Metasurface of deflection prism phases for generating non-diffracting optical vortex lattices
A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting vortex lattices are integrated and encoded as rotation angles of nano-apertures. Under plane-wave illumination, the transmitted waves from th...
Saved in:
Published in | Optics express Vol. 26; no. 22; p. 28228 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
29.10.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting vortex lattices are integrated and encoded as rotation angles of nano-apertures. Under plane-wave illumination, the transmitted waves from the thin flat metasurface act analogously as multiple beams, each with a designed propagating direction and pre-scribed phase shift, that generate an optical lattice within their overlapping region of space. By altering the design parameters of the metasurface, lattice type and size can be controlled. Both numerical simulations and experiments were conducted, verifying the possibility of the proposed method and the non-diffracting properties of the generated vortex lattices. |
---|---|
AbstractList | A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting vortex lattices are integrated and encoded as rotation angles of nano-apertures. Under plane-wave illumination, the transmitted waves from the thin flat metasurface act analogously as multiple beams, each with a designed propagating direction and pre-scribed phase shift, that generate an optical lattice within their overlapping region of space. By altering the design parameters of the metasurface, lattice type and size can be controlled. Both numerical simulations and experiments were conducted, verifying the possibility of the proposed method and the non-diffracting properties of the generated vortex lattices.A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting vortex lattices are integrated and encoded as rotation angles of nano-apertures. Under plane-wave illumination, the transmitted waves from the thin flat metasurface act analogously as multiple beams, each with a designed propagating direction and pre-scribed phase shift, that generate an optical lattice within their overlapping region of space. By altering the design parameters of the metasurface, lattice type and size can be controlled. Both numerical simulations and experiments were conducted, verifying the possibility of the proposed method and the non-diffracting properties of the generated vortex lattices. A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting vortex lattices are integrated and encoded as rotation angles of nano-apertures. Under plane-wave illumination, the transmitted waves from the thin flat metasurface act analogously as multiple beams, each with a designed propagating direction and pre-scribed phase shift, that generate an optical lattice within their overlapping region of space. By altering the design parameters of the metasurface, lattice type and size can be controlled. Both numerical simulations and experiments were conducted, verifying the possibility of the proposed method and the non-diffracting properties of the generated vortex lattices. |
Author | Zhang, Yuqin Cheng, Chuanfu Zhang, Xiumei Li, Zhenhua Zhang, Ruirui Xu, Shicai Ma, Li Liu, Hanping Tang, Yanke Zhang, Junye Wang, Xiaoxin |
Author_xml | – sequence: 1 givenname: Zhenhua surname: Li fullname: Li, Zhenhua – sequence: 2 givenname: Hanping surname: Liu fullname: Liu, Hanping – sequence: 3 givenname: Xiumei surname: Zhang fullname: Zhang, Xiumei – sequence: 4 givenname: Yuqin surname: Zhang fullname: Zhang, Yuqin – sequence: 5 givenname: Ruirui surname: Zhang fullname: Zhang, Ruirui – sequence: 6 givenname: Shicai surname: Xu fullname: Xu, Shicai – sequence: 7 givenname: Yanke surname: Tang fullname: Tang, Yanke – sequence: 8 givenname: Xiaoxin surname: Wang fullname: Wang, Xiaoxin – sequence: 9 givenname: Junye surname: Zhang fullname: Zhang, Junye – sequence: 10 givenname: Li surname: Ma fullname: Ma, Li – sequence: 11 givenname: Chuanfu surname: Cheng fullname: Cheng, Chuanfu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30469998$$D View this record in MEDLINE/PubMed |
BookMark | eNptkEtLAzEUhYNUtK3uXEuWLpyaxzSPpZT6AKUbXUpIMzd1ZDqpSSr6753aFkRc3XvgO4d7zwD12tACQmeUjCgX5dVsOmJiRJhiTB2gPiW6LEqiZO_XfowGKb0RQkup5RE65qQUWmvVRy-PkG1aR28d4OBxBb4Bl-vQ4lWs0xKvXm2ChH2IeAEtRJvrdoG7G4qq9j5a96PDKtfONvgjxAyfuLG505BO0KG3TYLT3Ryi55vp0-SueJjd3k-uHwrH9TgXUltgmoAAL8dCEc5BMOuslIIRPuaejxmnTjheQSU18HlVlpbquVCi4lTxIbrY5q5ieF9DymZZJwdNY1sI62QY5bIUUineoec7dD1fQmW6L5c2fpl9JR3AtoCLIaUI3rg6200jOdq6MZSYTe9mNjVMmG3vnenyj2mf-y_-DVXlg5M |
CitedBy_id | crossref_primary_10_1016_j_infrared_2023_105111 crossref_primary_10_3103_S1541308X24700055 crossref_primary_10_1016_j_cjph_2024_03_043 crossref_primary_10_1063_5_0011864 crossref_primary_10_1109_TMTT_2024_3454062 crossref_primary_10_1109_JLT_2024_3405198 crossref_primary_10_3788_COL202422_020011 crossref_primary_10_1007_s00339_024_07694_2 crossref_primary_10_1038_s41378_024_00781_7 crossref_primary_10_1016_j_infrared_2023_104775 crossref_primary_10_1364_OL_44_005049 crossref_primary_10_1088_2040_8986_ac067d crossref_primary_10_1364_JOSAB_501052 crossref_primary_10_1016_j_optlastec_2024_111094 crossref_primary_10_1016_j_optlaseng_2024_108128 crossref_primary_10_1515_rams_2023_0161 crossref_primary_10_1016_j_optlastec_2023_110143 crossref_primary_10_1016_j_cjph_2024_08_028 crossref_primary_10_1515_nanoph_2023_0261 crossref_primary_10_1039_C9NR03381E crossref_primary_10_1364_PRJ_506885 crossref_primary_10_1515_nanoph_2021_0567 crossref_primary_10_29026_oea_2024_240095 |
Cites_doi | 10.1021/nl301347j 10.1088/1367-2630/14/3/033018 10.1038/s41566-017-0078-z 10.1364/AO.46.002893 10.1103/PhysRevLett.117.163001 10.1364/OL.41.002270 10.1515/nanoph-2016-0032 10.1038/s41467-017-00166-7 10.1038/nmat3839 10.1023/A:1024802801048 10.1103/PhysRevA.60.2438 10.1126/science.aaf6644 10.1103/PhysRevA.84.013832 10.1364/OE.26.009798 10.1364/OL.40.002513 10.1038/nphoton.2011.80 10.1063/1.3554759 10.1103/PhysRevLett.58.1499 10.1016/S0079-6638(08)00004-8 10.1364/OE.26.003926 10.1038/nphys3803 10.1088/1367-2630/16/10/103020 10.1038/nature01007 10.1063/1.4748758 10.1002/lpor.200910019 10.1126/science.aad4568 10.1364/OE.21.022221 10.1364/OPTICA.4.000139 10.1364/AOP.10.000309 10.1038/s41467-018-03155-6 10.1364/OE.21.023441 10.1038/srep29863 10.1039/C7NR07873K 10.1364/OL.43.000154 10.1016/j.optcom.2016.02.009 10.1364/OE.26.001351 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1364/OE.26.028228 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 30469998 10_1364_OE_26_028228 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 |
ID | FETCH-LOGICAL-c395t-79ae290e6ef7568033e62aca77620353f35231c6c3ded79e3bd44a19b686d3183 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 01:40:36 EDT 2025 Wed Feb 19 02:35:03 EST 2025 Tue Jul 01 04:04:27 EDT 2025 Thu Apr 24 22:55:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-79ae290e6ef7568033e62aca77620353f35231c6c3ded79e3bd44a19b686d3183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1364/oe.26.028228 |
PMID | 30469998 |
PQID | 2137467883 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2137467883 pubmed_primary_30469998 crossref_citationtrail_10_1364_OE_26_028228 crossref_primary_10_1364_OE_26_028228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-29 |
PublicationDateYYYYMMDD | 2018-10-29 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2018 |
References | Dholakia (oe-26-22-28228-R16) 2011; 5 Durnin (oe-26-22-28228-R1) 1987; 58 Mondal (oe-26-22-28228-R5) 2018; 26 Kartashov (oe-26-22-28228-R6) 2009; 52 Ortiz-Ambriz (oe-26-22-28228-R19) 2013; 21 Wang (oe-26-22-28228-R21) 2012; 101 Yu (oe-26-22-28228-R28) 2014; 13 Wang (oe-26-22-28228-R37) 2017; 8 Li (oe-26-22-28228-R14) 2018; 26 Li (oe-26-22-28228-R27) 2016; 368 Zhang (oe-26-22-28228-R35) 2014; 16 Jang (oe-26-22-28228-R33) 2018; 12 Vuillemin (oe-26-22-28228-R10) 2016; 6 Genevet (oe-26-22-28228-R31) 2017; 4 Davis (oe-26-22-28228-R3) 2016; 41 Gao (oe-26-22-28228-R15) 2018; 10 Garcés-Chávez (oe-26-22-28228-R17) 2002; 419 Goldman (oe-26-22-28228-R12) 2016; 12 Boguslawski (oe-26-22-28228-R24) 2011; 84 Tsou (oe-26-22-28228-R26) 2013; 21 Zhu (oe-26-22-28228-R32) 2017; 6 Bouchal (oe-26-22-28228-R4) 2003; 53 Boguslawski (oe-26-22-28228-R20) 2011; 98 Arbabi (oe-26-22-28228-R29) 2018; 9 Khorasaninejad (oe-26-22-28228-R30) 2016; 352 Vyas (oe-26-22-28228-R22) 2007; 46 Fläschner (oe-26-22-28228-R11) 2016; 352 Kapoor (oe-26-22-28228-R7) 2017; 11 Keren-Zur (oe-26-22-28228-R36) 2018; 10 Zhang (oe-26-22-28228-R34) 2018; 26 Yu (oe-26-22-28228-R25) 2015; 40 Mazilu (oe-26-22-28228-R2) 2010; 4 Di Liberto (oe-26-22-28228-R13) 2016; 117 Arlt (oe-26-22-28228-R9) 1999; 60 Rose (oe-26-22-28228-R8) 2012; 14 Fuh (oe-26-22-28228-R23) 2018; 43 Toyoda (oe-26-22-28228-R18) 2012; 12 |
References_xml | – volume: 12 start-page: 3645 year: 2012 ident: oe-26-22-28228-R18 publication-title: Nano Lett. doi: 10.1021/nl301347j – volume: 14 start-page: 033018 year: 2012 ident: oe-26-22-28228-R8 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/3/033018 – volume: 12 start-page: 84 year: 2018 ident: oe-26-22-28228-R33 publication-title: Nat. Photonics doi: 10.1038/s41566-017-0078-z – volume: 11 start-page: 046024 year: 2017 ident: oe-26-22-28228-R7 publication-title: J. Nanophotonics – volume: 46 start-page: 2893 year: 2007 ident: oe-26-22-28228-R22 publication-title: Appl. Opt. doi: 10.1364/AO.46.002893 – volume: 117 start-page: 163001 year: 2016 ident: oe-26-22-28228-R13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.163001 – volume: 41 start-page: 2270 year: 2016 ident: oe-26-22-28228-R3 publication-title: Opt. Lett. doi: 10.1364/OL.41.002270 – volume: 6 start-page: 452 year: 2017 ident: oe-26-22-28228-R32 publication-title: Nanophotonics doi: 10.1515/nanoph-2016-0032 – volume: 8 start-page: 187 year: 2017 ident: oe-26-22-28228-R37 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00166-7 – volume: 13 start-page: 139 year: 2014 ident: oe-26-22-28228-R28 publication-title: Nat. Mater. doi: 10.1038/nmat3839 – volume: 53 start-page: 537 year: 2003 ident: oe-26-22-28228-R4 publication-title: Czech. J. Phys. doi: 10.1023/A:1024802801048 – volume: 60 start-page: 2438 year: 1999 ident: oe-26-22-28228-R9 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.60.2438 – volume: 352 start-page: 1190 year: 2016 ident: oe-26-22-28228-R30 publication-title: Science doi: 10.1126/science.aaf6644 – volume: 84 start-page: 013832 year: 2011 ident: oe-26-22-28228-R24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.013832 – volume: 26 start-page: 9798 year: 2018 ident: oe-26-22-28228-R14 publication-title: Opt. Express doi: 10.1364/OE.26.009798 – volume: 40 start-page: 2513 year: 2015 ident: oe-26-22-28228-R25 publication-title: Opt. Lett. doi: 10.1364/OL.40.002513 – volume: 5 start-page: 335 year: 2011 ident: oe-26-22-28228-R16 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.80 – volume: 98 start-page: 061111 year: 2011 ident: oe-26-22-28228-R20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3554759 – volume: 58 start-page: 1499 year: 1987 ident: oe-26-22-28228-R1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.1499 – volume: 52 start-page: 63 year: 2009 ident: oe-26-22-28228-R6 publication-title: Prog. Opt. doi: 10.1016/S0079-6638(08)00004-8 – volume: 26 start-page: 3926 year: 2018 ident: oe-26-22-28228-R5 publication-title: Opt. Express doi: 10.1364/OE.26.003926 – volume: 12 start-page: 639 year: 2016 ident: oe-26-22-28228-R12 publication-title: Nat. Phys. doi: 10.1038/nphys3803 – volume: 16 start-page: 103020 year: 2014 ident: oe-26-22-28228-R35 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/10/103020 – volume: 419 start-page: 145 year: 2002 ident: oe-26-22-28228-R17 publication-title: Nature doi: 10.1038/nature01007 – volume: 101 start-page: 093104 year: 2012 ident: oe-26-22-28228-R21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4748758 – volume: 4 start-page: 529 year: 2010 ident: oe-26-22-28228-R2 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.200910019 – volume: 352 start-page: 1091 year: 2016 ident: oe-26-22-28228-R11 publication-title: Science doi: 10.1126/science.aad4568 – volume: 21 start-page: 22221 year: 2013 ident: oe-26-22-28228-R19 publication-title: Opt. Express doi: 10.1364/OE.21.022221 – volume: 4 start-page: 139 year: 2017 ident: oe-26-22-28228-R31 publication-title: Optica doi: 10.1364/OPTICA.4.000139 – volume: 10 start-page: 309 year: 2018 ident: oe-26-22-28228-R36 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.10.000309 – volume: 9 start-page: 812 year: 2018 ident: oe-26-22-28228-R29 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03155-6 – volume: 21 start-page: 23441 year: 2013 ident: oe-26-22-28228-R26 publication-title: Opt. Express doi: 10.1364/OE.21.023441 – volume: 6 start-page: 29863 year: 2016 ident: oe-26-22-28228-R10 publication-title: Sci. Rep. doi: 10.1038/srep29863 – volume: 10 start-page: 666 year: 2018 ident: oe-26-22-28228-R15 publication-title: Nanoscale doi: 10.1039/C7NR07873K – volume: 43 start-page: 154 year: 2018 ident: oe-26-22-28228-R23 publication-title: Opt. Lett. doi: 10.1364/OL.43.000154 – volume: 368 start-page: 86 year: 2016 ident: oe-26-22-28228-R27 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2016.02.009 – volume: 26 start-page: 1351 year: 2018 ident: oe-26-22-28228-R34 publication-title: Opt. Express doi: 10.1364/OE.26.001351 |
SSID | ssj0014797 |
Score | 2.406133 |
Snippet | A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 28228 |
Title | Metasurface of deflection prism phases for generating non-diffracting optical vortex lattices |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30469998 https://www.proquest.com/docview/2137467883 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66ouyLeHe8LBH0aejYJmmSPoqMLMI6L7swClKSNGUWxtm601kWH_ztnlzaju4OqC-lpOmFnK_nlnNB6LW0higrbWK0SRMmhEngL9JJXVCuDSGO6C7a4hM_PGEf5_l8KKjgs0taPTE_rs0r-R-qwhjQ1WXJ_gNl-4fCAJwDfeEIFIbjX9H4yLbOw1cr4y3_ytZLG1p_--qG42YBMsoXXHCdkl35ZOcYAIM_cX1RfH6Ui3lugj_7wsXdXo6XqnUBcetttXXW-GrO9rLpIzZcEI-PBPiysKvFRg2DGy_O1KrppOK2X3p-Cszw9Mrw5833WAI8eiAyXw42uils4JpgI4IhGiVnZKshET7CJ-Qed0wSlBJ5LfumnMGaz6YTwifplWmw-M03T0q3nQuarRyEWB9a2F26iW4RsBwc6zv6Oe03lpgoRMx_gJe93X7VPrrT3fy7krLD8vAayPE9dDeaDvhdwMF9dMOuHqDbPoTXrB-ir1towGc1HtCAPRpwQAMGNOABDfgPNOCIBhzQgDs0PEInH6bH7w-T2DwjMbTI20QUypIitdzWIucypdRyoowSIP1SmtMaNG-aGW5oZStRWKorxlRWaC555Rj9Y7QHX2CfIpxnIi0Mg19aalYpITOqaya1JqDNqjQdoXG3WqWJleVdg5Nl6bdLOStn05LwMizzCL3pZzehosqOea-6hS-B5bl9LLWyZ5t1STLqmuRISUfoSaBI_6SOgs92XnmO9gcQv0B77fnGvgTFstUH3iFz4AHzC896e2w |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metasurface+of+deflection+prism+phases+for+generating+non-diffracting+optical+vortex+lattices&rft.jtitle=Optics+express&rft.au=Li%2C+Zhenhua&rft.au=Liu%2C+Hanping&rft.au=Zhang%2C+Xiumei&rft.au=Zhang%2C+Yuqin&rft.date=2018-10-29&rft.eissn=1094-4087&rft.volume=26&rft.issue=22&rft.spage=28228&rft_id=info:doi/10.1364%2FOE.26.028228&rft_id=info%3Apmid%2F30469998&rft.externalDocID=30469998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |