ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification

Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classific...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 14; no. 4; pp. 692 - 704
Main Authors Zhu, Bingzhao, Farivar, Masoud, Shoaran, Mahsa
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classification on a neural implant. By integrating model compression with probabilistic routing and implementing cost-aware learning, our proposed model could significantly reduce the memory and hardware cost compared to state-of-the-art models, while maintaining the classification accuracy. We trained the resource-efficient oblique tree with power-efficient regularization (ResOT-PE) on three neural classification tasks to evaluate the performance, memory, and hardware requirements. On seizure detection task, we were able to reduce the model size by 3.4× and the feature extraction cost by 14.6× compared to the ensemble of boosted trees, using the intracranial EEG from 10 epilepsy patients. In a second experiment, we tested the ResOT-PE model on tremor detection for Parkinson's disease, using the local field potentials from 12 patients implanted with a deep-brain stimulation (DBS) device. We achieved a comparable classification performance as the state-of-the-art boosted tree ensemble, while reducing the model size and feature extraction cost by 10.6× and 6.8×, respectively. We also tested on a 6-class finger movement detection task using ECoG recordings from 9 subjects, reducing the model size by 17.6× and feature computation cost by 5.1×. The proposed model can enable a low-power and memory-efficient implementation of classifiers for real-time neurological disease detection and motor decoding.
AbstractList Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classification on a neural implant. By integrating model compression with probabilistic routing and implementing cost-aware learning, our proposed model could significantly reduce the memory and hardware cost compared to state-of-the-art models, while maintaining the classification accuracy. We trained the resource-efficient oblique tree with power-efficient regularization (ResOT-PE) on three neural classification tasks to evaluate the performance, memory, and hardware requirements. On seizure detection task, we were able to reduce the model size by 3.4× and the feature extraction cost by 14.6× compared to the ensemble of boosted trees, using the intracranial EEG from 10 epilepsy patients. In a second experiment, we tested the ResOT-PE model on tremor detection for Parkinson's disease, using the local field potentials from 12 patients implanted with a deep-brain stimulation (DBS) device. We achieved a comparable classification performance as the state-of-the-art boosted tree ensemble, while reducing the model size and feature extraction cost by 10.6× and 6.8×, respectively. We also tested on a 6-class finger movement detection task using ECoG recordings from 9 subjects, reducing the model size by 17.6× and feature computation cost by 5.1×. The proposed model can enable a low-power and memory-efficient implementation of classifiers for real-time neurological disease detection and motor decoding.Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classification on a neural implant. By integrating model compression with probabilistic routing and implementing cost-aware learning, our proposed model could significantly reduce the memory and hardware cost compared to state-of-the-art models, while maintaining the classification accuracy. We trained the resource-efficient oblique tree with power-efficient regularization (ResOT-PE) on three neural classification tasks to evaluate the performance, memory, and hardware requirements. On seizure detection task, we were able to reduce the model size by 3.4× and the feature extraction cost by 14.6× compared to the ensemble of boosted trees, using the intracranial EEG from 10 epilepsy patients. In a second experiment, we tested the ResOT-PE model on tremor detection for Parkinson's disease, using the local field potentials from 12 patients implanted with a deep-brain stimulation (DBS) device. We achieved a comparable classification performance as the state-of-the-art boosted tree ensemble, while reducing the model size and feature extraction cost by 10.6× and 6.8×, respectively. We also tested on a 6-class finger movement detection task using ECoG recordings from 9 subjects, reducing the model size by 17.6× and feature computation cost by 5.1×. The proposed model can enable a low-power and memory-efficient implementation of classifiers for real-time neurological disease detection and motor decoding.
Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classification on a neural implant. By integrating model compression with probabilistic routing and implementing cost-aware learning, our proposed model could significantly reduce the memory and hardware cost compared to state-of-the-art models, while maintaining the classification accuracy. We trained the resource-efficient oblique tree with power-efficient regularization (ResOT-PE) on three neural classification tasks to evaluate the performance, memory, and hardware requirements. On seizure detection task, we were able to reduce the model size by 3.4× and the feature extraction cost by 14.6× compared to the ensemble of boosted trees, using the intracranial EEG from 10 epilepsy patients. In a second experiment, we tested the ResOT-PE model on tremor detection for Parkinson's disease, using the local field potentials from 12 patients implanted with a deep-brain stimulation (DBS) device. We achieved a comparable classification performance as the state-of-the-art boosted tree ensemble, while reducing the model size and feature extraction cost by 10.6× and 6.8×, respectively. We also tested on a 6-class finger movement detection task using ECoG recordings from 9 subjects, reducing the model size by 17.6× and feature computation cost by 5.1×. The proposed model can enable a low-power and memory-efficient implementation of classifiers for real-time neurological disease detection and motor decoding.
Author Zhu, Bingzhao
Farivar, Masoud
Shoaran, Mahsa
Author_xml – sequence: 1
  givenname: Bingzhao
  orcidid: 0000-0001-7018-3074
  surname: Zhu
  fullname: Zhu, Bingzhao
  email: bz323@cornell.edu
  organization: School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
– sequence: 2
  givenname: Masoud
  orcidid: 0000-0001-7298-3526
  surname: Farivar
  fullname: Farivar, Masoud
  email: mfarivar@gmail.com
  organization: Google, Mountain View, CA, USA
– sequence: 3
  givenname: Mahsa
  orcidid: 0000-0002-6426-4799
  surname: Shoaran
  fullname: Shoaran, Mahsa
  email: mahsa.shoaran@epfl.ch
  organization: Center for Neuroprosthetics (CNP), Institute of Electrical Engineering, Geneva, EPFL, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32746347$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYMoPkb_gIIU3LjpePNqJ-508AXigI7rkqQ3Eum0mrQL_72Zhy5cuDohfCe595wDst12LRJyTGFMKaiL-fX06mXMgMGYAwgpxBbZp0pArpSC7eWZszzdyz1yEOM7gCyYYrtkj7NSFFyU--T-GeNsfpkl6YZgMb9xzluPbZ_NTOM_B8zmATFmrgvZEw5BN9mLf2uTTBsdo0-07n3XHpIdp5uIRxsdkdfbm_n0Pn-c3T1Mrx5zy5Xs8wmldYnWlKgLBUyrwhjKOEpJbe3qEmrjoNYgLIC2hjmH0jEtnEVqJqbmI3K-fvcjdGm62FcLHy02jW6xG2LFBAdeFsBkQs_-oO9pxzT6iioECJUSGpHTDTWYBdbVR_ALHb6qn4wSwNaADV2MAd0vQqFaFlGtiqiWRVSbIpJp8sdkfb8Kqg_aN_9bT9ZWj4i_fynKRFFI_g0q_5UK
CODEN ITBCCW
CitedBy_id crossref_primary_10_3389_fnhum_2023_1111590
crossref_primary_10_3390_brainsci10110809
crossref_primary_10_1109_TBCAS_2021_3112756
crossref_primary_10_1145_3724420
crossref_primary_10_1016_j_copbio_2021_10_012
crossref_primary_10_3389_fnhum_2022_913777
crossref_primary_10_3390_s23084112
crossref_primary_10_1111_epi_17566
crossref_primary_10_1088_1741_2552_ad8839
crossref_primary_10_1109_JSSC_2022_3204508
crossref_primary_10_1016_j_expneurol_2022_113993
crossref_primary_10_1088_1741_2552_ac5268
crossref_primary_10_1109_TBCAS_2021_3137290
crossref_primary_10_1088_1741_2552_ac4ed1
crossref_primary_10_1109_TCAD_2022_3170248
crossref_primary_10_1088_1741_2552_ac84ab
crossref_primary_10_1016_j_clinph_2023_10_018
Cites_doi 10.1109/BIOCAS.2019.8918702
10.1007/978-3-030-12939-2_42
10.1109/TCSII.2014.2385211
10.1109/TBCAS.2015.2477264
10.1007/978-3-642-23783-6_29
10.1109/JETCAS.2018.2836319
10.1016/0020-0190(76)90095-8
10.1109/JSSC.2015.2487276
10.1016/0013-4694(70)90143-4
10.1016/j.neucom.2015.11.034
10.1093/brain/awy210
10.1109/TBCAS.2015.2483618
10.1109/TBCAS.2019.2944486
10.1109/IEEECONF44664.2019.9049047
10.1109/EMBC.2014.6944610
10.1177/0333102419839975
10.1371/journal.pcbi.1002655
10.1016/j.clinph.2019.09.021
10.1109/EMBC.2015.7319900
10.1109/JETCAS.2018.2844733
10.1109/5.726791
10.1145/2939672.2939785
10.1109/JSSC.2015.2482498
10.1109/BIOCAS.2018.8584721
10.1109/IEEECONF44664.2019.9048649
10.1109/JSSC.2012.2221220
10.1109/BIOCAS.2010.5709556
10.1109/JSSC.2013.2253226
10.1097/WNP.0000000000000159
10.1109/MICRO.2018.00024
10.1109/JSSC.2010.2042245
10.1109/NER.2019.8716983
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2020.3004544
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Biotechnology Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 704
ExternalDocumentID 32746347
10_1109_TBCAS_2020_3004544
9124665
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Google Faculty Research Award in Machine learning
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c395t-811d7ecb7ea6902a96bb123e551cdfd70dbf0da04c00acb2ffe5f2a4fce1b8bd3
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Fri Jul 11 00:07:28 EDT 2025
Mon Jun 30 08:39:31 EDT 2025
Mon Jul 21 05:56:29 EDT 2025
Tue Jul 01 03:26:35 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Wed Aug 27 02:32:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-811d7ecb7ea6902a96bb123e551cdfd70dbf0da04c00acb2ffe5f2a4fce1b8bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7018-3074
0000-0001-7298-3526
0000-0002-6426-4799
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/171500
PMID 32746347
PQID 2436404919
PQPubID 85510
PageCount 13
ParticipantIDs ieee_primary_9124665
crossref_citationtrail_10_1109_TBCAS_2020_3004544
proquest_miscellaneous_2430376025
proquest_journals_2436404919
crossref_primary_10_1109_TBCAS_2020_3004544
pubmed_primary_32746347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref31
ref30
ref33
ref11
norouzi (ref23) 0
ref32
ref10
ref2
ref1
hu (ref24) 0
ref19
ref18
kumar (ref14) 0; 70
lin (ref26) 0
fedorov (ref45) 0
badami (ref34) 2016; 51
kusupati (ref44) 0
ref25
ref20
ref21
ref43
laurent (ref22) 1976; 5
ref28
lecun (ref39) 0
kingma (ref38) 2014
ref29
xu (ref41) 2012
ref8
ref7
ref9
ref4
peter (ref16) 0
ref3
carreira-perpinán (ref17) 0
ref6
ref5
tanno (ref42) 2018
han (ref27) 2015
ref40
gural (ref46) 0
ke (ref47) 0
References_xml – ident: ref21
  doi: 10.1109/BIOCAS.2019.8918702
– ident: ref25
  doi: 10.1007/978-3-030-12939-2_42
– ident: ref4
  doi: 10.1109/TCSII.2014.2385211
– start-page: 7265
  year: 0
  ident: ref24
  article-title: Optimal sparse decision trees
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref3
  doi: 10.1109/TBCAS.2015.2477264
– ident: ref37
  doi: 10.1007/978-3-642-23783-6_29
– start-page: 1729
  year: 0
  ident: ref23
  article-title: Efficient non-greedy optimization of decision trees
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref33
  doi: 10.1109/JETCAS.2018.2836319
– volume: 5
  start-page: 15
  year: 1976
  ident: ref22
  article-title: Constructing optimal binary decision trees is np-complete
  publication-title: Inf Process Lett
  doi: 10.1016/0020-0190(76)90095-8
– year: 2018
  ident: ref42
  article-title: Adaptive neural trees
– volume: 51
  start-page: 291
  year: 2016
  ident: ref34
  article-title: A 90 nm cmos, 6 $\mu$w power-proportional acoustic sensing frontend for voice activity detection
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2015.2487276
– year: 2015
  ident: ref27
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
– ident: ref35
  doi: 10.1016/0013-4694(70)90143-4
– start-page: 598
  year: 0
  ident: ref39
  article-title: Optimal brain damage
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref7
  doi: 10.1016/j.neucom.2015.11.034
– ident: ref19
  doi: 10.1093/brain/awy210
– ident: ref8
  doi: 10.1109/TBCAS.2015.2483618
– year: 2014
  ident: ref38
  article-title: Adam: A method for stochastic optimization
– ident: ref15
  doi: 10.1109/TBCAS.2019.2944486
– start-page: 2515
  year: 0
  ident: ref46
  article-title: Memory-optimal direct convolutions for maximizing classification accuracy in embedded applications
  publication-title: Proc Int Conf Mach Learn
– start-page: 1211
  year: 0
  ident: ref17
  article-title: Alternating optimization of decision trees, with application to learning sparse oblique trees
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref36
  doi: 10.1109/IEEECONF44664.2019.9049047
– start-page: 1551
  year: 0
  ident: ref16
  article-title: Cost efficient gradient boosting
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref11
  doi: 10.1109/EMBC.2014.6944610
– ident: ref10
  doi: 10.1177/0333102419839975
– start-page: 3146
  year: 0
  ident: ref47
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2849
  year: 0
  ident: ref26
  article-title: Fixed point quantization of deep convolutional networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref30
  doi: 10.1371/journal.pcbi.1002655
– volume: 70
  start-page: 1935
  year: 0
  ident: ref14
  article-title: Resource-efficient machine learning in 2 KB RAM for the internet of things
  publication-title: Proc 34th Int Conf Mach Learn
– start-page: 4978
  year: 0
  ident: ref45
  article-title: Sparse: Sparse architecture search for cnns on resource-constrained microcontrollers
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1016/j.clinph.2019.09.021
– ident: ref5
  doi: 10.1109/EMBC.2015.7319900
– ident: ref2
  doi: 10.1109/JETCAS.2018.2844733
– ident: ref43
  doi: 10.1109/5.726791
– ident: ref18
  doi: 10.1145/2939672.2939785
– ident: ref31
  doi: 10.1109/JSSC.2015.2482498
– ident: ref29
  doi: 10.1109/BIOCAS.2018.8584721
– ident: ref9
  doi: 10.1109/IEEECONF44664.2019.9048649
– ident: ref1
  doi: 10.1109/JSSC.2012.2221220
– ident: ref13
  doi: 10.1109/BIOCAS.2010.5709556
– ident: ref32
  doi: 10.1109/JSSC.2013.2253226
– start-page: 9017
  year: 0
  ident: ref44
  article-title: Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref28
  doi: 10.1097/WNP.0000000000000159
– year: 2012
  ident: ref41
  article-title: The greedy miser: Learning under test-time budgets
– ident: ref40
  doi: 10.1109/MICRO.2018.00024
– ident: ref12
  doi: 10.1109/JSSC.2010.2042245
– ident: ref20
  doi: 10.1109/NER.2019.8716983
SSID ssj0056292
Score 2.4031827
Snippet Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 692
SubjectTerms Brain - physiology
Brain - physiopathology
Brain modeling
Classification
Classifiers
Compression
Computational modeling
Computational neuroscience
Computer memory
Decision Trees
Disease detection
Edge computing
EEG
Electroencephalography - classification
Epilepsy
Epilepsy - diagnosis
Epilepsy - physiopathology
Feature extraction
Fingers - physiology
Hardware
Humans
Learning algorithms
Machine Learning
Model accuracy
Motion detection
Motion perception
Movement disorders
Neural prostheses
Neurodegenerative diseases
neurological disease detection
Neurological diseases
oblique trees
Parkinson Disease - physiopathology
Parkinson's disease
Performance evaluation
Power management
Regularization
resource-efficient
Seizures
Seizures - diagnosis
Seizures - physiopathology
Signal classification
Signal Processing, Computer-Assisted
Task analysis
Tremor
Title ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification
URI https://ieeexplore.ieee.org/document/9124665
https://www.ncbi.nlm.nih.gov/pubmed/32746347
https://www.proquest.com/docview/2436404919
https://www.proquest.com/docview/2430376025
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3LgUR5doFUqcStZHMdx4t4oAq0qARIsErcotieoKtqt2N0Lv54Z5yFaAeotUpxJ4nEy32ePvwE4zI3FrDBZrJBFtT0vEqaeyEpqpTQ55pnjFd2LSz26VT_vsrslOOr3wiBiSD7DIR-GtXw_dQueKjs2FIy0zpZhmYhbs1er--tSGA8FkBmPsI531m2QEeZ4_OP05IaooCSGGiTn1F9BKFRVeRtghkBzvg4X3SM2-SW_h4u5Hbqnf9Qb__cdNmCtRZzRSTNENmEJJx9h9YUO4RaMrnF2Nf4edXP58VkQliBD0ZV9YIXXaPyIOIsI4UYs50H2bn7ds9lQVJPTjYKHt-H2_Gx8OorbEguxS002j4sk8Tk6m2NFNFlWRltLsQwJRzlf-1x4WwtfCeWEqJyVdY1ZLStVO0xsYX26AyuT6QQ_QaTriuACFtoJR6iASHqeqqrwAqVGAioDSLo-L12rP85lMB7KwEOEKYOfSvZT2fppAN_6a_406hvvtt7i_u5btl09gIPOtWX7gc5KqVKtiB0lZgBf-9P0afF6STXB6SK0EZwzJMnEbjMketspsXmdqnzv9Xvuwwd-siZT8ABW5o8L_EzoZW6_hGH7DJPb6V4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvMpjoUCQuEG2jmM7MbdStVqg20o0lXqLYnuCENUu6u5e-PXMOA8BAsQtUpyJ47Ez33jG3wC8KqxDXVqdKmRS7cBBwjyQs5I7KW2BhfYc0Z2fmNm5-nChL7bgzXgWBhFj8hlO-TLG8sPSb3irbM-SMTJGX4PrZPd11p3WGv67ZMhjCWRGJMzkrYcjMsLuVe8O9s_IGZTko0bSOfWLGYp1Vf4OMaOpOboD86GTXYbJ1-lm7ab--2_8jf_7FXfhdo85k_1uktyDLVzch1s_MRHuwOwTrk6rt8mwm58eRmoJEpScukvmeE2qK8RVQhg3YUIPknf25TOLjWU1OeEo6vgBnB8dVgeztC-ykPrc6nVaZlko0LsCG3KUZWONc2TNkMbXhzYUIrhWhEYoL0TjnWxb1K1sVOsxc6UL-UPYXiwX-BgS0zYEGLA0XnjCBeSmF7lqyiBQGiSoMoFsGPPa9wzkXAjjso6eiLB11FPNeqp7PU3g9fjMt45_45-td3i8x5b9UE9gd1Bt3S_RVS1VbhT5R5mdwMvxNi0ujpg0C1xuYhvBWUOSRDzqpsQoOyd_3uSqePLnd76AG7Nqflwfvz_5-BRuci-7vMFd2F5fbfAZYZm1ex6n8A_nHuyn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ResOT%3A+Resource-Efficient+Oblique+Trees+for+Neural+Signal+Classification&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Zhu%2C+Bingzhao&rft.au=Farivar%2C+Masoud&rft.au=Shoaran%2C+Mahsa&rft.date=2020-08-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=14&rft.issue=4&rft.spage=692&rft.epage=704&rft_id=info:doi/10.1109%2FTBCAS.2020.3004544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2020_3004544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon