldYnWlKgLBUyrwhjKOEpJbe3qEmrjoNYgLIC2hjmH0jEtnEVqJqbmI3K-fvcjdGm62FcLHy02jW6xG2LFBAdeFsBkQs_-oO9pxzT6iioECJUSGpHTDTWYBdbVR_ALHb6qn4wSwNaADV2MAd0vQqFaFlGtiqiWRVSbIpJp8sdkfb8Kqg_aN_9bT9ZWj4i_fynKRFFI_g0q_5UK |
CODEN | ITBCCW |
CitedBy_id | crossref_primary_10_3389_fnhum_2023_1111590 crossref_primary_10_3390_brainsci10110809 crossref_primary_10_1109_TBCAS_2021_3112756 crossref_primary_10_1145_3724420 crossref_primary_10_1016_j_copbio_2021_10_012 crossref_primary_10_3389_fnhum_2022_913777 crossref_primary_10_3390_s23084112 crossref_primary_10_1111_epi_17566 crossref_primary_10_1088_1741_2552_ad8839 crossref_primary_10_1109_JSSC_2022_3204508 crossref_primary_10_1016_j_expneurol_2022_113993 crossref_primary_10_1088_1741_2552_ac5268 crossref_primary_10_1109_TBCAS_2021_3137290 crossref_primary_10_1088_1741_2552_ac4ed1 crossref_primary_10_1109_TCAD_2022_3170248 crossref_primary_10_1088_1741_2552_ac84ab crossref_primary_10_1016_j_clinph_2023_10_018 |
Cites_doi | 10.1109/BIOCAS.2019.8918702 10.1007/978-3-030-12939-2_42 10.1109/TCSII.2014.2385211 10.1109/TBCAS.2015.2477264 10.1007/978-3-642-23783-6_29 10.1109/JETCAS.2018.2836319 10.1016/0020-0190(76)90095-8 10.1109/JSSC.2015.2487276 10.1016/0013-4694(70)90143-4 10.1016/j.neucom.2015.11.034 10.1093/brain/awy210 10.1109/TBCAS.2015.2483618 10.1109/TBCAS.2019.2944486 10.1109/IEEECONF44664.2019.9049047 10.1109/EMBC.2014.6944610 10.1177/0333102419839975 10.1371/journal.pcbi.1002655 10.1016/j.clinph.2019.09.021 10.1109/EMBC.2015.7319900 10.1109/JETCAS.2018.2844733 10.1109/5.726791 10.1145/2939672.2939785 10.1109/JSSC.2015.2482498 10.1109/BIOCAS.2018.8584721 10.1109/IEEECONF44664.2019.9048649 10.1109/JSSC.2012.2221220 10.1109/BIOCAS.2010.5709556 10.1109/JSSC.2013.2253226 10.1097/WNP.0000000000000159 10.1109/MICRO.2018.00024 10.1109/JSSC.2010.2042245 10.1109/NER.2019.8716983 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
DOI | 10.1109/TBCAS.2020.3004544 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1940-9990 |
EndPage | 704 |
ExternalDocumentID | 32746347 10_1109_TBCAS_2020_3004544 9124665 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Google Faculty Research Award in Machine learning |
GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c395t-811d7ecb7ea6902a96bb123e551cdfd70dbf0da04c00acb2ffe5f2a4fce1b8bd3 |
IEDL.DBID | RIE |
ISSN | 1932-4545 1940-9990 |
IngestDate | Fri Jul 11 00:07:28 EDT 2025 Mon Jun 30 08:39:31 EDT 2025 Mon Jul 21 05:56:29 EDT 2025 Tue Jul 01 03:26:35 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 Wed Aug 27 02:32:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-811d7ecb7ea6902a96bb123e551cdfd70dbf0da04c00acb2ffe5f2a4fce1b8bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7018-3074 0000-0001-7298-3526 0000-0002-6426-4799 |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/171500 |
PMID | 32746347 |
PQID | 2436404919 |
PQPubID | 85510 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9124665 crossref_citationtrail_10_1109_TBCAS_2020_3004544 proquest_miscellaneous_2430376025 proquest_journals_2436404919 crossref_primary_10_1109_TBCAS_2020_3004544 pubmed_primary_32746347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical circuits and systems |
PublicationTitleAbbrev | TBCAS |
PublicationTitleAlternate | IEEE Trans Biomed Circuits Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref31 ref30 ref33 ref11 norouzi (ref23) 0 ref32 ref10 ref2 ref1 hu (ref24) 0 ref19 ref18 kumar (ref14) 0; 70 lin (ref26) 0 fedorov (ref45) 0 badami (ref34) 2016; 51 kusupati (ref44) 0 ref25 ref20 ref21 ref43 laurent (ref22) 1976; 5 ref28 lecun (ref39) 0 kingma (ref38) 2014 ref29 xu (ref41) 2012 ref8 ref7 ref9 ref4 peter (ref16) 0 ref3 carreira-perpinán (ref17) 0 ref6 ref5 tanno (ref42) 2018 han (ref27) 2015 ref40 gural (ref46) 0 ke (ref47) 0 |
References_xml | – ident: ref21 doi: 10.1109/BIOCAS.2019.8918702 – ident: ref25 doi: 10.1007/978-3-030-12939-2_42 – ident: ref4 doi: 10.1109/TCSII.2014.2385211 – start-page: 7265 year: 0 ident: ref24 article-title: Optimal sparse decision trees publication-title: Proc Adv Neural Inf Process Syst – ident: ref3 doi: 10.1109/TBCAS.2015.2477264 – ident: ref37 doi: 10.1007/978-3-642-23783-6_29 – start-page: 1729 year: 0 ident: ref23 article-title: Efficient non-greedy optimization of decision trees publication-title: Proc Adv Neural Inf Process Syst – ident: ref33 doi: 10.1109/JETCAS.2018.2836319 – volume: 5 start-page: 15 year: 1976 ident: ref22 article-title: Constructing optimal binary decision trees is np-complete publication-title: Inf Process Lett doi: 10.1016/0020-0190(76)90095-8 – year: 2018 ident: ref42 article-title: Adaptive neural trees – volume: 51 start-page: 291 year: 2016 ident: ref34 article-title: A 90 nm cmos, 6 $\mu$w power-proportional acoustic sensing frontend for voice activity detection publication-title: IEEE J Solid-State Circuits doi: 10.1109/JSSC.2015.2487276 – year: 2015 ident: ref27 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding – ident: ref35 doi: 10.1016/0013-4694(70)90143-4 – start-page: 598 year: 0 ident: ref39 article-title: Optimal brain damage publication-title: Proc Adv Neural Inf Process Syst – ident: ref7 doi: 10.1016/j.neucom.2015.11.034 – ident: ref19 doi: 10.1093/brain/awy210 – ident: ref8 doi: 10.1109/TBCAS.2015.2483618 – year: 2014 ident: ref38 article-title: Adam: A method for stochastic optimization – ident: ref15 doi: 10.1109/TBCAS.2019.2944486 – start-page: 2515 year: 0 ident: ref46 article-title: Memory-optimal direct convolutions for maximizing classification accuracy in embedded applications publication-title: Proc Int Conf Mach Learn – start-page: 1211 year: 0 ident: ref17 article-title: Alternating optimization of decision trees, with application to learning sparse oblique trees publication-title: Proc Adv Neural Inf Process Syst – ident: ref36 doi: 10.1109/IEEECONF44664.2019.9049047 – start-page: 1551 year: 0 ident: ref16 article-title: Cost efficient gradient boosting publication-title: Proc Adv Neural Inf Process Syst – ident: ref11 doi: 10.1109/EMBC.2014.6944610 – ident: ref10 doi: 10.1177/0333102419839975 – start-page: 3146 year: 0 ident: ref47 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Proc Adv Neural Inf Process Syst – start-page: 2849 year: 0 ident: ref26 article-title: Fixed point quantization of deep convolutional networks publication-title: Proc Int Conf Mach Learn – ident: ref30 doi: 10.1371/journal.pcbi.1002655 – volume: 70 start-page: 1935 year: 0 ident: ref14 article-title: Resource-efficient machine learning in 2 KB RAM for the internet of things publication-title: Proc 34th Int Conf Mach Learn – start-page: 4978 year: 0 ident: ref45 article-title: Sparse: Sparse architecture search for cnns on resource-constrained microcontrollers publication-title: Proc Adv Neural Inf Process Syst – ident: ref6 doi: 10.1016/j.clinph.2019.09.021 – ident: ref5 doi: 10.1109/EMBC.2015.7319900 – ident: ref2 doi: 10.1109/JETCAS.2018.2844733 – ident: ref43 doi: 10.1109/5.726791 – ident: ref18 doi: 10.1145/2939672.2939785 – ident: ref31 doi: 10.1109/JSSC.2015.2482498 – ident: ref29 doi: 10.1109/BIOCAS.2018.8584721 – ident: ref9 doi: 10.1109/IEEECONF44664.2019.9048649 – ident: ref1 doi: 10.1109/JSSC.2012.2221220 – ident: ref13 doi: 10.1109/BIOCAS.2010.5709556 – ident: ref32 doi: 10.1109/JSSC.2013.2253226 – start-page: 9017 year: 0 ident: ref44 article-title: Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network publication-title: Proc Adv Neural Inf Process Syst – ident: ref28 doi: 10.1097/WNP.0000000000000159 – year: 2012 ident: ref41 article-title: The greedy miser: Learning under test-time budgets – ident: ref40 doi: 10.1109/MICRO.2018.00024 – ident: ref12 doi: 10.1109/JSSC.2010.2042245 – ident: ref20 doi: 10.1109/NER.2019.8716983 |
SSID | ssj0056292 |
Score | 2.4031827 |
Snippet | Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 692 |
SubjectTerms | Brain - physiology Brain - physiopathology Brain modeling Classification Classifiers Compression Computational modeling Computational neuroscience Computer memory Decision Trees Disease detection Edge computing EEG Electroencephalography - classification Epilepsy Epilepsy - diagnosis Epilepsy - physiopathology Feature extraction Fingers - physiology Hardware Humans Learning algorithms Machine Learning Model accuracy Motion detection Motion perception Movement disorders Neural prostheses Neurodegenerative diseases neurological disease detection Neurological diseases oblique trees Parkinson Disease - physiopathology Parkinson's disease Performance evaluation Power management Regularization resource-efficient Seizures Seizures - diagnosis Seizures - physiopathology Signal classification Signal Processing, Computer-Assisted Task analysis Tremor |
Title | ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification |
URI | https://ieeexplore.ieee.org/document/9124665 https://www.ncbi.nlm.nih.gov/pubmed/32746347 https://www.proquest.com/docview/2436404919 https://www.proquest.com/docview/2430376025 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3LgUR5doFUqcStZHMdx4t4oAq0qARIsErcotieoKtqt2N0Lv54Z5yFaAeotUpxJ4nEy32ePvwE4zI3FrDBZrJBFtT0vEqaeyEpqpTQ55pnjFd2LSz26VT_vsrslOOr3wiBiSD7DIR-GtXw_dQueKjs2FIy0zpZhmYhbs1er--tSGA8FkBmPsI531m2QEeZ4_OP05IaooCSGGiTn1F9BKFRVeRtghkBzvg4X3SM2-SW_h4u5Hbqnf9Qb__cdNmCtRZzRSTNENmEJJx9h9YUO4RaMrnF2Nf4edXP58VkQliBD0ZV9YIXXaPyIOIsI4UYs50H2bn7ds9lQVJPTjYKHt-H2_Gx8OorbEguxS002j4sk8Tk6m2NFNFlWRltLsQwJRzlf-1x4WwtfCeWEqJyVdY1ZLStVO0xsYX26AyuT6QQ_QaTriuACFtoJR6iASHqeqqrwAqVGAioDSLo-L12rP85lMB7KwEOEKYOfSvZT2fppAN_6a_406hvvtt7i_u5btl09gIPOtWX7gc5KqVKtiB0lZgBf-9P0afF6STXB6SK0EZwzJMnEbjMketspsXmdqnzv9Xvuwwd-siZT8ABW5o8L_EzoZW6_hGH7DJPb6V4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvMpjoUCQuEG2jmM7MbdStVqg20o0lXqLYnuCENUu6u5e-PXMOA8BAsQtUpyJ47Ez33jG3wC8KqxDXVqdKmRS7cBBwjyQs5I7KW2BhfYc0Z2fmNm5-nChL7bgzXgWBhFj8hlO-TLG8sPSb3irbM-SMTJGX4PrZPd11p3WGv67ZMhjCWRGJMzkrYcjMsLuVe8O9s_IGZTko0bSOfWLGYp1Vf4OMaOpOboD86GTXYbJ1-lm7ab--2_8jf_7FXfhdo85k_1uktyDLVzch1s_MRHuwOwTrk6rt8mwm58eRmoJEpScukvmeE2qK8RVQhg3YUIPknf25TOLjWU1OeEo6vgBnB8dVgeztC-ykPrc6nVaZlko0LsCG3KUZWONc2TNkMbXhzYUIrhWhEYoL0TjnWxb1K1sVOsxc6UL-UPYXiwX-BgS0zYEGLA0XnjCBeSmF7lqyiBQGiSoMoFsGPPa9wzkXAjjso6eiLB11FPNeqp7PU3g9fjMt45_45-td3i8x5b9UE9gd1Bt3S_RVS1VbhT5R5mdwMvxNi0ujpg0C1xuYhvBWUOSRDzqpsQoOyd_3uSqePLnd76AG7Nqflwfvz_5-BRuci-7vMFd2F5fbfAZYZm1ex6n8A_nHuyn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ResOT%3A+Resource-Efficient+Oblique+Trees+for+Neural+Signal+Classification&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Zhu%2C+Bingzhao&rft.au=Farivar%2C+Masoud&rft.au=Shoaran%2C+Mahsa&rft.date=2020-08-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=14&rft.issue=4&rft.spage=692&rft.epage=704&rft_id=info:doi/10.1109%2FTBCAS.2020.3004544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2020_3004544 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |