Metasurface of deflection prism phases for generating non-diffracting optical vortex lattices

A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting vortex lattices are integrated and encoded as rotation angles of nano-apertures. Under plane-wave illumination, the transmitted waves from th...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 26; no. 22; p. 28228
Main Authors Li, Zhenhua, Liu, Hanping, Zhang, Xiumei, Zhang, Yuqin, Zhang, Ruirui, Xu, Shicai, Tang, Yanke, Wang, Xiaoxin, Zhang, Junye, Ma, Li, Cheng, Chuanfu
Format Journal Article
LanguageEnglish
Published United States 29.10.2018
Online AccessGet full text

Cover

Loading…
Abstract A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting vortex lattices are integrated and encoded as rotation angles of nano-apertures. Under plane-wave illumination, the transmitted waves from the thin flat metasurface act analogously as multiple beams, each with a designed propagating direction and pre-scribed phase shift, that generate an optical lattice within their overlapping region of space. By altering the design parameters of the metasurface, lattice type and size can be controlled. Both numerical simulations and experiments were conducted, verifying the possibility of the proposed method and the non-diffracting properties of the generated vortex lattices.
AbstractList A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting vortex lattices are integrated and encoded as rotation angles of nano-apertures. Under plane-wave illumination, the transmitted waves from the thin flat metasurface act analogously as multiple beams, each with a designed propagating direction and pre-scribed phase shift, that generate an optical lattice within their overlapping region of space. By altering the design parameters of the metasurface, lattice type and size can be controlled. Both numerical simulations and experiments were conducted, verifying the possibility of the proposed method and the non-diffracting properties of the generated vortex lattices.A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting vortex lattices are integrated and encoded as rotation angles of nano-apertures. Under plane-wave illumination, the transmitted waves from the thin flat metasurface act analogously as multiple beams, each with a designed propagating direction and pre-scribed phase shift, that generate an optical lattice within their overlapping region of space. By altering the design parameters of the metasurface, lattice type and size can be controlled. Both numerical simulations and experiments were conducted, verifying the possibility of the proposed method and the non-diffracting properties of the generated vortex lattices.
A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting vortex lattices are integrated and encoded as rotation angles of nano-apertures. Under plane-wave illumination, the transmitted waves from the thin flat metasurface act analogously as multiple beams, each with a designed propagating direction and pre-scribed phase shift, that generate an optical lattice within their overlapping region of space. By altering the design parameters of the metasurface, lattice type and size can be controlled. Both numerical simulations and experiments were conducted, verifying the possibility of the proposed method and the non-diffracting properties of the generated vortex lattices.
Author Zhang, Yuqin
Cheng, Chuanfu
Zhang, Xiumei
Li, Zhenhua
Zhang, Ruirui
Xu, Shicai
Ma, Li
Liu, Hanping
Tang, Yanke
Zhang, Junye
Wang, Xiaoxin
Author_xml – sequence: 1
  givenname: Zhenhua
  surname: Li
  fullname: Li, Zhenhua
– sequence: 2
  givenname: Hanping
  surname: Liu
  fullname: Liu, Hanping
– sequence: 3
  givenname: Xiumei
  surname: Zhang
  fullname: Zhang, Xiumei
– sequence: 4
  givenname: Yuqin
  surname: Zhang
  fullname: Zhang, Yuqin
– sequence: 5
  givenname: Ruirui
  surname: Zhang
  fullname: Zhang, Ruirui
– sequence: 6
  givenname: Shicai
  surname: Xu
  fullname: Xu, Shicai
– sequence: 7
  givenname: Yanke
  surname: Tang
  fullname: Tang, Yanke
– sequence: 8
  givenname: Xiaoxin
  surname: Wang
  fullname: Wang, Xiaoxin
– sequence: 9
  givenname: Junye
  surname: Zhang
  fullname: Zhang, Junye
– sequence: 10
  givenname: Li
  surname: Ma
  fullname: Ma, Li
– sequence: 11
  givenname: Chuanfu
  surname: Cheng
  fullname: Cheng, Chuanfu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30469998$$D View this record in MEDLINE/PubMed
BookMark eNptkEtLAzEUhYNUtK3uXEuWLpyaxzSPpZT6AKUbXUpIMzd1ZDqpSSr6753aFkRc3XvgO4d7zwD12tACQmeUjCgX5dVsOmJiRJhiTB2gPiW6LEqiZO_XfowGKb0RQkup5RE65qQUWmvVRy-PkG1aR28d4OBxBb4Bl-vQ4lWs0xKvXm2ChH2IeAEtRJvrdoG7G4qq9j5a96PDKtfONvgjxAyfuLG505BO0KG3TYLT3Ryi55vp0-SueJjd3k-uHwrH9TgXUltgmoAAL8dCEc5BMOuslIIRPuaejxmnTjheQSU18HlVlpbquVCi4lTxIbrY5q5ieF9DymZZJwdNY1sI62QY5bIUUineoec7dD1fQmW6L5c2fpl9JR3AtoCLIaUI3rg6200jOdq6MZSYTe9mNjVMmG3vnenyj2mf-y_-DVXlg5M
CitedBy_id crossref_primary_10_1016_j_infrared_2023_105111
crossref_primary_10_3103_S1541308X24700055
crossref_primary_10_1016_j_cjph_2024_03_043
crossref_primary_10_1063_5_0011864
crossref_primary_10_1109_TMTT_2024_3454062
crossref_primary_10_1109_JLT_2024_3405198
crossref_primary_10_3788_COL202422_020011
crossref_primary_10_1007_s00339_024_07694_2
crossref_primary_10_1038_s41378_024_00781_7
crossref_primary_10_1016_j_infrared_2023_104775
crossref_primary_10_1364_OL_44_005049
crossref_primary_10_1088_2040_8986_ac067d
crossref_primary_10_1364_JOSAB_501052
crossref_primary_10_1016_j_optlastec_2024_111094
crossref_primary_10_1016_j_optlaseng_2024_108128
crossref_primary_10_1515_rams_2023_0161
crossref_primary_10_1016_j_optlastec_2023_110143
crossref_primary_10_1016_j_cjph_2024_08_028
crossref_primary_10_1515_nanoph_2023_0261
crossref_primary_10_1039_C9NR03381E
crossref_primary_10_1364_PRJ_506885
crossref_primary_10_1515_nanoph_2021_0567
crossref_primary_10_29026_oea_2024_240095
Cites_doi 10.1021/nl301347j
10.1088/1367-2630/14/3/033018
10.1038/s41566-017-0078-z
10.1364/AO.46.002893
10.1103/PhysRevLett.117.163001
10.1364/OL.41.002270
10.1515/nanoph-2016-0032
10.1038/s41467-017-00166-7
10.1038/nmat3839
10.1023/A:1024802801048
10.1103/PhysRevA.60.2438
10.1126/science.aaf6644
10.1103/PhysRevA.84.013832
10.1364/OE.26.009798
10.1364/OL.40.002513
10.1038/nphoton.2011.80
10.1063/1.3554759
10.1103/PhysRevLett.58.1499
10.1016/S0079-6638(08)00004-8
10.1364/OE.26.003926
10.1038/nphys3803
10.1088/1367-2630/16/10/103020
10.1038/nature01007
10.1063/1.4748758
10.1002/lpor.200910019
10.1126/science.aad4568
10.1364/OE.21.022221
10.1364/OPTICA.4.000139
10.1364/AOP.10.000309
10.1038/s41467-018-03155-6
10.1364/OE.21.023441
10.1038/srep29863
10.1039/C7NR07873K
10.1364/OL.43.000154
10.1016/j.optcom.2016.02.009
10.1364/OE.26.001351
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.26.028228
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 30469998
10_1364_OE_26_028228
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c395t-79ae290e6ef7568033e62aca77620353f35231c6c3ded79e3bd44a19b686d3183
ISSN 1094-4087
IngestDate Fri Jul 11 01:40:36 EDT 2025
Wed Feb 19 02:35:03 EST 2025
Tue Jul 01 04:04:27 EDT 2025
Thu Apr 24 22:55:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-79ae290e6ef7568033e62aca77620353f35231c6c3ded79e3bd44a19b686d3183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.26.028228
PMID 30469998
PQID 2137467883
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2137467883
pubmed_primary_30469998
crossref_citationtrail_10_1364_OE_26_028228
crossref_primary_10_1364_OE_26_028228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-29
PublicationDateYYYYMMDD 2018-10-29
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2018
References Dholakia (oe-26-22-28228-R16) 2011; 5
Durnin (oe-26-22-28228-R1) 1987; 58
Mondal (oe-26-22-28228-R5) 2018; 26
Kartashov (oe-26-22-28228-R6) 2009; 52
Ortiz-Ambriz (oe-26-22-28228-R19) 2013; 21
Wang (oe-26-22-28228-R21) 2012; 101
Yu (oe-26-22-28228-R28) 2014; 13
Wang (oe-26-22-28228-R37) 2017; 8
Li (oe-26-22-28228-R14) 2018; 26
Li (oe-26-22-28228-R27) 2016; 368
Zhang (oe-26-22-28228-R35) 2014; 16
Jang (oe-26-22-28228-R33) 2018; 12
Vuillemin (oe-26-22-28228-R10) 2016; 6
Genevet (oe-26-22-28228-R31) 2017; 4
Davis (oe-26-22-28228-R3) 2016; 41
Gao (oe-26-22-28228-R15) 2018; 10
Garcés-Chávez (oe-26-22-28228-R17) 2002; 419
Goldman (oe-26-22-28228-R12) 2016; 12
Boguslawski (oe-26-22-28228-R24) 2011; 84
Tsou (oe-26-22-28228-R26) 2013; 21
Zhu (oe-26-22-28228-R32) 2017; 6
Bouchal (oe-26-22-28228-R4) 2003; 53
Boguslawski (oe-26-22-28228-R20) 2011; 98
Arbabi (oe-26-22-28228-R29) 2018; 9
Khorasaninejad (oe-26-22-28228-R30) 2016; 352
Vyas (oe-26-22-28228-R22) 2007; 46
Fläschner (oe-26-22-28228-R11) 2016; 352
Kapoor (oe-26-22-28228-R7) 2017; 11
Keren-Zur (oe-26-22-28228-R36) 2018; 10
Zhang (oe-26-22-28228-R34) 2018; 26
Yu (oe-26-22-28228-R25) 2015; 40
Mazilu (oe-26-22-28228-R2) 2010; 4
Di Liberto (oe-26-22-28228-R13) 2016; 117
Arlt (oe-26-22-28228-R9) 1999; 60
Rose (oe-26-22-28228-R8) 2012; 14
Fuh (oe-26-22-28228-R23) 2018; 43
Toyoda (oe-26-22-28228-R18) 2012; 12
References_xml – volume: 12
  start-page: 3645
  year: 2012
  ident: oe-26-22-28228-R18
  publication-title: Nano Lett.
  doi: 10.1021/nl301347j
– volume: 14
  start-page: 033018
  year: 2012
  ident: oe-26-22-28228-R8
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/3/033018
– volume: 12
  start-page: 84
  year: 2018
  ident: oe-26-22-28228-R33
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-017-0078-z
– volume: 11
  start-page: 046024
  year: 2017
  ident: oe-26-22-28228-R7
  publication-title: J. Nanophotonics
– volume: 46
  start-page: 2893
  year: 2007
  ident: oe-26-22-28228-R22
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.002893
– volume: 117
  start-page: 163001
  year: 2016
  ident: oe-26-22-28228-R13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.163001
– volume: 41
  start-page: 2270
  year: 2016
  ident: oe-26-22-28228-R3
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002270
– volume: 6
  start-page: 452
  year: 2017
  ident: oe-26-22-28228-R32
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2016-0032
– volume: 8
  start-page: 187
  year: 2017
  ident: oe-26-22-28228-R37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00166-7
– volume: 13
  start-page: 139
  year: 2014
  ident: oe-26-22-28228-R28
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3839
– volume: 53
  start-page: 537
  year: 2003
  ident: oe-26-22-28228-R4
  publication-title: Czech. J. Phys.
  doi: 10.1023/A:1024802801048
– volume: 60
  start-page: 2438
  year: 1999
  ident: oe-26-22-28228-R9
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.60.2438
– volume: 352
  start-page: 1190
  year: 2016
  ident: oe-26-22-28228-R30
  publication-title: Science
  doi: 10.1126/science.aaf6644
– volume: 84
  start-page: 013832
  year: 2011
  ident: oe-26-22-28228-R24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.013832
– volume: 26
  start-page: 9798
  year: 2018
  ident: oe-26-22-28228-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.26.009798
– volume: 40
  start-page: 2513
  year: 2015
  ident: oe-26-22-28228-R25
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.002513
– volume: 5
  start-page: 335
  year: 2011
  ident: oe-26-22-28228-R16
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.80
– volume: 98
  start-page: 061111
  year: 2011
  ident: oe-26-22-28228-R20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3554759
– volume: 58
  start-page: 1499
  year: 1987
  ident: oe-26-22-28228-R1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.1499
– volume: 52
  start-page: 63
  year: 2009
  ident: oe-26-22-28228-R6
  publication-title: Prog. Opt.
  doi: 10.1016/S0079-6638(08)00004-8
– volume: 26
  start-page: 3926
  year: 2018
  ident: oe-26-22-28228-R5
  publication-title: Opt. Express
  doi: 10.1364/OE.26.003926
– volume: 12
  start-page: 639
  year: 2016
  ident: oe-26-22-28228-R12
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3803
– volume: 16
  start-page: 103020
  year: 2014
  ident: oe-26-22-28228-R35
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/10/103020
– volume: 419
  start-page: 145
  year: 2002
  ident: oe-26-22-28228-R17
  publication-title: Nature
  doi: 10.1038/nature01007
– volume: 101
  start-page: 093104
  year: 2012
  ident: oe-26-22-28228-R21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4748758
– volume: 4
  start-page: 529
  year: 2010
  ident: oe-26-22-28228-R2
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.200910019
– volume: 352
  start-page: 1091
  year: 2016
  ident: oe-26-22-28228-R11
  publication-title: Science
  doi: 10.1126/science.aad4568
– volume: 21
  start-page: 22221
  year: 2013
  ident: oe-26-22-28228-R19
  publication-title: Opt. Express
  doi: 10.1364/OE.21.022221
– volume: 4
  start-page: 139
  year: 2017
  ident: oe-26-22-28228-R31
  publication-title: Optica
  doi: 10.1364/OPTICA.4.000139
– volume: 10
  start-page: 309
  year: 2018
  ident: oe-26-22-28228-R36
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.10.000309
– volume: 9
  start-page: 812
  year: 2018
  ident: oe-26-22-28228-R29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03155-6
– volume: 21
  start-page: 23441
  year: 2013
  ident: oe-26-22-28228-R26
  publication-title: Opt. Express
  doi: 10.1364/OE.21.023441
– volume: 6
  start-page: 29863
  year: 2016
  ident: oe-26-22-28228-R10
  publication-title: Sci. Rep.
  doi: 10.1038/srep29863
– volume: 10
  start-page: 666
  year: 2018
  ident: oe-26-22-28228-R15
  publication-title: Nanoscale
  doi: 10.1039/C7NR07873K
– volume: 43
  start-page: 154
  year: 2018
  ident: oe-26-22-28228-R23
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.000154
– volume: 368
  start-page: 86
  year: 2016
  ident: oe-26-22-28228-R27
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2016.02.009
– volume: 26
  start-page: 1351
  year: 2018
  ident: oe-26-22-28228-R34
  publication-title: Opt. Express
  doi: 10.1364/OE.26.001351
SSID ssj0014797
Score 2.406133
Snippet A functional metasurface of both transparent medium slices and multiple deflection prisms is proposed, where phase retardations for generating non-diffracting...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 28228
Title Metasurface of deflection prism phases for generating non-diffracting optical vortex lattices
URI https://www.ncbi.nlm.nih.gov/pubmed/30469998
https://www.proquest.com/docview/2137467883
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66ouyLeHe8LBH0aejYJmmSPoqMLMI6L7swClKSNGUWxtm601kWH_ztnlzaju4OqC-lpOmFnK_nlnNB6LW0higrbWK0SRMmhEngL9JJXVCuDSGO6C7a4hM_PGEf5_l8KKjgs0taPTE_rs0r-R-qwhjQ1WXJ_gNl-4fCAJwDfeEIFIbjX9H4yLbOw1cr4y3_ytZLG1p_--qG42YBMsoXXHCdkl35ZOcYAIM_cX1RfH6Ui3lugj_7wsXdXo6XqnUBcetttXXW-GrO9rLpIzZcEI-PBPiysKvFRg2DGy_O1KrppOK2X3p-Cszw9Mrw5833WAI8eiAyXw42uils4JpgI4IhGiVnZKshET7CJ-Qed0wSlBJ5LfumnMGaz6YTwifplWmw-M03T0q3nQuarRyEWB9a2F26iW4RsBwc6zv6Oe03lpgoRMx_gJe93X7VPrrT3fy7krLD8vAayPE9dDeaDvhdwMF9dMOuHqDbPoTXrB-ir1towGc1HtCAPRpwQAMGNOABDfgPNOCIBhzQgDs0PEInH6bH7w-T2DwjMbTI20QUypIitdzWIucypdRyoowSIP1SmtMaNG-aGW5oZStRWKorxlRWaC555Rj9Y7QHX2CfIpxnIi0Mg19aalYpITOqaya1JqDNqjQdoXG3WqWJleVdg5Nl6bdLOStn05LwMizzCL3pZzehosqOea-6hS-B5bl9LLWyZ5t1STLqmuRISUfoSaBI_6SOgs92XnmO9gcQv0B77fnGvgTFstUH3iFz4AHzC896e2w
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metasurface+of+deflection+prism+phases+for+generating+non-diffracting+optical+vortex+lattices&rft.jtitle=Optics+express&rft.au=Li%2C+Zhenhua&rft.au=Liu%2C+Hanping&rft.au=Zhang%2C+Xiumei&rft.au=Zhang%2C+Yuqin&rft.date=2018-10-29&rft.eissn=1094-4087&rft.volume=26&rft.issue=22&rft.spage=28228&rft_id=info:doi/10.1364%2FOE.26.028228&rft_id=info%3Apmid%2F30469998&rft.externalDocID=30469998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon