Modelling the nonlinear relationship between CO2 emissions and economic growth using a PSO algorithm-based grey Verhulst model
A new method for discussing the relationship between CO2 emissions and economic growth is proposed using grey systems theory. GDP and CO2 emissions per capita are separately regarded as the input to, and output of, a grey system to establish a non-equigap grey Verhulst model (NE grey Verhulst model)...
Saved in:
Published in | Journal of cleaner production Vol. 207; pp. 214 - 224 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
10.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new method for discussing the relationship between CO2 emissions and economic growth is proposed using grey systems theory. GDP and CO2 emissions per capita are separately regarded as the input to, and output of, a grey system to establish a non-equigap grey Verhulst model (NE grey Verhulst model). To avoid the errors resulting from substituting a difference equation for a differential equation in grey modelling theory, the derived non-equigap grey Verhulst model (DNE grey Verhulst model) is deduced. Moreover, the structural parameters of the model are optimised using a particle swarm optimisation (PSO) algorithm in an attempt to further improve modelling accuracy. Based on data relating to CO2 emissions and GDP per capita in China from 1990 to 2014, empirical research is conducted which shows that the relationship between CO2 emissions and economic growth exhibits an inverted U-shape and the emissions are in a rapid growth stage on the left of the curve. It is predicted that CO2 emissions per capita will continue to rise from 2016 to 2020 and will not reach their peak before 2030, so the Chinese government should take effective measures to reduce carbon emissions.
•A new method for discussing the relationship between CO2 emissions and economic growth is proposed.•The structural parameters of the new model are optimised by PSO algorithm.•The Kuznets curve for CO2 emissions in China, the largest developing country in the world, is verified.•Policy suggestions are proposed in terms of emission reduction of greenhouse gases. |
---|---|
AbstractList | A new method for discussing the relationship between CO₂ emissions and economic growth is proposed using grey systems theory. GDP and CO₂ emissions per capita are separately regarded as the input to, and output of, a grey system to establish a non-equigap grey Verhulst model (NE grey Verhulst model). To avoid the errors resulting from substituting a difference equation for a differential equation in grey modelling theory, the derived non-equigap grey Verhulst model (DNE grey Verhulst model) is deduced. Moreover, the structural parameters of the model are optimised using a particle swarm optimisation (PSO) algorithm in an attempt to further improve modelling accuracy. Based on data relating to CO₂ emissions and GDP per capita in China from 1990 to 2014, empirical research is conducted which shows that the relationship between CO₂ emissions and economic growth exhibits an inverted U-shape and the emissions are in a rapid growth stage on the left of the curve. It is predicted that CO₂ emissions per capita will continue to rise from 2016 to 2020 and will not reach their peak before 2030, so the Chinese government should take effective measures to reduce carbon emissions. A new method for discussing the relationship between CO2 emissions and economic growth is proposed using grey systems theory. GDP and CO2 emissions per capita are separately regarded as the input to, and output of, a grey system to establish a non-equigap grey Verhulst model (NE grey Verhulst model). To avoid the errors resulting from substituting a difference equation for a differential equation in grey modelling theory, the derived non-equigap grey Verhulst model (DNE grey Verhulst model) is deduced. Moreover, the structural parameters of the model are optimised using a particle swarm optimisation (PSO) algorithm in an attempt to further improve modelling accuracy. Based on data relating to CO2 emissions and GDP per capita in China from 1990 to 2014, empirical research is conducted which shows that the relationship between CO2 emissions and economic growth exhibits an inverted U-shape and the emissions are in a rapid growth stage on the left of the curve. It is predicted that CO2 emissions per capita will continue to rise from 2016 to 2020 and will not reach their peak before 2030, so the Chinese government should take effective measures to reduce carbon emissions. •A new method for discussing the relationship between CO2 emissions and economic growth is proposed.•The structural parameters of the new model are optimised by PSO algorithm.•The Kuznets curve for CO2 emissions in China, the largest developing country in the world, is verified.•Policy suggestions are proposed in terms of emission reduction of greenhouse gases. |
Author | Li, Qin Wang, Zheng-Xin |
Author_xml | – sequence: 1 givenname: Zheng-Xin surname: Wang fullname: Wang, Zheng-Xin email: zxwang@zufe.edu.cn organization: School of Economics, Zhejiang University of Finance & Economics, Hangzhou, 310018, China – sequence: 2 givenname: Qin surname: Li fullname: Li, Qin email: qinli993@zufe.edu.cn organization: School of Economics, Zhejiang University of Finance & Economics, Hangzhou, 310018, China |
BookMark | eNqFkE9vEzEQxS1UJNLCR0Dykcum9u76nzggFEFBKgpSC1fLa0-yjnbtYDtUvfDZ8ZKeuPQ0o5n33mh-l-gixAAIvaVkTQnl14f1wU5wTHHdEirrbE0oeYFWVArVUCH5BVoRxVTDWctfocucD4RQQUS_Qn--RQfT5MMelxFwTa49mIQTTKb4GPLoj3iA8gAQ8GbbYph9zssCm-Aw2Bji7C3ep_hQRnzKS5TB3--22Ez7mHwZ52YwGVyVwCP-CWk8TbngeTn8Gr3cmSnDm6d6hX58_nS_-dLcbm--bj7eNrZTrDTCsb4H5TrTCbED3lPnhlYq5yzrLTXScdk6YYUlnCkFvHWUd3KnWksGQ4fuCr0751ZKv06Qi65f2Pq4CRBPWbdUKtZ1kskqfX-W2hRzTrDT1pd_KEoyftKU6IW6Pugn6nqhvowr9epm_7mPyc8mPT7r-3D2QaXw20PS2XoIFpxPYIt20T-T8BctwqRZ |
CitedBy_id | crossref_primary_10_1016_j_knosys_2021_107487 crossref_primary_10_1016_j_jclepro_2020_120793 crossref_primary_10_1016_j_apm_2021_06_025 crossref_primary_10_1016_j_egyr_2021_04_061 crossref_primary_10_1016_j_jclepro_2020_124471 crossref_primary_10_3390_math12233770 crossref_primary_10_1016_j_heliyon_2023_e21241 crossref_primary_10_1155_2022_6910865 crossref_primary_10_2139_ssrn_3996938 crossref_primary_10_1016_j_egyr_2022_07_039 crossref_primary_10_1016_j_apm_2019_05_044 crossref_primary_10_1007_s11356_023_30812_1 crossref_primary_10_1038_s41598_021_91970_1 crossref_primary_10_1016_j_eswa_2022_118429 crossref_primary_10_1016_j_apm_2019_01_039 crossref_primary_10_1016_j_renene_2022_03_139 crossref_primary_10_1007_s11356_021_18357_7 crossref_primary_10_1108_GS_02_2020_0025 crossref_primary_10_1016_j_jclepro_2020_123708 crossref_primary_10_1016_j_energy_2021_122786 crossref_primary_10_1016_j_jclepro_2023_137424 crossref_primary_10_1016_j_scitotenv_2021_150859 crossref_primary_10_1080_01969722_2022_2055991 crossref_primary_10_1109_ACCESS_2022_3170905 crossref_primary_10_1108_GS_04_2021_0057 crossref_primary_10_3390_su151411281 crossref_primary_10_1080_15567036_2020_1827090 crossref_primary_10_1016_j_isatra_2019_07_009 crossref_primary_10_1016_j_egyr_2022_10_344 crossref_primary_10_1016_j_jclepro_2021_127977 crossref_primary_10_1016_j_uclim_2021_100849 crossref_primary_10_1007_s11356_019_04791_1 crossref_primary_10_1016_j_jclepro_2021_126001 crossref_primary_10_1016_j_jclepro_2024_143301 crossref_primary_10_1016_j_cnsns_2020_105665 crossref_primary_10_1016_j_jclepro_2019_118573 crossref_primary_10_1016_j_jclepro_2019_119386 crossref_primary_10_1155_2019_9162163 crossref_primary_10_1007_s00500_023_09287_2 crossref_primary_10_1016_j_compbiomed_2022_105256 crossref_primary_10_1016_j_energy_2022_125784 crossref_primary_10_3390_buildings14072241 crossref_primary_10_1007_s11356_020_08951_6 crossref_primary_10_1016_j_apm_2020_06_020 crossref_primary_10_1016_j_spc_2020_04_004 crossref_primary_10_1007_s11227_021_03713_8 crossref_primary_10_1155_2019_1878296 crossref_primary_10_1016_j_engappai_2020_104086 crossref_primary_10_2139_ssrn_3975612 crossref_primary_10_3390_su14116789 crossref_primary_10_1155_2020_9178098 crossref_primary_10_1007_s11356_022_23662_w crossref_primary_10_1093_jcde_qwab009 crossref_primary_10_1007_s11356_019_05808_5 crossref_primary_10_1016_j_cie_2019_106185 crossref_primary_10_2139_ssrn_4055846 crossref_primary_10_1007_s11356_021_12736_w crossref_primary_10_1007_s11356_020_11418_3 crossref_primary_10_1016_j_chaos_2021_111657 crossref_primary_10_3233_JIFS_201873 crossref_primary_10_1007_s11356_022_23923_8 crossref_primary_10_1108_GS_08_2020_0113 crossref_primary_10_1007_s11356_022_19805_8 crossref_primary_10_1016_j_ijhydene_2021_08_012 crossref_primary_10_3934_math_2023816 crossref_primary_10_1016_j_jobe_2024_109014 crossref_primary_10_1007_s00500_023_09158_w crossref_primary_10_34110_forecasting_1458131 crossref_primary_10_1016_j_scitotenv_2019_135321 crossref_primary_10_1016_j_renene_2019_03_006 crossref_primary_10_1155_2020_8829948 crossref_primary_10_1016_j_scs_2025_106150 crossref_primary_10_1109_ACCESS_2020_3021721 crossref_primary_10_1016_j_engappai_2019_103350 crossref_primary_10_1007_s11356_022_18803_0 crossref_primary_10_1007_s11356_020_11638_7 crossref_primary_10_1016_j_engappai_2024_108200 crossref_primary_10_1155_2021_3153731 crossref_primary_10_1016_j_scitotenv_2019_135447 crossref_primary_10_1016_j_cnsns_2022_106250 crossref_primary_10_1007_s11869_019_00746_0 crossref_primary_10_1016_j_enpol_2020_111965 crossref_primary_10_1155_2020_6614570 crossref_primary_10_4491_eer_2024_339 crossref_primary_10_1108_GS_05_2019_0012 crossref_primary_10_1016_j_energy_2019_04_096 crossref_primary_10_1108_GS_06_2022_0059 crossref_primary_10_1155_2019_3620120 crossref_primary_10_1155_2019_1731262 crossref_primary_10_3390_ijerph17124582 crossref_primary_10_1016_j_esr_2023_101221 crossref_primary_10_1155_2020_4170804 crossref_primary_10_1016_j_energy_2025_134851 crossref_primary_10_1007_s13762_024_05485_z crossref_primary_10_1016_j_renene_2021_09_072 crossref_primary_10_1016_j_asoc_2020_106538 crossref_primary_10_1016_j_engappai_2023_105870 crossref_primary_10_1007_s00500_023_09063_2 crossref_primary_10_3390_atmos12081020 crossref_primary_10_1016_j_jclepro_2020_123222 crossref_primary_10_3390_land11060892 crossref_primary_10_53443_anadoluibfd_1407369 crossref_primary_10_3390_ijerph18020587 crossref_primary_10_1007_s10668_022_02178_w crossref_primary_10_1002_clen_201900097 crossref_primary_10_1016_j_chaos_2020_109948 crossref_primary_10_1016_j_jclepro_2022_133029 crossref_primary_10_1016_j_eswa_2022_118500 crossref_primary_10_1007_s00521_019_04364_w crossref_primary_10_1007_s13762_021_03319_w crossref_primary_10_1016_j_eswa_2023_122325 crossref_primary_10_1155_2020_2416840 crossref_primary_10_1016_j_jclepro_2020_123903 crossref_primary_10_1155_2021_6654288 crossref_primary_10_1016_j_asoc_2020_106145 crossref_primary_10_1016_j_chaos_2020_110429 crossref_primary_10_1016_j_energy_2021_120716 crossref_primary_10_1016_j_jclepro_2023_139641 crossref_primary_10_1016_j_apm_2020_01_014 crossref_primary_10_1016_j_energy_2020_117443 crossref_primary_10_1016_j_jenvman_2022_117124 crossref_primary_10_1021_acs_energyfuels_0c04195 crossref_primary_10_1016_j_cnsns_2021_105847 crossref_primary_10_1080_15567036_2021_1967518 crossref_primary_10_1016_j_energy_2020_118499 crossref_primary_10_1016_j_apm_2022_11_025 crossref_primary_10_1155_2021_4951714 crossref_primary_10_3390_su15042926 crossref_primary_10_1155_2021_7596694 crossref_primary_10_1016_j_cie_2020_106915 crossref_primary_10_1007_s00366_021_01451_2 crossref_primary_10_1007_s00500_020_04904_w crossref_primary_10_1016_j_seppur_2020_117329 crossref_primary_10_1007_s11356_023_27189_6 crossref_primary_10_1016_j_envres_2023_117914 crossref_primary_10_1155_2020_5071267 crossref_primary_10_1007_s00477_024_02868_z crossref_primary_10_1108_K_12_2018_0694 crossref_primary_10_1016_j_rser_2020_109856 crossref_primary_10_1016_j_asoc_2020_106891 crossref_primary_10_1016_j_energy_2021_120714 crossref_primary_10_1016_j_jclepro_2020_120929 crossref_primary_10_1002_sd_2156 crossref_primary_10_1016_j_egyr_2021_09_105 crossref_primary_10_1680_jensu_21_00085 crossref_primary_10_1016_j_resconrec_2019_104509 crossref_primary_10_1155_2020_1341047 crossref_primary_10_1007_s44196_023_00316_4 crossref_primary_10_1016_j_cie_2021_107729 crossref_primary_10_1155_2019_6343298 crossref_primary_10_1007_s11709_020_0619_2 crossref_primary_10_1016_j_wasman_2020_11_006 crossref_primary_10_1016_j_energy_2022_125871 crossref_primary_10_1016_j_eswa_2024_124481 crossref_primary_10_1016_j_jclepro_2023_138656 crossref_primary_10_1016_j_jclepro_2023_139744 crossref_primary_10_1111_1477_8947_12458 crossref_primary_10_1016_j_aej_2020_08_026 crossref_primary_10_1016_j_apm_2020_04_006 crossref_primary_10_1007_s11356_020_09189_y crossref_primary_10_1016_j_apm_2020_08_080 crossref_primary_10_1016_j_econlet_2019_108553 crossref_primary_10_1016_j_egyr_2021_01_082 crossref_primary_10_1063_5_0247942 crossref_primary_10_1016_j_marpolbul_2020_111675 crossref_primary_10_1016_j_energy_2024_131558 crossref_primary_10_54097_fcis_v3i2_7082 crossref_primary_10_1016_j_engappai_2020_103863 crossref_primary_10_1155_2020_6640000 crossref_primary_10_1016_j_eiar_2024_107790 crossref_primary_10_1088_1742_6596_1952_4_042122 crossref_primary_10_1007_s11356_022_19572_6 crossref_primary_10_3390_su12104325 crossref_primary_10_3390_su142416998 crossref_primary_10_1007_s40747_022_00685_x crossref_primary_10_1016_j_energy_2022_125094 crossref_primary_10_1177_0958305X20960700 crossref_primary_10_1007_s00521_021_05980_1 crossref_primary_10_1016_j_eneco_2023_107013 crossref_primary_10_1016_j_chaos_2021_110778 crossref_primary_10_1016_j_resconrec_2023_107063 crossref_primary_10_3233_JIFS_200113 crossref_primary_10_3390_atmos15091108 crossref_primary_10_1016_j_enpol_2020_111244 crossref_primary_10_1016_j_scitotenv_2024_172319 crossref_primary_10_3390_ijerph17196971 |
Cites_doi | 10.1016/j.renene.2018.07.047 10.1016/j.rser.2015.05.017 10.1016/j.ecolind.2016.02.025 10.1016/j.jclepro.2018.03.236 10.1016/j.rser.2015.10.080 10.1016/j.amc.2008.10.045 10.1016/j.rser.2015.10.131 10.1016/j.ecolind.2016.02.059 10.1016/j.rser.2017.11.005 10.1016/j.neucom.2015.11.032 10.1016/j.ecolind.2016.06.043 10.1016/j.enpol.2008.09.088 10.1108/03684920410514175 10.1016/j.enpol.2012.02.042 10.1016/j.jclepro.2016.05.173 10.1016/S1874-8651(10)60078-6 10.1016/j.rser.2015.10.019 10.1016/j.jclepro.2018.06.269 10.1006/jeem.1994.1031 10.1016/j.engappai.2015.12.011 10.1016/j.eneco.2015.12.007 10.1016/j.renene.2017.12.058 10.1016/j.econmod.2012.08.016 10.1016/j.apm.2011.04.006 10.1007/s11069-016-2618-0 10.1016/j.rser.2015.10.143 10.14445/22312803/IJCTT-V34P122 10.1016/j.eneco.2014.03.025 10.1016/j.enpol.2013.05.099 10.1016/j.eswa.2013.08.006 10.1016/j.enpol.2016.01.002 10.1016/j.ecolind.2015.12.011 10.1007/s11069-015-2050-x 10.1016/j.cie.2013.11.002 10.1016/j.jclepro.2018.02.178 10.1016/j.rser.2015.07.138 10.1016/j.enpol.2016.08.029 10.1016/j.rser.2017.01.059 10.1093/oep/46.Supplement_1.757 10.1016/j.jclepro.2017.08.117 10.1016/j.enpol.2017.12.027 10.1016/j.enpol.2016.03.040 10.1016/j.apenergy.2017.02.034 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2018.10.010 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
EndPage | 224 |
ExternalDocumentID | 10_1016_j_jclepro_2018_10_010 S095965261833018X |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I FEDTE FGOYB G-2 HVGLF HZ~ R2- SEN SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-7d544e9d3a377fe641ddb289ddc54c1a8d682d7c7c06599e62d1638f92c0ba1b3 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Fri Jul 11 11:49:55 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Tue Jul 01 03:02:34 EDT 2025 Fri Feb 23 02:48:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-equigap grey Verhulst model Grey systems theory CO2 emissions Economic growth PSO algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-7d544e9d3a377fe641ddb289ddc54c1a8d682d7c7c06599e62d1638f92c0ba1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2189533858 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2189533858 crossref_citationtrail_10_1016_j_jclepro_2018_10_010 crossref_primary_10_1016_j_jclepro_2018_10_010 elsevier_sciencedirect_doi_10_1016_j_jclepro_2018_10_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-10 |
PublicationDateYYYYMMDD | 2019-01-10 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-10 day: 10 |
PublicationDecade | 2010 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Esteve, Tamarit (bib20) 2012; 29 Selden, Song (bib51) 1994; 27 World bank, 2014. Shafik (bib52) 1994; 46 Zambrano-Monserrate, Silva-Zambrano, Davalos-Penafiel, Zambrano-Monserrate, Ruano (bib67) 2018; 82 Sinha, Bhattacharya (bib54) 2016; 67 Kuznets (bib26) 1995; 45 Nguyen, Tran (bib39) 2017; 1 Chen, Zhang (bib14) 2010; 40 Lewis (bib27) 1982 Chen, Wang, Zhong (bib15) 2019; 131 Riti, Song, Shu, Kamah (bib48) 2017; 166 Özokcu, Özdemir (bib43) 2017; 72 Apergis (bib8) 2016; 54 Xu (bib65) 2018; 114 Deng (bib18) 2002 Rafindadi (bib47) 2016; 94 Wang, Dang, Liu (bib60) 2009; 10 Al-Mulali, Ozturk, Solarin (bib5) 2016; 67 Kang, Zhao, Yang (bib25) 2016; 62 Xian, Long, Liu, Tian (bib63) 2013; 5 Grossman, Krueger (bib21) 1991; 8 Al-Mulali, Solarin, Ozturk (bib6) 2016; 80 Olale, Ochuodho, Lantz, Armali (bib41) 2018; 184 (accessed 18 July 2018). Olugbenga, Owoye (bib42) 2014; 44 SCIO,2015. Wang, Han, Kubota (bib57) 2016; 54 Bilgili, Koçak, Bulut (bib10) 2016; 54 Javid, Sharif (bib24) 2016; 54 Ma, Liu (bib36) 2016 Alam, Murad, Noman, Ozturk (bib3) 2016; 70 Deng (bib17) 1989; 1 Li, Chang, Chen (bib28) 2010; 22 Li, Chang, Chen, Chen (bib29) 2011; 35 Shi, Eberhart (bib53) 1998; 9 Ahmad, Du, Lu, Wang, Li, Hashmi (bib1) 2016; 123 Saboori, Sulaiman (bib49) 2013; 60 Dang, Liu (bib16) 2004; 33 Peng, Huang, Zhong, Zhao (bib46) 2011; 33 Wang (bib59) 2015; 246 Li, Wang, Zhao (bib32) 2016; 91 Wang (bib58) 2013; 33 Al-Mulali, Ozturk (bib4) 2016; 54 Jebli, Youssef (bib23) 2015; 47 Yang, Lou, Sun, Wang, Wang (bib66) 2017; 193 Lin, Jiang (bib30) 2009; 4 Li, Dang, Zhao (bib33) 2009; vol. 196 Luo, Weng, Zhang, Hao (bib35) 2017; 85 Lu, Xie, Zhou, Zhang (bib34) 2016; 177 Akbostanc, t-As-ık, Tunc (bib2) 2009; 37 (bib38) 2017 Xu, Liu, Jiang (bib64) 2006; 16 Al-mulali, Tang, Ozturk (bib7) 2016; 50 Nusbah, Shabina (bib40) 2016; 34 Arouri, Youssef, M'henni, Raultd (bib9) 2012; 45 Wang, Dang, Shen (bib61) 2010; 25 Zhou, Fang, Li, Zhang, Peng (bib69) 2009; 207 Mikayilov, Galeotti, Hasanov (bib37) 2018; 197 CAIT (bib12) 2010 He, Wu (bib22) 2006; 26 Lin, Omoju, Nwakeze, Okonkwo, Megbowon (bib31) 2016; 133 Zeng, Meng, Tong (bib68) 2016; 50 Sinha, Shahbaz (bib55) 2018; 119 Chang, Li, Chen, Chen (bib13) 2014; 67 Sugiawan, Managi (bib56) 2016; 98 Panayotou (bib44) 1993; vol. 4 Pata (bib45) 2018; 187 Evans (bib19) 2014; 41 Bölük, Mert (bib11) 2015; 52 Chang (10.1016/j.jclepro.2018.10.010_bib13) 2014; 67 Kang (10.1016/j.jclepro.2018.10.010_bib25) 2016; 62 Li (10.1016/j.jclepro.2018.10.010_bib32) 2016; 91 Peng (10.1016/j.jclepro.2018.10.010_bib46) 2011; 33 Bölük (10.1016/j.jclepro.2018.10.010_bib11) 2015; 52 Pata (10.1016/j.jclepro.2018.10.010_bib45) 2018; 187 Xu (10.1016/j.jclepro.2018.10.010_bib64) 2006; 16 Deng (10.1016/j.jclepro.2018.10.010_bib18) 2002 Javid (10.1016/j.jclepro.2018.10.010_bib24) 2016; 54 Nusbah (10.1016/j.jclepro.2018.10.010_bib40) 2016; 34 Li (10.1016/j.jclepro.2018.10.010_bib28) 2010; 22 Dang (10.1016/j.jclepro.2018.10.010_bib16) 2004; 33 Lewis (10.1016/j.jclepro.2018.10.010_bib27) 1982 Wang (10.1016/j.jclepro.2018.10.010_bib58) 2013; 33 Xian (10.1016/j.jclepro.2018.10.010_bib63) 2013; 5 Wang (10.1016/j.jclepro.2018.10.010_bib61) 2010; 25 10.1016/j.jclepro.2018.10.010_bib50 Arouri (10.1016/j.jclepro.2018.10.010_bib9) 2012; 45 Jebli (10.1016/j.jclepro.2018.10.010_bib23) 2015; 47 Apergis (10.1016/j.jclepro.2018.10.010_bib8) 2016; 54 Kuznets (10.1016/j.jclepro.2018.10.010_bib26) 1995; 45 Luo (10.1016/j.jclepro.2018.10.010_bib35) 2017; 85 Al-Mulali (10.1016/j.jclepro.2018.10.010_bib5) 2016; 67 Evans (10.1016/j.jclepro.2018.10.010_bib19) 2014; 41 Nguyen (10.1016/j.jclepro.2018.10.010_bib39) 2017; 1 Grossman (10.1016/j.jclepro.2018.10.010_bib21) 1991; 8 Li (10.1016/j.jclepro.2018.10.010_bib33) 2009; vol. 196 Rafindadi (10.1016/j.jclepro.2018.10.010_bib47) 2016; 94 Yang (10.1016/j.jclepro.2018.10.010_bib66) 2017; 193 CAIT (10.1016/j.jclepro.2018.10.010_bib12) 2010 Özokcu (10.1016/j.jclepro.2018.10.010_bib43) 2017; 72 Lu (10.1016/j.jclepro.2018.10.010_bib34) 2016; 177 Shi (10.1016/j.jclepro.2018.10.010_bib53) 1998; 9 Alam (10.1016/j.jclepro.2018.10.010_bib3) 2016; 70 Lin (10.1016/j.jclepro.2018.10.010_bib30) 2009; 4 Al-mulali (10.1016/j.jclepro.2018.10.010_bib7) 2016; 50 Wang (10.1016/j.jclepro.2018.10.010_bib60) 2009; 10 10.1016/j.jclepro.2018.10.010_bib62 Zhou (10.1016/j.jclepro.2018.10.010_bib69) 2009; 207 Sinha (10.1016/j.jclepro.2018.10.010_bib55) 2018; 119 Sugiawan (10.1016/j.jclepro.2018.10.010_bib56) 2016; 98 Ahmad (10.1016/j.jclepro.2018.10.010_bib1) 2016; 123 Riti (10.1016/j.jclepro.2018.10.010_bib48) 2017; 166 Akbostanc (10.1016/j.jclepro.2018.10.010_bib2) 2009; 37 Sinha (10.1016/j.jclepro.2018.10.010_bib54) 2016; 67 (10.1016/j.jclepro.2018.10.010_bib38) 2017 Selden (10.1016/j.jclepro.2018.10.010_bib51) 1994; 27 Mikayilov (10.1016/j.jclepro.2018.10.010_bib37) 2018; 197 Esteve (10.1016/j.jclepro.2018.10.010_bib20) 2012; 29 Deng (10.1016/j.jclepro.2018.10.010_bib17) 1989; 1 Xu (10.1016/j.jclepro.2018.10.010_bib65) 2018; 114 Zeng (10.1016/j.jclepro.2018.10.010_bib68) 2016; 50 Wang (10.1016/j.jclepro.2018.10.010_bib57) 2016; 54 Panayotou (10.1016/j.jclepro.2018.10.010_bib44) 1993; vol. 4 Al-Mulali (10.1016/j.jclepro.2018.10.010_bib4) 2016; 54 Bilgili (10.1016/j.jclepro.2018.10.010_bib10) 2016; 54 Ma (10.1016/j.jclepro.2018.10.010_bib36) 2016 Lin (10.1016/j.jclepro.2018.10.010_bib31) 2016; 133 Shafik (10.1016/j.jclepro.2018.10.010_bib52) 1994; 46 Olale (10.1016/j.jclepro.2018.10.010_bib41) 2018; 184 Wang (10.1016/j.jclepro.2018.10.010_bib59) 2015; 246 Olugbenga (10.1016/j.jclepro.2018.10.010_bib42) 2014; 44 Saboori (10.1016/j.jclepro.2018.10.010_bib49) 2013; 60 Zambrano-Monserrate (10.1016/j.jclepro.2018.10.010_bib67) 2018; 82 Chen (10.1016/j.jclepro.2018.10.010_bib14) 2010; 40 He (10.1016/j.jclepro.2018.10.010_bib22) 2006; 26 Al-Mulali (10.1016/j.jclepro.2018.10.010_bib6) 2016; 80 Li (10.1016/j.jclepro.2018.10.010_bib29) 2011; 35 Chen (10.1016/j.jclepro.2018.10.010_bib15) 2019; 131 |
References_xml | – volume: 54 start-page: 1622 year: 2016 end-page: 1631 ident: bib4 article-title: The investigation of environmental Kuznets curve hypothesis in the advanced economies: the role of energy prices publication-title: Renew. Sustain. Energy Rev. – volume: 1 start-page: 1 year: 2017 end-page: 15 ident: bib39 article-title: Optimizing mathematical parameters of grey system theory: an empirical forecasting case of Vietnamese tourism publication-title: Neural Comput. Appl. – reference: (accessed 18 July 2018). – volume: 37 start-page: 861 year: 2009 end-page: 867 ident: bib2 article-title: The relationship between income and environment in Turkey: is there an environmental Kuznets curve? publication-title: Energy Pol. – volume: 133 start-page: 712 year: 2016 end-page: 724 ident: bib31 article-title: Is the environmental Kuznets curve hypothesis a sound basis for environmental policy in Africa? publication-title: J. Clean. Prod. – volume: 54 start-page: 406 year: 2016 end-page: 414 ident: bib24 article-title: Environmental Kuznets curve and financial development in Pakistan publication-title: Renew. Sustain. Energy Rev. – volume: 85 start-page: 1023 year: 2017 end-page: 1042 ident: bib35 article-title: A reexamination of the existence of environmental Kuznets curve for CO publication-title: Nat. Hazards – volume: 67 start-page: 267 year: 2016 end-page: 282 ident: bib5 article-title: Investigating the environmental Kuznets curve hypothesis in seven regions: the role of renewable energy publication-title: Ecol. Indicat. – volume: 10 start-page: 138 year: 2009 end-page: 144 ident: bib60 article-title: Unbiased grey Verhulst model and its application publication-title: Syst. Eng. Theor. Pract. – volume: 5 start-page: 235 year: 2013 end-page: 249 ident: bib63 article-title: A particle swarm optimization based Verhulst model for prognostics publication-title: Int. J. Adv. Comput. Technol. – volume: 91 start-page: 138 year: 2016 end-page: 147 ident: bib32 article-title: Environmental Kuznets Curve in China: new evidence from dynamic panel analysis publication-title: Energy Pol. – reference: World bank, 2014. – volume: 193 start-page: 162 year: 2017 end-page: 173 ident: bib66 article-title: Study of the relationship between greenhouse gas emissions and the economic growth of Russia based on the Environmental Kuznets Curve publication-title: Appl. Energy – volume: 33 start-page: 626 year: 2011 end-page: 633 ident: bib46 article-title: Decoupling analysis of economic growth and energy carbon emission x = s in China publication-title: Resour. Sci. – volume: 123 start-page: 164 year: 2016 end-page: 172 ident: bib1 article-title: Modelling the CO publication-title: Energy – year: 2002 ident: bib18 article-title: The Basis of Grey Theory – volume: 47 start-page: 175 year: 2015 end-page: 183 ident: bib23 article-title: The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia publication-title: Renew. Sustain. Energy Rev. – volume: 35 start-page: 5051 year: 2011 end-page: 5058 ident: bib29 article-title: An extended grey forecasting model for omnidirectional forecasting considering data gap difference publication-title: Appl. Math. Model. – volume: vol. 196 start-page: 341 year: 2009 end-page: 347 ident: bib33 article-title: An optimization method of estimating parameters in GM (1,1) Model publication-title: Proceedings of IEEE International Conference on Grey System and Intelligent Services – volume: 60 start-page: 892 year: 2013 end-page: 905 ident: bib49 article-title: Environmental degradation, economic growth and energy consumption: evidence of the environmental Kuznets curve in Malaysia publication-title: Energy Pol. – reference: SCIO,2015. – volume: 80 start-page: 1729 year: 2016 end-page: 1747 ident: bib6 article-title: Investigating the presence of the environmental Kuznets curve (EKC) hypothesis in Kenya: an autoregressive distributed lag (ARDL) approach publication-title: Nat. Hazards – volume: 177 start-page: 206 year: 2016 end-page: 214 ident: bib34 article-title: An optimized nonlinear grey Bernoulli model and its applications publication-title: Neurocomputing – volume: 98 start-page: 187 year: 2016 end-page: 198 ident: bib56 article-title: The environmental Kuznets curve in Indonesia: exploring the potential of renewable energy publication-title: Energy Pol. – volume: 29 start-page: 2696 year: 2012 end-page: 2703 ident: bib20 article-title: Is there an environmental Kuznets curve for Spain? Fresh evidence from old data publication-title: Econ. Modell. – volume: 82 start-page: 4170 year: 2018 end-page: 4178 ident: bib67 article-title: Testing environmental Kuznets curve hypothesis in Peru: the role of renewable electricity, petroleum and dry natural gas publication-title: Renew. Sustain. Energy Rev. – volume: 70 start-page: 466 year: 2016 end-page: 479 ident: bib3 article-title: Relationships among carbon emissions, economic growth, energy consumption and population growth: testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia publication-title: Ecol. Indicat. – volume: 44 start-page: 47 year: 2014 end-page: 62 ident: bib42 article-title: Bounds testing approach to analysis of the environment Kuznets curve hypothesis publication-title: Energy Econ. – volume: 46 start-page: 757 year: 1994 end-page: 773 ident: bib52 article-title: Economic development and environmental quality: an econometric analysis publication-title: Oxf. Econ. Pap. – volume: 62 start-page: 231 year: 2016 end-page: 239 ident: bib25 article-title: Environmental Kuznets curve for CO publication-title: Ecol. Indicat. – volume: 184 start-page: 859 year: 2018 end-page: 868 ident: bib41 article-title: The environmental Kuznets curve model for greenhouse gas emissions in Canada publication-title: J. Clean. Prod. – volume: 166 start-page: 1448 year: 2017 end-page: 1461 ident: bib48 article-title: Decoupling CO publication-title: J. Clean. Prod. – volume: 16 start-page: 158 year: 2006 end-page: 161 ident: bib64 article-title: Decomposition model and empirical study of carbon emissions for China: 1995-2004 publication-title: China Populat. Resour. Environ. – volume: 1 start-page: 1 year: 1989 end-page: 24 ident: bib17 article-title: Introduction of grey system publication-title: J. Grey Syst. – volume: 72 start-page: 639 year: 2017 end-page: 647 ident: bib43 article-title: Economic growth, energy, and environmental Kuznets curve publication-title: Renew. Sustain. Energy Rev. – volume: 45 start-page: 342 year: 2012 end-page: 345 ident: bib9 article-title: Energy consumption, economic growth and CO publication-title: Energy Pol. – volume: 52 start-page: 587 year: 2015 end-page: 595 ident: bib11 article-title: The renewable energy, growth and environmental Kuznets curve in Turkey: an ARDL approach publication-title: Renew. Sustain. Energy Rev. – volume: 33 start-page: 247 year: 2004 end-page: 255 ident: bib16 article-title: The GM models that x(n) be taken as initial value publication-title: Int. J. Syst. Cybern. – volume: 25 start-page: 19 year: 2010 end-page: 22 ident: bib61 article-title: Improvement on derivative item in grey Verhulst model publication-title: Stat. Inform. Forum – volume: 114 start-page: 315 year: 2018 end-page: 322 ident: bib65 article-title: Investigating environmental Kuznets curve in China–Aggregation bias and policy implications publication-title: Energy Pol. – volume: 50 start-page: 918 year: 2016 end-page: 924 ident: bib7 article-title: Estimating the environment Kuznets curve hypothesis: evidence from Latin America and the Caribbean countries publication-title: Renew. Sustain. Energy Rev. – volume: vol. 4 start-page: 2927 year: 1993 end-page: 2978 ident: bib44 article-title: Empirical tests and policy analysis of environmental degradation at different stages of economic development publication-title: Ilo Working Papers – volume: 246 start-page: 1 year: 2015 end-page: 17 ident: bib59 article-title: A predictive analysis of clean energy consumption, economic growth and environmental regulation in China using an optimised grey dynamic model publication-title: Comput. Econ. – volume: 54 start-page: 838 year: 2016 end-page: 845 ident: bib10 article-title: The dynamic impact of renewable energy consumption on CO publication-title: Renew. Sustain. Energy Rev. – volume: 119 start-page: 703 year: 2018 end-page: 711 ident: bib55 article-title: Estimation of Environmental Kuznets Curve for CO publication-title: Renew. Energy – volume: 22 start-page: 375 year: 2010 end-page: 382 ident: bib28 article-title: Using non-equigap grey model for small data set Forecasting - a color filter manufacturing example publication-title: J. Grey Syst. – volume: 40 start-page: 160 year: 2010 end-page: 164 ident: bib14 article-title: Combination grey Verhulst model based on initial value modification publication-title: Math. Pract. Theor. – volume: 27 start-page: 147 year: 1994 end-page: 162 ident: bib51 article-title: Environmental quality and development: is there a Kuznets Curve for air pollution emissions? publication-title: J. Environ. Econ. Manag. – volume: 34 start-page: 125 year: 2016 end-page: 128 ident: bib40 article-title: Using grey relational analysis and PSO to estimate software cost publication-title: Int. J. Comput. Trends Technol. – volume: 197 start-page: 1558 year: 2018 end-page: 1572 ident: bib37 article-title: The impact of economic growth on CO publication-title: J. Clean. Prod. – volume: 187 start-page: 770 year: 2018 end-page: 779 ident: bib45 article-title: Renewable energy consumption, urbanization, financial development, income and CO publication-title: J. Clean. Prod. – volume: 4 start-page: 27 year: 2009 end-page: 36 ident: bib30 article-title: The prediction and factor analysis of environmental Kuznets curve for CO publication-title: Manag. World – volume: 67 start-page: 139 year: 2014 end-page: 145 ident: bib13 article-title: A forecasting model for small non-equigap data sets considering data weights and occurrence possibilities publication-title: Comput. Ind. Eng. – volume: 207 start-page: 292 year: 2009 end-page: 299 ident: bib69 article-title: Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization publication-title: Appl. Math. Comput. – year: 2010 ident: bib12 article-title: Climate Data Explorer – volume: 50 start-page: 236 year: 2016 end-page: 244 ident: bib68 article-title: A self-adaptive intelligence grey predictive model with alterable structure and its application publication-title: Eng. Appl. Artif. Intell. – volume: 8 start-page: 223 year: 1991 end-page: 250 ident: bib21 article-title: Environmental impacts of a North American free trade agreement publication-title: Soc. Sci. Electron. Publ. – year: 1982 ident: bib27 article-title: Industrial and Business Forecasting Methods – volume: 131 start-page: 208 year: 2019 end-page: 216 ident: bib15 article-title: CO publication-title: Renew. Energy – volume: 54 start-page: 1182 year: 2016 end-page: 1188 ident: bib57 article-title: Is there an Environmental Kuznets Curve for SO publication-title: Renew. Sustain. Energy Rev. – volume: 54 start-page: 263 year: 2016 end-page: 271 ident: bib8 article-title: Environmental Kuznets curves: new evidence on both panel and country-level CO publication-title: Energy Econ. – volume: 41 start-page: 1236 year: 2014 end-page: 1244 ident: bib19 article-title: An alternative approach to estimating the parameters of a generalized grey Verhulst model: an application to steel intensity of use in the UK publication-title: Expert Syst. Appl. – volume: 67 start-page: 1 year: 2016 end-page: 11 ident: bib54 article-title: Environmental Kuznets curve estimation for NO publication-title: Ecol. Indicat. – start-page: 1 year: 2016 end-page: 13 ident: bib36 article-title: Predicting the oil production using the novel multivariate nonlinear model based on Arps decline model and kernel method publication-title: Neural Comput. Appl. – volume: 94 start-page: 274 year: 2016 end-page: 284 ident: bib47 article-title: Revisiting the concept of environmental Kuznets curve in period of energy disaster and deteriorating income: empirical evidence from Japan publication-title: Energy Pol. – volume: 26 start-page: 141 year: 2006 end-page: 144 ident: bib22 article-title: Estimation of Verhulst model parameter based on linear programming publication-title: Syst. Eng. Theor. Pract. – volume: 9 start-page: 69 year: 1998 end-page: 73 ident: bib53 article-title: A modified particle swarm optimizer publication-title: Inst. Electr. Electron. – year: 2017 ident: bib38 publication-title: NBS – volume: 45 start-page: 1 year: 1995 end-page: 28 ident: bib26 article-title: Economic growth and income inequality publication-title: Am. Econ. Rev. – volume: 33 start-page: 2894 year: 2013 end-page: 2902 ident: bib58 article-title: Models derived from GM (1,1) power model publication-title: Syst. Eng. Theor. Pract. – volume: 131 start-page: 208 year: 2019 ident: 10.1016/j.jclepro.2018.10.010_bib15 article-title: CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China publication-title: Renew. Energy doi: 10.1016/j.renene.2018.07.047 – volume: 1 start-page: 1 year: 1989 ident: 10.1016/j.jclepro.2018.10.010_bib17 article-title: Introduction of grey system publication-title: J. Grey Syst. – volume: 50 start-page: 918 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib7 article-title: Estimating the environment Kuznets curve hypothesis: evidence from Latin America and the Caribbean countries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.05.017 – volume: 67 start-page: 1 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib54 article-title: Environmental Kuznets curve estimation for NO2 emission: a case of Indian cities publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2016.02.025 – volume: 187 start-page: 770 year: 2018 ident: 10.1016/j.jclepro.2018.10.010_bib45 article-title: Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: testing EKC hypothesis with structural breaks publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.03.236 – volume: 25 start-page: 19 issue: 6 year: 2010 ident: 10.1016/j.jclepro.2018.10.010_bib61 article-title: Improvement on derivative item in grey Verhulst model publication-title: Stat. Inform. Forum – volume: 54 start-page: 838 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib10 article-title: The dynamic impact of renewable energy consumption on CO2 emissions: a revisited Environmental Kuznets Curve approach publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.10.080 – volume: 1 start-page: 1 year: 2017 ident: 10.1016/j.jclepro.2018.10.010_bib39 article-title: Optimizing mathematical parameters of grey system theory: an empirical forecasting case of Vietnamese tourism publication-title: Neural Comput. Appl. – volume: 207 start-page: 292 issue: 2 year: 2009 ident: 10.1016/j.jclepro.2018.10.010_bib69 article-title: Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2008.10.045 – volume: 54 start-page: 1622 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib4 article-title: The investigation of environmental Kuznets curve hypothesis in the advanced economies: the role of energy prices publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.10.131 – volume: 67 start-page: 267 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib5 article-title: Investigating the environmental Kuznets curve hypothesis in seven regions: the role of renewable energy publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2016.02.059 – volume: 82 start-page: 4170 year: 2018 ident: 10.1016/j.jclepro.2018.10.010_bib67 article-title: Testing environmental Kuznets curve hypothesis in Peru: the role of renewable electricity, petroleum and dry natural gas publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.11.005 – volume: 177 start-page: 206 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib34 article-title: An optimized nonlinear grey Bernoulli model and its applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.032 – volume: 45 start-page: 1 year: 1995 ident: 10.1016/j.jclepro.2018.10.010_bib26 article-title: Economic growth and income inequality publication-title: Am. Econ. Rev. – volume: 8 start-page: 223 issue: 2 year: 1991 ident: 10.1016/j.jclepro.2018.10.010_bib21 article-title: Environmental impacts of a North American free trade agreement publication-title: Soc. Sci. Electron. Publ. – volume: 26 start-page: 141 issue: 8 year: 2006 ident: 10.1016/j.jclepro.2018.10.010_bib22 article-title: Estimation of Verhulst model parameter based on linear programming publication-title: Syst. Eng. Theor. Pract. – volume: 70 start-page: 466 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib3 article-title: Relationships among carbon emissions, economic growth, energy consumption and population growth: testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2016.06.043 – volume: 246 start-page: 1 issue: 3 year: 2015 ident: 10.1016/j.jclepro.2018.10.010_bib59 article-title: A predictive analysis of clean energy consumption, economic growth and environmental regulation in China using an optimised grey dynamic model publication-title: Comput. Econ. – volume: 37 start-page: 861 year: 2009 ident: 10.1016/j.jclepro.2018.10.010_bib2 article-title: The relationship between income and environment in Turkey: is there an environmental Kuznets curve? publication-title: Energy Pol. doi: 10.1016/j.enpol.2008.09.088 – volume: 33 start-page: 247 issue: 2 year: 2004 ident: 10.1016/j.jclepro.2018.10.010_bib16 article-title: The GM models that x(n) be taken as initial value publication-title: Int. J. Syst. Cybern. doi: 10.1108/03684920410514175 – volume: 40 start-page: 160 issue: 11 year: 2010 ident: 10.1016/j.jclepro.2018.10.010_bib14 article-title: Combination grey Verhulst model based on initial value modification publication-title: Math. Pract. Theor. – volume: 5 start-page: 235 year: 2013 ident: 10.1016/j.jclepro.2018.10.010_bib63 article-title: A particle swarm optimization based Verhulst model for prognostics publication-title: Int. J. Adv. Comput. Technol. – volume: 45 start-page: 342 year: 2012 ident: 10.1016/j.jclepro.2018.10.010_bib9 article-title: Energy consumption, economic growth and CO2 emissions in Middle East and North African countries publication-title: Energy Pol. doi: 10.1016/j.enpol.2012.02.042 – volume: 133 start-page: 712 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib31 article-title: Is the environmental Kuznets curve hypothesis a sound basis for environmental policy in Africa? publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.05.173 – volume: 10 start-page: 138 year: 2009 ident: 10.1016/j.jclepro.2018.10.010_bib60 article-title: Unbiased grey Verhulst model and its application publication-title: Syst. Eng. Theor. Pract. doi: 10.1016/S1874-8651(10)60078-6 – year: 2002 ident: 10.1016/j.jclepro.2018.10.010_bib18 – volume: 54 start-page: 406 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib24 article-title: Environmental Kuznets curve and financial development in Pakistan publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.10.019 – volume: 197 start-page: 1558 year: 2018 ident: 10.1016/j.jclepro.2018.10.010_bib37 article-title: The impact of economic growth on CO2 emissions in Azerbaijan publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.06.269 – volume: vol. 4 start-page: 2927 year: 1993 ident: 10.1016/j.jclepro.2018.10.010_bib44 article-title: Empirical tests and policy analysis of environmental degradation at different stages of economic development – ident: 10.1016/j.jclepro.2018.10.010_bib62 – volume: 33 start-page: 626 issue: 4 year: 2011 ident: 10.1016/j.jclepro.2018.10.010_bib46 article-title: Decoupling analysis of economic growth and energy carbon emission x = s in China publication-title: Resour. Sci. – volume: 27 start-page: 147 issue: 2 year: 1994 ident: 10.1016/j.jclepro.2018.10.010_bib51 article-title: Environmental quality and development: is there a Kuznets Curve for air pollution emissions? publication-title: J. Environ. Econ. Manag. doi: 10.1006/jeem.1994.1031 – volume: 50 start-page: 236 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib68 article-title: A self-adaptive intelligence grey predictive model with alterable structure and its application publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.12.011 – year: 2017 ident: 10.1016/j.jclepro.2018.10.010_bib38 – volume: 33 start-page: 2894 issue: 11 year: 2013 ident: 10.1016/j.jclepro.2018.10.010_bib58 article-title: Models derived from GM (1,1) power model publication-title: Syst. Eng. Theor. Pract. – volume: 54 start-page: 263 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib8 article-title: Environmental Kuznets curves: new evidence on both panel and country-level CO2 emissions publication-title: Energy Econ. doi: 10.1016/j.eneco.2015.12.007 – volume: 9 start-page: 69 year: 1998 ident: 10.1016/j.jclepro.2018.10.010_bib53 article-title: A modified particle swarm optimizer publication-title: Inst. Electr. Electron. – volume: 119 start-page: 703 year: 2018 ident: 10.1016/j.jclepro.2018.10.010_bib55 article-title: Estimation of Environmental Kuznets Curve for CO2 emission: role of renewable energy generation in India publication-title: Renew. Energy doi: 10.1016/j.renene.2017.12.058 – volume: 29 start-page: 2696 year: 2012 ident: 10.1016/j.jclepro.2018.10.010_bib20 article-title: Is there an environmental Kuznets curve for Spain? Fresh evidence from old data publication-title: Econ. Modell. doi: 10.1016/j.econmod.2012.08.016 – start-page: 1 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib36 article-title: Predicting the oil production using the novel multivariate nonlinear model based on Arps decline model and kernel method publication-title: Neural Comput. Appl. – volume: 22 start-page: 375 year: 2010 ident: 10.1016/j.jclepro.2018.10.010_bib28 article-title: Using non-equigap grey model for small data set Forecasting - a color filter manufacturing example publication-title: J. Grey Syst. – volume: 35 start-page: 5051 year: 2011 ident: 10.1016/j.jclepro.2018.10.010_bib29 article-title: An extended grey forecasting model for omnidirectional forecasting considering data gap difference publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.04.006 – volume: 85 start-page: 1023 issue: 2 year: 2017 ident: 10.1016/j.jclepro.2018.10.010_bib35 article-title: A reexamination of the existence of environmental Kuznets curve for CO2, emissions: evidence from G20 countries publication-title: Nat. Hazards doi: 10.1007/s11069-016-2618-0 – volume: 54 start-page: 1182 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib57 article-title: Is there an Environmental Kuznets Curve for SO2 emissions? A semi-parametric panel data analysis for China publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.10.143 – volume: 34 start-page: 125 issue: 3 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib40 article-title: Using grey relational analysis and PSO to estimate software cost publication-title: Int. J. Comput. Trends Technol. doi: 10.14445/22312803/IJCTT-V34P122 – volume: vol. 196 start-page: 341 year: 2009 ident: 10.1016/j.jclepro.2018.10.010_bib33 article-title: An optimization method of estimating parameters in GM (1,1) Model – volume: 44 start-page: 47 year: 2014 ident: 10.1016/j.jclepro.2018.10.010_bib42 article-title: Bounds testing approach to analysis of the environment Kuznets curve hypothesis publication-title: Energy Econ. doi: 10.1016/j.eneco.2014.03.025 – volume: 60 start-page: 892 year: 2013 ident: 10.1016/j.jclepro.2018.10.010_bib49 article-title: Environmental degradation, economic growth and energy consumption: evidence of the environmental Kuznets curve in Malaysia publication-title: Energy Pol. doi: 10.1016/j.enpol.2013.05.099 – year: 1982 ident: 10.1016/j.jclepro.2018.10.010_bib27 – volume: 41 start-page: 1236 year: 2014 ident: 10.1016/j.jclepro.2018.10.010_bib19 article-title: An alternative approach to estimating the parameters of a generalized grey Verhulst model: an application to steel intensity of use in the UK publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.006 – volume: 91 start-page: 138 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib32 article-title: Environmental Kuznets Curve in China: new evidence from dynamic panel analysis publication-title: Energy Pol. doi: 10.1016/j.enpol.2016.01.002 – volume: 62 start-page: 231 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib25 article-title: Environmental Kuznets curve for CO2 emissions in China: a spatial panel data approach publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2015.12.011 – volume: 80 start-page: 1729 issue: 3 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib6 article-title: Investigating the presence of the environmental Kuznets curve (EKC) hypothesis in Kenya: an autoregressive distributed lag (ARDL) approach publication-title: Nat. Hazards doi: 10.1007/s11069-015-2050-x – volume: 67 start-page: 139 year: 2014 ident: 10.1016/j.jclepro.2018.10.010_bib13 article-title: A forecasting model for small non-equigap data sets considering data weights and occurrence possibilities publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2013.11.002 – volume: 4 start-page: 27 year: 2009 ident: 10.1016/j.jclepro.2018.10.010_bib30 article-title: The prediction and factor analysis of environmental Kuznets curve for CO2 emissions in China publication-title: Manag. World – volume: 123 start-page: 164 issue: 15 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib1 article-title: Modelling the CO2 emissions and economic growth in Croatia: is there any environmental Kuznets curve? publication-title: Energy – volume: 184 start-page: 859 year: 2018 ident: 10.1016/j.jclepro.2018.10.010_bib41 article-title: The environmental Kuznets curve model for greenhouse gas emissions in Canada publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.02.178 – ident: 10.1016/j.jclepro.2018.10.010_bib50 – volume: 52 start-page: 587 year: 2015 ident: 10.1016/j.jclepro.2018.10.010_bib11 article-title: The renewable energy, growth and environmental Kuznets curve in Turkey: an ARDL approach publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.07.138 – volume: 98 start-page: 187 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib56 article-title: The environmental Kuznets curve in Indonesia: exploring the potential of renewable energy publication-title: Energy Pol. doi: 10.1016/j.enpol.2016.08.029 – volume: 72 start-page: 639 year: 2017 ident: 10.1016/j.jclepro.2018.10.010_bib43 article-title: Economic growth, energy, and environmental Kuznets curve publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.059 – volume: 46 start-page: 757 year: 1994 ident: 10.1016/j.jclepro.2018.10.010_bib52 article-title: Economic development and environmental quality: an econometric analysis publication-title: Oxf. Econ. Pap. doi: 10.1093/oep/46.Supplement_1.757 – volume: 166 start-page: 1448 issue: 10 year: 2017 ident: 10.1016/j.jclepro.2018.10.010_bib48 article-title: Decoupling CO2 emission and economic growth in China: is there consistency in estimation results in analyzing environmental Kuznets curve? publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.08.117 – volume: 16 start-page: 158 issue: 6 year: 2006 ident: 10.1016/j.jclepro.2018.10.010_bib64 article-title: Decomposition model and empirical study of carbon emissions for China: 1995-2004 publication-title: China Populat. Resour. Environ. – volume: 114 start-page: 315 year: 2018 ident: 10.1016/j.jclepro.2018.10.010_bib65 article-title: Investigating environmental Kuznets curve in China–Aggregation bias and policy implications publication-title: Energy Pol. doi: 10.1016/j.enpol.2017.12.027 – volume: 94 start-page: 274 year: 2016 ident: 10.1016/j.jclepro.2018.10.010_bib47 article-title: Revisiting the concept of environmental Kuznets curve in period of energy disaster and deteriorating income: empirical evidence from Japan publication-title: Energy Pol. doi: 10.1016/j.enpol.2016.03.040 – volume: 47 start-page: 175 year: 2015 ident: 10.1016/j.jclepro.2018.10.010_bib23 article-title: The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia publication-title: Renew. Sustain. Energy Rev. – volume: 193 start-page: 162 year: 2017 ident: 10.1016/j.jclepro.2018.10.010_bib66 article-title: Study of the relationship between greenhouse gas emissions and the economic growth of Russia based on the Environmental Kuznets Curve publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.02.034 – year: 2010 ident: 10.1016/j.jclepro.2018.10.010_bib12 |
SSID | ssj0017074 |
Score | 2.6209557 |
Snippet | A new method for discussing the relationship between CO2 emissions and economic growth is proposed using grey systems theory. GDP and CO2 emissions per capita... A new method for discussing the relationship between CO₂ emissions and economic growth is proposed using grey systems theory. GDP and CO₂ emissions per capita... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 214 |
SubjectTerms | algorithms carbon carbon dioxide China CO2 emissions developmental stages differential equation economic development Economic growth empirical research greenhouse gas emissions Grey systems theory Non-equigap grey Verhulst model PSO algorithm |
Title | Modelling the nonlinear relationship between CO2 emissions and economic growth using a PSO algorithm-based grey Verhulst model |
URI | https://dx.doi.org/10.1016/j.jclepro.2018.10.010 https://www.proquest.com/docview/2189533858 |
Volume | 207 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvZRDBaWIt6YS1-xuEsd2jmgF2lIVkIBqb5FjO_vQsqyy2QMXfjsziUMBISH1GMu2HI818439zQxjJ0UsZWgiEeS8ZwIuZRLoOKkTIdtQOHS3BcUO_7kUgzt-MUyGa6zfxsIQrdLr_kan19rat3T9bnYXk0n3hm6wRIIegEKfPFRDimDnkk555-mF5hHKXpOJma67qPe_KJ7utDPFyVBREcNLdYjkRYG0H9und5q6Nj_nm-ybx41w2ixti625-Xe28Sqb4DZ7orpmdYptQFQH8yYJhi6hbAlv48kCPDEL-lcRUK03ui1bgp5bcD5GGUbomldjIEr8CDRc31yBno0eykk1vg_I7Fns4h7hryvHq9mygrqczg92d3522x8EvrxCYOI0qQJpE85damON8iqc4KG1Ofpf1pqEm1ArK1RkpZGG3l5TJyJL4K1II9PLdZjHO2wdf8XtMkgRN2iZqlzHBc8tYhBRIO6IpHMqdb1oj_F2UzPjc49TCYxZ1pLMppmXRUayoGaUxR7rvAxbNMk3PhugWollb05Rhgbis6E_WwlnuPn0bKLn7mG1zBAEEQdXJWr__6c_YF_xi6hpaPgO2XpVrtwRwpkqP67P6zH7cvrr9-DyGXO_9qA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHVF5qgYKR4JjdjePYzoFDVai29IXUFu3NOLazDy27q2xWVS_9U_zBziROeQipElKvTmw5M8nMN843M4S8LxIpY8tElPOejbiUaWSStC6E7GLhIdwWmDt8dCz65_zLIB2skZ9tLgzSKoPtb2x6ba3DSDdIs7sYj7uneIIlUogAFMTksRoEZuWBv7yAuG35cf8TKPkDY3ufz3b7UWgtENkkS6tIupRzn7nEwF4LL3jsXA6xh3M25TY2ygnFnLTS4n_HzAvmELgUGbO93MR5AuveI_c5mAtsm9C5uuGVxLLXlH7G8zXc3q-0oe6kM4Hdg2VESpnqIKsMM3f_7RD_cg21v9vbII8DUKU7jSyekDU_e0oe_Va-8Bm5wkZqdU1vCjCSzpqqG6akZcuwG40XNDDB6O4Jo9hcDo_nltTMHPUhKZoOy_lFNaLIwR9SQ7-enlAzHc7LcTX6EaGfdXCLv6TffDlaTZcVrfv3PCfndyL0F2QdHsVvEpoBUDEyU7lJCp47AD2iAKDDpPcq8z22RXgrVG1DsXPsuTHVLattooMuNOoCh0EXW6RzM23RVPu4bYJqNab_eG01eKTbpr5rNaxB-Pifxsz8fLXUgLqQ9KtS9fL_l39LHvTPjg714f7xwSvyEK4gLw687muyXpUrvw1Yqsrf1O8uJd_v-mO5BozgMqc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+nonlinear+relationship+between+CO2+emissions+and+economic+growth+using+a+PSO+algorithm-based+grey+Verhulst+model&rft.jtitle=Journal+of+cleaner+production&rft.au=Wang%2C+Zheng-Xin&rft.au=Li%2C+Qin&rft.date=2019-01-10&rft.issn=0959-6526&rft.volume=207&rft.spage=214&rft.epage=224&rft_id=info:doi/10.1016%2Fj.jclepro.2018.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2018_10_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |