Motor Imagery EEG Decoding Method Based on a Discriminative Feature Learning Strategy

With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 368 - 379
Main Authors Yang, Lie, Song, Yonghao, Ma, Ke, Xie, Longhan
Format Journal Article
LanguageEnglish
Published United States IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2021.3051958

Cover

Abstract With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the features with high discrimination and limits the improvement of EEG decoding accuracy. In this paper, a discriminative feature learning strategy is proposed to improve the discrimination of features, which includes the central distance loss (CD-loss), the central vector shift strategy, and the central vector update process. First, the CD-loss is proposed to make the same class of samples converge to the corresponding central vector. Then, the central vector shift strategy extends the distance between different classes of samples in the feature space. Finally, the central vector update process is adopted to avoid the non-convergence of CD-loss and weaken the influence of the initial value of central vectors on the final results. In addition, overfitting is another severe challenge for deep learning-based EEG decoding methods. To deal with this problem, a data augmentation method based on circular translation strategy is proposed to expand the experimental datasets without introducing any extra noise or losing any information of the original data. To validate the effectiveness of the proposed method, we conduct some experiments on two public motor imagery EEG datasets (BCI competition IV 2a and 2b dataset), respectively. The comparison with current state-of-the-art methods indicates that our method achieves the highest average accuracy and good stability on the two experimental datasets.
AbstractList With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the features with high discrimination and limits the improvement of EEG decoding accuracy. In this paper, a discriminative feature learning strategy is proposed to improve the discrimination of features, which includes the central distance loss (CD-loss), the central vector shift strategy, and the central vector update process. First, the CD-loss is proposed to make the same class of samples converge to the corresponding central vector. Then, the central vector shift strategy extends the distance between different classes of samples in the feature space. Finally, the central vector update process is adopted to avoid the non-convergence of CD-loss and weaken the influence of the initial value of central vectors on the final results. In addition, overfitting is another severe challenge for deep learning-based EEG decoding methods. To deal with this problem, a data augmentation method based on circular translation strategy is proposed to expand the experimental datasets without introducing any extra noise or losing any information of the original data. To validate the effectiveness of the proposed method, we conduct some experiments on two public motor imagery EEG datasets (BCI competition IV 2a and 2b dataset), respectively. The comparison with current state-of-the-art methods indicates that our method achieves the highest average accuracy and good stability on the two experimental datasets.
With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the features with high discrimination and limits the improvement of EEG decoding accuracy. In this paper, a discriminative feature learning strategy is proposed to improve the discrimination of features, which includes the central distance loss (CD-loss), the central vector shift strategy, and the central vector update process. First, the CD-loss is proposed to make the same class of samples converge to the corresponding central vector. Then, the central vector shift strategy extends the distance between different classes of samples in the feature space. Finally, the central vector update process is adopted to avoid the non-convergence of CD-loss and weaken the influence of the initial value of central vectors on the final results. In addition, overfitting is another severe challenge for deep learning-based EEG decoding methods. To deal with this problem, a data augmentation method based on circular translation strategy is proposed to expand the experimental datasets without introducing any extra noise or losing any information of the original data. To validate the effectiveness of the proposed method, we conduct some experiments on two public motor imagery EEG datasets (BCI competition IV 2a and 2b dataset), respectively. The comparison with current state-of-the-art methods indicates that our method achieves the highest average accuracy and good stability on the two experimental datasets.With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in recent years. However, the existing deep learning-based methods usually only adopt the constraint of classification loss, which hardly obtains the features with high discrimination and limits the improvement of EEG decoding accuracy. In this paper, a discriminative feature learning strategy is proposed to improve the discrimination of features, which includes the central distance loss (CD-loss), the central vector shift strategy, and the central vector update process. First, the CD-loss is proposed to make the same class of samples converge to the corresponding central vector. Then, the central vector shift strategy extends the distance between different classes of samples in the feature space. Finally, the central vector update process is adopted to avoid the non-convergence of CD-loss and weaken the influence of the initial value of central vectors on the final results. In addition, overfitting is another severe challenge for deep learning-based EEG decoding methods. To deal with this problem, a data augmentation method based on circular translation strategy is proposed to expand the experimental datasets without introducing any extra noise or losing any information of the original data. To validate the effectiveness of the proposed method, we conduct some experiments on two public motor imagery EEG datasets (BCI competition IV 2a and 2b dataset), respectively. The comparison with current state-of-the-art methods indicates that our method achieves the highest average accuracy and good stability on the two experimental datasets.
Author Song, Yonghao
Ma, Ke
Xie, Longhan
Yang, Lie
Author_xml – sequence: 1
  givenname: Lie
  orcidid: 0000-0002-6054-9818
  surname: Yang
  fullname: Yang, Lie
  email: 201810100415@mail.scut.edu.cn
  organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Yonghao
  surname: Song
  fullname: Song, Yonghao
  email: eeyhsong@mail.scut.edu.cn
  organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Ke
  orcidid: 0000-0001-8853-7782
  surname: Ma
  fullname: Ma, Ke
  email: make@gzzoc.com
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Longhan
  orcidid: 0000-0002-5137-1413
  surname: Xie
  fullname: Xie, Longhan
  email: xielonghan@gmail.com
  organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33460382$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1URF_8AZCQpW7YTLB97bG9hDYtlVKQ-liPPJ47YarELh5Ppfx7HBK66IKVr6zv3Mc5x-QgxICEfOBsxjmzX-5_3N3OZ4IJPgOmuFXmDTniSpmqfLGDbQ2ykiDYITkex0fGuK6VfkcOAWTNwIgj8nATc0z0eu2WmDZ0Pr-iF-hjN4QlvcH8K3b0mxuxozFQRy-G0adhPQSXh2ekl-jylJAu0KWwVdzl5DIuN6fkbe9WI77fvyfk4XJ-f_69Wvy8uj7_uqg8WJUrw1qmRdt3gE72KGpt6944kKIF9AiOO-VBtqh7xRzTxgprFPQWvXK1Bzghn3d9n1L8PeGYm3XZEFcrFzBOYyOktkwKkKagZ6_QxzilULYrlDVltKrrQn3aU1O7xq55Kte6tGn-GVYAsQN8iuOYsH9BOGu2qTR_U2m2qTT7VIrIvBL5IRcLYyh-Dav_Sz_upAMivsyyILQ0Gv4AN62YfQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_1088_1741_2552_ac74e0
crossref_primary_10_3389_fninf_2022_952474
crossref_primary_10_53941_ijndi0101007
crossref_primary_10_1109_TNSRE_2023_3314679
crossref_primary_10_1088_1741_2552_ac17d6
crossref_primary_10_1109_TBME_2022_3193277
crossref_primary_10_1016_j_eswa_2023_122286
crossref_primary_10_1177_09727531241234727
crossref_primary_10_3389_fnins_2023_1124089
crossref_primary_10_1109_ACCESS_2024_3351204
crossref_primary_10_1007_s10586_024_04590_5
crossref_primary_10_1109_ACCESS_2021_3083519
crossref_primary_10_1109_JSEN_2025_3528009
crossref_primary_10_1016_j_bspc_2023_105359
crossref_primary_10_1111_psyp_14570
crossref_primary_10_3390_s24237690
crossref_primary_10_1109_TNSRE_2021_3107142
crossref_primary_10_1109_JBHI_2023_3304646
crossref_primary_10_3390_vehicles6010006
crossref_primary_10_1109_TNSRE_2021_3099908
crossref_primary_10_3390_e24030376
crossref_primary_10_3390_math11081921
crossref_primary_10_1109_TNSRE_2023_3255233
crossref_primary_10_1016_j_bspc_2022_104051
crossref_primary_10_1016_j_neucom_2022_08_024
crossref_primary_10_1007_s11517_024_03070_7
crossref_primary_10_1016_j_eswa_2024_123239
crossref_primary_10_1016_j_compbiomed_2024_109534
crossref_primary_10_1109_TNSRE_2023_3323325
crossref_primary_10_1016_j_artmed_2023_102738
crossref_primary_10_1016_j_bspc_2024_106156
crossref_primary_10_1016_j_asoc_2024_112087
crossref_primary_10_3389_fnhum_2022_898300
crossref_primary_10_2478_msr_2023_0031
crossref_primary_10_1088_1741_2552_abe39b
crossref_primary_10_1109_JBHI_2024_3467090
crossref_primary_10_3390_brainsci13071109
crossref_primary_10_1016_j_bspc_2022_103718
crossref_primary_10_1016_j_jneumeth_2021_109426
crossref_primary_10_3390_diagnostics12122984
crossref_primary_10_1007_s00521_021_06716_x
crossref_primary_10_1016_j_aej_2025_02_001
crossref_primary_10_3390_mi13091485
crossref_primary_10_1007_s11760_024_03550_1
crossref_primary_10_16984_saufenbilder_1190493
crossref_primary_10_3390_computers12070145
crossref_primary_10_1109_TNNLS_2024_3350085
crossref_primary_10_1007_s11370_022_00435_5
crossref_primary_10_1016_j_bspc_2023_105214
crossref_primary_10_1109_TBME_2023_3274231
crossref_primary_10_1016_j_bspc_2022_103531
crossref_primary_10_3389_fnins_2022_824471
crossref_primary_10_1016_j_amjoto_2024_104474
crossref_primary_10_1109_TCSS_2022_3202872
crossref_primary_10_1016_j_bspc_2025_107706
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_4015_S1016237224500194
crossref_primary_10_1088_1741_2552_ad83f4
crossref_primary_10_1007_s10586_024_04818_4
crossref_primary_10_1109_JSEN_2022_3220930
Cites_doi 10.1109/TNNLS.2018.2789927
10.1109/TSMC.2015.2450680
10.1016/S1388-2457(02)00057-3
10.1109/ACCESS.2019.2896880
10.1109/TNSRE.2016.2587939
10.1162/NECO_a_00838
10.1109/TNSRE.2016.2601240
10.1155/2018/7068349
10.1109/CNE.2007.369647
10.1109/TBME.2009.2026181
10.1016/j.neuropsychologia.2015.09.012
10.1109/TNSRE.2019.2938295
10.1007/s11517-017-1611-4
10.1007/978-3-319-46478-7_31
10.3389/fnins.2012.00039
10.2340/16501977-0020
10.1109/TNSRE.2019.2915621
10.1007/BFb0100491
10.1109/5.726791
10.1109/TNSRE.2015.2439298
10.1109/TCDS.2018.2875052
10.1109/CVPR.2016.90
10.1016/0001-6918(90)90056-L
10.1109/5.939829
10.1109/TNSRE.2018.2794534
10.1038/nrneurol.2016.113
10.1016/j.compbiomed.2016.03.004
10.1016/j.bspc.2018.07.003
10.1145/3065386
10.1007/s10916-019-1270-0
10.1109/TNSRE.2007.906956
10.1016/j.nicl.2015.06.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2021.3051958
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 379
ExternalDocumentID 33460382
10_1109_TNSRE_2021_3051958
9327487
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52075177
  funderid: 10.13039/501100001809
– fundername: Guangzhou Research Foundation
  grantid: 202002030324; 201903010028
– fundername: Research Foundation of Guangdong Province
  grantid: 2019A050505001; 2018KZDXM002
– fundername: Joint Fund of the Ministry of Education for Equipment Pre-Research
  grantid: 6141A02033124
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c395t-80b072bfd3ea4fe26796f8a342b3ece3a1a5c34be7f50a078929853f9ec5a6c33
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 23:53:26 EDT 2025
Sun Jul 13 03:11:44 EDT 2025
Wed Feb 19 02:28:57 EST 2025
Tue Jul 01 00:43:22 EDT 2025
Thu Apr 24 22:52:56 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-80b072bfd3ea4fe26796f8a342b3ece3a1a5c34be7f50a078929853f9ec5a6c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8853-7782
0000-0002-5137-1413
0000-0002-6054-9818
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9327487
PMID 33460382
PQID 2498679566
PQPubID 85423
PageCount 12
ParticipantIDs proquest_journals_2498679566
pubmed_primary_33460382
crossref_primary_10_1109_TNSRE_2021_3051958
proquest_miscellaneous_2479042348
crossref_citationtrail_10_1109_TNSRE_2021_3051958
ieee_primary_9327487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref30
guennec (ref28) 0
ref33
ref11
ref32
ref10
simonyan (ref31) 2014
ref2
ref1
ref16
ref18
ang (ref17) 2008
liu (ref7) 2019; 11
van der maaten (ref38) 2008
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
wu (ref19) 2006
ref9
ref4
ref3
leeb (ref34) 0
ref6
ref5
References_xml – ident: ref26
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref1
  doi: 10.1109/TSMC.2015.2450680
– year: 2014
  ident: ref31
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref2
  doi: 10.1016/S1388-2457(02)00057-3
– start-page: 2579
  year: 2008
  ident: ref38
  article-title: Visualizing Data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref23
  doi: 10.1109/ACCESS.2019.2896880
– start-page: 2390
  year: 2008
  ident: ref17
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: Proc IEEE Int Joint Conf Neural Netw (IEEE World Congr Comput Intell )
– start-page: 6
  year: 0
  ident: ref34
  publication-title: Bci competition 2008-graz data set b
– ident: ref20
  doi: 10.1109/TNSRE.2016.2587939
– ident: ref4
  doi: 10.1162/NECO_a_00838
– ident: ref37
  doi: 10.1109/TNSRE.2016.2601240
– ident: ref22
  doi: 10.1155/2018/7068349
– ident: ref16
  doi: 10.1109/CNE.2007.369647
– ident: ref18
  doi: 10.1109/TBME.2009.2026181
– ident: ref10
  doi: 10.1016/j.neuropsychologia.2015.09.012
– ident: ref25
  doi: 10.1109/TNSRE.2019.2938295
– ident: ref14
  doi: 10.1007/s11517-017-1611-4
– ident: ref27
  doi: 10.1007/978-3-319-46478-7_31
– ident: ref33
  doi: 10.3389/fnins.2012.00039
– ident: ref11
  doi: 10.2340/16501977-0020
– ident: ref24
  doi: 10.1109/TNSRE.2019.2915621
– start-page: 2387
  year: 2006
  ident: ref19
  article-title: One-versus-the-rest (OVR) algorithm: An extension of common spatial Patterns(CSP) algorithm to multi-class case
  publication-title: Proc IEEE Eng Med Biol 27th Annu Conf
– ident: ref15
  doi: 10.1007/BFb0100491
– ident: ref29
  doi: 10.1109/5.726791
– ident: ref8
  doi: 10.1109/TNSRE.2015.2439298
– start-page: 9
  year: 0
  ident: ref28
  publication-title: Data Augmentation for Time Series Classification Using Convolutional Neural Networks
– volume: 11
  start-page: 414
  year: 2019
  ident: ref7
  article-title: Motor-imagery-based teleoperation of a dual-arm robot performing manipulation tasks
  publication-title: IEEE Trans Cognit Develop Syst
  doi: 10.1109/TCDS.2018.2875052
– ident: ref32
  doi: 10.1109/CVPR.2016.90
– ident: ref6
  doi: 10.1016/0001-6918(90)90056-L
– ident: ref5
  doi: 10.1109/5.939829
– ident: ref36
  doi: 10.1109/TNSRE.2018.2794534
– ident: ref3
  doi: 10.1038/nrneurol.2016.113
– ident: ref12
  doi: 10.1016/j.compbiomed.2016.03.004
– ident: ref21
  doi: 10.1016/j.bspc.2018.07.003
– ident: ref30
  doi: 10.1145/3065386
– ident: ref13
  doi: 10.1007/s10916-019-1270-0
– ident: ref35
  doi: 10.1109/TNSRE.2007.906956
– ident: ref9
  doi: 10.1016/j.nicl.2015.06.006
SSID ssj0017657
Score 2.550965
Snippet With the rapid development of deep learning, more and more deep learning-based motor imagery electroencephalograph (EEG) decoding methods have emerged in...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 368
SubjectTerms central distance loss (CD-loss)
central vector shift
central vector update
circular translation strategy
Classification algorithms
Convergence
Data mining
Datasets
Decoding
Deep learning
EEG
Electroencephalography
Feature extraction
Imagery
Machine learning
Mental task performance
Methods
Motor imagery electroencephalograph (EEG) decoding
Motor skill learning
Strategy
Task analysis
Title Motor Imagery EEG Decoding Method Based on a Discriminative Feature Learning Strategy
URI https://ieeexplore.ieee.org/document/9327487
https://www.ncbi.nlm.nih.gov/pubmed/33460382
https://www.proquest.com/docview/2498679566
https://www.proquest.com/docview/2479042348
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaBeKFAeC6UyEnCBbB3biZtjS7cUpO2h7Eq9RY4zqRA0QWVzKL--M85DpQLELVImjq2Z8Tw8_gbgdSpdbClsiJIkxcjE-xWplMoir6wsbem5lIirLU7Tk6X5fJ6cr8H78S4MIobiM5zyYzjLLxvfcqpsj3wNSw72OqyTmHV3tcYTA5sGVE9SYBMZreRwQUZme4vTL2czCgVVPNUyoKtswj2tTSoD_t4texQarPzd1ww253gL5sNsu1KTb9N2VUz9rztAjv-7nAdwv3c-xUEnLQ9hDetH8OY20LBYdCgD4q04-w3DexuW84bic_HpklEvrsVs9lEcUezKtk_MQx9qcUgmsRRNLZw4-sr7EdfZ8H4q2NNsr1D0cK4XokfFvX4My-PZ4sNJ1DdliLzOkhVZtEJaVVSlRmcqVJyHqvadNqrQ6FG72CVemwJtlUjHYPYqI5egytAnLvVaP4GNuqnxGQiVJmhjp2gsbzRR6qo0hTemND7VFicQD6zJfb9abpzxPQ-Ri8zywNmcOZv3nJ3Au_GbHx1exz-pt5ktI2XPkQnsDBKQ9yr9M6c4lcEJyf2dwKvxNSkjn7C4GpuWaWzGhUaGRn7aSc449iBwz__8zxewyTPrsjs7sLG6avEl-TurYjfkCXaDuN8ArMf5Lg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEvvAp0SwEjARfI1vEjbo5At2yhu4eyK_UWOY6DqpYElc2h_fXMOA8VBIhbpDiOrZnxfGOPvwF4mXAbGwwbIq0TH6l4r0STEmnkhOGFKRylElG2xTyZLtWnE32yBm-HuzDe-5B85sf0GM7yi9o1tFW2i1jDIMC-ATfR7yvd3tYazgxMEng90YRVpKTg_RUZnu4u5l-OJxgMingseeBX2YBbUqqEBwa-ax4plFj5O9oMXufgLsz68bbJJmfjZpWP3dVvVI7_O6F7cKeDn-xdqy_3Yc1XD-DVdaphtmh5BthrdvwLi_cmLGc1Rujs8BvxXlyyyeQj28folbwfm4VK1Ow9OsWC1RWzbP-UViTKtKEVlRHWbC486whdv7KOF_fyISwPJosP06gryxA5meoV-rScG5GXhfRWlV7QTlS5Z6USufTOSxtb7aTKvSk1t0RnL1IEBWXqnbaJk_IRrFd15beAiUR7E1uBfTklsaUsC5U7pQrlEmn8COJeNJnrZkulM86zELvwNAuSzUiyWSfZEbwZvvneMnb8s_UmiWVo2UlkBDu9BmSdUf_IMFIlekIEwCN4MbxGc6QzFlv5uqE2JqVUI4U9P241Z-i7V7jtP__zOdyeLmZH2dHh_PMT2KBRtns9O7C-umj8U0Q_q_xZUPqf_L_7hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motor+Imagery+EEG+Decoding+Method+Based+on+a+Discriminative+Feature+Learning+Strategy&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Yang%2C+Lie&rft.au=Song%2C+Yonghao&rft.au=Ma%2C+Ke&rft.au=Xie%2C+Longhan&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=368&rft.epage=379&rft_id=info:doi/10.1109%2FTNSRE.2021.3051958&rft_id=info%3Apmid%2F33460382&rft.externalDocID=9327487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon