Image Filtering Techniques for Object Recognition in Autonomous Vehicles
The deployment of autonomous vehicles has the potential to significantly lessen the variety of current harmful externalities, (such as accidents, traffic congestion, security, and environmental degradation), making autonomous vehicles an emerging topic of research. In this paper, a literature review...
Saved in:
Published in | J.UCS (Annual print and CD-ROM archive ed.) Vol. 30; no. 1; pp. 49 - 84 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
Pensoft Publishers
01.01.2024
Graz University of Technology, Institut für Informationssysteme und Computer Medien Graz University of Technology |
Subjects | |
Online Access | Get full text |
ISSN | 0948-695X 0948-6968 |
DOI | 10.3897/jucs.102428 |
Cover
Loading…
Abstract | The deployment of autonomous vehicles has the potential to significantly lessen the variety of current harmful externalities, (such as accidents, traffic congestion, security, and environmental degradation), making autonomous vehicles an emerging topic of research. In this paper, a literature review of autonomous vehicle development has been conducted with a notable finding that autonomous vehicles will inevitably become an indispensable future greener solution. Subsequently, 5 different deep learning models, YOLOv5s, EfficientNet-B7, Xception, MobilenetV3, and InceptionV4, have been built and analyzed for 2-D object recognition in the navigation system. While testing on the BDD100K dataset, YOLOv5s and EfficientNet-B7 appear to be the two best models. Finally, this study has proposed Hessian, Laplacian, and Hessian-based Ridge Detection filtering techniques to optimize the performance of those 2 models. The results demonstrate that these filters could increase the mean average precision by up to 11.81%, and reduce detection time by up to 43.98% when applied to YOLOv5s and EfficientNet-B7 models. Overall, all the experiment results are promising and could be extended to other domains for semantic understanding of the environment. Additionally, various filtering algorithms for multiple object detection and classification could be applied to other areas. Different recommendations and future work have been clearly defined in this study. |
---|---|
AbstractList | The deployment of autonomous vehicles has the potential to significantly lessen the variety of current harmful externalities, (such as accidents, traffic congestion, security, and environmental degradation), making autonomous vehicles an emerging topic of research. In this paper, a literature review of autonomous vehicle development has been conducted with a notable finding that autonomous vehicles will inevitably become an indispensable future greener solution. Subsequently, 5 different deep learning models, YOLOv5s, EfficientNet-B7, Xception, MobilenetV3, and InceptionV4, have been built and analyzed for 2-D object recognition in the navigation system. While testing on the BDD100K dataset, YOLOv5s and EfficientNet-B7 appear to be the two best models. Finally, this study has proposed Hessian, Laplacian, and Hessian-based Ridge Detection filtering techniques to optimize the performance of those 2 models. The results demonstrate that these filters could increase the mean average precision by up to 11.81%, and reduce detection time by up to 43.98% when applied to YOLOv5s and EfficientNet-B7 models. Overall, all the experiment results are promising and could be extended to other domains for semantic understanding of the environment. Additionally, various filtering algorithms for multiple object detection and classification could be applied to other areas. Different recommendations and future work have been clearly defined in this study. |
Audience | Academic |
Author | Ang, Mei Choo Kor, Ah-Lian Rondeau, Eric Georges, Jean-Philippe Hien, Ngo Le Huy |
Author_xml | – sequence: 1 givenname: Ngo Le Huy orcidid: 0000-0002-1439-8289 surname: Hien fullname: Hien, Ngo Le Huy – sequence: 2 givenname: Ah-Lian orcidid: 0000-0001-9514-3773 surname: Kor fullname: Kor, Ah-Lian – sequence: 3 givenname: Mei Choo orcidid: 0000-0001-5316-3936 surname: Ang fullname: Ang, Mei Choo – sequence: 4 givenname: Eric orcidid: 0000-0002-3743-9215 surname: Rondeau fullname: Rondeau, Eric – sequence: 5 givenname: Jean-Philippe orcidid: 0000-0003-1011-8312 surname: Georges fullname: Georges, Jean-Philippe |
BackLink | https://hal.science/hal-04791933$$DView record in HAL |
BookMark | eNpVUdtqFEEUbCSCSfTJHxjwSWTXvl8el2DMwkJAovjW9Jzpnu1htzv2zAT8G7_FL7PHkYBP51DUKapOXaGLlJNH6C3BW6aN-jjMMG4JppzqF-gSG6430kh98byL76_Q1TgOGFMpjb5E-_3Z9b65jafJl5j65sHDMcUfsx-bkEtz3w4epuaLh9ynOMWcmph-_9rNU075nOex-eaPEU5-fI1eBnca_Zt_8xp9vf30cHO3Odx_3t_sDhtgRkwbJQ0GT0Ez7sBhFgRo0EF5olsjgQQvMRUSu6BUYIChDo7bFpTwhrnArtF-1e2yG-xjiWdXftrsov0L5NJbV6bFkm2x7joKHZWY8C5IzY1n1HWt4OCU0VXr_ap1dKf_pO52B7tgmCtDDGNPpHLfrdzHkpf3THbIc0k1qqWGYiGF4bKytiurd9VATCFPpeYE1_lzhNpWiBXfKY2lIIryevBhPYCSx7H48OyDYLuUapdS7Voq-wMleJat |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 Pensoft Publishers 2024. This work is licensed under https://creativecommons.org/licenses/by-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: COPYRIGHT 2024 Pensoft Publishers – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC DOA |
DOI | 10.3897/jucs.102428 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 0948-6968 |
EndPage | 84 |
ExternalDocumentID | oai_doaj_org_article_b08dd2cd26014df6849e32adb54ca798 oai_HAL_hal_04791933v1 A780651724 10_3897_jucs_102428 |
GroupedDBID | 29L 2WC 5GY AAYXX ACGFO ALMA_UNASSIGNED_HOLDINGS CITATION EBS EJD FRP OVT RNS SJN 29J AAKPC AENEX AFKRA ARAPS BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ IAO ICD ISE ITC IVC K7- OK1 P2P PHGZM PHGZT PIMPY PMFND TR2 8FE 8FG ABUWG AZQEC COVID DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC |
ID | FETCH-LOGICAL-c395t-7690ce2c834aca03f5c8c8f7e18b96c1fe602560af77f3c0c77f40bbc75e93af3 |
IEDL.DBID | DOA |
ISSN | 0948-695X |
IngestDate | Wed Aug 27 01:20:04 EDT 2025 Fri May 09 12:22:55 EDT 2025 Mon Jun 30 06:44:07 EDT 2025 Tue Jun 10 21:14:36 EDT 2025 Tue Jul 01 03:13:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by-nd/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-7690ce2c834aca03f5c8c8f7e18b96c1fe602560af77f3c0c77f40bbc75e93af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1439-8289 0000-0003-1011-8312 0000-0002-3743-9215 0000-0001-5316-3936 0000-0001-9514-3773 0000-0002-9265-1673 |
OpenAccessLink | https://doaj.org/article/b08dd2cd26014df6849e32adb54ca798 |
PQID | 2920565946 |
PQPubID | 6474026 |
PageCount | 36 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b08dd2cd26014df6849e32adb54ca798 hal_primary_oai_HAL_hal_04791933v1 proquest_journals_2920565946 gale_infotracacademiconefile_A780651724 crossref_primary_10_3897_jucs_102428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | J.UCS (Annual print and CD-ROM archive ed.) |
PublicationYear | 2024 |
Publisher | Pensoft Publishers Graz University of Technology, Institut für Informationssysteme und Computer Medien Graz University of Technology |
Publisher_xml | – name: Pensoft Publishers – name: Graz University of Technology, Institut für Informationssysteme und Computer Medien – name: Graz University of Technology |
SSID | ssj0026698 ssj0028598 |
Score | 2.3496857 |
Snippet | The deployment of autonomous vehicles has the potential to significantly lessen the variety of current harmful externalities, (such as accidents, traffic... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 49 |
SubjectTerms | Algorithms Analysis Automatic Autonomous Vehicle Autonomous vehicles Deep Learning Driverless cars Engineering Sciences Image filters Literature reviews Machine learning Navigation systems Object Recognit Object recognition Traffic congestion Two dimensional analysis Vehicles |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-EClIdYaJGFKnGKmsSOHye0rbpaEBRUtWhvVvxqi0RSNll-PzOJs0APnCI5kR2P7Xl6viHkKAQlLQ-Y9qt5xnmlMlsWPnOFVXnlQYZHjOh-PhfLK_5xVa2Sw61L1yonnjgwat869JEfY1UlUD40F-_vfmZYNQqjq6mExg7ZAxaswPjaOzk7_3qxNbmE0NugAkK1DYxZc5UJXa3GdD2Q2PL4-8Z1iGLAsSr7XwJqwPHfcuudG7wseY9nD4Jo8YQ8ShoknY9Lvk8ehOYpeTxVZ6DpsD4jyw8_gFfQxS3Gw0FA0csJrrWjoKnSLxZdMPRiukHUNvS2ofNNj2kO7aaj38LNcGfuOblanF2eLrNUNyFzTFd9JsHidaF0ivHa1TmLlVNORRkKZbVwRQxi0HTqKGVkLnfw4Lm1TlZBszqyF2S3aZvwktDomPUi5gLUFK5i0CEUXHLtrLM1dD0jRxOxzN0Ij2HArECaGqSpGWk6IydIyO0niGk9NLTra5OOiLG58r50HkHOuI8wpA6srL2tuKulhk7e4TIYPHn9GmaWEgjgTxHDyswlBolBIeMz8hZW6p_RlvNPBtsQUR90VvarmJGDaSFNOred-bPLXv3_9WvysISpjc6YA7LbrzfhENST3r5Je_A346vikg priority: 102 providerName: ProQuest |
Title | Image Filtering Techniques for Object Recognition in Autonomous Vehicles |
URI | https://www.proquest.com/docview/2920565946 https://hal.science/hal-04791933 https://doaj.org/article/b08dd2cd26014df6849e32adb54ca798 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7RcuFC-RUpZWWhSpyiJrET28ct6rJFUFDVot6seGKrRSKtutk-D8_SJ-tMfqrChQunSFaUON_EnhnPzDcAuyEY7VXgsl-rUqVKk_oib1LMvcnKhnR45Iju16Nqeao-n5VnD1p9cU7YQA88ALfnM9M0BTZMfaWaWBllgyzqxpcKa237Ml_SeZMzNbpaprRmqMYjhaz3fq5xxSQFipuuP9A_PU3__Wa8cc65kH9tyb2eWTyDp6OBKObDxJ7Do9C-gK2p-YIY1-JLODz8RVuBWFxwuJv0jziZ2FhXggxR8c3zCYs4nhKELltx0d7-nq87LmMgf1_8COd9TtwrOF0cnHxcpmNfhBSlLbtUk0eLoUAjVY11JmOJBk3UITfeVpjHUPWWTB21jhIzpIvKvEddBivrKF_DZnvZhjcgIkrfVDEjWCtlYrAh5Eorix59TY9OYHdCy10N9BeO3AYG1TGobgA1gX1G8v4W5qzuB0iSbpSk-5ckE_jAcnC8srpr-rKxQIBmyhxVbq45CEwGl0rgPYnqj7ct518cjzFjPtmk8iZPYGeSpBvX5cpxby4yYa2qtv_HlN_Ck4IAGI5kdmCzu16Hd2SkdH4GG2bxaQaP9w-Ovh_P-r_zDkAM6QM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacoBLeYuFAhYq4hQ1iZ3YPlRoeSxZui0S2qK9mdix-5CalE22iD_Fb2Qmj-Vx4NZTJCey4_F45huPZ4aQXeekMNxh2K_iAeeJDEwcFYGNjAyTAnS4R4_u4VGaHfOPi2SxQX4OsTB4rXKQia2gLiqLZ-R7WFUJwIfi6evLbwFWjULv6lBCo2OLA_fjO5hs9f70HazvyzievJ-_zYK-qkBgmUqaQIA9aF1sJeO5zUPmEyut9MJF0qjURt6lLQ7IvRCe2dDCg4fGWJE4xXLPoN9NcoMzpnBHycmHtYGXpmrtwsDEcK0aUFwGqUoWXXAg4AOxd76yNeZM4FgD_g912FYNWOuGzVO8mvmPhmjV3uQO2e7xKh13DHaXbLjyHrk91IKgvWi4T7LpBUgmOjlD7zuoQzofksPWFHAx_WTwwId-Hu4rVSU9K-l41WBQRbWq6Rd32t7Qe0COr4WeD8lWWZXuEaHeMlOkPkwBFHHpnXIu4oIra6zJoesR2R2IpS-7ZBwajBikqUaa6o6mI_IGCbn-BDNotw3V8kT3G1KbUBZFbAtMqcYLD0Mqx-K8MAm3uVDQyStcBo37vFnCzPpwBfhTzJilxwJd0gD_-Ii8gJX6a7RsPNPYhvn7ASGzq2hEdoaF1L2UqPVvnn78_9fPyc1sfjjTs-nRwRNyK4ZpdsdAO2SrWa7cUwBGjXnWciMlX6-b_X8BbLQfJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Filtering+Techniques+for+Object+Recognition+in%C2%A0Autonomous+Vehicles&rft.jtitle=J.UCS+%28Annual+print+and+CD-ROM+archive+ed.%29&rft.au=Hien%2C+Ngo+Le+Huy&rft.au=Kor%2C+Ah-Lian&rft.au=Ang%2C+Mei+Choo&rft.au=Rondeau%2C+Eric&rft.date=2024-01-01&rft.pub=Pensoft+Publishers&rft.issn=0948-695X&rft.issue=1&rft.spage=49&rft_id=info:doi/10.3897%2Fjucs.102428&rft.externalDocID=A780651724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-695X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-695X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-695X&client=summon |