How Sensitive Are EEG Results to Preprocessing Methods: A Benchmarking Study

Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG anal...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 5; pp. 1081 - 1090
Main Authors Robbins, Kay A., Touryan, Jonathan, Mullen, Tim, Kothe, Christian, Bigdely-Shamlo, Nima
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2020.2980223

Cover

Abstract Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG analyses are to variations in preprocessing methods and parameters. To address this issue, we analyze the effect of preprocessing methods on downstream EEG analysis using several simple signal and event-related measures. Signal measures include recording-level channel amplitudes, study-level channel amplitude dispersion, and recording spectral characteristics. Event-related methods include ERPs and ERSPs and their correlations across methods for a diverse set of stimulus events. Our analysis also assesses differences in residual signals both in the time and spectral domains after blink artifacts have been removed. Using fully automated pipelines, we evaluate these measures across 17 EEG studies for two ICA-based preprocessing approaches (LARG, MARA) plus two variations of Artifact Subspace Reconstruction (ASR). Although the general structure of the results is similar across these preprocessing methods, there are significant differences, particularly in the low-frequency spectral features and in the residuals left by blinks. These results argue for detailed reporting of processing details as suggested by most guidelines, but also for using a federation of automated processing pipelines and comparison tools to quantify effects of processing choices as part of the research reporting.
AbstractList Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG analyses are to variations in preprocessing methods and parameters. To address this issue, we analyze the effect of preprocessing methods on downstream EEG analysis using several simple signal and event-related measures. Signal measures include recording-level channel amplitudes, study-level channel amplitude dispersion, and recording spectral characteristics. Event-related methods include ERPs and ERSPs and their correlations across methods for a diverse set of stimulus events. Our analysis also assesses differences in residual signals both in the time and spectral domains after blink artifacts have been removed. Using fully automated pipelines, we evaluate these measures across 17 EEG studies for two ICA-based preprocessing approaches (LARG, MARA) plus two variations of Artifact Subspace Reconstruction (ASR). Although the general structure of the results is similar across these preprocessing methods, there are significant differences, particularly in the low-frequency spectral features and in the residuals left by blinks. These results argue for detailed reporting of processing details as suggested by most guidelines, but also for using a federation of automated processing pipelines and comparison tools to quantify effects of processing choices as part of the research reporting.Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG analyses are to variations in preprocessing methods and parameters. To address this issue, we analyze the effect of preprocessing methods on downstream EEG analysis using several simple signal and event-related measures. Signal measures include recording-level channel amplitudes, study-level channel amplitude dispersion, and recording spectral characteristics. Event-related methods include ERPs and ERSPs and their correlations across methods for a diverse set of stimulus events. Our analysis also assesses differences in residual signals both in the time and spectral domains after blink artifacts have been removed. Using fully automated pipelines, we evaluate these measures across 17 EEG studies for two ICA-based preprocessing approaches (LARG, MARA) plus two variations of Artifact Subspace Reconstruction (ASR). Although the general structure of the results is similar across these preprocessing methods, there are significant differences, particularly in the low-frequency spectral features and in the residuals left by blinks. These results argue for detailed reporting of processing details as suggested by most guidelines, but also for using a federation of automated processing pipelines and comparison tools to quantify effects of processing choices as part of the research reporting.
Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG analyses are to variations in preprocessing methods and parameters. To address this issue, we analyze the effect of preprocessing methods on downstream EEG analysis using several simple signal and event-related measures. Signal measures include recording-level channel amplitudes, study-level channel amplitude dispersion, and recording spectral characteristics. Event-related methods include ERPs and ERSPs and their correlations across methods for a diverse set of stimulus events. Our analysis also assesses differences in residual signals both in the time and spectral domains after blink artifacts have been removed. Using fully automated pipelines, we evaluate these measures across 17 EEG studies for two ICA-based preprocessing approaches (LARG, MARA) plus two variations of Artifact Subspace Reconstruction (ASR). Although the general structure of the results is similar across these preprocessing methods, there are significant differences, particularly in the low-frequency spectral features and in the residuals left by blinks. These results argue for detailed reporting of processing details as suggested by most guidelines, but also for using a federation of automated processing pipelines and comparison tools to quantify effects of processing choices as part of the research reporting.
Author Robbins, Kay A.
Bigdely-Shamlo, Nima
Kothe, Christian
Mullen, Tim
Touryan, Jonathan
Author_xml – sequence: 1
  givenname: Kay A.
  orcidid: 0000-0002-7147-5797
  surname: Robbins
  fullname: Robbins, Kay A.
  email: kay.robbins@utsa.edu
  organization: CCDC Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, USA
– sequence: 2
  givenname: Jonathan
  orcidid: 0000-0001-7343-7869
  surname: Touryan
  fullname: Touryan, Jonathan
  email: jonathan.o.touryan.civ@mail.mil
  organization: Intheon, San Diego, CA, USA
– sequence: 3
  givenname: Tim
  surname: Mullen
  fullname: Mullen, Tim
  email: tim.mullen@intheon.io
  organization: Intheon, San Diego, CA, USA
– sequence: 4
  givenname: Christian
  surname: Kothe
  fullname: Kothe, Christian
  email: christian.kothe@intheon.io
  organization: Intheon, San Diego, CA, USA
– sequence: 5
  givenname: Nima
  surname: Bigdely-Shamlo
  fullname: Bigdely-Shamlo, Nima
  email: nimabg@gmail.com
  organization: Teradata Corporation, San Diego, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32217478$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi3Uin7xB0BClrhwyTIe23HMbam2H9JCUbecrcRxqEs2bm2Hqv-eLLv00AMnj6znnXln3iOyN4TBEfKWwYwx0J9uvq2uFzMEhBnqChD5K3LIpKwKQAZ7m5qLQnCEA3KU0h0AU6VUr8kBR2RKqOqQLC_CI125Ifnsfzs6j44uFuf02qWxz4nmQL9Hdx-DdSn54Sf96vJtaNNnOqdf3GBv13X8tflf5bF9OiH7Xd0n92b3HpMfZ4ub04tieXV-eTpfFpZrmQtVNm2DtmxEy5WQNWcddgilBYWibHSnJ3eVgFaVbYW1BS2YFbyU0tYMseHH5OO272TsYXQpm7VP1vV9PbgwJoO8EkxryfSEfniB3oUxDpM7gwIY4xJATdT7HTU2a9ea--inxZ7MvztNAG4BG0NK0XXPCAOzCcP8DcNswjC7MCZR9UJkfa6zD0OOte__L323lXrn3PMsDUJpAfwPqKmT1g
CODEN ITNSB3
CitedBy_id crossref_primary_10_3389_fninf_2021_720229
crossref_primary_10_1093_sleep_zsad208
crossref_primary_10_1002_aur_2518
crossref_primary_10_1016_j_neuroimage_2025_121122
crossref_primary_10_1080_26941899_2024_2426785
crossref_primary_10_1109_TNNLS_2022_3174528
crossref_primary_10_3389_fnhum_2020_549966
crossref_primary_10_1016_j_enbuild_2024_114165
crossref_primary_10_1016_j_neuroimage_2021_118712
crossref_primary_10_1016_j_ynirp_2023_100169
crossref_primary_10_1038_s41593_020_00709_0
crossref_primary_10_1016_j_ecosta_2022_10_005
crossref_primary_10_1016_j_dcn_2023_101302
crossref_primary_10_1016_j_ins_2024_121410
crossref_primary_10_1002_hbm_70034
crossref_primary_10_1016_j_csi_2024_103897
crossref_primary_10_1088_1741_2552_acb1d8
crossref_primary_10_3390_bioengineering9070268
crossref_primary_10_1016_j_entcom_2024_100730
crossref_primary_10_1093_cercor_bhad076
crossref_primary_10_1016_j_ijcce_2023_02_006
crossref_primary_10_1088_1741_2552_ad88a2
crossref_primary_10_3389_fnrgo_2024_1346794
crossref_primary_10_1016_j_bspc_2023_105830
crossref_primary_10_1016_j_ijpsycho_2024_112386
crossref_primary_10_3390_s21113632
crossref_primary_10_1038_s44184_023_00038_7
crossref_primary_10_1109_ACCESS_2020_3028139
crossref_primary_10_3389_fnagi_2024_1456169
crossref_primary_10_3390_s22030931
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1109_TMM_2024_3385676
crossref_primary_10_3390_electronics14030404
crossref_primary_10_1038_s41467_024_48337_7
crossref_primary_10_1016_j_ijpsycho_2021_02_016
crossref_primary_10_1016_j_jneumeth_2020_108961
crossref_primary_10_1016_j_brs_2022_12_004
crossref_primary_10_3390_s21227711
crossref_primary_10_3390_s24237794
crossref_primary_10_1016_j_mex_2025_103257
crossref_primary_10_1038_s41386_024_01973_5
crossref_primary_10_4103_jmss_jmss_11_24
crossref_primary_10_1016_j_buildenv_2021_108134
crossref_primary_10_1016_j_clinph_2023_01_018
crossref_primary_10_1016_j_clinph_2023_01_017
crossref_primary_10_1109_JSEN_2023_3305118
crossref_primary_10_3390_s24216815
crossref_primary_10_1007_s40489_024_00437_2
crossref_primary_10_1098_rsos_230601
crossref_primary_10_3389_fphys_2020_614565
crossref_primary_10_1109_TNSRE_2022_3176575
crossref_primary_10_1016_j_ynstr_2022_100452
crossref_primary_10_1007_s12671_022_02009_z
crossref_primary_10_3390_biomedicines10102472
crossref_primary_10_1016_j_neuroimage_2022_119218
crossref_primary_10_1016_j_cobme_2023_100505
crossref_primary_10_1016_j_bspc_2023_105179
crossref_primary_10_1007_s12021_021_09537_4
crossref_primary_10_1016_j_neunet_2024_106844
crossref_primary_10_3389_fnins_2023_1219133
crossref_primary_10_1016_j_cortex_2021_03_013
crossref_primary_10_1109_ACCESS_2024_3360328
crossref_primary_10_1007_s12671_022_02052_w
crossref_primary_10_1088_1741_2552_ad788e
crossref_primary_10_1002_hbm_25832
crossref_primary_10_1002_dev_22484
crossref_primary_10_1186_s13195_024_01582_w
Cites_doi 10.3389/fnhum.2017.00527
10.3389/fninf.2015.00016
10.1016/j.jneumeth.2003.10.009
10.1155/2012/206972
10.1016/j.neuroimage.2012.10.001
10.1111/psyp.12147
10.1109/EMBC.2013.6610881
10.3389/fnhum.2019.00141
10.1073/pnas.98.2.676
10.3389/fninf.2016.00042
10.1111/psyp.12888
10.3389/fpsyg.2012.00131
10.1016/j.neuroimage.2019.116054
10.1371/journal.pone.0178934
10.3758/s13428-017-0856-z
10.1016/j.jneumeth.2014.08.002
10.1155/2011/130714
10.1186/1744-9081-7-30
10.1016/j.neuroimage.2019.116361
10.1088/1741-2560/11/3/035013
10.3389/fnins.2017.00012
10.1109/TBME.2015.2481482
10.1016/j.neuroimage.2012.09.014
10.7717/peerj.7838
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2020.2980223
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1090
ExternalDocumentID 32217478
10_1109_TNSRE_2020_2980223
9047940
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Army Research Laboratory
  grantid: W911NF-10-2-0022 (CAST 076910227001)
  funderid: 10.13039/100006754
– fundername: UTSA Office of Information Technology
  funderid: 10.13039/100008634
– fundername: Intheon
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c395t-76bdb2c6b4d3745a31f2f206c07246b9f9217840d76d82ac0941c43655ca122b3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 15:35:12 EDT 2025
Fri Jul 25 07:19:58 EDT 2025
Wed Feb 19 02:30:11 EST 2025
Tue Jul 01 00:43:20 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-76bdb2c6b4d3745a31f2f206c07246b9f9217840d76d82ac0941c43655ca122b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7147-5797
0000-0001-7343-7869
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9047940
PMID 32217478
PQID 2401135007
PQPubID 85423
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2020_2980223
proquest_miscellaneous_2384199519
proquest_journals_2401135007
crossref_primary_10_1109_TNSRE_2020_2980223
pubmed_primary_32217478
ieee_primary_9047940
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
kothe (ref12) 2015
ref18
pernet (ref3) 2018
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref19
  doi: 10.3389/fnhum.2017.00527
– ident: ref9
  doi: 10.3389/fninf.2015.00016
– ident: ref13
  doi: 10.1016/j.jneumeth.2003.10.009
– year: 2015
  ident: ref12
  article-title: Artifact removal techniques with signal reconstruction
– ident: ref16
  doi: 10.1155/2012/206972
– ident: ref1
  doi: 10.1016/j.neuroimage.2012.10.001
– ident: ref2
  doi: 10.1111/psyp.12147
– ident: ref17
  doi: 10.1109/EMBC.2013.6610881
– ident: ref21
  doi: 10.3389/fnhum.2019.00141
– ident: ref23
  doi: 10.1073/pnas.98.2.676
– ident: ref8
  doi: 10.3389/fninf.2016.00042
– year: 2018
  ident: ref3
  publication-title: Best practices in data analysis and sharing in neuroimaging using MEEG
– ident: ref26
  doi: 10.1111/psyp.12888
– ident: ref24
  doi: 10.3389/fpsyg.2012.00131
– ident: ref20
  doi: 10.1016/j.neuroimage.2019.116054
– ident: ref22
  doi: 10.1371/journal.pone.0178934
– ident: ref5
  doi: 10.3758/s13428-017-0856-z
– ident: ref25
  doi: 10.1016/j.jneumeth.2014.08.002
– ident: ref14
  doi: 10.1155/2011/130714
– ident: ref11
  doi: 10.1186/1744-9081-7-30
– ident: ref7
  doi: 10.1016/j.neuroimage.2019.116361
– ident: ref18
  doi: 10.1088/1741-2560/11/3/035013
– ident: ref10
  doi: 10.3389/fnins.2017.00012
– ident: ref15
  doi: 10.1109/TBME.2015.2481482
– ident: ref4
  doi: 10.1016/j.neuroimage.2012.09.014
– ident: ref6
  doi: 10.7717/peerj.7838
SSID ssj0017657
Score 2.5525644
Snippet Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1081
SubjectTerms Amplitudes
ASR
Automation
Correlation
Dispersion
EEG
Electroencephalography
ERP
ERSP
Event-related potentials
Guidelines
MARA
Pipelines
Preprocessing
Recording
Spectra
Variation
Title How Sensitive Are EEG Results to Preprocessing Methods: A Benchmarking Study
URI https://ieeexplore.ieee.org/document/9047940
https://www.ncbi.nlm.nih.gov/pubmed/32217478
https://www.proquest.com/docview/2401135007
https://www.proquest.com/docview/2384199519
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGnngBxvgoDBQk4AV6S9IkbXjb0I0T4ia03aS9VUmaahLjirhWaPz1OOmH2ASIt0p10yS2EzuxfwZ4qalhvrYirXVNUyGdTq2SJrW-qISh2nAVEpyXx2pxJj6ey_MteDvlwnjvY_CZn4XHeJdfNa4LR2X7OuKho4N-C8Wsz9WabgxyFVE9UYFFKjJOxwQZqvdXx6cnc3QFOZ1xHVJLQ_EcFGQWsOOv7UexwMrfbc245xzdheXY2z7U5Musa-3M_bwB5Pi_w7kHdwbjkxz00rIDW359H179DjRMVj3KAHlNTq5heO_Cp0Xzg5yGePewQmIjnsznH5Bs0122G9I25HNAyIx5B7gfkmWsTb15Rw7IIarCxVcTj-VJiFy8egBnR_PV-0U61GJIXaZlm-bKVpY7ZUWV5UKajNW85lQ5mnOhrK41Tic6i1WuqoIbh14jcyJTUjrDOLfZQ9heN2v_GEgdQM5qK21ucAVxDv1Y5XlV5NobXXCWABs5UrphkKFexmUZHRaqy8jQMjC0HBiawJvpm289TMc_qXcDNybKgREJ7I2MLwdN3pRo8TCWSTSlEngxvUYdDBcrZu2bDmmyQoRUd6YTeNQLzNT2KGdP_vzPp3A79KwPodyD7fZ755-hmdPa51G-fwH5OfTb
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLem8QAvwBgfhQ2CBLxAb02apM3eBrpxwN0JbTdpb1WSpkJiXBHXCsFfPyf9EEOAeKtUN21qO7YT-2eAZyrR1FWGx5WqkpgLq2IjhY6Ny0uuE6WZ9AXOi6WcnfH35-J8C16NtTDOuZB85ib-Mpzll7Vt_VbZgQp46BigX0O7z0VXrTWeGWQy4HqiCvOYpywZSmQSdbBanp5MMRhkyYQpX1zq2-egKFOPHn_FIoUWK3_3NoPVOb4Fi-F7u2STz5O2MRP78zcox_-d0G242buf5KiTlx3Ycus78PxXqGGy6nAGyAtycgXFexfms_o7OfUZ736NxEEcmU7fItmmvWg2pKnJR4-RGSoP0CKSRehOvTkkR-Q1KsOnLzpszBOfu_jjLpwdT1dvZnHfjSG2qRJNnElTGmal4WWacaFTWrGKJdImGePSqErh78RwscxkmTNtMW6klqdSCKspYya9B9vreu0eAKk8zFllhMk0riHWYiQrHSvzTDmtckYjoANHCttP0nfMuChCyJKoIjC08AwteoZG8HJ85msH1PFP6l3PjZGyZ0QEewPji16XNwX6PJSmAp2pCJ6Ot1EL_dGKXru6RZo0577YnaoI7ncCM449yNnDP7_zCVyfrRbzYv5u-eER3PBf2SVU7sF28611--j0NOZxkPVL8934KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Sensitive+Are+EEG+Results+to+Preprocessing+Methods%3A+A+Benchmarking+Study&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Robbins%2C+Kay+A&rft.au=Touryan%2C+Jonathan&rft.au=Mullen%2C+Tim&rft.au=Kothe%2C+Christian&rft.date=2020-05-01&rft.eissn=1558-0210&rft.volume=28&rft.issue=5&rft.spage=1081&rft_id=info:doi/10.1109%2FTNSRE.2020.2980223&rft_id=info%3Apmid%2F32217478&rft.externalDocID=32217478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon