Motor Imagery EEG Decoding Method Based on a Discriminative Feature Learning Strategy
With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 368 - 379 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2021.3051958 |
Cover
Abstract | With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the features with high discrimination and limits the improvement of EEG decoding accuracy. In this paper, a discriminative feature learning strategy is proposed to improve the discrimination of features, which includes the central distance loss (CD-loss), the central vector shift strategy, and the central vector update process. First, the CD-loss is proposed to make the same class of samples converge to the corresponding central vector. Then, the central vector shift strategy extends the distance between different classes of samples in the feature space. Finally, the central vector update process is adopted to avoid the non-convergence of CD-loss and weaken the influence of the initial value of central vectors on the final results. In addition, overfitting is another severe challenge for deep learning-based EEG decoding methods. To deal with this problem, a data augmentation method based on circular translation strategy is proposed to expand the experimental datasets without introducing any extra noise or losing any information of the original data. To validate the effectiveness of the proposed method, we conduct some experiments on two public motor imagery EEG datasets (BCI competition IV 2a and 2b dataset), respectively. The comparison with current state-of-the-art methods indicates that our method achieves the highest average accuracy and good stability on the two experimental datasets. |
---|---|
AbstractList | With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the features with high discrimination and limits the improvement of EEG decoding accuracy. In this paper, a discriminative feature learning strategy is proposed to improve the discrimination of features, which includes the central distance loss (CD-loss), the central vector shift strategy, and the central vector update process. First, the CD-loss is proposed to make the same class of samples converge to the corresponding central vector. Then, the central vector shift strategy extends the distance between different classes of samples in the feature space. Finally, the central vector update process is adopted to avoid the non-convergence of CD-loss and weaken the influence of the initial value of central vectors on the final results. In addition, overfitting is another severe challenge for deep learning-based EEG decoding methods. To deal with this problem, a data augmentation method based on circular translation strategy is proposed to expand the experimental datasets without introducing any extra noise or losing any information of the original data. To validate the effectiveness of the proposed method, we conduct some experiments on two public motor imagery EEG datasets (BCI competition IV 2a and 2b dataset), respectively. The comparison with current state-of-the-art methods indicates that our method achieves the highest average accuracy and good stability on the two experimental datasets. With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the features with high discrimination and limits the improvement of EEG decoding accuracy. In this paper, a discriminative feature learning strategy is proposed to improve the discrimination of features, which includes the central distance loss (CD-loss), the central vector shift strategy, and the central vector update process. First, the CD-loss is proposed to make the same class of samples converge to the corresponding central vector. Then, the central vector shift strategy extends the distance between different classes of samples in the feature space. Finally, the central vector update process is adopted to avoid the non-convergence of CD-loss and weaken the influence of the initial value of central vectors on the final results. In addition, overfitting is another severe challenge for deep learning-based EEG decoding methods. To deal with this problem, a data augmentation method based on circular translation strategy is proposed to expand the experimental datasets without introducing any extra noise or losing any information of the original data. To validate the effectiveness of the proposed method, we conduct some experiments on two public motor imagery EEG datasets (BCI competition IV 2a and 2b dataset), respectively. The comparison with current state-of-the-art methods indicates that our method achieves the highest average accuracy and good stability on the two experimental datasets.With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the features with high discrimination and limits the improvement of EEG decoding accuracy. In this paper, a discriminative feature learning strategy is proposed to improve the discrimination of features, which includes the central distance loss (CD-loss), the central vector shift strategy, and the central vector update process. First, the CD-loss is proposed to make the same class of samples converge to the corresponding central vector. Then, the central vector shift strategy extends the distance between different classes of samples in the feature space. Finally, the central vector update process is adopted to avoid the non-convergence of CD-loss and weaken the influence of the initial value of central vectors on the final results. In addition, overfitting is another severe challenge for deep learning-based EEG decoding methods. To deal with this problem, a data augmentation method based on circular translation strategy is proposed to expand the experimental datasets without introducing any extra noise or losing any information of the original data. To validate the effectiveness of the proposed method, we conduct some experiments on two public motor imagery EEG datasets (BCI competition IV 2a and 2b dataset), respectively. The comparison with current state-of-the-art methods indicates that our method achieves the highest average accuracy and good stability on the two experimental datasets. |
Author | Song, Yonghao Ma, Ke Xie, Longhan Yang, Lie |
Author_xml | – sequence: 1 givenname: Lie orcidid: 0000-0002-6054-9818 surname: Yang fullname: Yang, Lie email: 201810100415@mail.scut.edu.cn organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Yonghao surname: Song fullname: Song, Yonghao email: eeyhsong@mail.scut.edu.cn organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Ke orcidid: 0000-0001-8853-7782 surname: Ma fullname: Ma, Ke email: make@gzzoc.com organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China – sequence: 4 givenname: Longhan orcidid: 0000-0002-5137-1413 surname: Xie fullname: Xie, Longhan email: xielonghan@gmail.com organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33460382$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1URF_8AZCQpW7YTLB97bG9hDYtlVKQ-liPPJ47YarELh5Ppfx7HBK66IKVr6zv3Mc5x-QgxICEfOBsxjmzX-5_3N3OZ4IJPgOmuFXmDTniSpmqfLGDbQ2ykiDYITkex0fGuK6VfkcOAWTNwIgj8nATc0z0eu2WmDZ0Pr-iF-hjN4QlvcH8K3b0mxuxozFQRy-G0adhPQSXh2ekl-jylJAu0KWwVdzl5DIuN6fkbe9WI77fvyfk4XJ-f_69Wvy8uj7_uqg8WJUrw1qmRdt3gE72KGpt6944kKIF9AiOO-VBtqh7xRzTxgprFPQWvXK1Bzghn3d9n1L8PeGYm3XZEFcrFzBOYyOktkwKkKagZ6_QxzilULYrlDVltKrrQn3aU1O7xq55Kte6tGn-GVYAsQN8iuOYsH9BOGu2qTR_U2m2qTT7VIrIvBL5IRcLYyh-Dav_Sz_upAMivsyyILQ0Gv4AN62YfQ |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac74e0 crossref_primary_10_3389_fninf_2022_952474 crossref_primary_10_53941_ijndi0101007 crossref_primary_10_1109_TNSRE_2023_3314679 crossref_primary_10_1088_1741_2552_ac17d6 crossref_primary_10_1109_TBME_2022_3193277 crossref_primary_10_1016_j_eswa_2023_122286 crossref_primary_10_1177_09727531241234727 crossref_primary_10_3389_fnins_2023_1124089 crossref_primary_10_1109_ACCESS_2024_3351204 crossref_primary_10_1007_s10586_024_04590_5 crossref_primary_10_1109_ACCESS_2021_3083519 crossref_primary_10_1109_JSEN_2025_3528009 crossref_primary_10_1016_j_bspc_2023_105359 crossref_primary_10_1111_psyp_14570 crossref_primary_10_3390_s24237690 crossref_primary_10_1109_TNSRE_2021_3107142 crossref_primary_10_1109_JBHI_2023_3304646 crossref_primary_10_3390_vehicles6010006 crossref_primary_10_1109_TNSRE_2021_3099908 crossref_primary_10_3390_e24030376 crossref_primary_10_3390_math11081921 crossref_primary_10_1109_TNSRE_2023_3255233 crossref_primary_10_1016_j_bspc_2022_104051 crossref_primary_10_1016_j_neucom_2022_08_024 crossref_primary_10_1007_s11517_024_03070_7 crossref_primary_10_1016_j_eswa_2024_123239 crossref_primary_10_1016_j_compbiomed_2024_109534 crossref_primary_10_1109_TNSRE_2023_3323325 crossref_primary_10_1016_j_artmed_2023_102738 crossref_primary_10_1016_j_bspc_2024_106156 crossref_primary_10_1016_j_asoc_2024_112087 crossref_primary_10_3389_fnhum_2022_898300 crossref_primary_10_2478_msr_2023_0031 crossref_primary_10_1088_1741_2552_abe39b crossref_primary_10_1109_JBHI_2024_3467090 crossref_primary_10_3390_brainsci13071109 crossref_primary_10_1016_j_bspc_2022_103718 crossref_primary_10_1016_j_jneumeth_2021_109426 crossref_primary_10_3390_diagnostics12122984 crossref_primary_10_1007_s00521_021_06716_x crossref_primary_10_1016_j_aej_2025_02_001 crossref_primary_10_3390_mi13091485 crossref_primary_10_1007_s11760_024_03550_1 crossref_primary_10_16984_saufenbilder_1190493 crossref_primary_10_3390_computers12070145 crossref_primary_10_1109_TNNLS_2024_3350085 crossref_primary_10_1007_s11370_022_00435_5 crossref_primary_10_1016_j_bspc_2023_105214 crossref_primary_10_1109_TBME_2023_3274231 crossref_primary_10_1016_j_bspc_2022_103531 crossref_primary_10_3389_fnins_2022_824471 crossref_primary_10_1016_j_amjoto_2024_104474 crossref_primary_10_1109_TCSS_2022_3202872 crossref_primary_10_1016_j_bspc_2025_107706 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_4015_S1016237224500194 crossref_primary_10_1088_1741_2552_ad83f4 crossref_primary_10_1007_s10586_024_04818_4 crossref_primary_10_1109_JSEN_2022_3220930 |
Cites_doi | 10.1109/TNNLS.2018.2789927 10.1109/TSMC.2015.2450680 10.1016/S1388-2457(02)00057-3 10.1109/ACCESS.2019.2896880 10.1109/TNSRE.2016.2587939 10.1162/NECO_a_00838 10.1109/TNSRE.2016.2601240 10.1155/2018/7068349 10.1109/CNE.2007.369647 10.1109/TBME.2009.2026181 10.1016/j.neuropsychologia.2015.09.012 10.1109/TNSRE.2019.2938295 10.1007/s11517-017-1611-4 10.1007/978-3-319-46478-7_31 10.3389/fnins.2012.00039 10.2340/16501977-0020 10.1109/TNSRE.2019.2915621 10.1007/BFb0100491 10.1109/5.726791 10.1109/TNSRE.2015.2439298 10.1109/TCDS.2018.2875052 10.1109/CVPR.2016.90 10.1016/0001-6918(90)90056-L 10.1109/5.939829 10.1109/TNSRE.2018.2794534 10.1038/nrneurol.2016.113 10.1016/j.compbiomed.2016.03.004 10.1016/j.bspc.2018.07.003 10.1145/3065386 10.1007/s10916-019-1270-0 10.1109/TNSRE.2007.906956 10.1016/j.nicl.2015.06.006 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2021.3051958 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 379 |
ExternalDocumentID | 33460382 10_1109_TNSRE_2021_3051958 9327487 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52075177 funderid: 10.13039/501100001809 – fundername: Guangzhou Research Foundation grantid: 202002030324; 201903010028 – fundername: Research Foundation of Guangdong Province grantid: 2019A050505001; 2018KZDXM002 – fundername: Joint Fund of the Ministry of Education for Equipment Pre-Research grantid: 6141A02033124 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c395t-80b072bfd3ea4fe26796f8a342b3ece3a1a5c34be7f50a078929853f9ec5a6c33 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Jul 10 23:53:26 EDT 2025 Sun Jul 13 03:11:44 EDT 2025 Wed Feb 19 02:28:57 EST 2025 Tue Jul 01 00:43:22 EDT 2025 Thu Apr 24 22:52:56 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-80b072bfd3ea4fe26796f8a342b3ece3a1a5c34be7f50a078929853f9ec5a6c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8853-7782 0000-0002-5137-1413 0000-0002-6054-9818 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9327487 |
PMID | 33460382 |
PQID | 2498679566 |
PQPubID | 85423 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2498679566 pubmed_primary_33460382 crossref_primary_10_1109_TNSRE_2021_3051958 proquest_miscellaneous_2479042348 crossref_citationtrail_10_1109_TNSRE_2021_3051958 ieee_primary_9327487 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref30 guennec (ref28) 0 ref33 ref11 ref32 ref10 simonyan (ref31) 2014 ref2 ref1 ref16 ref18 ang (ref17) 2008 liu (ref7) 2019; 11 van der maaten (ref38) 2008 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 wu (ref19) 2006 ref9 ref4 ref3 leeb (ref34) 0 ref6 ref5 |
References_xml | – ident: ref26 doi: 10.1109/TNNLS.2018.2789927 – ident: ref1 doi: 10.1109/TSMC.2015.2450680 – year: 2014 ident: ref31 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref2 doi: 10.1016/S1388-2457(02)00057-3 – start-page: 2579 year: 2008 ident: ref38 article-title: Visualizing Data using t-SNE publication-title: J Mach Learn Res – ident: ref23 doi: 10.1109/ACCESS.2019.2896880 – start-page: 2390 year: 2008 ident: ref17 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: Proc IEEE Int Joint Conf Neural Netw (IEEE World Congr Comput Intell ) – start-page: 6 year: 0 ident: ref34 publication-title: Bci competition 2008-graz data set b – ident: ref20 doi: 10.1109/TNSRE.2016.2587939 – ident: ref4 doi: 10.1162/NECO_a_00838 – ident: ref37 doi: 10.1109/TNSRE.2016.2601240 – ident: ref22 doi: 10.1155/2018/7068349 – ident: ref16 doi: 10.1109/CNE.2007.369647 – ident: ref18 doi: 10.1109/TBME.2009.2026181 – ident: ref10 doi: 10.1016/j.neuropsychologia.2015.09.012 – ident: ref25 doi: 10.1109/TNSRE.2019.2938295 – ident: ref14 doi: 10.1007/s11517-017-1611-4 – ident: ref27 doi: 10.1007/978-3-319-46478-7_31 – ident: ref33 doi: 10.3389/fnins.2012.00039 – ident: ref11 doi: 10.2340/16501977-0020 – ident: ref24 doi: 10.1109/TNSRE.2019.2915621 – start-page: 2387 year: 2006 ident: ref19 article-title: One-versus-the-rest (OVR) algorithm: An extension of common spatial Patterns(CSP) algorithm to multi-class case publication-title: Proc IEEE Eng Med Biol 27th Annu Conf – ident: ref15 doi: 10.1007/BFb0100491 – ident: ref29 doi: 10.1109/5.726791 – ident: ref8 doi: 10.1109/TNSRE.2015.2439298 – start-page: 9 year: 0 ident: ref28 publication-title: Data Augmentation for Time Series Classification Using Convolutional Neural Networks – volume: 11 start-page: 414 year: 2019 ident: ref7 article-title: Motor-imagery-based teleoperation of a dual-arm robot performing manipulation tasks publication-title: IEEE Trans Cognit Develop Syst doi: 10.1109/TCDS.2018.2875052 – ident: ref32 doi: 10.1109/CVPR.2016.90 – ident: ref6 doi: 10.1016/0001-6918(90)90056-L – ident: ref5 doi: 10.1109/5.939829 – ident: ref36 doi: 10.1109/TNSRE.2018.2794534 – ident: ref3 doi: 10.1038/nrneurol.2016.113 – ident: ref12 doi: 10.1016/j.compbiomed.2016.03.004 – ident: ref21 doi: 10.1016/j.bspc.2018.07.003 – ident: ref30 doi: 10.1145/3065386 – ident: ref13 doi: 10.1007/s10916-019-1270-0 – ident: ref35 doi: 10.1109/TNSRE.2007.906956 – ident: ref9 doi: 10.1016/j.nicl.2015.06.006 |
SSID | ssj0017657 |
Score | 2.550965 |
Snippet | With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 368 |
SubjectTerms | central distance loss (CD-loss) central vector shift central vector update circular translation strategy Classification algorithms Convergence Data mining Datasets Decoding Deep learning EEG Electroencephalography Feature extraction Imagery Machine learning Mental task performance Methods Motor imagery electroencephalograph (EEG) decoding Motor skill learning Strategy Task analysis |
Title | Motor Imagery EEG Decoding Method Based on a Discriminative Feature Learning Strategy |
URI | https://ieeexplore.ieee.org/document/9327487 https://www.ncbi.nlm.nih.gov/pubmed/33460382 https://www.proquest.com/docview/2498679566 https://www.proquest.com/docview/2479042348 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaBeKFAeC6UyEnCBbB3biZtjS7cUpO2h7Eq9RY4zqRA0QWVzKL--M85DpQLELVImjq2Z8Tw8_gbgdSpdbClsiJIkxcjE-xWplMoir6wsbem5lIirLU7Tk6X5fJ6cr8H78S4MIobiM5zyYzjLLxvfcqpsj3wNSw72OqyTmHV3tcYTA5sGVE9SYBMZreRwQUZme4vTL2czCgVVPNUyoKtswj2tTSoD_t4texQarPzd1ww253gL5sNsu1KTb9N2VUz9rztAjv-7nAdwv3c-xUEnLQ9hDetH8OY20LBYdCgD4q04-w3DexuW84bic_HpklEvrsVs9lEcUezKtk_MQx9qcUgmsRRNLZw4-sr7EdfZ8H4q2NNsr1D0cK4XokfFvX4My-PZ4sNJ1DdliLzOkhVZtEJaVVSlRmcqVJyHqvadNqrQ6FG72CVemwJtlUjHYPYqI5egytAnLvVaP4GNuqnxGQiVJmhjp2gsbzRR6qo0hTemND7VFicQD6zJfb9abpzxPQ-Ri8zywNmcOZv3nJ3Au_GbHx1exz-pt5ktI2XPkQnsDBKQ9yr9M6c4lcEJyf2dwKvxNSkjn7C4GpuWaWzGhUaGRn7aSc449iBwz__8zxewyTPrsjs7sLG6avEl-TurYjfkCXaDuN8ArMf5Lg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEvvAp0SwEjARfI1vEjbo5At2yhu4eyK_UWOY6DqpYElc2h_fXMOA8VBIhbpDiOrZnxfGOPvwF4mXAbGwwbIq0TH6l4r0STEmnkhOGFKRylElG2xTyZLtWnE32yBm-HuzDe-5B85sf0GM7yi9o1tFW2i1jDIMC-ATfR7yvd3tYazgxMEng90YRVpKTg_RUZnu4u5l-OJxgMingseeBX2YBbUqqEBwa-ax4plFj5O9oMXufgLsz68bbJJmfjZpWP3dVvVI7_O6F7cKeDn-xdqy_3Yc1XD-DVdaphtmh5BthrdvwLi_cmLGc1Rujs8BvxXlyyyeQj28folbwfm4VK1Ow9OsWC1RWzbP-UViTKtKEVlRHWbC486whdv7KOF_fyISwPJosP06gryxA5meoV-rScG5GXhfRWlV7QTlS5Z6USufTOSxtb7aTKvSk1t0RnL1IEBWXqnbaJk_IRrFd15beAiUR7E1uBfTklsaUsC5U7pQrlEmn8COJeNJnrZkulM86zELvwNAuSzUiyWSfZEbwZvvneMnb8s_UmiWVo2UlkBDu9BmSdUf_IMFIlekIEwCN4MbxGc6QzFlv5uqE2JqVUI4U9P241Z-i7V7jtP__zOdyeLmZH2dHh_PMT2KBRtns9O7C-umj8U0Q_q_xZUPqf_L_7hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motor+Imagery+EEG+Decoding+Method+Based+on+a+Discriminative+Feature+Learning+Strategy&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Yang%2C+Lie&rft.au=Song%2C+Yonghao&rft.au=Ma%2C+Ke&rft.au=Xie%2C+Longhan&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=368&rft.epage=379&rft_id=info:doi/10.1109%2FTNSRE.2021.3051958&rft_id=info%3Apmid%2F33460382&rft.externalDocID=9327487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |