Generation of Synthetic-Pseudo MR Images from Real CT Images

This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the reconstructed CT images were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled remapping it to its corresponding...

Full description

Saved in:
Bibliographic Details
Published inTomography (Ann Arbor) Vol. 8; no. 3; pp. 1244 - 1259
Main Authors Abu-Qasmieh, Isam F, Masad, Ihssan S, Al-Quran, Hiam H, Alawneh, Khaled Z
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 03.05.2022
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the reconstructed CT images were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled remapping it to its corresponding intrinsic parameters: T1, T2, and proton density ( ). Lastly, synthetic weighted MR images of a selected slice were generated by simulating a spin-echo sequence using the intrinsic parameters and proper contrast parameters (TE and TR). Experiments were performed on a 3D multimodality abdominal phantom and on human knees at different TE and TR parameters to confirm the clinical effectiveness of the approach. Results demonstrated the validity of the approach of generating synthetic MR images at different weightings using only CT images and the three predefined mapping functions. The slope of the fitting line and percentage root-mean-square difference (PRD) between real and synthetic image vector representations were (0.73, 10%), (0.9, 18%), and (0.2, 8.7%) for T1-, T2-, and -weighted images of the phantom, respectively. The slope and PRD for human knee images, on average, were 0.89% and 18.8%, respectively. The generated MR images provide valuable guidance for physicians with regard to deciding whether acquiring real MR images is crucial.
AbstractList This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the reconstructed CT images were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled remapping it to its corresponding intrinsic parameters: T1, T2, and proton density ( ). Lastly, synthetic weighted MR images of a selected slice were generated by simulating a spin-echo sequence using the intrinsic parameters and proper contrast parameters (TE and TR). Experiments were performed on a 3D multimodality abdominal phantom and on human knees at different TE and TR parameters to confirm the clinical effectiveness of the approach. Results demonstrated the validity of the approach of generating synthetic MR images at different weightings using only CT images and the three predefined mapping functions. The slope of the fitting line and percentage root-mean-square difference (PRD) between real and synthetic image vector representations were (0.73, 10%), (0.9, 18%), and (0.2, 8.7%) for T1-, T2-, and -weighted images of the phantom, respectively. The slope and PRD for human knee images, on average, were 0.89% and 18.8%, respectively. The generated MR images provide valuable guidance for physicians with regard to deciding whether acquiring real MR images is crucial.
This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the reconstructed CT images were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled remapping it to its corresponding intrinsic parameters: T1, T2, and proton density (ρ). Lastly, synthetic weighted MR images of a selected slice were generated by simulating a spin-echo sequence using the intrinsic parameters and proper contrast parameters (TE and TR). Experiments were performed on a 3D multimodality abdominal phantom and on human knees at different TE and TR parameters to confirm the clinical effectiveness of the approach. Results demonstrated the validity of the approach of generating synthetic MR images at different weightings using only CT images and the three predefined mapping functions. The slope of the fitting line and percentage root-mean-square difference (PRD) between real and synthetic image vector representations were (0.73, 10%), (0.9, 18%), and (0.2, 8.7%) for T1-, T2-, and ρ-weighted images of the phantom, respectively. The slope and PRD for human knee images, on average, were 0.89% and 18.8%, respectively. The generated MR images provide valuable guidance for physicians with regard to deciding whether acquiring real MR images is crucial.
This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the reconstructed CT images were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled remapping it to its corresponding intrinsic parameters: T1, T2, and proton density ( ρ ). Lastly, synthetic weighted MR images of a selected slice were generated by simulating a spin-echo sequence using the intrinsic parameters and proper contrast parameters (TE and TR). Experiments were performed on a 3D multimodality abdominal phantom and on human knees at different TE and TR parameters to confirm the clinical effectiveness of the approach. Results demonstrated the validity of the approach of generating synthetic MR images at different weightings using only CT images and the three predefined mapping functions. The slope of the fitting line and percentage root-mean-square difference (PRD) between real and synthetic image vector representations were (0.73, 10%), (0.9, 18%), and (0.2, 8.7%) for T1-, T2-, and ρ -weighted images of the phantom, respectively. The slope and PRD for human knee images, on average, were 0.89% and 18.8%, respectively. The generated MR images provide valuable guidance for physicians with regard to deciding whether acquiring real MR images is crucial.
Author Masad, Ihssan S
Alawneh, Khaled Z
Abu-Qasmieh, Isam F
Al-Quran, Hiam H
AuthorAffiliation 2 Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
1 Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; iabuqasmieh@yu.edu.jo (I.F.A.-Q.); heyam.q@yu.edu.jo (H.H.A.-Q.)
3 Faculty of Medicine, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid 22110, Jordan; kzalawneh0@just.edu.jo
AuthorAffiliation_xml – name: 3 Faculty of Medicine, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid 22110, Jordan; kzalawneh0@just.edu.jo
– name: 1 Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; iabuqasmieh@yu.edu.jo (I.F.A.-Q.); heyam.q@yu.edu.jo (H.H.A.-Q.)
– name: 2 Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
Author_xml – sequence: 1
  givenname: Isam F
  orcidid: 0000-0001-5587-3974
  surname: Abu-Qasmieh
  fullname: Abu-Qasmieh, Isam F
  organization: Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan
– sequence: 2
  givenname: Ihssan S
  orcidid: 0000-0001-9768-6798
  surname: Masad
  fullname: Masad, Ihssan S
  organization: Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan
– sequence: 3
  givenname: Hiam H
  orcidid: 0000-0002-2966-6442
  surname: Al-Quran
  fullname: Al-Quran, Hiam H
  organization: Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
– sequence: 4
  givenname: Khaled Z
  orcidid: 0000-0002-2615-1988
  surname: Alawneh
  fullname: Alawneh, Khaled Z
  organization: Faculty of Medicine, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid 22110, Jordan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35645389$$D View this record in MEDLINE/PubMed
BookMark eNplkVFrFDEQx4O02Fr7AXyRffRlNclskg2IIEetBy2WWsG3MMnO3m3Z3ZzJnnDf3rV3lhZhYIb_zPxm4P-KHY1xJMbeCP4ewPIPUxziKuFmvas5cMHhBTuVYGwpwP48elKfsPOc7znnkss5zEt2AkpXCmp7yj5e0kgJpy6ORWyL77txWtPUhfIm07aJxfVtsRxwRbloUxyKW8K-WNwdtNfsuMU-0_khn7EfXy7uFl_Lq2-Xy8XnqzKAVVNpvKx141GBIa6MagCDkqBQ6bquvDJCcdReBvLaegqybYA4tLKipgpCwxlb7rlNxHu3Sd2Aaecidu5BiGnlMM1P9-RqbIPxorbat5VERGu5b4SxSFrMnZn1ac_abP1ATaBxStg_gz7vjN3areJvZ0VlralnwLsDIMVfW8qTG7ocqO9xpLjNTmojQRht7Dwq9qMhxZwTtY9nBHd_TXT_mTjvvH363-PGP8vgDyI6nK8
CitedBy_id crossref_primary_10_1016_j_compbiomed_2023_107842
Cites_doi 10.1186/1748-717X-5-62
10.1088/1361-6560/aa5200
10.3109/0284186X.2013.819119
10.2967/jnumed.107.049353
10.3109/0284186X.2012.692883
10.1118/1.3578928
10.1118/1.4914158
10.1088/0031-9155/60/2/825
10.1118/1.4873315
10.1088/0031-9155/53/13/013
10.1109/ICPR.2014.564
10.1088/0031-9155/58/23/8419
10.1088/1361-6560/abf1ba
10.1371/journal.pone.0200611
10.1007/978-3-642-40811-3_19
10.1118/1.4967480
10.1002/mp.12155
10.1118/1.3377774
10.1007/978-3-319-68127-6_2
10.3390/jpm12030361
10.1016/j.ijrobp.2011.11.056
10.1016/j.neuroimage.2006.05.061
10.1148/radiol.2483071927
ContentType Journal Article
Copyright 2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. 2022
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/tomography8030103
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2379-139X
EndPage 1259
ExternalDocumentID oai_doaj_org_article_8afc7b1896bf42aaa990bd179ae61c7b
10_3390_tomography8030103
35645389
Genre Journal Article
GrantInformation_xml – fundername: The Scientific Research Support Fund, Ministry of Higher Education and Scientific Research, Jordan
  grantid: Eng/2/6/2015
– fundername: Scientific Research Support Fund/Ministry of Higher Education and Scientific Research
  grantid: Eng/2/6/2015
GroupedDBID 53G
AFZYC
ALMA_UNASSIGNED_HOLDINGS
EMOBN
GROUPED_DOAJ
HYE
IAO
MODMG
M~E
NPM
OK1
PGMZT
RPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c395t-7b286dba537e0575d3ac5235a56884b57150a6b2ceb69bec2fd3e03f24ed4c163
IEDL.DBID RPM
ISSN 2379-139X
2379-1381
IngestDate Tue Oct 22 15:12:44 EDT 2024
Tue Sep 17 21:04:26 EDT 2024
Sat Oct 26 01:42:47 EDT 2024
Tue Oct 29 02:44:24 EDT 2024
Wed Oct 16 00:41:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords computed tomography
spin echo
synthetic MRI
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-7b286dba537e0575d3ac5235a56884b57150a6b2ceb69bec2fd3e03f24ed4c163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2615-1988
0000-0001-9768-6798
0000-0002-2966-6442
0000-0001-5587-3974
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149978/
PMID 35645389
PQID 2672317679
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_8afc7b1896bf42aaa990bd179ae61c7b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9149978
proquest_miscellaneous_2672317679
crossref_primary_10_3390_tomography8030103
pubmed_primary_35645389
PublicationCentury 2000
PublicationDate 20220503
PublicationDateYYYYMMDD 2022-05-03
PublicationDate_xml – month: 5
  year: 2022
  text: 20220503
  day: 3
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Tomography (Ann Arbor)
PublicationTitleAlternate Tomography
PublicationYear 2022
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Schlemmer (ref_16) 2008; 248
Li (ref_23) 2020; 2020
Uh (ref_9) 2014; 41
Schreibmann (ref_4) 2010; 37
ref_11
Stanescu (ref_6) 2008; 53
Dowling (ref_5) 2012; 83
Johansson (ref_13) 2011; 38
Koerkamp (ref_24) 2021; 66
Hsu (ref_10) 2013; 58
Demol (ref_19) 2016; 43
Kraus (ref_2) 2017; 62
Giesel (ref_25) 2009; 31
Kapanen (ref_12) 2013; 52
Johansson (ref_14) 2013; 52
Jonsson (ref_3) 2010; 5
Andreasen (ref_18) 2015; 42
ref_22
Hofmann (ref_15) 2008; 49
ref_20
Han (ref_21) 2017; 44
ref_1
ref_26
ref_8
Forsberg (ref_17) 2015; 60
Heckemann (ref_7) 2006; 33
References_xml – volume: 5
  start-page: 62
  year: 2010
  ident: ref_3
  article-title: Treatment planning using MRIdata: An analysis of the dose calculation accuracy for different treatment regions
  publication-title: Radiat. Oncol.
  doi: 10.1186/1748-717X-5-62
  contributor:
    fullname: Jonsson
– volume: 62
  start-page: 1358
  year: 2017
  ident: ref_2
  article-title: Generation of synthetic CT data using patient specific daily MR image data and image registration
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa5200
  contributor:
    fullname: Kraus
– volume: 52
  start-page: 1369
  year: 2013
  ident: ref_14
  article-title: Improved quality of computed tomography substitute derived from magnetic resonance (MR) data by incorporation of spatial information-potential application for MR-only radiotherapy and attenuation correction in positron emission tomography
  publication-title: Acta Oncol.
  doi: 10.3109/0284186X.2013.819119
  contributor:
    fullname: Johansson
– volume: 49
  start-page: 1875
  year: 2008
  ident: ref_15
  article-title: MRI-based attenuation correction for PET/MRI: A novel approach combining pattern recognition and atlas registration
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.107.049353
  contributor:
    fullname: Hofmann
– volume: 52
  start-page: 612
  year: 2013
  ident: ref_12
  article-title: T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning
  publication-title: Acta Oncol.
  doi: 10.3109/0284186X.2012.692883
  contributor:
    fullname: Kapanen
– volume: 38
  start-page: 2708
  year: 2011
  ident: ref_13
  article-title: CT substitute derived from MRI sequences with ultrashort echo time
  publication-title: Med. Phys.
  doi: 10.1118/1.3578928
  contributor:
    fullname: Johansson
– volume: 42
  start-page: 1596
  year: 2015
  ident: ref_18
  article-title: Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain
  publication-title: Med. Phys.
  doi: 10.1118/1.4914158
  contributor:
    fullname: Andreasen
– volume: 60
  start-page: 825
  year: 2015
  ident: ref_17
  article-title: Generating patient specific pseudo-CT of the head from MR using atlas-based regression
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/2/825
  contributor:
    fullname: Forsberg
– volume: 41
  start-page: 051711
  year: 2014
  ident: ref_9
  article-title: MRI-based treatment planning with pseudoCT generated through atlas registration
  publication-title: Med. Phys.
  doi: 10.1118/1.4873315
  contributor:
    fullname: Uh
– volume: 53
  start-page: 3579
  year: 2008
  ident: ref_6
  article-title: A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/13/013
  contributor:
    fullname: Stanescu
– ident: ref_11
  doi: 10.1109/ICPR.2014.564
– volume: 58
  start-page: 8419
  year: 2013
  ident: ref_10
  article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy, Phys
  publication-title: Med. Biol.
  doi: 10.1088/0031-9155/58/23/8419
  contributor:
    fullname: Hsu
– ident: ref_1
– volume: 66
  start-page: 085010
  year: 2021
  ident: ref_24
  article-title: Synthetic CT for single-fraction neoadjuvant partial breast irradiation on an MRI-linac
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abf1ba
  contributor:
    fullname: Koerkamp
– ident: ref_26
  doi: 10.1371/journal.pone.0200611
– ident: ref_8
  doi: 10.1007/978-3-642-40811-3_19
– volume: 2020
  start-page: 5193707
  year: 2020
  ident: ref_23
  article-title: Comparison of supervised and unsupervised deep learning methods for medical image synthesis between computed tomography and magnetic resonance images
  publication-title: BioMed Res. Int.
  contributor:
    fullname: Li
– volume: 31
  start-page: 106
  year: 2009
  ident: ref_25
  article-title: Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA
  publication-title: Exp. Oncol.
  contributor:
    fullname: Giesel
– volume: 43
  start-page: 6557
  year: 2016
  ident: ref_19
  article-title: Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard T1-weighted MR images
  publication-title: Med. Phys.
  doi: 10.1118/1.4967480
  contributor:
    fullname: Demol
– volume: 44
  start-page: 1408
  year: 2017
  ident: ref_21
  article-title: MR-based synthetic CT generation using a deep convolutional neural network method
  publication-title: Med. Phys.
  doi: 10.1002/mp.12155
  contributor:
    fullname: Han
– volume: 37
  start-page: 2101
  year: 2010
  ident: ref_4
  article-title: MRbased attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration
  publication-title: Med. Phys.
  doi: 10.1118/1.3377774
  contributor:
    fullname: Schreibmann
– ident: ref_22
  doi: 10.1007/978-3-319-68127-6_2
– ident: ref_20
  doi: 10.3390/jpm12030361
– volume: 83
  start-page: e5
  year: 2012
  ident: ref_5
  article-title: An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2011.11.056
  contributor:
    fullname: Dowling
– volume: 33
  start-page: 115
  year: 2006
  ident: ref_7
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.061
  contributor:
    fullname: Heckemann
– volume: 248
  start-page: 1028
  year: 2008
  ident: ref_16
  article-title: Simultaneous MR/PET imaging of the human brain: Feasibility study
  publication-title: Radiology
  doi: 10.1148/radiol.2483071927
  contributor:
    fullname: Schlemmer
SSID ssj0002022027
Score 2.252386
Snippet This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1244
SubjectTerms computed tomography
spin echo
synthetic MRI
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIb-uLCJ6EYpukSQNedHFRYUXWFbyVPFFhW3F3D_57J2132VXBi9ckpWFmmHwfk3yD0KkjWnsJyC3NDIuZ4SZWRrpYmJQRlSfOJuHtcO-e3zyxu-fsea7VV7gT1sgDN4Y7z5U3Qqe55NrD10pB-tQWwkg5nsJMnX0TOUem3uryGgmsvu4sJ2QQ2kubkiYFjn8-roatHnQeGMG0YVZ7KNXa_b8Bzu_3JucOou46WmsRJL5sdr6Blly5iVZ6bY18C100StLB4Ljy-PGzBIwHa-OHkZvYCvf6-HYIWWSEw9MS3AekiDuDdmwbPXWvB52buO2REBsqs3EsNMm51SqjwgXoZakywC0zlfE8ZzoTAPgU18Q4zSX4i3hLXUI9Yc4yA2BsBy2XVen2ELaAhJw3THnJGEu85tRIL3KXWZI4aSJ0NjVS8d5IYRRAIYJFix8WjdBVMONsYVCxrgfAt0Xr2-Iv30boZOqEAqI-lDJU6arJqCBcADAVXMgI7TZOmf2KBoEcwGEREgvuWtjL4kz5-lIra0vgi0Cr9_9j8wdoNURhfTmSHqLl8cfEHQGAGevjOla_ACpA8Cc
  priority: 102
  providerName: Directory of Open Access Journals
Title Generation of Synthetic-Pseudo MR Images from Real CT Images
URI https://www.ncbi.nlm.nih.gov/pubmed/35645389
https://search.proquest.com/docview/2672317679
https://pubmed.ncbi.nlm.nih.gov/PMC9149978
https://doaj.org/article/8afc7b1896bf42aaa990bd179ae61c7b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61PSAuiDfhURmJE1K6iZ-xxAVWVAVpUVVaqbfITyhik6q7e-DfM3aSahc4cbUdxZoZ2d-nGX8D8CZQa6NG5FYLx0vupCuN06FUrubUNFXwVXo7vPgiTy7450txuQdieguTi_advTrqfi6PuqvvubbyeulmU53Y7HQx1wjrkf3M9mEfA3SLov_ImTWaCH1uKqd00tirh2wmQ3o_W_fLUQq6SWSgSn10WFJUYanR-9bVlBX8_wU7_6ye3LqOju_DvRFHkvfDfh_AXugewp3FmCl_BO8GPelkdtJH8vVXh0gP15anq7DxPVmckU9LPEtWJD0wIWeIF8n8fBx7DBfHH8_nJ-XYKaF0TIt1qSxtpLdGMBUSAPPMOGSYwgjZNNwKhbDPSEtdsFKj12j0LFQsUh48dwjJnsBB13fhGRCPeChEx03UnPMqWsmcjqoJwtMqaFfA28lI7fUgiNEikUjGbf8ybgEfkhlvFyYt6zzQ33xrR4-2jYlO2brR0kaMD2PwgrQeDwoTZI0zBbyenNBi7KeEhulCv1m1VCqEp0oqXcDTwSm3v5qcWoDacdfOXnZnMNyyvvYYXs__-8sXcDdFYa6LZC_hYH2zCa8Qu6ztYeb8hzlifwPajPB2
link.rule.ids 230,315,730,783,787,867,888,2109,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEviHfD00ickNJN4lcscYEV1RaaqipbqbfITyhik6q7e-DfM86j2gVOXO1EsWYm9vdpxt8AvPWFMUEhcsu5ZSmzwqbaKp9Km7NCl5l3Wbw7XJ2I2Tn7fMEvdoCPd2G6on1rLg-an4uD5vJ7V1t5tbCTsU5sclpNFcJ6ZD-TW3Ab_9eMbZD0H11urYiUvmsrJ1VU2cv7fCZFgj9ZtYtBDLqMdCCLnXRo1FShsdX7xuHUafj_C3j-WT-5cSAd3od7A5IkH_oVP4Ad3zyEO9WQK38E73tF6Wh40gby9VeDWA-fTU-Xfu1aUp2RowXuJksSr5iQM0SMZDofxh7D-eGn-XSWDr0SUksVX6XSFKVwRnMqfYRgjmqLHJNrLsqSGS4R-GlhCuuNUOi3IjjqMxoK5h2zCMqewG7TNn4fiENE5INlOijGWBaMoFYFWXruiswrm8C70Uj1VS-JUSOViMat_zJuAh-jGW8ejGrW3UB7_a0efFqXOlhp8lIJEzBCtMYj0jjcKrQXOc4k8GZ0Qo3RH1MauvHtelkXQiJAlUKqBJ72Trn51OjUBOSWu7bWsj2DAdcpbA8B9uy_33wNd2fz6rg-Pjr58hz2YkR2VZL0Beyurtf-JSKZlXnVxe1v_sTy1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkSouiPJqgEKQOCGlSWzHjiUu7cKqBbZalVbqLfITithk1d098O8ZO9lqFzhxtR3Fmhl7vtGMvwF464jWXiJyKyvDMma4yZSRLhOmZETVhbNFeDs8OeMnl-zTVXW10eorFu0bfX3Y_pwdttffY23lfGbydZ1YPp2MJMJ6jH7yufX5XbiHZ7bgG4H6j5hfIyGsj63lhAxMe2Wf06QY5OfLbjYQQtchJChCNx0aeFVoaPe-4aAij_-_wOefNZQbTmn8EB4MaDI96ne9B3dc-wh2J0O-_DG871mlg_DTzqdff7WI93BtNl24le3SyXl6OsMbZZGGZybpOaLGdHQxjD2By_HHi9FJNvRLyAyV1TITmtTcalVR4QIMs1QZjDMrVfG6ZroSCP4U18Q4zSXqjnhLXUE9Yc4yg8DsKey0Xev2IbWIipw3THnJGCu85tRIL2pXWVI4aRJ4txZSM-9pMRoMJ4Jwm7-Em8BxEOPtwsBoHQe6m2_NoNemVt4IXdaSa49WohS6SW3xulCOlziTwJu1Eho8ASGtoVrXrRYN4QJBquBCJvCsV8rtr9ZKTUBsqWtrL9szaHSRZXswsuf__eVr2J1-GDdfTs8-v4D7wSBjoSR9CTvLm5U7QDCz1K-i2f4GgNfz6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Synthetic-Pseudo+MR+Images+from+Real+CT+Images&rft.jtitle=Tomography+%28Ann+Arbor%29&rft.au=Abu-Qasmieh%2C+Isam+F.&rft.au=Masad%2C+Ihssan+S.&rft.au=Al-Quran%2C+Hiam+H.&rft.au=Alawneh%2C+Khaled+Z.&rft.date=2022-05-03&rft.pub=MDPI&rft.issn=2379-1381&rft.eissn=2379-139X&rft.volume=8&rft.issue=3&rft.spage=1244&rft.epage=1259&rft_id=info:doi/10.3390%2Ftomography8030103&rft_id=info%3Apmid%2F35645389&rft.externalDBID=PMC9149978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-139X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-139X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-139X&client=summon