How Sensitive Are EEG Results to Preprocessing Methods: A Benchmarking Study
Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG anal...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 5; pp. 1081 - 1090 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2020.2980223 |
Cover
Abstract | Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG analyses are to variations in preprocessing methods and parameters. To address this issue, we analyze the effect of preprocessing methods on downstream EEG analysis using several simple signal and event-related measures. Signal measures include recording-level channel amplitudes, study-level channel amplitude dispersion, and recording spectral characteristics. Event-related methods include ERPs and ERSPs and their correlations across methods for a diverse set of stimulus events. Our analysis also assesses differences in residual signals both in the time and spectral domains after blink artifacts have been removed. Using fully automated pipelines, we evaluate these measures across 17 EEG studies for two ICA-based preprocessing approaches (LARG, MARA) plus two variations of Artifact Subspace Reconstruction (ASR). Although the general structure of the results is similar across these preprocessing methods, there are significant differences, particularly in the low-frequency spectral features and in the residuals left by blinks. These results argue for detailed reporting of processing details as suggested by most guidelines, but also for using a federation of automated processing pipelines and comparison tools to quantify effects of processing choices as part of the research reporting. |
---|---|
AbstractList | Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG analyses are to variations in preprocessing methods and parameters. To address this issue, we analyze the effect of preprocessing methods on downstream EEG analysis using several simple signal and event-related measures. Signal measures include recording-level channel amplitudes, study-level channel amplitude dispersion, and recording spectral characteristics. Event-related methods include ERPs and ERSPs and their correlations across methods for a diverse set of stimulus events. Our analysis also assesses differences in residual signals both in the time and spectral domains after blink artifacts have been removed. Using fully automated pipelines, we evaluate these measures across 17 EEG studies for two ICA-based preprocessing approaches (LARG, MARA) plus two variations of Artifact Subspace Reconstruction (ASR). Although the general structure of the results is similar across these preprocessing methods, there are significant differences, particularly in the low-frequency spectral features and in the residuals left by blinks. These results argue for detailed reporting of processing details as suggested by most guidelines, but also for using a federation of automated processing pipelines and comparison tools to quantify effects of processing choices as part of the research reporting.Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG analyses are to variations in preprocessing methods and parameters. To address this issue, we analyze the effect of preprocessing methods on downstream EEG analysis using several simple signal and event-related measures. Signal measures include recording-level channel amplitudes, study-level channel amplitude dispersion, and recording spectral characteristics. Event-related methods include ERPs and ERSPs and their correlations across methods for a diverse set of stimulus events. Our analysis also assesses differences in residual signals both in the time and spectral domains after blink artifacts have been removed. Using fully automated pipelines, we evaluate these measures across 17 EEG studies for two ICA-based preprocessing approaches (LARG, MARA) plus two variations of Artifact Subspace Reconstruction (ASR). Although the general structure of the results is similar across these preprocessing methods, there are significant differences, particularly in the low-frequency spectral features and in the residuals left by blinks. These results argue for detailed reporting of processing details as suggested by most guidelines, but also for using a federation of automated processing pipelines and comparison tools to quantify effects of processing choices as part of the research reporting. Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG analyses are to variations in preprocessing methods and parameters. To address this issue, we analyze the effect of preprocessing methods on downstream EEG analysis using several simple signal and event-related measures. Signal measures include recording-level channel amplitudes, study-level channel amplitude dispersion, and recording spectral characteristics. Event-related methods include ERPs and ERSPs and their correlations across methods for a diverse set of stimulus events. Our analysis also assesses differences in residual signals both in the time and spectral domains after blink artifacts have been removed. Using fully automated pipelines, we evaluate these measures across 17 EEG studies for two ICA-based preprocessing approaches (LARG, MARA) plus two variations of Artifact Subspace Reconstruction (ASR). Although the general structure of the results is similar across these preprocessing methods, there are significant differences, particularly in the low-frequency spectral features and in the residuals left by blinks. These results argue for detailed reporting of processing details as suggested by most guidelines, but also for using a federation of automated processing pipelines and comparison tools to quantify effects of processing choices as part of the research reporting. |
Author | Robbins, Kay A. Bigdely-Shamlo, Nima Kothe, Christian Mullen, Tim Touryan, Jonathan |
Author_xml | – sequence: 1 givenname: Kay A. orcidid: 0000-0002-7147-5797 surname: Robbins fullname: Robbins, Kay A. email: kay.robbins@utsa.edu organization: CCDC Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, USA – sequence: 2 givenname: Jonathan orcidid: 0000-0001-7343-7869 surname: Touryan fullname: Touryan, Jonathan email: jonathan.o.touryan.civ@mail.mil organization: Intheon, San Diego, CA, USA – sequence: 3 givenname: Tim surname: Mullen fullname: Mullen, Tim email: tim.mullen@intheon.io organization: Intheon, San Diego, CA, USA – sequence: 4 givenname: Christian surname: Kothe fullname: Kothe, Christian email: christian.kothe@intheon.io organization: Intheon, San Diego, CA, USA – sequence: 5 givenname: Nima surname: Bigdely-Shamlo fullname: Bigdely-Shamlo, Nima email: nimabg@gmail.com organization: Teradata Corporation, San Diego, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32217478$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi3Uin7xB0BClrhwyTIe23HMbam2H9JCUbecrcRxqEs2bm2Hqv-eLLv00AMnj6znnXln3iOyN4TBEfKWwYwx0J9uvq2uFzMEhBnqChD5K3LIpKwKQAZ7m5qLQnCEA3KU0h0AU6VUr8kBR2RKqOqQLC_CI125Ifnsfzs6j44uFuf02qWxz4nmQL9Hdx-DdSn54Sf96vJtaNNnOqdf3GBv13X8tflf5bF9OiH7Xd0n92b3HpMfZ4ub04tieXV-eTpfFpZrmQtVNm2DtmxEy5WQNWcddgilBYWibHSnJ3eVgFaVbYW1BS2YFbyU0tYMseHH5OO272TsYXQpm7VP1vV9PbgwJoO8EkxryfSEfniB3oUxDpM7gwIY4xJATdT7HTU2a9ea--inxZ7MvztNAG4BG0NK0XXPCAOzCcP8DcNswjC7MCZR9UJkfa6zD0OOte__L323lXrn3PMsDUJpAfwPqKmT1g |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_3389_fninf_2021_720229 crossref_primary_10_1093_sleep_zsad208 crossref_primary_10_1002_aur_2518 crossref_primary_10_1016_j_neuroimage_2025_121122 crossref_primary_10_1080_26941899_2024_2426785 crossref_primary_10_1109_TNNLS_2022_3174528 crossref_primary_10_3389_fnhum_2020_549966 crossref_primary_10_1016_j_enbuild_2024_114165 crossref_primary_10_1016_j_neuroimage_2021_118712 crossref_primary_10_1016_j_ynirp_2023_100169 crossref_primary_10_1038_s41593_020_00709_0 crossref_primary_10_1016_j_ecosta_2022_10_005 crossref_primary_10_1016_j_dcn_2023_101302 crossref_primary_10_1016_j_ins_2024_121410 crossref_primary_10_1002_hbm_70034 crossref_primary_10_1016_j_csi_2024_103897 crossref_primary_10_1088_1741_2552_acb1d8 crossref_primary_10_3390_bioengineering9070268 crossref_primary_10_1016_j_entcom_2024_100730 crossref_primary_10_1093_cercor_bhad076 crossref_primary_10_1016_j_ijcce_2023_02_006 crossref_primary_10_1088_1741_2552_ad88a2 crossref_primary_10_3389_fnrgo_2024_1346794 crossref_primary_10_1016_j_bspc_2023_105830 crossref_primary_10_1016_j_ijpsycho_2024_112386 crossref_primary_10_3390_s21113632 crossref_primary_10_1038_s44184_023_00038_7 crossref_primary_10_1109_ACCESS_2020_3028139 crossref_primary_10_3389_fnagi_2024_1456169 crossref_primary_10_3390_s22030931 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1109_TMM_2024_3385676 crossref_primary_10_3390_electronics14030404 crossref_primary_10_1038_s41467_024_48337_7 crossref_primary_10_1016_j_ijpsycho_2021_02_016 crossref_primary_10_1016_j_jneumeth_2020_108961 crossref_primary_10_1016_j_brs_2022_12_004 crossref_primary_10_3390_s21227711 crossref_primary_10_3390_s24237794 crossref_primary_10_1016_j_mex_2025_103257 crossref_primary_10_1038_s41386_024_01973_5 crossref_primary_10_4103_jmss_jmss_11_24 crossref_primary_10_1016_j_buildenv_2021_108134 crossref_primary_10_1016_j_clinph_2023_01_018 crossref_primary_10_1016_j_clinph_2023_01_017 crossref_primary_10_1109_JSEN_2023_3305118 crossref_primary_10_3390_s24216815 crossref_primary_10_1007_s40489_024_00437_2 crossref_primary_10_1098_rsos_230601 crossref_primary_10_3389_fphys_2020_614565 crossref_primary_10_1109_TNSRE_2022_3176575 crossref_primary_10_1016_j_ynstr_2022_100452 crossref_primary_10_1007_s12671_022_02009_z crossref_primary_10_3390_biomedicines10102472 crossref_primary_10_1016_j_neuroimage_2022_119218 crossref_primary_10_1016_j_cobme_2023_100505 crossref_primary_10_1016_j_bspc_2023_105179 crossref_primary_10_1007_s12021_021_09537_4 crossref_primary_10_1016_j_neunet_2024_106844 crossref_primary_10_3389_fnins_2023_1219133 crossref_primary_10_1016_j_cortex_2021_03_013 crossref_primary_10_1109_ACCESS_2024_3360328 crossref_primary_10_1007_s12671_022_02052_w crossref_primary_10_1088_1741_2552_ad788e crossref_primary_10_1002_hbm_25832 crossref_primary_10_1002_dev_22484 crossref_primary_10_1186_s13195_024_01582_w |
Cites_doi | 10.3389/fnhum.2017.00527 10.3389/fninf.2015.00016 10.1016/j.jneumeth.2003.10.009 10.1155/2012/206972 10.1016/j.neuroimage.2012.10.001 10.1111/psyp.12147 10.1109/EMBC.2013.6610881 10.3389/fnhum.2019.00141 10.1073/pnas.98.2.676 10.3389/fninf.2016.00042 10.1111/psyp.12888 10.3389/fpsyg.2012.00131 10.1016/j.neuroimage.2019.116054 10.1371/journal.pone.0178934 10.3758/s13428-017-0856-z 10.1016/j.jneumeth.2014.08.002 10.1155/2011/130714 10.1186/1744-9081-7-30 10.1016/j.neuroimage.2019.116361 10.1088/1741-2560/11/3/035013 10.3389/fnins.2017.00012 10.1109/TBME.2015.2481482 10.1016/j.neuroimage.2012.09.014 10.7717/peerj.7838 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2020.2980223 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1090 |
ExternalDocumentID | 32217478 10_1109_TNSRE_2020_2980223 9047940 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Army Research Laboratory grantid: W911NF-10-2-0022 (CAST 076910227001) funderid: 10.13039/100006754 – fundername: UTSA Office of Information Technology funderid: 10.13039/100008634 – fundername: Intheon |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c395t-76bdb2c6b4d3745a31f2f206c07246b9f9217840d76d82ac0941c43655ca122b3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 15:35:12 EDT 2025 Fri Jul 25 07:19:58 EDT 2025 Wed Feb 19 02:30:11 EST 2025 Tue Jul 01 00:43:20 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-76bdb2c6b4d3745a31f2f206c07246b9f9217840d76d82ac0941c43655ca122b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7147-5797 0000-0001-7343-7869 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9047940 |
PMID | 32217478 |
PQID | 2401135007 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2020_2980223 proquest_miscellaneous_2384199519 proquest_journals_2401135007 crossref_primary_10_1109_TNSRE_2020_2980223 pubmed_primary_32217478 ieee_primary_9047940 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 kothe (ref12) 2015 ref18 pernet (ref3) 2018 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref6 ref5 |
References_xml | – ident: ref19 doi: 10.3389/fnhum.2017.00527 – ident: ref9 doi: 10.3389/fninf.2015.00016 – ident: ref13 doi: 10.1016/j.jneumeth.2003.10.009 – year: 2015 ident: ref12 article-title: Artifact removal techniques with signal reconstruction – ident: ref16 doi: 10.1155/2012/206972 – ident: ref1 doi: 10.1016/j.neuroimage.2012.10.001 – ident: ref2 doi: 10.1111/psyp.12147 – ident: ref17 doi: 10.1109/EMBC.2013.6610881 – ident: ref21 doi: 10.3389/fnhum.2019.00141 – ident: ref23 doi: 10.1073/pnas.98.2.676 – ident: ref8 doi: 10.3389/fninf.2016.00042 – year: 2018 ident: ref3 publication-title: Best practices in data analysis and sharing in neuroimaging using MEEG – ident: ref26 doi: 10.1111/psyp.12888 – ident: ref24 doi: 10.3389/fpsyg.2012.00131 – ident: ref20 doi: 10.1016/j.neuroimage.2019.116054 – ident: ref22 doi: 10.1371/journal.pone.0178934 – ident: ref5 doi: 10.3758/s13428-017-0856-z – ident: ref25 doi: 10.1016/j.jneumeth.2014.08.002 – ident: ref14 doi: 10.1155/2011/130714 – ident: ref11 doi: 10.1186/1744-9081-7-30 – ident: ref7 doi: 10.1016/j.neuroimage.2019.116361 – ident: ref18 doi: 10.1088/1741-2560/11/3/035013 – ident: ref10 doi: 10.3389/fnins.2017.00012 – ident: ref15 doi: 10.1109/TBME.2015.2481482 – ident: ref4 doi: 10.1016/j.neuroimage.2012.09.014 – ident: ref6 doi: 10.7717/peerj.7838 |
SSID | ssj0017657 |
Score | 2.5525644 |
Snippet | Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1081 |
SubjectTerms | Amplitudes ASR Automation Correlation Dispersion EEG Electroencephalography ERP ERSP Event-related potentials Guidelines MARA Pipelines Preprocessing Recording Spectra Variation |
Title | How Sensitive Are EEG Results to Preprocessing Methods: A Benchmarking Study |
URI | https://ieeexplore.ieee.org/document/9047940 https://www.ncbi.nlm.nih.gov/pubmed/32217478 https://www.proquest.com/docview/2401135007 https://www.proquest.com/docview/2384199519 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGnngBxvgoDBQk4AV6S9IkbXjb0I0T4ia03aS9VUmaahLjirhWaPz1OOmH2ASIt0p10yS2EzuxfwZ4qalhvrYirXVNUyGdTq2SJrW-qISh2nAVEpyXx2pxJj6ey_MteDvlwnjvY_CZn4XHeJdfNa4LR2X7OuKho4N-C8Wsz9WabgxyFVE9UYFFKjJOxwQZqvdXx6cnc3QFOZ1xHVJLQ_EcFGQWsOOv7UexwMrfbc245xzdheXY2z7U5Musa-3M_bwB5Pi_w7kHdwbjkxz00rIDW359H179DjRMVj3KAHlNTq5heO_Cp0Xzg5yGePewQmIjnsznH5Bs0122G9I25HNAyIx5B7gfkmWsTb15Rw7IIarCxVcTj-VJiFy8egBnR_PV-0U61GJIXaZlm-bKVpY7ZUWV5UKajNW85lQ5mnOhrK41Tic6i1WuqoIbh14jcyJTUjrDOLfZQ9heN2v_GEgdQM5qK21ucAVxDv1Y5XlV5NobXXCWABs5UrphkKFexmUZHRaqy8jQMjC0HBiawJvpm289TMc_qXcDNybKgREJ7I2MLwdN3pRo8TCWSTSlEngxvUYdDBcrZu2bDmmyQoRUd6YTeNQLzNT2KGdP_vzPp3A79KwPodyD7fZ755-hmdPa51G-fwH5OfTb |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLem8QAvwBgfhQ2CBLxAb02apM3eBrpxwN0JbTdpb1WSpkJiXBHXCsFfPyf9EEOAeKtUN21qO7YT-2eAZyrR1FWGx5WqkpgLq2IjhY6Ny0uuE6WZ9AXOi6WcnfH35-J8C16NtTDOuZB85ib-Mpzll7Vt_VbZgQp46BigX0O7z0VXrTWeGWQy4HqiCvOYpywZSmQSdbBanp5MMRhkyYQpX1zq2-egKFOPHn_FIoUWK3_3NoPVOb4Fi-F7u2STz5O2MRP78zcox_-d0G242buf5KiTlx3Ycus78PxXqGGy6nAGyAtycgXFexfms_o7OfUZ736NxEEcmU7fItmmvWg2pKnJR4-RGSoP0CKSRehOvTkkR-Q1KsOnLzpszBOfu_jjLpwdT1dvZnHfjSG2qRJNnElTGmal4WWacaFTWrGKJdImGePSqErh78RwscxkmTNtMW6klqdSCKspYya9B9vreu0eAKk8zFllhMk0riHWYiQrHSvzTDmtckYjoANHCttP0nfMuChCyJKoIjC08AwteoZG8HJ85msH1PFP6l3PjZGyZ0QEewPji16XNwX6PJSmAp2pCJ6Ot1EL_dGKXru6RZo0577YnaoI7ncCM449yNnDP7_zCVyfrRbzYv5u-eER3PBf2SVU7sF28611--j0NOZxkPVL8934KA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Sensitive+Are+EEG+Results+to+Preprocessing+Methods%3A+A+Benchmarking+Study&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Robbins%2C+Kay+A&rft.au=Touryan%2C+Jonathan&rft.au=Mullen%2C+Tim&rft.au=Kothe%2C+Christian&rft.date=2020-05-01&rft.eissn=1558-0210&rft.volume=28&rft.issue=5&rft.spage=1081&rft_id=info:doi/10.1109%2FTNSRE.2020.2980223&rft_id=info%3Apmid%2F32217478&rft.externalDocID=32217478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |