Generation of Synthetic-Pseudo MR Images from Real CT Images
This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the reconstructed CT images were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled remapping it to its corresponding...
Saved in:
Published in | Tomography (Ann Arbor) Vol. 8; no. 3; pp. 1244 - 1259 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
03.05.2022
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the reconstructed CT images were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled remapping it to its corresponding intrinsic parameters: T1, T2, and proton density (
). Lastly, synthetic weighted MR images of a selected slice were generated by simulating a spin-echo sequence using the intrinsic parameters and proper contrast parameters (TE and TR). Experiments were performed on a 3D multimodality abdominal phantom and on human knees at different TE and TR parameters to confirm the clinical effectiveness of the approach. Results demonstrated the validity of the approach of generating synthetic MR images at different weightings using only CT images and the three predefined mapping functions. The slope of the fitting line and percentage root-mean-square difference (PRD) between real and synthetic image vector representations were (0.73, 10%), (0.9, 18%), and (0.2, 8.7%) for T1-, T2-, and
-weighted images of the phantom, respectively. The slope and PRD for human knee images, on average, were 0.89% and 18.8%, respectively. The generated MR images provide valuable guidance for physicians with regard to deciding whether acquiring real MR images is crucial. |
---|---|
AbstractList | This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the reconstructed CT images were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled remapping it to its corresponding intrinsic parameters: T1, T2, and proton density (
). Lastly, synthetic weighted MR images of a selected slice were generated by simulating a spin-echo sequence using the intrinsic parameters and proper contrast parameters (TE and TR). Experiments were performed on a 3D multimodality abdominal phantom and on human knees at different TE and TR parameters to confirm the clinical effectiveness of the approach. Results demonstrated the validity of the approach of generating synthetic MR images at different weightings using only CT images and the three predefined mapping functions. The slope of the fitting line and percentage root-mean-square difference (PRD) between real and synthetic image vector representations were (0.73, 10%), (0.9, 18%), and (0.2, 8.7%) for T1-, T2-, and
-weighted images of the phantom, respectively. The slope and PRD for human knee images, on average, were 0.89% and 18.8%, respectively. The generated MR images provide valuable guidance for physicians with regard to deciding whether acquiring real MR images is crucial. This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the reconstructed CT images were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled remapping it to its corresponding intrinsic parameters: T1, T2, and proton density (ρ). Lastly, synthetic weighted MR images of a selected slice were generated by simulating a spin-echo sequence using the intrinsic parameters and proper contrast parameters (TE and TR). Experiments were performed on a 3D multimodality abdominal phantom and on human knees at different TE and TR parameters to confirm the clinical effectiveness of the approach. Results demonstrated the validity of the approach of generating synthetic MR images at different weightings using only CT images and the three predefined mapping functions. The slope of the fitting line and percentage root-mean-square difference (PRD) between real and synthetic image vector representations were (0.73, 10%), (0.9, 18%), and (0.2, 8.7%) for T1-, T2-, and ρ-weighted images of the phantom, respectively. The slope and PRD for human knee images, on average, were 0.89% and 18.8%, respectively. The generated MR images provide valuable guidance for physicians with regard to deciding whether acquiring real MR images is crucial. This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the reconstructed CT images were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled remapping it to its corresponding intrinsic parameters: T1, T2, and proton density ( ρ ). Lastly, synthetic weighted MR images of a selected slice were generated by simulating a spin-echo sequence using the intrinsic parameters and proper contrast parameters (TE and TR). Experiments were performed on a 3D multimodality abdominal phantom and on human knees at different TE and TR parameters to confirm the clinical effectiveness of the approach. Results demonstrated the validity of the approach of generating synthetic MR images at different weightings using only CT images and the three predefined mapping functions. The slope of the fitting line and percentage root-mean-square difference (PRD) between real and synthetic image vector representations were (0.73, 10%), (0.9, 18%), and (0.2, 8.7%) for T1-, T2-, and ρ -weighted images of the phantom, respectively. The slope and PRD for human knee images, on average, were 0.89% and 18.8%, respectively. The generated MR images provide valuable guidance for physicians with regard to deciding whether acquiring real MR images is crucial. |
Author | Masad, Ihssan S Alawneh, Khaled Z Abu-Qasmieh, Isam F Al-Quran, Hiam H |
AuthorAffiliation | 2 Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan 1 Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; iabuqasmieh@yu.edu.jo (I.F.A.-Q.); heyam.q@yu.edu.jo (H.H.A.-Q.) 3 Faculty of Medicine, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid 22110, Jordan; kzalawneh0@just.edu.jo |
AuthorAffiliation_xml | – name: 3 Faculty of Medicine, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid 22110, Jordan; kzalawneh0@just.edu.jo – name: 1 Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; iabuqasmieh@yu.edu.jo (I.F.A.-Q.); heyam.q@yu.edu.jo (H.H.A.-Q.) – name: 2 Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan |
Author_xml | – sequence: 1 givenname: Isam F orcidid: 0000-0001-5587-3974 surname: Abu-Qasmieh fullname: Abu-Qasmieh, Isam F organization: Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan – sequence: 2 givenname: Ihssan S orcidid: 0000-0001-9768-6798 surname: Masad fullname: Masad, Ihssan S organization: Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan – sequence: 3 givenname: Hiam H orcidid: 0000-0002-2966-6442 surname: Al-Quran fullname: Al-Quran, Hiam H organization: Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan – sequence: 4 givenname: Khaled Z orcidid: 0000-0002-2615-1988 surname: Alawneh fullname: Alawneh, Khaled Z organization: Faculty of Medicine, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid 22110, Jordan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35645389$$D View this record in MEDLINE/PubMed |
BookMark | eNplkVFrFDEQx4O02Fr7AXyRffRlNclskg2IIEetBy2WWsG3MMnO3m3Z3ZzJnnDf3rV3lhZhYIb_zPxm4P-KHY1xJMbeCP4ewPIPUxziKuFmvas5cMHhBTuVYGwpwP48elKfsPOc7znnkss5zEt2AkpXCmp7yj5e0kgJpy6ORWyL77txWtPUhfIm07aJxfVtsRxwRbloUxyKW8K-WNwdtNfsuMU-0_khn7EfXy7uFl_Lq2-Xy8XnqzKAVVNpvKx141GBIa6MagCDkqBQ6bquvDJCcdReBvLaegqybYA4tLKipgpCwxlb7rlNxHu3Sd2Aaecidu5BiGnlMM1P9-RqbIPxorbat5VERGu5b4SxSFrMnZn1ac_abP1ATaBxStg_gz7vjN3areJvZ0VlralnwLsDIMVfW8qTG7ocqO9xpLjNTmojQRht7Dwq9qMhxZwTtY9nBHd_TXT_mTjvvH363-PGP8vgDyI6nK8 |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2023_107842 |
Cites_doi | 10.1186/1748-717X-5-62 10.1088/1361-6560/aa5200 10.3109/0284186X.2013.819119 10.2967/jnumed.107.049353 10.3109/0284186X.2012.692883 10.1118/1.3578928 10.1118/1.4914158 10.1088/0031-9155/60/2/825 10.1118/1.4873315 10.1088/0031-9155/53/13/013 10.1109/ICPR.2014.564 10.1088/0031-9155/58/23/8419 10.1088/1361-6560/abf1ba 10.1371/journal.pone.0200611 10.1007/978-3-642-40811-3_19 10.1118/1.4967480 10.1002/mp.12155 10.1118/1.3377774 10.1007/978-3-319-68127-6_2 10.3390/jpm12030361 10.1016/j.ijrobp.2011.11.056 10.1016/j.neuroimage.2006.05.061 10.1148/radiol.2483071927 |
ContentType | Journal Article |
Copyright | 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. 2022 |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3390/tomography8030103 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2379-139X |
EndPage | 1259 |
ExternalDocumentID | oai_doaj_org_article_8afc7b1896bf42aaa990bd179ae61c7b 10_3390_tomography8030103 35645389 |
Genre | Journal Article |
GrantInformation_xml | – fundername: The Scientific Research Support Fund, Ministry of Higher Education and Scientific Research, Jordan grantid: Eng/2/6/2015 – fundername: Scientific Research Support Fund/Ministry of Higher Education and Scientific Research grantid: Eng/2/6/2015 |
GroupedDBID | 53G AFZYC ALMA_UNASSIGNED_HOLDINGS EMOBN GROUPED_DOAJ HYE IAO MODMG M~E NPM OK1 PGMZT RPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c395t-7b286dba537e0575d3ac5235a56884b57150a6b2ceb69bec2fd3e03f24ed4c163 |
IEDL.DBID | RPM |
ISSN | 2379-139X 2379-1381 |
IngestDate | Tue Oct 22 15:12:44 EDT 2024 Tue Sep 17 21:04:26 EDT 2024 Sat Oct 26 01:42:47 EDT 2024 Tue Oct 29 02:44:24 EDT 2024 Wed Oct 16 00:41:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | computed tomography spin echo synthetic MRI |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-7b286dba537e0575d3ac5235a56884b57150a6b2ceb69bec2fd3e03f24ed4c163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2615-1988 0000-0001-9768-6798 0000-0002-2966-6442 0000-0001-5587-3974 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149978/ |
PMID | 35645389 |
PQID | 2672317679 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8afc7b1896bf42aaa990bd179ae61c7b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9149978 proquest_miscellaneous_2672317679 crossref_primary_10_3390_tomography8030103 pubmed_primary_35645389 |
PublicationCentury | 2000 |
PublicationDate | 20220503 |
PublicationDateYYYYMMDD | 2022-05-03 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220503 day: 3 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Tomography (Ann Arbor) |
PublicationTitleAlternate | Tomography |
PublicationYear | 2022 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Schlemmer (ref_16) 2008; 248 Li (ref_23) 2020; 2020 Uh (ref_9) 2014; 41 Schreibmann (ref_4) 2010; 37 ref_11 Stanescu (ref_6) 2008; 53 Dowling (ref_5) 2012; 83 Johansson (ref_13) 2011; 38 Koerkamp (ref_24) 2021; 66 Hsu (ref_10) 2013; 58 Demol (ref_19) 2016; 43 Kraus (ref_2) 2017; 62 Giesel (ref_25) 2009; 31 Kapanen (ref_12) 2013; 52 Johansson (ref_14) 2013; 52 Jonsson (ref_3) 2010; 5 Andreasen (ref_18) 2015; 42 ref_22 Hofmann (ref_15) 2008; 49 ref_20 Han (ref_21) 2017; 44 ref_1 ref_26 ref_8 Forsberg (ref_17) 2015; 60 Heckemann (ref_7) 2006; 33 |
References_xml | – volume: 5 start-page: 62 year: 2010 ident: ref_3 article-title: Treatment planning using MRIdata: An analysis of the dose calculation accuracy for different treatment regions publication-title: Radiat. Oncol. doi: 10.1186/1748-717X-5-62 contributor: fullname: Jonsson – volume: 62 start-page: 1358 year: 2017 ident: ref_2 article-title: Generation of synthetic CT data using patient specific daily MR image data and image registration publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa5200 contributor: fullname: Kraus – volume: 52 start-page: 1369 year: 2013 ident: ref_14 article-title: Improved quality of computed tomography substitute derived from magnetic resonance (MR) data by incorporation of spatial information-potential application for MR-only radiotherapy and attenuation correction in positron emission tomography publication-title: Acta Oncol. doi: 10.3109/0284186X.2013.819119 contributor: fullname: Johansson – volume: 49 start-page: 1875 year: 2008 ident: ref_15 article-title: MRI-based attenuation correction for PET/MRI: A novel approach combining pattern recognition and atlas registration publication-title: J. Nucl. Med. doi: 10.2967/jnumed.107.049353 contributor: fullname: Hofmann – volume: 52 start-page: 612 year: 2013 ident: ref_12 article-title: T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning publication-title: Acta Oncol. doi: 10.3109/0284186X.2012.692883 contributor: fullname: Kapanen – volume: 38 start-page: 2708 year: 2011 ident: ref_13 article-title: CT substitute derived from MRI sequences with ultrashort echo time publication-title: Med. Phys. doi: 10.1118/1.3578928 contributor: fullname: Johansson – volume: 42 start-page: 1596 year: 2015 ident: ref_18 article-title: Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain publication-title: Med. Phys. doi: 10.1118/1.4914158 contributor: fullname: Andreasen – volume: 60 start-page: 825 year: 2015 ident: ref_17 article-title: Generating patient specific pseudo-CT of the head from MR using atlas-based regression publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/2/825 contributor: fullname: Forsberg – volume: 41 start-page: 051711 year: 2014 ident: ref_9 article-title: MRI-based treatment planning with pseudoCT generated through atlas registration publication-title: Med. Phys. doi: 10.1118/1.4873315 contributor: fullname: Uh – volume: 53 start-page: 3579 year: 2008 ident: ref_6 article-title: A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/13/013 contributor: fullname: Stanescu – ident: ref_11 doi: 10.1109/ICPR.2014.564 – volume: 58 start-page: 8419 year: 2013 ident: ref_10 article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy, Phys publication-title: Med. Biol. doi: 10.1088/0031-9155/58/23/8419 contributor: fullname: Hsu – ident: ref_1 – volume: 66 start-page: 085010 year: 2021 ident: ref_24 article-title: Synthetic CT for single-fraction neoadjuvant partial breast irradiation on an MRI-linac publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/abf1ba contributor: fullname: Koerkamp – ident: ref_26 doi: 10.1371/journal.pone.0200611 – ident: ref_8 doi: 10.1007/978-3-642-40811-3_19 – volume: 2020 start-page: 5193707 year: 2020 ident: ref_23 article-title: Comparison of supervised and unsupervised deep learning methods for medical image synthesis between computed tomography and magnetic resonance images publication-title: BioMed Res. Int. contributor: fullname: Li – volume: 31 start-page: 106 year: 2009 ident: ref_25 article-title: Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA publication-title: Exp. Oncol. contributor: fullname: Giesel – volume: 43 start-page: 6557 year: 2016 ident: ref_19 article-title: Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard T1-weighted MR images publication-title: Med. Phys. doi: 10.1118/1.4967480 contributor: fullname: Demol – volume: 44 start-page: 1408 year: 2017 ident: ref_21 article-title: MR-based synthetic CT generation using a deep convolutional neural network method publication-title: Med. Phys. doi: 10.1002/mp.12155 contributor: fullname: Han – volume: 37 start-page: 2101 year: 2010 ident: ref_4 article-title: MRbased attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration publication-title: Med. Phys. doi: 10.1118/1.3377774 contributor: fullname: Schreibmann – ident: ref_22 doi: 10.1007/978-3-319-68127-6_2 – ident: ref_20 doi: 10.3390/jpm12030361 – volume: 83 start-page: e5 year: 2012 ident: ref_5 article-title: An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2011.11.056 contributor: fullname: Dowling – volume: 33 start-page: 115 year: 2006 ident: ref_7 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.061 contributor: fullname: Heckemann – volume: 248 start-page: 1028 year: 2008 ident: ref_16 article-title: Simultaneous MR/PET imaging of the human brain: Feasibility study publication-title: Radiology doi: 10.1148/radiol.2483071927 contributor: fullname: Schlemmer |
SSID | ssj0002022027 |
Score | 2.252386 |
Snippet | This study aimed to generate synthetic MR images from real CT images. CT# mean and standard deviation of a moving window across every pixel in the... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1244 |
SubjectTerms | computed tomography spin echo synthetic MRI |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIb-uLCJ6EYpukSQNedHFRYUXWFbyVPFFhW3F3D_57J2132VXBi9ckpWFmmHwfk3yD0KkjWnsJyC3NDIuZ4SZWRrpYmJQRlSfOJuHtcO-e3zyxu-fsea7VV7gT1sgDN4Y7z5U3Qqe55NrD10pB-tQWwkg5nsJMnX0TOUem3uryGgmsvu4sJ2QQ2kubkiYFjn8-roatHnQeGMG0YVZ7KNXa_b8Bzu_3JucOou46WmsRJL5sdr6Blly5iVZ6bY18C100StLB4Ljy-PGzBIwHa-OHkZvYCvf6-HYIWWSEw9MS3AekiDuDdmwbPXWvB52buO2REBsqs3EsNMm51SqjwgXoZakywC0zlfE8ZzoTAPgU18Q4zSX4i3hLXUI9Yc4yA2BsBy2XVen2ELaAhJw3THnJGEu85tRIL3KXWZI4aSJ0NjVS8d5IYRRAIYJFix8WjdBVMONsYVCxrgfAt0Xr2-Iv30boZOqEAqI-lDJU6arJqCBcADAVXMgI7TZOmf2KBoEcwGEREgvuWtjL4kz5-lIra0vgi0Cr9_9j8wdoNURhfTmSHqLl8cfEHQGAGevjOla_ACpA8Cc priority: 102 providerName: Directory of Open Access Journals |
Title | Generation of Synthetic-Pseudo MR Images from Real CT Images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35645389 https://search.proquest.com/docview/2672317679 https://pubmed.ncbi.nlm.nih.gov/PMC9149978 https://doaj.org/article/8afc7b1896bf42aaa990bd179ae61c7b |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61PSAuiDfhURmJE1K6iZ-xxAVWVAVpUVVaqbfITyhik6q7e-DfM3aSahc4cbUdxZoZ2d-nGX8D8CZQa6NG5FYLx0vupCuN06FUrubUNFXwVXo7vPgiTy7450txuQdieguTi_advTrqfi6PuqvvubbyeulmU53Y7HQx1wjrkf3M9mEfA3SLov_ImTWaCH1uKqd00tirh2wmQ3o_W_fLUQq6SWSgSn10WFJUYanR-9bVlBX8_wU7_6ye3LqOju_DvRFHkvfDfh_AXugewp3FmCl_BO8GPelkdtJH8vVXh0gP15anq7DxPVmckU9LPEtWJD0wIWeIF8n8fBx7DBfHH8_nJ-XYKaF0TIt1qSxtpLdGMBUSAPPMOGSYwgjZNNwKhbDPSEtdsFKj12j0LFQsUh48dwjJnsBB13fhGRCPeChEx03UnPMqWsmcjqoJwtMqaFfA28lI7fUgiNEikUjGbf8ybgEfkhlvFyYt6zzQ33xrR4-2jYlO2brR0kaMD2PwgrQeDwoTZI0zBbyenNBi7KeEhulCv1m1VCqEp0oqXcDTwSm3v5qcWoDacdfOXnZnMNyyvvYYXs__-8sXcDdFYa6LZC_hYH2zCa8Qu6ztYeb8hzlifwPajPB2 |
link.rule.ids | 230,315,730,783,787,867,888,2109,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEviHfD00ickNJN4lcscYEV1RaaqipbqbfITyhik6q7e-DfM86j2gVOXO1EsWYm9vdpxt8AvPWFMUEhcsu5ZSmzwqbaKp9Km7NCl5l3Wbw7XJ2I2Tn7fMEvdoCPd2G6on1rLg-an4uD5vJ7V1t5tbCTsU5sclpNFcJ6ZD-TW3Ab_9eMbZD0H11urYiUvmsrJ1VU2cv7fCZFgj9ZtYtBDLqMdCCLnXRo1FShsdX7xuHUafj_C3j-WT-5cSAd3od7A5IkH_oVP4Ad3zyEO9WQK38E73tF6Wh40gby9VeDWA-fTU-Xfu1aUp2RowXuJksSr5iQM0SMZDofxh7D-eGn-XSWDr0SUksVX6XSFKVwRnMqfYRgjmqLHJNrLsqSGS4R-GlhCuuNUOi3IjjqMxoK5h2zCMqewG7TNn4fiENE5INlOijGWBaMoFYFWXruiswrm8C70Uj1VS-JUSOViMat_zJuAh-jGW8ejGrW3UB7_a0efFqXOlhp8lIJEzBCtMYj0jjcKrQXOc4k8GZ0Qo3RH1MauvHtelkXQiJAlUKqBJ72Trn51OjUBOSWu7bWsj2DAdcpbA8B9uy_33wNd2fz6rg-Pjr58hz2YkR2VZL0Beyurtf-JSKZlXnVxe1v_sTy1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkSouiPJqgEKQOCGlSWzHjiUu7cKqBbZalVbqLfITithk1d098O8ZO9lqFzhxtR3Fmhl7vtGMvwF464jWXiJyKyvDMma4yZSRLhOmZETVhbNFeDs8OeMnl-zTVXW10eorFu0bfX3Y_pwdttffY23lfGbydZ1YPp2MJMJ6jH7yufX5XbiHZ7bgG4H6j5hfIyGsj63lhAxMe2Wf06QY5OfLbjYQQtchJChCNx0aeFVoaPe-4aAij_-_wOefNZQbTmn8EB4MaDI96ne9B3dc-wh2J0O-_DG871mlg_DTzqdff7WI93BtNl24le3SyXl6OsMbZZGGZybpOaLGdHQxjD2By_HHi9FJNvRLyAyV1TITmtTcalVR4QIMs1QZjDMrVfG6ZroSCP4U18Q4zSXqjnhLXUE9Yc4yg8DsKey0Xev2IbWIipw3THnJGCu85tRIL2pXWVI4aRJ4txZSM-9pMRoMJ4Jwm7-Em8BxEOPtwsBoHQe6m2_NoNemVt4IXdaSa49WohS6SW3xulCOlziTwJu1Eho8ASGtoVrXrRYN4QJBquBCJvCsV8rtr9ZKTUBsqWtrL9szaHSRZXswsuf__eVr2J1-GDdfTs8-v4D7wSBjoSR9CTvLm5U7QDCz1K-i2f4GgNfz6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Synthetic-Pseudo+MR+Images+from+Real+CT+Images&rft.jtitle=Tomography+%28Ann+Arbor%29&rft.au=Abu-Qasmieh%2C+Isam+F.&rft.au=Masad%2C+Ihssan+S.&rft.au=Al-Quran%2C+Hiam+H.&rft.au=Alawneh%2C+Khaled+Z.&rft.date=2022-05-03&rft.pub=MDPI&rft.issn=2379-1381&rft.eissn=2379-139X&rft.volume=8&rft.issue=3&rft.spage=1244&rft.epage=1259&rft_id=info:doi/10.3390%2Ftomography8030103&rft_id=info%3Apmid%2F35645389&rft.externalDBID=PMC9149978 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-139X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-139X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-139X&client=summon |