Abscisic acid alleviates harmful effect of saline–alkaline stress on tomato seedlings
Saline–alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the role of ABA under saline–alkaline stress is poorly understood. Therefore, the mechanisms of ABA accumulation and resistance improvement in tomat...
Saved in:
Published in | Plant physiology and biochemistry Vol. 175; pp. 58 - 67 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
15.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Saline–alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the role of ABA under saline–alkaline stress is poorly understood. Therefore, the mechanisms of ABA accumulation and resistance improvement in tomato seedlings were studied under saline–alkaline stress. We investigated whether ABA accumulation improved the saline–alkaline stress resistance ability of tomato. Here, wild-type (Solanum lycopersicum cv. Ailsa Craig) and ABA-deficient mutant (notabilis) seedlings were used to determine the membrane lipid peroxidation, osmotic substance and chlorophyll contents. ABA synthesis and signal transduction changes and ABA roles regulating the antioxidation in tomato seedlings subject to saline–alkaline stress were further explored. Results showed that ABA synthesis and signal transduction were induced by saline–alkaline stress. Under saline–alkaline stress, tomato seedlings had decreased relative water content, increased relative electrical conductivity and malondialdehyde content, and these changes were alleviated by exogenous ABA treatment. Exogenous ABA alleviated the degradation of chlorophyll in the leaves of tomato seedlings caused by saline–alkaline stress, further promoted the accumulation of proline and soluble sugar, reduced the content of ROS and improved the ability of the antioxidant enzyme system. Moreover, notabilis appeared to be sensitive to saline–alkaline stress. Overall, ABA is involved in the resistance of tomato seedlings to saline–alkaline stress, and exogenous ABA improves the saline–alkaline tolerance of tomato seedlings.
•ABA synthesis and signal transduction were induced by saline-alkaline stress in tomato seedling.•Exogenous ABA alleviated harm of the saline-alkaline stress through regulating osmotic adjustment substances and chlorophyll.•ABA improved the ability of antioxidant enzyme system in short time, in ture removing excess ROS. |
---|---|
AbstractList | Saline-alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the role of ABA under saline-alkaline stress is poorly understood. Therefore, the mechanisms of ABA accumulation and resistance improvement in tomato seedlings were studied under saline-alkaline stress. We investigated whether ABA accumulation improved the saline-alkaline stress resistance ability of tomato. Here, wild-type (Solanum lycopersicum cv. Ailsa Craig) and ABA-deficient mutant (notabilis) seedlings were used to determine the membrane lipid peroxidation, osmotic substance and chlorophyll contents. ABA synthesis and signal transduction changes and ABA roles regulating the antioxidation in tomato seedlings subject to saline-alkaline stress were further explored. Results showed that ABA synthesis and signal transduction were induced by saline-alkaline stress. Under saline-alkaline stress, tomato seedlings had decreased relative water content, increased relative electrical conductivity and malondialdehyde content, and these changes were alleviated by exogenous ABA treatment. Exogenous ABA alleviated the degradation of chlorophyll in the leaves of tomato seedlings caused by saline-alkaline stress, further promoted the accumulation of proline and soluble sugar, reduced the content of ROS and improved the ability of the antioxidant enzyme system. Moreover, notabilis appeared to be sensitive to saline-alkaline stress. Overall, ABA is involved in the resistance of tomato seedlings to saline-alkaline stress, and exogenous ABA improves the saline-alkaline tolerance of tomato seedlings.Saline-alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the role of ABA under saline-alkaline stress is poorly understood. Therefore, the mechanisms of ABA accumulation and resistance improvement in tomato seedlings were studied under saline-alkaline stress. We investigated whether ABA accumulation improved the saline-alkaline stress resistance ability of tomato. Here, wild-type (Solanum lycopersicum cv. Ailsa Craig) and ABA-deficient mutant (notabilis) seedlings were used to determine the membrane lipid peroxidation, osmotic substance and chlorophyll contents. ABA synthesis and signal transduction changes and ABA roles regulating the antioxidation in tomato seedlings subject to saline-alkaline stress were further explored. Results showed that ABA synthesis and signal transduction were induced by saline-alkaline stress. Under saline-alkaline stress, tomato seedlings had decreased relative water content, increased relative electrical conductivity and malondialdehyde content, and these changes were alleviated by exogenous ABA treatment. Exogenous ABA alleviated the degradation of chlorophyll in the leaves of tomato seedlings caused by saline-alkaline stress, further promoted the accumulation of proline and soluble sugar, reduced the content of ROS and improved the ability of the antioxidant enzyme system. Moreover, notabilis appeared to be sensitive to saline-alkaline stress. Overall, ABA is involved in the resistance of tomato seedlings to saline-alkaline stress, and exogenous ABA improves the saline-alkaline tolerance of tomato seedlings. Saline-alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the role of ABA under saline-alkaline stress is poorly understood. Therefore, the mechanisms of ABA accumulation and resistance improvement in tomato seedlings were studied under saline-alkaline stress. We investigated whether ABA accumulation improved the saline-alkaline stress resistance ability of tomato. Here, wild-type (Solanum lycopersicum cv. Ailsa Craig) and ABA-deficient mutant (notabilis) seedlings were used to determine the membrane lipid peroxidation, osmotic substance and chlorophyll contents. ABA synthesis and signal transduction changes and ABA roles regulating the antioxidation in tomato seedlings subject to saline-alkaline stress were further explored. Results showed that ABA synthesis and signal transduction were induced by saline-alkaline stress. Under saline-alkaline stress, tomato seedlings had decreased relative water content, increased relative electrical conductivity and malondialdehyde content, and these changes were alleviated by exogenous ABA treatment. Exogenous ABA alleviated the degradation of chlorophyll in the leaves of tomato seedlings caused by saline-alkaline stress, further promoted the accumulation of proline and soluble sugar, reduced the content of ROS and improved the ability of the antioxidant enzyme system. Moreover, notabilis appeared to be sensitive to saline-alkaline stress. Overall, ABA is involved in the resistance of tomato seedlings to saline-alkaline stress, and exogenous ABA improves the saline-alkaline tolerance of tomato seedlings. Saline–alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the role of ABA under saline–alkaline stress is poorly understood. Therefore, the mechanisms of ABA accumulation and resistance improvement in tomato seedlings were studied under saline–alkaline stress. We investigated whether ABA accumulation improved the saline–alkaline stress resistance ability of tomato. Here, wild-type (Solanum lycopersicum cv. Ailsa Craig) and ABA-deficient mutant (notabilis) seedlings were used to determine the membrane lipid peroxidation, osmotic substance and chlorophyll contents. ABA synthesis and signal transduction changes and ABA roles regulating the antioxidation in tomato seedlings subject to saline–alkaline stress were further explored. Results showed that ABA synthesis and signal transduction were induced by saline–alkaline stress. Under saline–alkaline stress, tomato seedlings had decreased relative water content, increased relative electrical conductivity and malondialdehyde content, and these changes were alleviated by exogenous ABA treatment. Exogenous ABA alleviated the degradation of chlorophyll in the leaves of tomato seedlings caused by saline–alkaline stress, further promoted the accumulation of proline and soluble sugar, reduced the content of ROS and improved the ability of the antioxidant enzyme system. Moreover, notabilis appeared to be sensitive to saline–alkaline stress. Overall, ABA is involved in the resistance of tomato seedlings to saline–alkaline stress, and exogenous ABA improves the saline–alkaline tolerance of tomato seedlings. •ABA synthesis and signal transduction were induced by saline-alkaline stress in tomato seedling.•Exogenous ABA alleviated harm of the saline-alkaline stress through regulating osmotic adjustment substances and chlorophyll.•ABA improved the ability of antioxidant enzyme system in short time, in ture removing excess ROS. |
Author | Wang, Jiachun Sun, Tao Xu, Zijian Hu, Xiaohui Zhen, Wentian |
Author_xml | – sequence: 1 givenname: Zijian surname: Xu fullname: Xu, Zijian organization: College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China – sequence: 2 givenname: Jiachun surname: Wang fullname: Wang, Jiachun organization: College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China – sequence: 3 givenname: Wentian surname: Zhen fullname: Zhen, Wentian organization: College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China – sequence: 4 givenname: Tao surname: Sun fullname: Sun, Tao organization: College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China – sequence: 5 givenname: Xiaohui surname: Hu fullname: Hu, Xiaohui email: hxh1977@163.com organization: College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35180529$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9KHTEUh4Mo9ap9AylZdjO3-TcziYuCSGsLghuLy5DJnGhuM5Nrkiu46zv0Dfskxl7togtbOJCQfL_D4XwHaHeOMyB0TMmSEtp9WC3XwaxvH5aMMLYktJbcQQsqe96wTpFdtCBK0kYJJvfRQc4rQggTPX-D9nlLJWmZWqDr0yFbn73FxvoRmxDg3psCGd-aNLlNwOAc2IKjw9kEP8OvHz9N-P77inNJkDOOMy5xMiXiDDDWn5t8hPacCRnePp-H6NvnT1dnX5qLy_OvZ6cXjeWqLU1fx-iEc5IL4MIK5czAhp66tj451XacdQaGwYBijgg3dCMhAH3PaAuCjvwQvd_2Xad4t4Fc9OSzhRDMDHGTNet41wsupfgflCjGGGkr-u4Z3QwTjHqd_GTSg37ZWwXEFrAp5pzA_UEo0U969Epv9egnPZrQWrLGTv6KWV9M8XEuyfjwr_DHbRjqPu89JF3NwWxh9Kka0mP0rzd4BP-grrs |
CitedBy_id | crossref_primary_10_1016_j_bcab_2025_103536 crossref_primary_10_1016_j_envexpbot_2024_105818 crossref_primary_10_1016_j_scienta_2023_111977 crossref_primary_10_1111_tpj_16224 crossref_primary_10_1007_s12298_024_01444_7 crossref_primary_10_3389_fpls_2022_961872 crossref_primary_10_3390_ijms232314817 crossref_primary_10_1071_CP22322 crossref_primary_10_3390_ijms241310781 crossref_primary_10_3390_horticulturae9091010 crossref_primary_10_1016_j_jplph_2023_153916 crossref_primary_10_1016_j_plaphy_2023_107707 crossref_primary_10_3390_plants13121713 crossref_primary_10_1016_j_jece_2025_116154 crossref_primary_10_1016_j_envexpbot_2023_105445 crossref_primary_10_3390_antiox11091673 crossref_primary_10_1016_j_envexpbot_2024_106035 crossref_primary_10_1080_17429145_2024_2375508 crossref_primary_10_3389_fpls_2024_1436152 crossref_primary_10_1038_s41598_024_71404_4 crossref_primary_10_1016_j_scienta_2024_113368 crossref_primary_10_1002_ep_14014 crossref_primary_10_1007_s11104_023_06232_y crossref_primary_10_3390_ijms232416057 crossref_primary_10_1016_j_ijbiomac_2023_126717 crossref_primary_10_3390_plants12152881 crossref_primary_10_3389_fpls_2022_949541 crossref_primary_10_1016_j_scienta_2023_112254 crossref_primary_10_3390_agronomy14112524 crossref_primary_10_1016_j_plaphy_2022_09_025 crossref_primary_10_3390_agronomy12030728 crossref_primary_10_1016_j_envexpbot_2024_106081 crossref_primary_10_1016_j_stress_2025_100789 crossref_primary_10_1007_s11356_023_29360_5 crossref_primary_10_1016_j_algal_2025_103975 crossref_primary_10_1016_j_plaphy_2024_108504 crossref_primary_10_3390_ijms252413719 crossref_primary_10_1016_j_envexpbot_2023_105531 crossref_primary_10_1016_j_micres_2024_127707 |
Cites_doi | 10.1111/j.1438-8677.2009.00305.x 10.1111/j.1744-7909.2007.00607.x 10.1186/s12870-018-1254-0 10.1007/s004250050524 10.1111/j.1399-3054.1992.tb08764.x 10.1105/tpc.13.1.179 10.1104/pp.105.061275 10.1371/journal.pone.0232750 10.2134/agronj2013.0017 10.1016/S0098-8472(02)00110-7 10.1016/S1360-1385(02)02312-9 10.1104/pp.16.00375 10.1111/ppl.12250 10.1016/j.pbi.2014.10.009 10.1089/omi.2011.0091 10.1007/s11738-018-2671-2 10.1007/s11103-005-2418-5 10.1093/jxb/erj026 10.1016/j.tplants.2016.08.002 10.1016/j.bbrc.2017.11.043 10.1016/S0168-9452(98)00154-X 10.3389/fpls.2016.00187 10.1074/jbc.M405259200 10.1007/s11099-011-0037-8 10.1016/j.sajb.2010.01.004 10.1007/s10265-011-0412-3 10.1016/j.plantsci.2008.07.016 10.1104/pp.17.00502 10.1034/j.1399-3054.2001.1120202.x 10.1016/j.plaphy.2012.05.015 10.1006/meth.2001.1262 10.1016/j.pbi.2011.07.014 10.1016/j.envexpbot.2007.07.002 10.1007/s10725-011-9604-z 10.1007/s00299-013-1418-1 10.3389/fpls.2017.01613 10.1007/s12374-016-0036-1 10.1104/pp.83.4.747 10.1016/j.biotechadv.2013.09.006 10.1111/j.1438-8677.2011.00496.x 10.1093/jxb/erf090 10.1080/10715760000301071 10.1007/s10725-011-9632-8 10.1111/jipb.12119 10.1007/s11104-019-03992-4 10.1111/tpj.13299 10.1515/chem-2019-0147 10.1146/annurev.arplant.53.091401.143329 10.1046/j.1365-313X.1999.00386.x 10.1093/pcp/pcq156 10.1007/s11738-000-0008-3 10.1105/tpc.106.048538 10.1093/jxb/ert375 10.1111/j.1747-0765.2010.00506.x 10.1016/j.envexpbot.2010.09.008 10.1105/tpc.105.035659 10.1021/ac60111a017 10.1111/j.1541-4337.2004.tb00057.x 10.1016/j.envexpbot.2009.10.004 10.1016/j.plantsci.2016.01.007 10.1146/annurev.arplant.55.031903.141701 10.1093/pcp/pcp083 10.1104/pp.106.093559 10.1046/j.1365-313x.2000.00789.x 10.1016/j.febslet.2009.08.033 10.1016/j.plaphy.2005.02.006 10.1016/j.cell.2016.08.029 10.1016/j.plaphy.2015.04.006 10.1016/j.scitotenv.2020.138637 10.3389/fpls.2016.00931 10.1093/pcp/pce162 10.3390/ijerph17113770 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Masson SAS. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Masson SAS. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.plaphy.2022.01.018 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1873-2690 |
EndPage | 67 |
ExternalDocumentID | 35180529 10_1016_j_plaphy_2022_01_018 S0981942822000286 |
Genre | Journal Article |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABGSF ABJNI ABLJU ABMAC ABUDA ABYKQ ACDAQ ACGFO ACIUM ACRLP ADBBV ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSA SSU SSZ T5K TN5 UNMZH ~G- 29O 53G AAHBH AALCJ AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ OHT R2- RIG SEW SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-780564ff834e34c49fab2b71f5f83f956326aebbae92f04fb6d00ee77215e41d3 |
IEDL.DBID | .~1 |
ISSN | 0981-9428 1873-2690 |
IngestDate | Fri Jul 11 06:15:00 EDT 2025 Fri Jul 11 03:10:32 EDT 2025 Wed Feb 19 02:26:44 EST 2025 Tue Jul 01 04:25:59 EDT 2025 Thu Apr 24 22:55:14 EDT 2025 Fri Feb 23 02:40:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Saline-alkaline stress Tomato (Solanum lycopersicum) Abscisic acid (ABA) Antioxidant enzymes Reactive oxygen species (ROS) |
Language | English |
License | Copyright © 2022. Published by Elsevier Masson SAS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-780564ff834e34c49fab2b71f5f83f956326aebbae92f04fb6d00ee77215e41d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35180529 |
PQID | 2630922205 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636743884 proquest_miscellaneous_2630922205 pubmed_primary_35180529 crossref_primary_10_1016_j_plaphy_2022_01_018 crossref_citationtrail_10_1016_j_plaphy_2022_01_018 elsevier_sciencedirect_doi_10_1016_j_plaphy_2022_01_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | Plant physiology and biochemistry |
PublicationTitleAlternate | Plant Physiol Biochem |
PublicationYear | 2022 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Li, Li, Wang, Lin (bib38) 2020; 17 Liu, Hu, Zhang, Zhang, Du, Li (bib43) 2018; 18 Zhu, Deng, Zuo (bib77) 1983; 1 Li, Xu, Liao, Ma, Xu, Wang, Ren, Niu, Jin, Zhu (bib39) 2016; 59 Dinneny (bib15) 2015; 23 Lv, Li, Ma, Sun, Wei, Jiang, Liang (bib47) 2013; 105 Mittler (bib51) 2002; 7 Shi, Zhao (bib64) 1997; 6 Lopez-Carbonell, Jauregui (bib46) 2005; 43 Jiang, Zhang (bib30) 2002; 53 Mulholland, Taylor, Jackson, Thompson (bib53) 2003; 50 Livak, Schmittgen (bib45) 2001; 25 Zhu (bib76) 2016; 167 Hu, Xu, Xu, Li, Zhao, Zhou (bib25) 2015; 92 Beales (bib6) 2004; 3 Jin, Kim, Plaha, Liu, Park, Piao, Yang, Jiang, Kwak, An, Son, Jin, Sohn, Lim (bib32) 2008; 175 Agathokleous, Feng, Peñuelas (bib2) 2020; 726 Burbidge, Grieve, Jackson, Thompson, McCarty, Taylor (bib11) 1999; 17 Liang, Ma, Wan, Liu (bib40) 2018; 495 Thompson, Jackson, Symonds, Mulholland, Dadswell, Blake, Burbidge, Taylor (bib68) 2000; 23 Shi, Yin (bib63) 1993; 35 Thompson, Andrews, Mulholland, McKee, Hilton, Horridge (bib69) 2007; 143 Jiang, Zhang (bib31) 2004; 46 Sirichandra, Gu, Hu, Davanture, Lee, Djaoui, Valot, Zivy, Leung, Merlot, Kwak (bib65) 2009; 583 Irigoyen, Emerich, Sanchez-Diaz (bib28) 1992; 84 An, Song, Liu, Shu, Guo (bib3) 2016; 7 Li, Shi, Fukuda (bib35) 2010; 68 Fujita, Fujita, Shinozaki, Yamaguchi-Shinozaki (bib20) 2011; 124 Jiang, Zhang (bib29) 2001; 42 Choudhury, Rivero, Blumwald, Mittler (bib12) 2017; 90 Bellaire, Carmody, Braud, Gossett, Banks, Lucas, Fowler (bib7) 2000; 33 Huang, Shi, Hu, Liu, Amombo, Chen, Fu (bib27) 2017; 8 Dietz, Turkan, Krieger-Liszkay (bib14) 2016; 171 He, You, Sun (bib23) 2020; 15 Bueno, Piqueras, Kurepa, Savoure, Verbruggen, Van Montagu, Inze (bib10) 1998; 138 Danquah, de Zelicourt, Colcombet, Hirt (bib13) 2014; 32 Liu, Kang, Wang, Bao (bib42) 2015; 65 Xiong, Zhu (bib78) 2001; 112 Luo, Shen, Jin, Cheng, Wang, Li, Zhao, Bao, Ning (bib80) 2016; 245 Baxter, Mittler, Suzuki (bib5) 2014; 65 Turan, Tripathy (bib70) 2015; 153 Hodges, DeLong, Forney, Prange (bib24) 1999; 207 Wang, Hu, Sun, Sui, Wei, Zhang (bib72) 2012; 66 Farhoudi, Saeedipour (bib18) 2011; 12 Stewart, Voetberg (bib79) 1987; 83 Ozfidan, Turkan, Sekmen, Seckin (bib83) 2012; 14 Suzuki, Miller, Morales, Shulaev, Torres, Mittler (bib67) 2011; 14 Hu, Zhang, Shi, Zhang, Zou, Zhang, Zhao (bib26) 2012; 57 Fujii, Verslues, Zhu (bib19) 2007; 19 Mandal, Raju, Kumar, Kumar, Sharma (bib49) 2018; 36 Orozco-Cardenas, Narvaez-Vasquez, Ryan (bib58) 2001; 13 Ozfidan, Turkan, Sekmen, Seckin (bib59) 2013; 86 Popko, Hansch, Mendel, Polle, Teichmann (bib61) 2010; 12 Liu, Inoue, Moriguchi (bib41) 2008; 62 Nakashima, Fujita, Kanamori, Katagiri, Umezawa, Kidokoro, Maruyama, Yoshida, Ishiyama, Kobayashi, Shinozaki, Yamaguchi-Shinozaki (bib57) 2009; 50 El-Enany (bib17) 2000; 22 Yang, Zheng, Tian, Wu, Zhou (bib74) 2011; 49 Peng, Gao, Gao, Liu, Sheng, Wang (bib60) 2008; 50 Dubois, Gilles, Hamilton, Rebers, Smith (bib16) 1956; 28 Mittler (bib82) 2017; 22 Nakashima, Fujita, Katsura, Maruyama, Narusaka, Seki, Shinozaki, Yamaguchi-Shinozaki (bib55) 2006; 60 Sewelam, Kazan, Schenk (bib62) 2016; 7 Nakashima, Yamaguchi-Shinozaki (bib56) 2013; 32 Zhu (bib75) 2002; 53 Liu, Zhang, Jin, Wang, Yang, Ma, Jiang, Liang (bib44) 2019; 438 Apel, Hirt (bib4) 2004; 55 Mustafavi, Badi, Sękara, Mehrafarin, Rafiee (bib54) 2018; 40 Moustakas, Sperdouli, Kouna, Antonopoulou, Therios (bib52) 2011; 65 Boudsocq, Lauriere (bib8) 2005; 138 Li, Shi, Fukuda (bib36) 2010; 76 Skriver, Mundy (bib66) 1990; 2 Kong, Deng, Wang, Wang, Liang, Meng (bib33) 2014; 56 Boudsocq, Barbier-Brygoo, Laurière (bib9) 2004; 279 Ma, Sun, Lu, Liu, Hu, Hao (bib48) 2017; 174 Fujita, Fujita, Satoh, Maruyama, Parvez, Seki, Hiratsu, Ohme-Takagi, Shinozaki, YamaguchiShinozaki (bib21) 2005; 17 Guo, Hu, Zhang, Min, Hou (bib22) 2019; 17 Verslues, Bray (bib81) 2006; 57 Li, Shi, Fukuda, Yang (bib37) 2010; 56 Umezawa, Nakashima, Miyakawa, Kuromori, Tanokura, Shinozaki, Yamaguchi-Shinozaki (bib71) 2010; 51 Kulik, Wawer, Krzywińska, Bucholc, Dobrowolska (bib34) 2011; 15 Li (10.1016/j.plaphy.2022.01.018_bib37) 2010; 56 Livak (10.1016/j.plaphy.2022.01.018_bib45) 2001; 25 Xiong (10.1016/j.plaphy.2022.01.018_bib78) 2001; 112 Apel (10.1016/j.plaphy.2022.01.018_bib4) 2004; 55 Zhu (10.1016/j.plaphy.2022.01.018_bib75) 2002; 53 Choudhury (10.1016/j.plaphy.2022.01.018_bib12) 2017; 90 Popko (10.1016/j.plaphy.2022.01.018_bib61) 2010; 12 Ma (10.1016/j.plaphy.2022.01.018_bib48) 2017; 174 Kulik (10.1016/j.plaphy.2022.01.018_bib34) 2011; 15 Hodges (10.1016/j.plaphy.2022.01.018_bib24) 1999; 207 Jin (10.1016/j.plaphy.2022.01.018_bib32) 2008; 175 Liu (10.1016/j.plaphy.2022.01.018_bib43) 2018; 18 Jiang (10.1016/j.plaphy.2022.01.018_bib30) 2002; 53 An (10.1016/j.plaphy.2022.01.018_bib3) 2016; 7 Moustakas (10.1016/j.plaphy.2022.01.018_bib52) 2011; 65 Shi (10.1016/j.plaphy.2022.01.018_bib64) 1997; 6 Thompson (10.1016/j.plaphy.2022.01.018_bib69) 2007; 143 Fujita (10.1016/j.plaphy.2022.01.018_bib21) 2005; 17 El-Enany (10.1016/j.plaphy.2022.01.018_bib17) 2000; 22 Li (10.1016/j.plaphy.2022.01.018_bib36) 2010; 76 Nakashima (10.1016/j.plaphy.2022.01.018_bib57) 2009; 50 Li (10.1016/j.plaphy.2022.01.018_bib35) 2010; 68 Liu (10.1016/j.plaphy.2022.01.018_bib41) 2008; 62 Hu (10.1016/j.plaphy.2022.01.018_bib26) 2012; 57 Zhu (10.1016/j.plaphy.2022.01.018_bib77) 1983; 1 Orozco-Cardenas (10.1016/j.plaphy.2022.01.018_bib58) 2001; 13 Hu (10.1016/j.plaphy.2022.01.018_bib25) 2015; 92 Thompson (10.1016/j.plaphy.2022.01.018_bib68) 2000; 23 Li (10.1016/j.plaphy.2022.01.018_bib38) 2020; 17 Liu (10.1016/j.plaphy.2022.01.018_bib44) 2019; 438 Lv (10.1016/j.plaphy.2022.01.018_bib47) 2013; 105 Mittler (10.1016/j.plaphy.2022.01.018_bib82) 2017; 22 Verslues (10.1016/j.plaphy.2022.01.018_bib81) 2006; 57 Dinneny (10.1016/j.plaphy.2022.01.018_bib15) 2015; 23 Dietz (10.1016/j.plaphy.2022.01.018_bib14) 2016; 171 Sewelam (10.1016/j.plaphy.2022.01.018_bib62) 2016; 7 Burbidge (10.1016/j.plaphy.2022.01.018_bib11) 1999; 17 Sirichandra (10.1016/j.plaphy.2022.01.018_bib65) 2009; 583 Fujii (10.1016/j.plaphy.2022.01.018_bib19) 2007; 19 Mustafavi (10.1016/j.plaphy.2022.01.018_bib54) 2018; 40 Beales (10.1016/j.plaphy.2022.01.018_bib6) 2004; 3 Irigoyen (10.1016/j.plaphy.2022.01.018_bib28) 1992; 84 Umezawa (10.1016/j.plaphy.2022.01.018_bib71) 2010; 51 Danquah (10.1016/j.plaphy.2022.01.018_bib13) 2014; 32 Jiang (10.1016/j.plaphy.2022.01.018_bib31) 2004; 46 Wang (10.1016/j.plaphy.2022.01.018_bib72) 2012; 66 Boudsocq (10.1016/j.plaphy.2022.01.018_bib8) 2005; 138 Liu (10.1016/j.plaphy.2022.01.018_bib42) 2015; 65 Fujita (10.1016/j.plaphy.2022.01.018_bib20) 2011; 124 Luo (10.1016/j.plaphy.2022.01.018_bib80) 2016; 245 Yang (10.1016/j.plaphy.2022.01.018_bib74) 2011; 49 Boudsocq (10.1016/j.plaphy.2022.01.018_bib9) 2004; 279 Suzuki (10.1016/j.plaphy.2022.01.018_bib67) 2011; 14 Mittler (10.1016/j.plaphy.2022.01.018_bib51) 2002; 7 Kong (10.1016/j.plaphy.2022.01.018_bib33) 2014; 56 Skriver (10.1016/j.plaphy.2022.01.018_bib66) 1990; 2 Stewart (10.1016/j.plaphy.2022.01.018_bib79) 1987; 83 Agathokleous (10.1016/j.plaphy.2022.01.018_bib2) 2020; 726 Guo (10.1016/j.plaphy.2022.01.018_bib22) 2019; 17 Turan (10.1016/j.plaphy.2022.01.018_bib70) 2015; 153 Baxter (10.1016/j.plaphy.2022.01.018_bib5) 2014; 65 Liang (10.1016/j.plaphy.2022.01.018_bib40) 2018; 495 Peng (10.1016/j.plaphy.2022.01.018_bib60) 2008; 50 He (10.1016/j.plaphy.2022.01.018_bib23) 2020; 15 Shi (10.1016/j.plaphy.2022.01.018_bib63) 1993; 35 Dubois (10.1016/j.plaphy.2022.01.018_bib16) 1956; 28 Ozfidan (10.1016/j.plaphy.2022.01.018_bib83) 2012; 14 Farhoudi (10.1016/j.plaphy.2022.01.018_bib18) 2011; 12 Mandal (10.1016/j.plaphy.2022.01.018_bib49) 2018; 36 Nakashima (10.1016/j.plaphy.2022.01.018_bib56) 2013; 32 Zhu (10.1016/j.plaphy.2022.01.018_bib76) 2016; 167 Li (10.1016/j.plaphy.2022.01.018_bib39) 2016; 59 Bueno (10.1016/j.plaphy.2022.01.018_bib10) 1998; 138 Lopez-Carbonell (10.1016/j.plaphy.2022.01.018_bib46) 2005; 43 Nakashima (10.1016/j.plaphy.2022.01.018_bib55) 2006; 60 Bellaire (10.1016/j.plaphy.2022.01.018_bib7) 2000; 33 Mulholland (10.1016/j.plaphy.2022.01.018_bib53) 2003; 50 Ozfidan (10.1016/j.plaphy.2022.01.018_bib59) 2013; 86 Jiang (10.1016/j.plaphy.2022.01.018_bib29) 2001; 42 Huang (10.1016/j.plaphy.2022.01.018_bib27) 2017; 8 |
References_xml | – volume: 50 start-page: 1345 year: 2009 end-page: 1363 ident: bib57 article-title: Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy publication-title: Plant Cell Physiol. – volume: 171 start-page: 1541 year: 2016 end-page: 1550 ident: bib14 article-title: Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast publication-title: Plant Physiol. – volume: 18 start-page: 34 year: 2018 ident: bib43 article-title: H publication-title: BMC Plant Biol. – volume: 8 start-page: 1613 year: 2017 ident: bib27 article-title: ABA is involved in regulation of cold stress response in Bermudagrass publication-title: Front. Plant Sci. – volume: 495 start-page: 286 year: 2018 end-page: 291 ident: bib40 article-title: Plant salt-tolerance mechanism: a review publication-title: Biochem. Biophys. Res. Commun. – volume: 7 start-page: 405 year: 2002 end-page: 410 ident: bib51 article-title: Oxidative stress, antioxidants and stress tolerance publication-title: Trends Plant Sci. – volume: 174 start-page: 2348 year: 2017 end-page: 2362 ident: bib48 article-title: Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes publication-title: Plant Physiol. – volume: 66 start-page: 87 year: 2012 end-page: 93 ident: bib72 article-title: Effects of exogenous abscisic acid on leaf carbohydrate metabolism during cucumber seedling dehydration publication-title: Plant Growth Regul. – volume: 53 start-page: 2401 year: 2002 end-page: 2410 ident: bib30 article-title: Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves publication-title: J. Exp. Bot. – volume: 36 start-page: 40 year: 2018 end-page: 53 ident: bib49 article-title: Current status of research, technology response and policy needs of salt-affected soils in India -A review publication-title: J. Indian Soc. Coastal Agric. Res. – volume: 62 start-page: 28 year: 2008 end-page: 35 ident: bib41 article-title: Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots publication-title: Environ. Exp. Bot. – volume: 68 start-page: 66 year: 2010 end-page: 74 ident: bib35 article-title: Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte publication-title: Environ. Exp. Bot. – volume: 84 start-page: 55 year: 1992 end-page: 60 ident: bib28 article-title: Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa ( publication-title: Physiol. Plantarum – volume: 22 start-page: 53 year: 2000 end-page: 59 ident: bib17 article-title: Abscisic acid-responsive proteins induce salinity tolerance in wheat seedlings publication-title: Acta Physiol. Plant. – volume: 15 year: 2020 ident: bib23 article-title: Lanthanum and abscisic acid coregulate chlorophyll production of seedling in switchgrass publication-title: PLoS One – volume: 90 start-page: 856 year: 2017 end-page: 867 ident: bib12 article-title: Reactive oxygen species, abiotic stress and stress combination publication-title: Plant J. – volume: 14 start-page: 691 year: 2011 end-page: 699 ident: bib67 article-title: Respiratory burst oxidases: the engines of ROS signaling publication-title: Curr. Opin. Plant Biol. – volume: 65 start-page: 1229 year: 2014 end-page: 1240 ident: bib5 article-title: ROS as key players in plant stress signalling publication-title: J. Exp. Bot. – volume: 49 start-page: 275 year: 2011 end-page: 284 ident: bib74 article-title: Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of publication-title: Photosynthetica – volume: 6 start-page: 51 year: 1997 end-page: 61 ident: bib64 article-title: Effects of NaCl and Na publication-title: J. Integr. Plant Biol. – volume: 726 start-page: 138637 year: 2020 ident: bib2 article-title: Chlorophyll hormesis: are chlorophylls major components of stress biology in higher plants? publication-title: Sci. Total Environ. – volume: 17 start-page: 3470 year: 2005 end-page: 3488 ident: bib21 article-title: AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in publication-title: Plant Cell – volume: 43 start-page: 407 year: 2005 end-page: 411 ident: bib46 article-title: A rapid method for analysis of abscisic acid (ABA) in crude extracts of water stressed Arabidopsis thaliana plants by liquid chromatography-mass spectrometry in tandem mode publication-title: Plant Physiol. Biochem. – volume: 175 start-page: 784 year: 2008 end-page: 792 ident: bib32 article-title: Expression profiling of the genes induced by Na publication-title: Plant Sci. – volume: 76 start-page: 380 year: 2010 end-page: 387 ident: bib36 article-title: Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte publication-title: South Afr. J. Bot. – volume: 12 start-page: 122 year: 2011 end-page: 130 ident: bib18 article-title: Effect of exogenous abscisic acid on antioxidant activity and salt tolerance in rapeseed ( publication-title: Res. Crop. – volume: 7 start-page: 187 year: 2016 ident: bib62 article-title: Global plant stress signaling: reactive oxygen species at the cross-road publication-title: Front. Plant Sci. – volume: 46 start-page: 1 year: 2004 end-page: 9 ident: bib31 article-title: Abscisic acid and antioxidant defense in plant cells publication-title: Acta Bot. Sin. – volume: 33 start-page: 531 year: 2000 end-page: 545 ident: bib7 article-title: Involvement of abscisic acid-dependent and -independent pathways in the up-regulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue publication-title: Free Radic. Res. – volume: 17 start-page: 3770 year: 2020 ident: bib38 article-title: Exogenous abscisic acid alleviates harmful effect of salt and alkali stresses on wheat seedlings publication-title: Int. J. Environ. Res. Publ. Health – volume: 17 start-page: 1352 year: 2019 end-page: 1360 ident: bib22 article-title: Comparative effects of salt and alkali stress on antioxidant system in cotton ( publication-title: Open Chem – volume: 53 start-page: 247 year: 2002 end-page: 273 ident: bib75 article-title: Salt and drought stress signal transduction in plants publication-title: Annu. Rev. Plant Biol. – volume: 105 start-page: 1119 year: 2013 end-page: 1128 ident: bib47 article-title: Differences in growth and physiology of Rice in response to different saline-alkaline stress factors publication-title: Agron. J. – volume: 32 start-page: 40 year: 2014 end-page: 52 ident: bib13 article-title: The role of ABA and MAPK signaling pathways in plant abiotic stress responses publication-title: Biotechnol. Adv. – volume: 57 start-page: 201 year: 2006 end-page: 212 ident: bib81 article-title: Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation publication-title: J Exp Bot. – volume: 65 start-page: 315 year: 2011 end-page: 325 ident: bib52 article-title: Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of publication-title: Plant Growth Regul. – volume: 583 start-page: 2982 year: 2009 end-page: 2986 ident: bib65 article-title: Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase publication-title: FEBS Lett. – volume: 50 start-page: 17 year: 2003 end-page: 28 ident: bib53 article-title: Can ABA mediate responses of salinity stressed tomato publication-title: Environ. Exp. Bot. – volume: 13 start-page: 179 year: 2001 end-page: 191 ident: bib58 article-title: Hydrogen peroxide acts as a second messenger for induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate publication-title: Plant Cell – volume: 3 start-page: 1 year: 2004 end-page: 20 ident: bib6 article-title: Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review publication-title: Compr. Rev. Food Sci. F. – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bib45 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 publication-title: Methods – volume: 17 start-page: 427 year: 1999 end-page: 431 ident: bib11 article-title: Characterization of the ABA-deficient tomato mutant publication-title: Plant J. – volume: 279 start-page: 41758 year: 2004 end-page: 41766 ident: bib9 article-title: Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in publication-title: J. Biol. Chem. – volume: 2 start-page: 503 year: 1990 end-page: 512 ident: bib66 article-title: Gene expression in response to abscisic acid and osmotic stress publication-title: Plant Cell – volume: 28 start-page: 350 year: 1956 end-page: 356 ident: bib16 article-title: Colorimetric method for determination of sugars and related substances publication-title: Anal. Chem. – volume: 112 start-page: 152 year: 2001 end-page: 166 ident: bib78 article-title: Abiotic stress signal transduction in plants: Molecular and genetic perspectives publication-title: Physiol. Plant. – volume: 57 start-page: 200 year: 2012 end-page: 209 ident: bib26 article-title: Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress publication-title: Plant Physiol. Biochem. – volume: 153 start-page: 477 year: 2015 end-page: 491 ident: bib70 article-title: Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings publication-title: Physiol. Plant. – volume: 207 start-page: 604 year: 1999 end-page: 611 ident: bib24 article-title: Improving the thiobarbituric acid-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other inerfering compounds publication-title: Planta – volume: 56 start-page: 63 year: 2014 end-page: 74 ident: bib33 article-title: LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes publication-title: J. Integr. Plant Biol. – volume: 1 start-page: 35 year: 1983 end-page: 37 ident: bib77 article-title: Determination of free proline in plants publication-title: Plant Physiol. Commun. – volume: 7 start-page: 931 year: 2016 ident: bib3 article-title: transcriptional analysis of alfalfa in response to saline-alkaline stress publication-title: Front. Plant Sci. – volume: 138 start-page: 1185 year: 2005 end-page: 1194 ident: bib8 article-title: Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families publication-title: Plant Physiol. – volume: 42 start-page: 1265 year: 2001 end-page: 1273 ident: bib29 article-title: Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings publication-title: Plant Cell Physiol. – volume: 12 start-page: 242 year: 2010 end-page: 258 ident: bib61 article-title: The role of abscisic acid and auxin in the response of poplar to abiotic stress publication-title: Plant Biol. – volume: 60 start-page: 51 year: 2006 end-page: 68 ident: bib55 article-title: Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of publication-title: Plant Mol. Biol. – volume: 56 start-page: 725 year: 2010 end-page: 733 ident: bib37 article-title: Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa ( publication-title: Soil Sci. Plant Nutr. – volume: 22 start-page: 11 year: 2017 end-page: 19 ident: bib82 article-title: ROS are Good publication-title: Trends Plant Sci. – volume: 32 start-page: 959 year: 2013 end-page: 970 ident: bib56 article-title: ABA signaling in stress-response and seed development publication-title: Plant Cell Rep. – volume: 65 start-page: 723 year: 2015 end-page: 734 ident: bib42 article-title: Tolerance mechanisms of publication-title: Acta Agr. Sci. And B-S P. – volume: 59 start-page: 536 year: 2016 end-page: 548 ident: bib39 article-title: Hydrogen peroxide is involved in abscisic acid-induced adventitious rooting in cucumber ( publication-title: J. Plant Biol. – volume: 83 start-page: 747 year: 1987 end-page: 749 ident: bib79 article-title: Abscisic acid accumulation is not required for proline accumulation in wilted leaves publication-title: Plant Physiol. – volume: 86 start-page: 44 year: 2013 end-page: 51 ident: bib59 article-title: Time course analysis of ABA and non-ionic osmotic stress-induced changes in water status, chlorophyll fluorescence and osmotic adjustment in publication-title: Environ. Exp. Bot. – volume: 143 start-page: 1905 year: 2007 end-page: 1917 ident: bib69 article-title: Overproduction of abscisic acid in tomato increase transpiration efficiency and root hydraulic conductivity and influences leaf expansion publication-title: Plant Physiol. – volume: 23 start-page: 70 year: 2015 end-page: 75 ident: bib15 article-title: Traversing organizational scales in plant salt-stress responses publication-title: Curr. Opin. Plant Biol. – volume: 167 start-page: 313 year: 2016 end-page: 324 ident: bib76 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 15 start-page: 859 year: 2011 end-page: 872 ident: bib34 article-title: SnRK2 protein kinases--key regulators of plant response to abiotic stresses publication-title: Omics – volume: 92 start-page: 1 year: 2015 end-page: 10 ident: bib25 article-title: Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO publication-title: Plant Physiol. Biochem. – volume: 40 start-page: 102 year: 2018 ident: bib54 article-title: Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites publication-title: Acta Physiol. Plant. – volume: 55 start-page: 373 year: 2004 end-page: 399 ident: bib4 article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. – volume: 245 start-page: 35 year: 2016 end-page: 49 ident: bib80 article-title: Overexpression of publication-title: Plant Sci. – volume: 35 start-page: 144 year: 1993 end-page: 149 ident: bib63 article-title: Difference between salt (NaCl) and alkaline (Na publication-title: J. Integr. Plant Biol. – volume: 23 start-page: 363 year: 2000 end-page: 374 ident: bib68 article-title: Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid publication-title: Plant J. – volume: 138 start-page: 27 year: 1998 end-page: 34 ident: bib10 article-title: Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures publication-title: Plant Sci. – volume: 438 start-page: 39 year: 2019 end-page: 55 ident: bib44 article-title: Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes publication-title: Plant Soil – volume: 50 start-page: 29 year: 2008 end-page: 39 ident: bib60 article-title: Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses publication-title: J. Integr. Plant Biol. – volume: 51 start-page: 1821 year: 2010 end-page: 1839 ident: bib71 article-title: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport publication-title: Plant Cell Physiol. – volume: 19 start-page: 485 year: 2007 end-page: 494 ident: bib19 article-title: Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in publication-title: Plant Cell – volume: 124 start-page: 507 year: 2011 end-page: 525 ident: bib20 article-title: ABA-mediated transcriptional regulation in response to osmotic stress in plants publication-title: J. Plant Res. – volume: 14 start-page: 337 year: 2012 end-page: 346 ident: bib83 article-title: Abscisic acid-regulated responses of publication-title: Plant Biol (Stuttg). – volume: 12 start-page: 242 year: 2010 ident: 10.1016/j.plaphy.2022.01.018_bib61 article-title: The role of abscisic acid and auxin in the response of poplar to abiotic stress publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2009.00305.x – volume: 50 start-page: 29 year: 2008 ident: 10.1016/j.plaphy.2022.01.018_bib60 article-title: Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2007.00607.x – volume: 18 start-page: 34 year: 2018 ident: 10.1016/j.plaphy.2022.01.018_bib43 article-title: H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures publication-title: BMC Plant Biol. doi: 10.1186/s12870-018-1254-0 – volume: 207 start-page: 604 year: 1999 ident: 10.1016/j.plaphy.2022.01.018_bib24 article-title: Improving the thiobarbituric acid-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other inerfering compounds publication-title: Planta doi: 10.1007/s004250050524 – volume: 84 start-page: 55 year: 1992 ident: 10.1016/j.plaphy.2022.01.018_bib28 article-title: Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants publication-title: Physiol. Plantarum doi: 10.1111/j.1399-3054.1992.tb08764.x – volume: 13 start-page: 179 year: 2001 ident: 10.1016/j.plaphy.2022.01.018_bib58 article-title: Hydrogen peroxide acts as a second messenger for induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate publication-title: Plant Cell doi: 10.1105/tpc.13.1.179 – volume: 138 start-page: 1185 year: 2005 ident: 10.1016/j.plaphy.2022.01.018_bib8 article-title: Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families publication-title: Plant Physiol. doi: 10.1104/pp.105.061275 – volume: 15 year: 2020 ident: 10.1016/j.plaphy.2022.01.018_bib23 article-title: Lanthanum and abscisic acid coregulate chlorophyll production of seedling in switchgrass publication-title: PLoS One doi: 10.1371/journal.pone.0232750 – volume: 105 start-page: 1119 year: 2013 ident: 10.1016/j.plaphy.2022.01.018_bib47 article-title: Differences in growth and physiology of Rice in response to different saline-alkaline stress factors publication-title: Agron. J. doi: 10.2134/agronj2013.0017 – volume: 50 start-page: 17 year: 2003 ident: 10.1016/j.plaphy.2022.01.018_bib53 article-title: Can ABA mediate responses of salinity stressed tomato publication-title: Environ. Exp. Bot. doi: 10.1016/S0098-8472(02)00110-7 – volume: 7 start-page: 405 year: 2002 ident: 10.1016/j.plaphy.2022.01.018_bib51 article-title: Oxidative stress, antioxidants and stress tolerance publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)02312-9 – volume: 171 start-page: 1541 year: 2016 ident: 10.1016/j.plaphy.2022.01.018_bib14 article-title: Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast publication-title: Plant Physiol. doi: 10.1104/pp.16.00375 – volume: 153 start-page: 477 year: 2015 ident: 10.1016/j.plaphy.2022.01.018_bib70 article-title: Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings publication-title: Physiol. Plant. doi: 10.1111/ppl.12250 – volume: 23 start-page: 70 year: 2015 ident: 10.1016/j.plaphy.2022.01.018_bib15 article-title: Traversing organizational scales in plant salt-stress responses publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2014.10.009 – volume: 15 start-page: 859 year: 2011 ident: 10.1016/j.plaphy.2022.01.018_bib34 article-title: SnRK2 protein kinases--key regulators of plant response to abiotic stresses publication-title: Omics doi: 10.1089/omi.2011.0091 – volume: 40 start-page: 102 year: 2018 ident: 10.1016/j.plaphy.2022.01.018_bib54 article-title: Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-018-2671-2 – volume: 60 start-page: 51 year: 2006 ident: 10.1016/j.plaphy.2022.01.018_bib55 article-title: Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis publication-title: Plant Mol. Biol. doi: 10.1007/s11103-005-2418-5 – volume: 57 start-page: 201 year: 2006 ident: 10.1016/j.plaphy.2022.01.018_bib81 article-title: Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation publication-title: J Exp Bot. doi: 10.1093/jxb/erj026 – volume: 22 start-page: 11 year: 2017 ident: 10.1016/j.plaphy.2022.01.018_bib82 article-title: ROS are Good publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 6 start-page: 51 year: 1997 ident: 10.1016/j.plaphy.2022.01.018_bib64 article-title: Effects of NaCl and Na2CO3 on growth of Puccinellia tenuiflora and on present state of mineral elements in nutrient solution publication-title: J. Integr. Plant Biol. – volume: 495 start-page: 286 year: 2018 ident: 10.1016/j.plaphy.2022.01.018_bib40 article-title: Plant salt-tolerance mechanism: a review publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.11.043 – volume: 65 start-page: 723 year: 2015 ident: 10.1016/j.plaphy.2022.01.018_bib42 article-title: Tolerance mechanisms of Leymus chinensis to salt-alkaline stress publication-title: Acta Agr. Sci. And B-S P. – volume: 138 start-page: 27 year: 1998 ident: 10.1016/j.plaphy.2022.01.018_bib10 article-title: Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures publication-title: Plant Sci. doi: 10.1016/S0168-9452(98)00154-X – volume: 7 start-page: 187 year: 2016 ident: 10.1016/j.plaphy.2022.01.018_bib62 article-title: Global plant stress signaling: reactive oxygen species at the cross-road publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00187 – volume: 279 start-page: 41758 year: 2004 ident: 10.1016/j.plaphy.2022.01.018_bib9 article-title: Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana publication-title: J. Biol. Chem. doi: 10.1074/jbc.M405259200 – volume: 49 start-page: 275 year: 2011 ident: 10.1016/j.plaphy.2022.01.018_bib74 article-title: Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings publication-title: Photosynthetica doi: 10.1007/s11099-011-0037-8 – volume: 76 start-page: 380 year: 2010 ident: 10.1016/j.plaphy.2022.01.018_bib36 article-title: Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora (Poaceae) publication-title: South Afr. J. Bot. doi: 10.1016/j.sajb.2010.01.004 – volume: 124 start-page: 507 year: 2011 ident: 10.1016/j.plaphy.2022.01.018_bib20 article-title: ABA-mediated transcriptional regulation in response to osmotic stress in plants publication-title: J. Plant Res. doi: 10.1007/s10265-011-0412-3 – volume: 175 start-page: 784 year: 2008 ident: 10.1016/j.plaphy.2022.01.018_bib32 article-title: Expression profiling of the genes induced by Na2CO3 and NaCl stresses in leaves and roots of Leymus chinensis publication-title: Plant Sci. doi: 10.1016/j.plantsci.2008.07.016 – volume: 174 start-page: 2348 year: 2017 ident: 10.1016/j.plaphy.2022.01.018_bib48 article-title: Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes publication-title: Plant Physiol. doi: 10.1104/pp.17.00502 – volume: 112 start-page: 152 year: 2001 ident: 10.1016/j.plaphy.2022.01.018_bib78 article-title: Abiotic stress signal transduction in plants: Molecular and genetic perspectives publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.2001.1120202.x – volume: 57 start-page: 200 year: 2012 ident: 10.1016/j.plaphy.2022.01.018_bib26 article-title: Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.05.015 – volume: 25 start-page: 402 year: 2001 ident: 10.1016/j.plaphy.2022.01.018_bib45 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 14 start-page: 691 year: 2011 ident: 10.1016/j.plaphy.2022.01.018_bib67 article-title: Respiratory burst oxidases: the engines of ROS signaling publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2011.07.014 – volume: 62 start-page: 28 year: 2008 ident: 10.1016/j.plaphy.2022.01.018_bib41 article-title: Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2007.07.002 – volume: 65 start-page: 315 year: 2011 ident: 10.1016/j.plaphy.2022.01.018_bib52 article-title: Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves publication-title: Plant Growth Regul. doi: 10.1007/s10725-011-9604-z – volume: 32 start-page: 959 year: 2013 ident: 10.1016/j.plaphy.2022.01.018_bib56 article-title: ABA signaling in stress-response and seed development publication-title: Plant Cell Rep. doi: 10.1007/s00299-013-1418-1 – volume: 8 start-page: 1613 year: 2017 ident: 10.1016/j.plaphy.2022.01.018_bib27 article-title: ABA is involved in regulation of cold stress response in Bermudagrass publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01613 – volume: 59 start-page: 536 year: 2016 ident: 10.1016/j.plaphy.2022.01.018_bib39 article-title: Hydrogen peroxide is involved in abscisic acid-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress publication-title: J. Plant Biol. doi: 10.1007/s12374-016-0036-1 – volume: 83 start-page: 747 year: 1987 ident: 10.1016/j.plaphy.2022.01.018_bib79 article-title: Abscisic acid accumulation is not required for proline accumulation in wilted leaves publication-title: Plant Physiol. doi: 10.1104/pp.83.4.747 – volume: 32 start-page: 40 year: 2014 ident: 10.1016/j.plaphy.2022.01.018_bib13 article-title: The role of ABA and MAPK signaling pathways in plant abiotic stress responses publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.09.006 – volume: 14 start-page: 337 year: 2012 ident: 10.1016/j.plaphy.2022.01.018_bib83 article-title: Abscisic acid-regulated responses of aba2-1 under osmotic stress: the abscisic acid-inducible antioxidant defence system and reactive oxygen species production publication-title: Plant Biol (Stuttg). doi: 10.1111/j.1438-8677.2011.00496.x – volume: 53 start-page: 2401 year: 2002 ident: 10.1016/j.plaphy.2022.01.018_bib30 article-title: Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves publication-title: J. Exp. Bot. doi: 10.1093/jxb/erf090 – volume: 33 start-page: 531 year: 2000 ident: 10.1016/j.plaphy.2022.01.018_bib7 article-title: Involvement of abscisic acid-dependent and -independent pathways in the up-regulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue publication-title: Free Radic. Res. doi: 10.1080/10715760000301071 – volume: 66 start-page: 87 year: 2012 ident: 10.1016/j.plaphy.2022.01.018_bib72 article-title: Effects of exogenous abscisic acid on leaf carbohydrate metabolism during cucumber seedling dehydration publication-title: Plant Growth Regul. doi: 10.1007/s10725-011-9632-8 – volume: 12 start-page: 122 year: 2011 ident: 10.1016/j.plaphy.2022.01.018_bib18 article-title: Effect of exogenous abscisic acid on antioxidant activity and salt tolerance in rapeseed (Brassica napus) cultivars publication-title: Res. Crop. – volume: 56 start-page: 63 year: 2014 ident: 10.1016/j.plaphy.2022.01.018_bib33 article-title: LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12119 – volume: 1 start-page: 35 year: 1983 ident: 10.1016/j.plaphy.2022.01.018_bib77 article-title: Determination of free proline in plants publication-title: Plant Physiol. Commun. – volume: 438 start-page: 39 year: 2019 ident: 10.1016/j.plaphy.2022.01.018_bib44 article-title: Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes publication-title: Plant Soil doi: 10.1007/s11104-019-03992-4 – volume: 90 start-page: 856 year: 2017 ident: 10.1016/j.plaphy.2022.01.018_bib12 article-title: Reactive oxygen species, abiotic stress and stress combination publication-title: Plant J. doi: 10.1111/tpj.13299 – volume: 2 start-page: 503 year: 1990 ident: 10.1016/j.plaphy.2022.01.018_bib66 article-title: Gene expression in response to abscisic acid and osmotic stress publication-title: Plant Cell – volume: 17 start-page: 1352 year: 2019 ident: 10.1016/j.plaphy.2022.01.018_bib22 article-title: Comparative effects of salt and alkali stress on antioxidant system in cotton (Gossypium Hirsutum L.) leaves publication-title: Open Chem doi: 10.1515/chem-2019-0147 – volume: 53 start-page: 247 year: 2002 ident: 10.1016/j.plaphy.2022.01.018_bib75 article-title: Salt and drought stress signal transduction in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.53.091401.143329 – volume: 17 start-page: 427 year: 1999 ident: 10.1016/j.plaphy.2022.01.018_bib11 article-title: Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14 publication-title: Plant J. doi: 10.1046/j.1365-313X.1999.00386.x – volume: 51 start-page: 1821 year: 2010 ident: 10.1016/j.plaphy.2022.01.018_bib71 article-title: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq156 – volume: 22 start-page: 53 year: 2000 ident: 10.1016/j.plaphy.2022.01.018_bib17 article-title: Abscisic acid-responsive proteins induce salinity tolerance in wheat seedlings publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-000-0008-3 – volume: 19 start-page: 485 year: 2007 ident: 10.1016/j.plaphy.2022.01.018_bib19 article-title: Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.106.048538 – volume: 65 start-page: 1229 year: 2014 ident: 10.1016/j.plaphy.2022.01.018_bib5 article-title: ROS as key players in plant stress signalling publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert375 – volume: 46 start-page: 1 year: 2004 ident: 10.1016/j.plaphy.2022.01.018_bib31 article-title: Abscisic acid and antioxidant defense in plant cells publication-title: Acta Bot. Sin. – volume: 56 start-page: 725 year: 2010 ident: 10.1016/j.plaphy.2022.01.018_bib37 article-title: Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (medicago sativa L.) publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2010.00506.x – volume: 86 start-page: 44 year: 2013 ident: 10.1016/j.plaphy.2022.01.018_bib59 article-title: Time course analysis of ABA and non-ionic osmotic stress-induced changes in water status, chlorophyll fluorescence and osmotic adjustment in Arabidopsis thaliana wild-type (Columbia) and ABA-deficient mutant (aba2) publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2010.09.008 – volume: 17 start-page: 3470 year: 2005 ident: 10.1016/j.plaphy.2022.01.018_bib21 article-title: AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.105.035659 – volume: 28 start-page: 350 year: 1956 ident: 10.1016/j.plaphy.2022.01.018_bib16 article-title: Colorimetric method for determination of sugars and related substances publication-title: Anal. Chem. doi: 10.1021/ac60111a017 – volume: 3 start-page: 1 year: 2004 ident: 10.1016/j.plaphy.2022.01.018_bib6 article-title: Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review publication-title: Compr. Rev. Food Sci. F. doi: 10.1111/j.1541-4337.2004.tb00057.x – volume: 68 start-page: 66 year: 2010 ident: 10.1016/j.plaphy.2022.01.018_bib35 article-title: Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae) publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2009.10.004 – volume: 245 start-page: 35 year: 2016 ident: 10.1016/j.plaphy.2022.01.018_bib80 article-title: Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.01.007 – volume: 55 start-page: 373 year: 2004 ident: 10.1016/j.plaphy.2022.01.018_bib4 article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141701 – volume: 50 start-page: 1345 year: 2009 ident: 10.1016/j.plaphy.2022.01.018_bib57 article-title: Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcp083 – volume: 143 start-page: 1905 year: 2007 ident: 10.1016/j.plaphy.2022.01.018_bib69 article-title: Overproduction of abscisic acid in tomato increase transpiration efficiency and root hydraulic conductivity and influences leaf expansion publication-title: Plant Physiol. doi: 10.1104/pp.106.093559 – volume: 36 start-page: 40 year: 2018 ident: 10.1016/j.plaphy.2022.01.018_bib49 article-title: Current status of research, technology response and policy needs of salt-affected soils in India -A review publication-title: J. Indian Soc. Coastal Agric. Res. – volume: 23 start-page: 363 year: 2000 ident: 10.1016/j.plaphy.2022.01.018_bib68 article-title: Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00789.x – volume: 583 start-page: 2982 year: 2009 ident: 10.1016/j.plaphy.2022.01.018_bib65 article-title: Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.08.033 – volume: 43 start-page: 407 year: 2005 ident: 10.1016/j.plaphy.2022.01.018_bib46 article-title: A rapid method for analysis of abscisic acid (ABA) in crude extracts of water stressed Arabidopsis thaliana plants by liquid chromatography-mass spectrometry in tandem mode publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2005.02.006 – volume: 35 start-page: 144 year: 1993 ident: 10.1016/j.plaphy.2022.01.018_bib63 article-title: Difference between salt (NaCl) and alkaline (Na2CO3) stresses on Puccinellia tenuiflora (Griseb.) Scribn et Merr. Plants publication-title: J. Integr. Plant Biol. – volume: 167 start-page: 313 year: 2016 ident: 10.1016/j.plaphy.2022.01.018_bib76 article-title: Abiotic stress signaling and responses in plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 92 start-page: 1 year: 2015 ident: 10.1016/j.plaphy.2022.01.018_bib25 article-title: Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.04.006 – volume: 726 start-page: 138637 year: 2020 ident: 10.1016/j.plaphy.2022.01.018_bib2 article-title: Chlorophyll hormesis: are chlorophylls major components of stress biology in higher plants? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138637 – volume: 7 start-page: 931 year: 2016 ident: 10.1016/j.plaphy.2022.01.018_bib3 article-title: De novo transcriptional analysis of alfalfa in response to saline-alkaline stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00931 – volume: 42 start-page: 1265 year: 2001 ident: 10.1016/j.plaphy.2022.01.018_bib29 article-title: Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pce162 – volume: 17 start-page: 3770 year: 2020 ident: 10.1016/j.plaphy.2022.01.018_bib38 article-title: Exogenous abscisic acid alleviates harmful effect of salt and alkali stresses on wheat seedlings publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph17113770 |
SSID | ssj0002473 |
Score | 2.5542274 |
Snippet | Saline–alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the... Saline-alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 58 |
SubjectTerms | abscisic acid Abscisic acid (ABA) Antioxidant enzymes chlorophyll electrical conductivity lipid peroxidation malondialdehyde mutants plant growth plant stress proline Reactive oxygen species (ROS) Saline-alkaline stress signal transduction Solanum lycopersicum stress tolerance sugars Tomato (Solanum lycopersicum) tomatoes water content |
Title | Abscisic acid alleviates harmful effect of saline–alkaline stress on tomato seedlings |
URI | https://dx.doi.org/10.1016/j.plaphy.2022.01.018 https://www.ncbi.nlm.nih.gov/pubmed/35180529 https://www.proquest.com/docview/2630922205 https://www.proquest.com/docview/2636743884 |
Volume | 175 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OU9AX0fPj1o8jgq91k3Sato_r4rEq3Ise3ltI2gSqS7u4u4Iv4v_gf-hf4kw_TgT1QOhDGiYQZqYzvzTzAfBMYV1nuXRJiA4TzKSkT6o2iQ_exSIqVYW-2ueZWZ3j64vs4gCWUy4Mh1WOtn-w6b21HmfmIzfnm6aZv5UleTPkMMj-HxGX3UbMWcuff_0V5qFxuGUm4oSpp_S5PsZrs-ai0HRK1Lov3smtP_7snv4GP3s3dHobbo34USyGLd6Bg9AewfUXHWG8L0dwYzn1b7sL7xdkEhoSgnBVUwvumfK5YWQpuFp13K_FEMshuii2jtHmj2_f3fpjPxRDDonoWrHrCNR2YktujlPXt_fg_PTlu-UqGdsoJFVaZruEuxYYjLFIMaRYYRmd1z5XMaOpSOcjQnAueO9CqaPE6E0tZQgEu1UWUNXpfThsuzYcg8hdTYgHjc_rgJU2fNoyNCaUYHKv9AzSiXu2GmuMc6uLtZ2CyT7YgeeWeW6loqeYQXK5ajPU2LiCPp8EY3_TFUtu4IqVTyc5WpIG3424NnT7rdUmlaXmrON_0nDKRlHgDB4MSnC53zRT3ByifPjfe3sEN_mN49tU9hgOd5_24QkBnp0_6TX6BK4tXr1Znf0E8AQA3A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7StJBcQps-sulLhV7dlWRZto_p0rBt01ya0NyEZEvgdLGX7G4gl5D_kH-YX5IZP1IKbQMFH4Q9AjEjaT5ZM_MBvBeqLJOU28gHqyKVcI5LqtSR886GLAhR-Lba56GeHqsvJ8nJGkyGXBgKq-z3_m5Pb3fr_s241-Z4XlXj7zxHb6YoDLL9R6QfwEOFy5doDD5c_orzkKq7ZkbpiMSH_Lk2yGs-o6rQeEyUsq3eSdwff_ZPf8OfrR_afwxbPYBke90Yn8Car7fh0ccGQd7FNmxMBgK3p_BjD_eECq3AbFGVjEhTziuClozKVYfVjHXBHKwJbGEJbt5cXdvZz7bJuiQS1tRs2SCqbdgC_Rzlri-ewfH-p6PJNOp5FKIizpNlRLQFWoWQxcrHqlB5sE66VIQEXwU8ICGEs94563MZuApOl5x7j7hbJF6JMn4O63VT-x1gqS0R8ijt0tKrQmo6bmlsI0zQqRNyBPGgPVP0RcaJ62JmhmiyU9Pp3JDODRf4ZCOI7nrNuyIb98ing2HMb5PFoB-4p-e7wY4GrUGXI7b2zWphpI55Lint-J8ylLORZWoEL7pJcDfeOBHEDpHv_vfY3sLG9OjbgTn4fPj1JWzSFwp2E8krWF-erfxrRD9L96ad3be-KgJq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abscisic+acid+alleviates+harmful+effect+of+saline%E2%80%93alkaline+stress+on+tomato+seedlings&rft.jtitle=Plant+physiology+and+biochemistry&rft.au=Xu%2C+Zijian&rft.au=Wang%2C+Jiachun&rft.au=Zhen%2C+Wentian&rft.au=Sun%2C+Tao&rft.date=2022-03-15&rft.pub=Elsevier+Masson+SAS&rft.issn=0981-9428&rft.eissn=1873-2690&rft.volume=175&rft.spage=58&rft.epage=67&rft_id=info:doi/10.1016%2Fj.plaphy.2022.01.018&rft.externalDocID=S0981942822000286 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0981-9428&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0981-9428&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0981-9428&client=summon |