Reaction dynamics and residue identification of haemoglobin modification by acrolein, a lipid-peroxidation by-product
Abstract Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients. To aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin u...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1865; no. 12; p. 130013 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients.
To aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin using mass spectrometry.
Acrolein modifications have little effect on the secondary structure of haemoglobin. They do not disrupt the quaternary structure, but instead promote crosslinked octamers. For acrolein modified haemoglobin the response to O2 binding is altered such that cooperativity is lost. Mass spectrometry experiments at a 1:1 acrolein:haemoglobin molar ratio demonstrate that the α-chain quickly forms an aza-Michael adduct (+56 Da), which then forms a more stable adduct, Nε-(3-methylpyridinium)lysine (MP-lysine, +76 Da) over 7 days. The β-chain remains relatively unchanged over the duration of the 7 days and the aza-Michael adduct is dominant. At 2:1 and 5:1 molar ratios the α-chain was consistently modified at K7, H20, H50, and the β-chain at C93 and H97 with the aza-Michael adduct. Beyond 5 h, an MP-adduct (+76 Da) was located predominantly at K7 of the α-chain, while an FDP-adduct (+94 Da) was observed at K95 of the β-chain.
We have generated qualitative evidence identifying the acrolein target sites on haemoglobin, a potential oxidative stress marker that is easily measured in circulation.
We provide data for the community to develop targeted mass spectrometric or immunometric assays for acrolein modified haemoglobin to further validate the potential of haemoglobin as an oxidative stress marker in patients .
[Display omitted]
•Acrolein extensively modifies haemoglobin lysine, histidine and cysteine residues.•Acrolein adducts induce crosslinking and alters haemoglobin cooperativity.•MP-lysine is consistently identified on residue αK7.•FDP-lysine is consistently identified on residue βK95. |
---|---|
AbstractList | Abstract
Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients.
To aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin using mass spectrometry.
Acrolein modifications have little effect on the secondary structure of haemoglobin. They do not disrupt the quaternary structure, but instead promote crosslinked octamers. For acrolein modified haemoglobin the response to O2 binding is altered such that cooperativity is lost. Mass spectrometry experiments at a 1:1 acrolein:haemoglobin molar ratio demonstrate that the α-chain quickly forms an aza-Michael adduct (+56 Da), which then forms a more stable adduct, Nε-(3-methylpyridinium)lysine (MP-lysine, +76 Da) over 7 days. The β-chain remains relatively unchanged over the duration of the 7 days and the aza-Michael adduct is dominant. At 2:1 and 5:1 molar ratios the α-chain was consistently modified at K7, H20, H50, and the β-chain at C93 and H97 with the aza-Michael adduct. Beyond 5 h, an MP-adduct (+76 Da) was located predominantly at K7 of the α-chain, while an FDP-adduct (+94 Da) was observed at K95 of the β-chain.
We have generated qualitative evidence identifying the acrolein target sites on haemoglobin, a potential oxidative stress marker that is easily measured in circulation.
We provide data for the community to develop targeted mass spectrometric or immunometric assays for acrolein modified haemoglobin to further validate the potential of haemoglobin as an oxidative stress marker in patients .
[Display omitted]
•Acrolein extensively modifies haemoglobin lysine, histidine and cysteine residues.•Acrolein adducts induce crosslinking and alters haemoglobin cooperativity.•MP-lysine is consistently identified on residue αK7.•FDP-lysine is consistently identified on residue βK95. Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients.BACKGROUNDLipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients.To aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin using mass spectrometry.METHODSTo aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin using mass spectrometry.Acrolein modifications have little effect on the secondary structure of haemoglobin. They do not disrupt the quaternary structure, but instead promote crosslinked octamers. For acrolein modified haemoglobin the response to O2 binding is altered such that cooperativity is lost. Mass spectrometry experiments at a 1:1 acrolein:haemoglobin molar ratio demonstrate that the α-chain quickly forms an aza-Michael adduct (+56 Da), which then forms a more stable adduct, Nε-(3-methylpyridinium)lysine (MP-lysine, +76 Da) over 7 days. The β-chain remains relatively unchanged over the duration of the 7 days and the aza-Michael adduct is dominant. At 2:1 and 5:1 molar ratios the α-chain was consistently modified at K7, H20, H50, and the β-chain at C93 and H97 with the aza-Michael adduct. Beyond 5 h, an MP-adduct (+76 Da) was located predominantly at K7 of the α-chain, while an FDP-adduct (+94 Da) was observed at K95 of the β-chain.RESULTSAcrolein modifications have little effect on the secondary structure of haemoglobin. They do not disrupt the quaternary structure, but instead promote crosslinked octamers. For acrolein modified haemoglobin the response to O2 binding is altered such that cooperativity is lost. Mass spectrometry experiments at a 1:1 acrolein:haemoglobin molar ratio demonstrate that the α-chain quickly forms an aza-Michael adduct (+56 Da), which then forms a more stable adduct, Nε-(3-methylpyridinium)lysine (MP-lysine, +76 Da) over 7 days. The β-chain remains relatively unchanged over the duration of the 7 days and the aza-Michael adduct is dominant. At 2:1 and 5:1 molar ratios the α-chain was consistently modified at K7, H20, H50, and the β-chain at C93 and H97 with the aza-Michael adduct. Beyond 5 h, an MP-adduct (+76 Da) was located predominantly at K7 of the α-chain, while an FDP-adduct (+94 Da) was observed at K95 of the β-chain.We have generated qualitative evidence identifying the acrolein target sites on haemoglobin, a potential oxidative stress marker that is easily measured in circulation.CONCLUSIONSWe have generated qualitative evidence identifying the acrolein target sites on haemoglobin, a potential oxidative stress marker that is easily measured in circulation.We provide data for the community to develop targeted mass spectrometric or immunometric assays for acrolein modified haemoglobin to further validate the potential of haemoglobin as an oxidative stress marker in patients .GENERAL SIGNIFICANCEWe provide data for the community to develop targeted mass spectrometric or immunometric assays for acrolein modified haemoglobin to further validate the potential of haemoglobin as an oxidative stress marker in patients . Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients. To aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin using mass spectrometry. Acrolein modifications have little effect on the secondary structure of haemoglobin. They do not disrupt the quaternary structure, but instead promote crosslinked octamers. For acrolein modified haemoglobin the response to O binding is altered such that cooperativity is lost. Mass spectrometry experiments at a 1:1 acrolein:haemoglobin molar ratio demonstrate that the α-chain quickly forms an aza-Michael adduct (+56 Da), which then forms a more stable adduct, Nε-(3-methylpyridinium)lysine (MP-lysine, +76 Da) over 7 days. The β-chain remains relatively unchanged over the duration of the 7 days and the aza-Michael adduct is dominant. At 2:1 and 5:1 molar ratios the α-chain was consistently modified at K7, H20, H50, and the β-chain at C93 and H97 with the aza-Michael adduct. Beyond 5 h, an MP-adduct (+76 Da) was located predominantly at K7 of the α-chain, while an FDP-adduct (+94 Da) was observed at K95 of the β-chain. We have generated qualitative evidence identifying the acrolein target sites on haemoglobin, a potential oxidative stress marker that is easily measured in circulation. We provide data for the community to develop targeted mass spectrometric or immunometric assays for acrolein modified haemoglobin to further validate the potential of haemoglobin as an oxidative stress marker in patients . Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients.To aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin using mass spectrometry.Acrolein modifications have little effect on the secondary structure of haemoglobin. They do not disrupt the quaternary structure, but instead promote crosslinked octamers. For acrolein modified haemoglobin the response to O₂ binding is altered such that cooperativity is lost. Mass spectrometry experiments at a 1:1 acrolein:haemoglobin molar ratio demonstrate that the α-chain quickly forms an aza-Michael adduct (+56 Da), which then forms a more stable adduct, Nε-(3-methylpyridinium)lysine (MP-lysine, +76 Da) over 7 days. The β-chain remains relatively unchanged over the duration of the 7 days and the aza-Michael adduct is dominant. At 2:1 and 5:1 molar ratios the α-chain was consistently modified at K7, H20, H50, and the β-chain at C93 and H97 with the aza-Michael adduct. Beyond 5 h, an MP-adduct (+76 Da) was located predominantly at K7 of the α-chain, while an FDP-adduct (+94 Da) was observed at K95 of the β-chain.We have generated qualitative evidence identifying the acrolein target sites on haemoglobin, a potential oxidative stress marker that is easily measured in circulation.We provide data for the community to develop targeted mass spectrometric or immunometric assays for acrolein modified haemoglobin to further validate the potential of haemoglobin as an oxidative stress marker in patients . |
ArticleNumber | 130013 |
Author | Gerrard, Juliet A. Pattinson, Neil R. Orban, Thomas Fairbanks, Antony J. Stampfli, Anja R. Lassé, Moritz Bothara, Roshit K. Dobson, Renwick C.J. |
Author_xml | – sequence: 1 givenname: Moritz surname: Lassé fullname: Lassé, Moritz organization: Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand – sequence: 2 givenname: Anja R. surname: Stampfli fullname: Stampfli, Anja R. organization: Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand – sequence: 3 givenname: Thomas surname: Orban fullname: Orban, Thomas organization: Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand – sequence: 4 givenname: Roshit K. surname: Bothara fullname: Bothara, Roshit K. organization: Canterbury District Health Board, Christchurch, New Zealand – sequence: 5 givenname: Juliet A. surname: Gerrard fullname: Gerrard, Juliet A. organization: Faculty of Science, Biological Sciences, The University of Auckland, Auckland, New Zealand – sequence: 6 givenname: Antony J. surname: Fairbanks fullname: Fairbanks, Antony J. organization: Biomolecular Interaction Centre, and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand – sequence: 7 givenname: Neil R. surname: Pattinson fullname: Pattinson, Neil R. organization: Canterbury Scientific Ltd, 71 Whiteleigh Ave, Christchurch, New Zealand – sequence: 8 givenname: Renwick C.J. surname: Dobson fullname: Dobson, Renwick C.J. email: renwick.dobson@canterbury.ac.nz organization: Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34534644$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVJaSZp_0EpXnYRTyXrYbuLQgl9QSAQ2rW4lq7TO9jSVLJL5t_XiTMUumi0OQt951w454ydhBiQsdeCbwUX5t1u23Vwi2Fb8UpsheRcyGdsI5q6KhvOzQnbcMlVqYTRp-ws5x1fnm71C3YqlZbKKLVh8w2CmyiGwh8CjORyAcEXCTP5GQvyGCbqycEDE_viJ-AYb4fYUSjG6P_-dYcCXIoDUrgooBhoT77cY4p35I9EuU_Rz256yZ73MGR89ajn7MfnT98vv5ZX11--XX68Kp1s9VTWvlFgvG_rWmvteK-wNQa0MH4R6TQ4bYQX4MFVHgWXoJXpnO4a2YgW5Dl7u-Yud3_NmCc7UnY4DBAwztlWRholat3WT6O6VrKtF1nQN4_o3I3o7T7RCOlgj60uwPsVWPrIOWFvHU0PHUwJaLCC2_sJ7c6uE9r7Ce064WJW_5iP-U_YPqw2XPr8TZhsdoTBoaeEbrI-0v8D_gCjXLgF |
CitedBy_id | crossref_primary_10_1111_1541_4337_70096 crossref_primary_10_3390_molecules26247491 crossref_primary_10_1186_s13195_023_01261_2 crossref_primary_10_3390_molecules29112519 crossref_primary_10_1016_j_jhazmat_2025_137781 |
Cites_doi | 10.1021/acs.chemrev.7b00698 10.1016/j.jprot.2013.06.004 10.1016/S0006-3495(02)75469-6 10.1007/s001250051591 10.1002/mnfr.200700412 10.1021/bp0343155 10.1016/j.idairyj.2017.05.008 10.1016/j.clinbiochem.2011.12.001 10.1016/0891-5849(91)90192-6 10.1002/pmic.200700111 10.1016/j.freeradbiomed.2019.07.027 10.1093/toxsci/57.1.6 10.1074/jbc.273.26.16058 10.1089/ars.2015.6317 10.1039/B714684A 10.1002/jbt.10058 10.1038/nrd4002 10.1016/j.atherosclerosis.2012.12.020 10.1136/jcp.49.4.271 10.3109/10715762.2015.1036052 10.1016/S0026-0495(00)80077-3 10.1073/pnas.95.9.4882 10.1016/j.jprot.2011.05.039 10.3390/biom10111579 10.2337/db07-1618 10.1007/s00204-015-1517-6 10.1093/toxsci/kfu233 10.1007/s00125-008-1071-3 10.2147/CIA.S158513 10.1016/S0065-2423(08)60401-1 10.1016/j.bbalip.2020.158809 10.1007/s00125-010-1971-x 10.3390/molecules25112653 10.1074/mcp.M300132-MCP200 10.1021/tx800465m 10.1002/jbmr.2302 10.1155/2013/378790 10.1016/j.freeradbiomed.2017.02.003 10.1016/j.psyneuen.2014.09.025 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2021.130013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 34534644 10_1016_j_bbagen_2021_130013 S0304416521001720 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-7d84a6dd977555c0f4e966a516d66a3c5ac561d1adac2de103a546bc5b83819a3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 07:34:15 EDT 2025 Fri Jul 11 16:39:26 EDT 2025 Wed Feb 19 02:09:14 EST 2025 Tue Jul 01 00:22:15 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Fri Feb 23 02:47:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Oxidative stress Acrolein Haemoglobin Biomarker Diabetes Liquid chromatography-mass spectrometry (LC-MS/MS) |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-7d84a6dd977555c0f4e966a516d66a3c5ac561d1adac2de103a546bc5b83819a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34534644 |
PQID | 2574397257 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636417597 proquest_miscellaneous_2574397257 pubmed_primary_34534644 crossref_citationtrail_10_1016_j_bbagen_2021_130013 crossref_primary_10_1016_j_bbagen_2021_130013 elsevier_sciencedirect_doi_10_1016_j_bbagen_2021_130013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 2021-Dec 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tiwari (bb0060) 2013; 2013 F. Santilli D. D’Ardes G. Davì , Oxidative stress in chronic vascular disease: from prediction to prevention. Vasc. Pharmacol. Kehrer, Biswal (bb0085) 2000; 57 Zwart (bb0170) 1996; 49 Zhang (bb0070) 2008; 51 Spiess (bb0095) 2011; 74 Schuck (bb0180) 2002; 82 Bradley-Whitman, Lovell (bb0020) 2015; 89 Yong (bb0065) 2010; 16 Kobayashi (bb0205) 2021; 1866 Kakhniashvili, Bulla, Goodman (bb0195) 2004; 3 Black (bb0015) 2015; 51 Eike, Palmer (bb0215) 2004; 20 Uchida (bb0125) 1998; 95 Gathercole (bb0190) 2017; 73 Parvez (bb0155) 2018; 118 von Kompen (bb0165) 1983; 23 Moghe (bb0210) 2015; 143 Cruciani (bb0110) 2019; 144 Cai, Bhatnagar, Pierce (bb0075) 2009; 22 Chiarello (bb0055) 2020; 1866 Betteridge (bb0005) 2000; 49 Brennan, King, Florkowski (bb0185) 2012; 45 Hu, Kluger (bb0200) 2008; 6 Frijhoff (bb0140) 2015; 23 Singh (bb0145) 2001; 44 Liguori (bb0230) 2018; 13 Gorrini, Harris, Mak (bb0025) 2013; 12 Rochette (bb0035) 1840, 2014 Uchida (bb0120) 1998; 273 Li, Holian (bb0090) 1998; 13 Obama (bb0115) 2007; 7 Alfarhan, Jafari, Narayanan (bb0135) 2020; 10 Stevens, Maier (bb0225) 2008; 52 Maritim, Sanders, Watkins (bb0050) 2003; 17 Watanabe (bb0105) 2013; 227 Curtis (bb0130) 2011; 54 Lachin (bb0150) 2008; 57 Uchida (bb0220) 2015; 49 Palmieri, Sblendorio (bb0030) 2007; 11 Yang (bb0040) 2014; 29 Vassalle, Maltinti, Sabatino (bb0010) 2020; 25 Domingues (bb0160) 2013; 92 Yamamoto (bb0175) 2003 Esterbauer, Schaur, Zollner (bb0080) 1991; 11 Sousa, Pitt, Spickett (bb0100) 2017; 111 Yamamoto (10.1016/j.bbagen.2021.130013_bb0175) 2003 Betteridge (10.1016/j.bbagen.2021.130013_bb0005) 2000; 49 Palmieri (10.1016/j.bbagen.2021.130013_bb0030) 2007; 11 Yang (10.1016/j.bbagen.2021.130013_bb0040) 2014; 29 Spiess (10.1016/j.bbagen.2021.130013_bb0095) 2011; 74 Hu (10.1016/j.bbagen.2021.130013_bb0200) 2008; 6 Vassalle (10.1016/j.bbagen.2021.130013_bb0010) 2020; 25 Liguori (10.1016/j.bbagen.2021.130013_bb0230) 2018; 13 Lachin (10.1016/j.bbagen.2021.130013_bb0150) 2008; 57 Tiwari (10.1016/j.bbagen.2021.130013_bb0060) 2013; 2013 Uchida (10.1016/j.bbagen.2021.130013_bb0120) 1998; 273 Singh (10.1016/j.bbagen.2021.130013_bb0145) 2001; 44 Watanabe (10.1016/j.bbagen.2021.130013_bb0105) 2013; 227 Gorrini (10.1016/j.bbagen.2021.130013_bb0025) 2013; 12 Cai (10.1016/j.bbagen.2021.130013_bb0075) 2009; 22 Frijhoff (10.1016/j.bbagen.2021.130013_bb0140) 2015; 23 Sousa (10.1016/j.bbagen.2021.130013_bb0100) 2017; 111 Alfarhan (10.1016/j.bbagen.2021.130013_bb0135) 2020; 10 Parvez (10.1016/j.bbagen.2021.130013_bb0155) 2018; 118 Eike (10.1016/j.bbagen.2021.130013_bb0215) 2004; 20 Rochette (10.1016/j.bbagen.2021.130013_bb0035) 1840 Li (10.1016/j.bbagen.2021.130013_bb0090) 1998; 13 Uchida (10.1016/j.bbagen.2021.130013_bb0125) 1998; 95 Bradley-Whitman (10.1016/j.bbagen.2021.130013_bb0020) 2015; 89 Black (10.1016/j.bbagen.2021.130013_bb0015) 2015; 51 10.1016/j.bbagen.2021.130013_bb0045 Uchida (10.1016/j.bbagen.2021.130013_bb0220) 2015; 49 Gathercole (10.1016/j.bbagen.2021.130013_bb0190) 2017; 73 Zwart (10.1016/j.bbagen.2021.130013_bb0170) 1996; 49 Yong (10.1016/j.bbagen.2021.130013_bb0065) 2010; 16 Chiarello (10.1016/j.bbagen.2021.130013_bb0055) 2020; 1866 Cruciani (10.1016/j.bbagen.2021.130013_bb0110) 2019; 144 Schuck (10.1016/j.bbagen.2021.130013_bb0180) 2002; 82 Kakhniashvili (10.1016/j.bbagen.2021.130013_bb0195) 2004; 3 Moghe (10.1016/j.bbagen.2021.130013_bb0210) 2015; 143 Zhang (10.1016/j.bbagen.2021.130013_bb0070) 2008; 51 Kehrer (10.1016/j.bbagen.2021.130013_bb0085) 2000; 57 Obama (10.1016/j.bbagen.2021.130013_bb0115) 2007; 7 Brennan (10.1016/j.bbagen.2021.130013_bb0185) 2012; 45 Maritim (10.1016/j.bbagen.2021.130013_bb0050) 2003; 17 Stevens (10.1016/j.bbagen.2021.130013_bb0225) 2008; 52 Domingues (10.1016/j.bbagen.2021.130013_bb0160) 2013; 92 von Kompen (10.1016/j.bbagen.2021.130013_bb0165) 1983; 23 Esterbauer (10.1016/j.bbagen.2021.130013_bb0080) 1991; 11 Curtis (10.1016/j.bbagen.2021.130013_bb0130) 2011; 54 Kobayashi (10.1016/j.bbagen.2021.130013_bb0205) 2021; 1866 35249766 - Biochim Biophys Acta Gen Subj. 2022 May;1866(5):130117. doi: 10.1016/j.bbagen.2022.130117 |
References_xml | – volume: 20 start-page: 946 year: 2004 end-page: 952 ident: bb0215 article-title: Effect of NaBH4 concentration and reaction time on physical properties of glutaraldehyde-polymerized hemoglobin publication-title: Biotechnol. Prog. – volume: 49 start-page: 3 year: 2000 end-page: 8 ident: bb0005 article-title: What is oxidative stress? publication-title: Metabolism – volume: 1866 start-page: 158809 year: 2021 ident: bb0205 article-title: Analysis of the acrolein-modified sites of apolipoprotein B-100 in LDL publication-title: Biochim. Biophys. Acta – volume: 227 start-page: 51 year: 2013 end-page: 57 ident: bb0105 article-title: Acrolein-conjugated low-density lipoprotein induces macrophage foam cell formation publication-title: Atherosclerosis – volume: 273 start-page: 16058 year: 1998 ident: bb0120 article-title: Acrolein is a product of lipid peroxidation reaction publication-title: J. Biol. Chem. – volume: 16 start-page: 2524 year: 2010 end-page: 2538 ident: bb0065 article-title: Evidence supporting a role for N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy publication-title: Mol. Vis. – volume: 25 start-page: 2653 year: 2020 ident: bb0010 article-title: Targeting oxidative stress for disease prevention and therapy: where do we stand, and where do we go from here publication-title: Molecules (Basel, Switzerland) – volume: 2013 year: 2013 ident: bb0060 article-title: Markers of oxidative stress during diabetes mellitus publication-title: J. Biomark. – volume: 45 start-page: 259 year: 2012 end-page: 263 ident: bb0185 article-title: β37Trp→Cys mutation leads to multiple new hemoglobin species in red cells publication-title: Clin. Biochem. – volume: 12 start-page: 931 year: 2013 end-page: 947 ident: bb0025 article-title: Modulation of oxidative stress as an anticancer strategy publication-title: Nat. Rev. Drug Discov. – volume: 29 start-page: 2577 year: 2014 end-page: 2583 ident: bb0040 article-title: Association between global biomarkers of oxidative stress and hip fracture in postmenopausal women: a prospective study publication-title: J. Bone Miner. Res. – volume: 23 start-page: 1144 year: 2015 end-page: 1170 ident: bb0140 article-title: Clinical relevance of biomarkers of oxidative stress publication-title: Antioxid. Redox Signal. – volume: 51 start-page: 164 year: 2015 end-page: 175 ident: bb0015 article-title: Is depression associated with increased oxidative stress? A systematic review and meta-analysis publication-title: Psychoneuroendocrinology – volume: 74 start-page: 2380 year: 2011 end-page: 2394 ident: bb0095 article-title: Proteomic profiling of acrolein adducts in human lung epithelial cells publication-title: J. Proteome – volume: 49 start-page: 271 year: 1996 end-page: 274 ident: bb0170 article-title: Recommendations for reference method for haemoglobinometry in human blood (ICSH standard 1995) and specifications for international haemiglobinocyanide standard (4th edition) publication-title: J. Clin. Pathol. – volume: 49 start-page: 896 year: 2015 end-page: 904 ident: bb0220 article-title: Aldehyde adducts generated during lipid peroxidation modification of proteins publication-title: Free Radic. Res. – volume: 11 start-page: 308 year: 2007 end-page: 342 ident: bb0030 article-title: Oxidative stress tests: overview on reliability and use publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 10 year: 2020 ident: bb0135 article-title: Acrolein: a potential mediator of oxidative damage in diabetic retinopathy publication-title: Biomolecules – reference: F. Santilli D. D’Ardes G. Davì , Oxidative stress in chronic vascular disease: from prediction to prevention. Vasc. Pharmacol. – volume: 144 start-page: 1 year: 2019 end-page: 5 ident: bb0110 article-title: Redox lipidomics and adductomics - advanced analytical strategies to study oxidized lipids and lipid-protein adducts publication-title: Free Radic. Biol. Med. – volume: 52 start-page: 7 year: 2008 end-page: 25 ident: bb0225 article-title: Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease publication-title: Mol. Nutr. Food Res. – volume: 95 start-page: 4882 year: 1998 end-page: 4887 ident: bb0125 article-title: Protein-bound acrolein: potential markers for oxidative stress publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 92 start-page: 110 year: 2013 end-page: 131 ident: bb0160 article-title: Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? publication-title: J. Proteome – volume: 82 start-page: 1096 year: 2002 end-page: 1111 ident: bb0180 article-title: Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems publication-title: Biophys. J. – volume: 44 start-page: 129 year: 2001 end-page: 146 ident: bb0145 article-title: Advanced glycation end-products: a review publication-title: Diabetologia – volume: 1866 year: 2020 ident: bb0055 article-title: Oxidative stress: normal pregnancy versus preeclampsia publication-title: Biochim. Biophys. Acta – volume: 51 start-page: 1723 year: 2008 end-page: 1730 ident: bb0070 article-title: Evaluation of N ε-(3-formyl-3, 4-dehydropiperidino) lysine as a novel biomarker for the severity of diabetic retinopathy publication-title: Diabetologia – volume: 13 start-page: 757 year: 2018 end-page: 772 ident: bb0230 article-title: Oxidative stress, aging, and diseases publication-title: Clin. Interv. Aging – start-page: 2709 year: 1840, 2014 end-page: 2729 ident: bb0035 article-title: Diabetes, oxidative stress and therapeutic strategies publication-title: Biochim. Biophys. Acta – volume: 57 start-page: 6 year: 2000 end-page: 15 ident: bb0085 article-title: The molecular effects of acrolein publication-title: Toxicol. Sci. – volume: 111 start-page: 294 year: 2017 end-page: 308 ident: bb0100 article-title: Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds publication-title: Free Radic. Biol. Med. – volume: 3 start-page: 501 year: 2004 end-page: 509 ident: bb0195 article-title: The human erythrocyte proteome analysis by ion trap mass spectrometry publication-title: Mol. Cell. Proteomics – volume: 17 start-page: 24 year: 2003 end-page: 38 ident: bb0050 article-title: Diabetes, oxidative stress, and antioxidants: a review publication-title: J. Biochem. Mol. Toxicol. – year: 2003 ident: bb0175 article-title: Sodium Borohydride Digest – volume: 143 start-page: 242 year: 2015 end-page: 255 ident: bb0210 article-title: Molecular mechanisms of acrolein toxicity: relevance to human disease publication-title: Toxicol. Sci. – volume: 73 start-page: 74 year: 2017 end-page: 83 ident: bb0190 article-title: Molecular modification associated with the heat treatment of bovine milk publication-title: Int. Dairy J. – volume: 22 start-page: 708 year: 2009 end-page: 716 ident: bb0075 article-title: Protein modification by acrolein: formation and stability of cysteine adducts publication-title: Chem. Res. Toxicol. – volume: 7 start-page: 2132 year: 2007 end-page: 2141 ident: bb0115 article-title: Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS publication-title: Proteomics – volume: 54 start-page: 690 year: 2011 end-page: 698 ident: bb0130 article-title: Müller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products publication-title: Diabetologia – volume: 11 start-page: 81 year: 1991 end-page: 128 ident: bb0080 article-title: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes publication-title: Free Radic. Biol. Med. – volume: 13 start-page: 99 year: 1998 end-page: 108 ident: bb0090 article-title: Acrolein: a respiratory toxin that suppresses pulmonary host defense publication-title: Rev. Environ. Health – volume: 118 start-page: 8798 year: 2018 end-page: 8888 ident: bb0155 article-title: Redox signaling by reactive electrophiles and oxidants publication-title: Chem. Rev. – volume: 23 start-page: 199 year: 1983 ident: bb0165 article-title: Spectrophotometry of hemoglobin and hemoglobin derivatives publication-title: Adv. Clin. Chem. – volume: 6 start-page: 151 year: 2008 end-page: 156 ident: bb0200 article-title: Efficient generation of dendritic arrays of cross-linked hemoglobin: symmetry and redundancy publication-title: Org. Biomol. Chem. – volume: 57 start-page: 995 year: 2008 end-page: 1001 ident: bb0150 article-title: Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial–revisited publication-title: Diabetes – volume: 89 start-page: 1035 year: 2015 end-page: 1044 ident: bb0020 article-title: Biomarkers of lipid peroxidation in alzheimer disease (AD): an update publication-title: Arch. Toxicol. – volume: 118 start-page: 8798 issue: 18 year: 2018 ident: 10.1016/j.bbagen.2021.130013_bb0155 article-title: Redox signaling by reactive electrophiles and oxidants publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00698 – volume: 92 start-page: 110 year: 2013 ident: 10.1016/j.bbagen.2021.130013_bb0160 article-title: Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? publication-title: J. Proteome doi: 10.1016/j.jprot.2013.06.004 – volume: 82 start-page: 1096 issue: 2 year: 2002 ident: 10.1016/j.bbagen.2021.130013_bb0180 article-title: Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75469-6 – volume: 1866 issue: 2 year: 2020 ident: 10.1016/j.bbagen.2021.130013_bb0055 article-title: Oxidative stress: normal pregnancy versus preeclampsia publication-title: Biochim. Biophys. Acta – volume: 44 start-page: 129 issue: 2 year: 2001 ident: 10.1016/j.bbagen.2021.130013_bb0145 article-title: Advanced glycation end-products: a review publication-title: Diabetologia doi: 10.1007/s001250051591 – volume: 52 start-page: 7 year: 2008 ident: 10.1016/j.bbagen.2021.130013_bb0225 article-title: Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.200700412 – volume: 20 start-page: 946 issue: 3 year: 2004 ident: 10.1016/j.bbagen.2021.130013_bb0215 article-title: Effect of NaBH4 concentration and reaction time on physical properties of glutaraldehyde-polymerized hemoglobin publication-title: Biotechnol. Prog. doi: 10.1021/bp0343155 – volume: 73 start-page: 74 year: 2017 ident: 10.1016/j.bbagen.2021.130013_bb0190 article-title: Molecular modification associated with the heat treatment of bovine milk publication-title: Int. Dairy J. doi: 10.1016/j.idairyj.2017.05.008 – volume: 45 start-page: 259 issue: 3 year: 2012 ident: 10.1016/j.bbagen.2021.130013_bb0185 article-title: β37Trp→Cys mutation leads to multiple new hemoglobin species in red cells publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2011.12.001 – volume: 11 start-page: 81 issue: 1 year: 1991 ident: 10.1016/j.bbagen.2021.130013_bb0080 article-title: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(91)90192-6 – volume: 7 start-page: 2132 year: 2007 ident: 10.1016/j.bbagen.2021.130013_bb0115 article-title: Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS publication-title: Proteomics doi: 10.1002/pmic.200700111 – volume: 144 start-page: 1 year: 2019 ident: 10.1016/j.bbagen.2021.130013_bb0110 article-title: Redox lipidomics and adductomics - advanced analytical strategies to study oxidized lipids and lipid-protein adducts publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.07.027 – volume: 16 start-page: 2524 year: 2010 ident: 10.1016/j.bbagen.2021.130013_bb0065 article-title: Evidence supporting a role for N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy publication-title: Mol. Vis. – volume: 57 start-page: 6 issue: 1 year: 2000 ident: 10.1016/j.bbagen.2021.130013_bb0085 article-title: The molecular effects of acrolein publication-title: Toxicol. Sci. doi: 10.1093/toxsci/57.1.6 – volume: 273 start-page: 16058 year: 1998 ident: 10.1016/j.bbagen.2021.130013_bb0120 article-title: Acrolein is a product of lipid peroxidation reaction publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.26.16058 – volume: 23 start-page: 1144 issue: 14 year: 2015 ident: 10.1016/j.bbagen.2021.130013_bb0140 article-title: Clinical relevance of biomarkers of oxidative stress publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2015.6317 – volume: 6 start-page: 151 issue: 1 year: 2008 ident: 10.1016/j.bbagen.2021.130013_bb0200 article-title: Efficient generation of dendritic arrays of cross-linked hemoglobin: symmetry and redundancy publication-title: Org. Biomol. Chem. doi: 10.1039/B714684A – volume: 17 start-page: 24 issue: 1 year: 2003 ident: 10.1016/j.bbagen.2021.130013_bb0050 article-title: Diabetes, oxidative stress, and antioxidants: a review publication-title: J. Biochem. Mol. Toxicol. doi: 10.1002/jbt.10058 – volume: 12 start-page: 931 issue: 12 year: 2013 ident: 10.1016/j.bbagen.2021.130013_bb0025 article-title: Modulation of oxidative stress as an anticancer strategy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4002 – volume: 11 start-page: 308 year: 2007 ident: 10.1016/j.bbagen.2021.130013_bb0030 article-title: Oxidative stress tests: overview on reliability and use publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 227 start-page: 51 year: 2013 ident: 10.1016/j.bbagen.2021.130013_bb0105 article-title: Acrolein-conjugated low-density lipoprotein induces macrophage foam cell formation publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2012.12.020 – volume: 49 start-page: 271 issue: 4 year: 1996 ident: 10.1016/j.bbagen.2021.130013_bb0170 article-title: Recommendations for reference method for haemoglobinometry in human blood (ICSH standard 1995) and specifications for international haemiglobinocyanide standard (4th edition) publication-title: J. Clin. Pathol. doi: 10.1136/jcp.49.4.271 – volume: 49 start-page: 896 issue: 7 year: 2015 ident: 10.1016/j.bbagen.2021.130013_bb0220 article-title: Aldehyde adducts generated during lipid peroxidation modification of proteins publication-title: Free Radic. Res. doi: 10.3109/10715762.2015.1036052 – volume: 49 start-page: 3 issue: 2, Supplement 1 year: 2000 ident: 10.1016/j.bbagen.2021.130013_bb0005 article-title: What is oxidative stress? publication-title: Metabolism doi: 10.1016/S0026-0495(00)80077-3 – volume: 95 start-page: 4882 year: 1998 ident: 10.1016/j.bbagen.2021.130013_bb0125 article-title: Protein-bound acrolein: potential markers for oxidative stress publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.9.4882 – volume: 74 start-page: 2380 year: 2011 ident: 10.1016/j.bbagen.2021.130013_bb0095 article-title: Proteomic profiling of acrolein adducts in human lung epithelial cells publication-title: J. Proteome doi: 10.1016/j.jprot.2011.05.039 – volume: 10 issue: 11 year: 2020 ident: 10.1016/j.bbagen.2021.130013_bb0135 article-title: Acrolein: a potential mediator of oxidative damage in diabetic retinopathy publication-title: Biomolecules doi: 10.3390/biom10111579 – volume: 57 start-page: 995 issue: 4 year: 2008 ident: 10.1016/j.bbagen.2021.130013_bb0150 article-title: Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial–revisited publication-title: Diabetes doi: 10.2337/db07-1618 – volume: 89 start-page: 1035 issue: 7 year: 2015 ident: 10.1016/j.bbagen.2021.130013_bb0020 article-title: Biomarkers of lipid peroxidation in alzheimer disease (AD): an update publication-title: Arch. Toxicol. doi: 10.1007/s00204-015-1517-6 – volume: 143 start-page: 242 issue: 2 year: 2015 ident: 10.1016/j.bbagen.2021.130013_bb0210 article-title: Molecular mechanisms of acrolein toxicity: relevance to human disease publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfu233 – volume: 51 start-page: 1723 year: 2008 ident: 10.1016/j.bbagen.2021.130013_bb0070 article-title: Evaluation of N ε-(3-formyl-3, 4-dehydropiperidino) lysine as a novel biomarker for the severity of diabetic retinopathy publication-title: Diabetologia doi: 10.1007/s00125-008-1071-3 – volume: 13 start-page: 757 year: 2018 ident: 10.1016/j.bbagen.2021.130013_bb0230 article-title: Oxidative stress, aging, and diseases publication-title: Clin. Interv. Aging doi: 10.2147/CIA.S158513 – volume: 23 start-page: 199 year: 1983 ident: 10.1016/j.bbagen.2021.130013_bb0165 article-title: Spectrophotometry of hemoglobin and hemoglobin derivatives publication-title: Adv. Clin. Chem. doi: 10.1016/S0065-2423(08)60401-1 – volume: 1866 start-page: 158809 issue: 1 year: 2021 ident: 10.1016/j.bbagen.2021.130013_bb0205 article-title: Analysis of the acrolein-modified sites of apolipoprotein B-100 in LDL publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2020.158809 – volume: 54 start-page: 690 year: 2011 ident: 10.1016/j.bbagen.2021.130013_bb0130 article-title: Müller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products publication-title: Diabetologia doi: 10.1007/s00125-010-1971-x – volume: 25 start-page: 2653 issue: 11 year: 2020 ident: 10.1016/j.bbagen.2021.130013_bb0010 article-title: Targeting oxidative stress for disease prevention and therapy: where do we stand, and where do we go from here publication-title: Molecules (Basel, Switzerland) doi: 10.3390/molecules25112653 – volume: 3 start-page: 501 year: 2004 ident: 10.1016/j.bbagen.2021.130013_bb0195 article-title: The human erythrocyte proteome analysis by ion trap mass spectrometry publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M300132-MCP200 – volume: 22 start-page: 708 year: 2009 ident: 10.1016/j.bbagen.2021.130013_bb0075 article-title: Protein modification by acrolein: formation and stability of cysteine adducts publication-title: Chem. Res. Toxicol. doi: 10.1021/tx800465m – volume: 29 start-page: 2577 issue: 12 year: 2014 ident: 10.1016/j.bbagen.2021.130013_bb0040 article-title: Association between global biomarkers of oxidative stress and hip fracture in postmenopausal women: a prospective study publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2302 – start-page: 2709 year: 1840 ident: 10.1016/j.bbagen.2021.130013_bb0035 article-title: Diabetes, oxidative stress and therapeutic strategies publication-title: Biochim. Biophys. Acta – ident: 10.1016/j.bbagen.2021.130013_bb0045 – year: 2003 ident: 10.1016/j.bbagen.2021.130013_bb0175 – volume: 2013 year: 2013 ident: 10.1016/j.bbagen.2021.130013_bb0060 article-title: Markers of oxidative stress during diabetes mellitus publication-title: J. Biomark. doi: 10.1155/2013/378790 – volume: 111 start-page: 294 year: 2017 ident: 10.1016/j.bbagen.2021.130013_bb0100 article-title: Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.02.003 – volume: 51 start-page: 164 year: 2015 ident: 10.1016/j.bbagen.2021.130013_bb0015 article-title: Is depression associated with increased oxidative stress? A systematic review and meta-analysis publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2014.09.025 – volume: 13 start-page: 99 issue: 1–2 year: 1998 ident: 10.1016/j.bbagen.2021.130013_bb0090 article-title: Acrolein: a respiratory toxin that suppresses pulmonary host defense publication-title: Rev. Environ. Health – reference: 35249766 - Biochim Biophys Acta Gen Subj. 2022 May;1866(5):130117. doi: 10.1016/j.bbagen.2022.130117 |
SSID | ssj0000595 |
Score | 2.391648 |
Snippet | Abstract
Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk... Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130013 |
SubjectTerms | Acrolein Acrolein - chemistry Acrolein - metabolism Biomarker byproducts crosslinking Diabetes Haemoglobin hemoglobin Hemoglobins - chemistry Hemoglobins - metabolism Humans Lipid Peroxidation lipid peroxides Liquid chromatography-mass spectrometry (LC-MS/MS) lysine Lysine - chemistry Lysine - metabolism mass spectrometry Mass Spectrometry - methods Oxidative Stress risk assessment |
Title | Reaction dynamics and residue identification of haemoglobin modification by acrolein, a lipid-peroxidation by-product |
URI | https://dx.doi.org/10.1016/j.bbagen.2021.130013 https://www.ncbi.nlm.nih.gov/pubmed/34534644 https://www.proquest.com/docview/2574397257 https://www.proquest.com/docview/2636417597 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5EEb2I63PcVVrwaDvJ9CPJUYaVWUUPPsBb069gy5gMOgPOxd--1elE8eAKewpJqqHpqlR9lf66CqGjIrFZXuic5FpTAhFPEO2YhpyHlTrRVCUq_Ie8vBKjO3Z-z-8X0LA7CxNola3vjz698dbtk367mv2J9_2bsKkHcALiT5PIhLydsSxY-cnbB80D4AOPOwmMBOnu-FzD8dIaPtpQBXWQNm2RU_pVePoKfjZh6GwdrbX4EZ_GKf5AC67aQMuxo-R8A60MuwZum2h27eKpBWxj2_kXrCqLIb_2duawty1RqNENrkv8oNxTHSqE-Ao_1fbjnZ5jZQIP0VfHWOGxn3hLQoXxV287CTKJtWO30N3Z79vhiLRdFoihBZ-SzOZMCWsBCHLOTVIyBymQ4qmwcKGGKwMYy6bKKjOwLk2o4kxow3Uesj1Ft9FiVVduF-ES0unSCc0zUzIjlBYDxrOCNzXxXZ73EO0WV5q2BHnohDGWHdfsUUaVyKASGVXSQ-R91CSW4PhGPuv0Jj-ZkoQo8c3Iw07NEnQVtk5U5erZiwTHFpAbXP4hI6hggMYKkNmJNvI-X8o4ZQA99_57bj_RariLTJpfaHH6PHP7gIem-qAx-AO0dPrnYnT1F1eZCc8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iFH0Rq9ae2jaFPpre7uVjdx_lUK7tnQ9WwbeQr8WUu91D70Bf_NudbHYVH1ToU2AzgZCZzPxmZzKD0I8isVle6JzkWlMCFk8Q7ZgGn4eVOtFUJSr8h5ycidEl-33Fr1bQsHsLE9IqW90fdXqjrdsv_fY0-3Pv-39DUA_gBNifxpEBv32NwfUNbQx-PjzneQB-4DGUwEgg797PNUleWsOtDWVQB2nTFzmlr9mn1_BnY4dOt9BmCyDxcdzjR7Tiqm30IbaUvN9G68Oug9sOWp67-GwB29h3_harymJwsL1dOuxtmynUMAfXJb5WblaHEiG-wrPaPs_pe6xMSET01RFWeOrn3pJQYvzO246CzGPx2F10eXpyMRyRts0CMbTgC5LZnClhLSBBzrlJSubAB1I8FRYGargyALJsqqwyA-vShCrOhDZc58HdU_QTWq3qyn1GuAR_unRC88yUzAilxYDxrOBNUXyX5z1Eu8OVpq1BHlphTGWXbPZPRpbIwBIZWdJD5GnVPNbgeIc-6_gmX8iSBDPxzsrvHZsl8CrETlTl6uWtBM0WoBsMb9AIKhjAsQJo9qKMPO2XgmgywJ77_723b2h9dDEZy_Gvsz8HaCPMxLSaQ7S6uFm6LwCOFvprI_yPT0ILXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction+dynamics+and+residue+identification+of+haemoglobin+modification+by+acrolein%2C+a+lipid-peroxidation+by-product&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Lass%C3%A9%2C+Moritz&rft.au=Stampfli%2C+Anja+R&rft.au=Orban%2C+Thomas&rft.au=Bothara%2C+Roshit+K&rft.date=2021-12-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1865&rft.issue=12&rft.spage=130013&rft_id=info:doi/10.1016%2Fj.bbagen.2021.130013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |