Image Filtering Techniques for Object Recognition in Autonomous Vehicles

The deployment of autonomous vehicles has the potential to significantly lessen the variety of current harmful externalities, (such as accidents, traffic congestion, security, and environmental degradation), making autonomous vehicles an emerging topic of research. In this paper, a literature review...

Full description

Saved in:
Bibliographic Details
Published inJ.UCS (Annual print and CD-ROM archive ed.) Vol. 30; no. 1; pp. 49 - 84
Main Authors Hien, Ngo Le Huy, Kor, Ah-Lian, Ang, Mei Choo, Rondeau, Eric, Georges, Jean-Philippe
Format Journal Article
LanguageEnglish
Published Bristol Pensoft Publishers 01.01.2024
Graz University of Technology, Institut für Informationssysteme und Computer Medien
Graz University of Technology
Subjects
Online AccessGet full text
ISSN0948-695X
0948-6968
DOI10.3897/jucs.102428

Cover

Loading…
Abstract The deployment of autonomous vehicles has the potential to significantly lessen the variety of current harmful externalities, (such as accidents, traffic congestion, security, and environmental degradation), making autonomous vehicles an emerging topic of research. In this paper, a literature review of autonomous vehicle development has been conducted with a notable finding that autonomous vehicles will inevitably become an indispensable future greener solution. Subsequently, 5 different deep learning models, YOLOv5s, EfficientNet-B7, Xception, MobilenetV3, and InceptionV4, have been built and analyzed for 2-D object recognition in the navigation system. While testing on the BDD100K dataset, YOLOv5s and EfficientNet-B7 appear to be the two best models. Finally, this study has proposed Hessian, Laplacian, and Hessian-based Ridge Detection filtering techniques to optimize the performance of those 2 models. The results demonstrate that these filters could increase the mean average precision by up to 11.81%, and reduce detection time by up to 43.98% when applied to YOLOv5s and EfficientNet-B7 models. Overall, all the experiment results are promising and could be extended to other domains for semantic understanding of the environment. Additionally, various filtering algorithms for multiple object detection and classification could be applied to other areas. Different recommendations and future work have been clearly defined in this study.
AbstractList The deployment of autonomous vehicles has the potential to significantly lessen the variety of current harmful externalities, (such as accidents, traffic congestion, security, and environmental degradation), making autonomous vehicles an emerging topic of research. In this paper, a literature review of autonomous vehicle development has been conducted with a notable finding that autonomous vehicles will inevitably become an indispensable future greener solution. Subsequently, 5 different deep learning models, YOLOv5s, EfficientNet-B7, Xception, MobilenetV3, and InceptionV4, have been built and analyzed for 2-D object recognition in the navigation system. While testing on the BDD100K dataset, YOLOv5s and EfficientNet-B7 appear to be the two best models. Finally, this study has proposed Hessian, Laplacian, and Hessian-based Ridge Detection filtering techniques to optimize the performance of those 2 models. The results demonstrate that these filters could increase the mean average precision by up to 11.81%, and reduce detection time by up to 43.98% when applied to YOLOv5s and EfficientNet-B7 models. Overall, all the experiment results are promising and could be extended to other domains for semantic understanding of the environment. Additionally, various filtering algorithms for multiple object detection and classification could be applied to other areas. Different recommendations and future work have been clearly defined in this study.
Audience Academic
Author Ang, Mei Choo
Kor, Ah-Lian
Rondeau, Eric
Georges, Jean-Philippe
Hien, Ngo Le Huy
Author_xml – sequence: 1
  givenname: Ngo Le Huy
  orcidid: 0000-0002-1439-8289
  surname: Hien
  fullname: Hien, Ngo Le Huy
– sequence: 2
  givenname: Ah-Lian
  orcidid: 0000-0001-9514-3773
  surname: Kor
  fullname: Kor, Ah-Lian
– sequence: 3
  givenname: Mei Choo
  orcidid: 0000-0001-5316-3936
  surname: Ang
  fullname: Ang, Mei Choo
– sequence: 4
  givenname: Eric
  orcidid: 0000-0002-3743-9215
  surname: Rondeau
  fullname: Rondeau, Eric
– sequence: 5
  givenname: Jean-Philippe
  orcidid: 0000-0003-1011-8312
  surname: Georges
  fullname: Georges, Jean-Philippe
BackLink https://hal.science/hal-04791933$$DView record in HAL
BookMark eNpVUdtqFEEUbCSCSfTJHxjwSWTXvl8el2DMwkJAovjW9Jzpnu1htzv2zAT8G7_FL7PHkYBP51DUKapOXaGLlJNH6C3BW6aN-jjMMG4JppzqF-gSG6430kh98byL76_Q1TgOGFMpjb5E-_3Z9b65jafJl5j65sHDMcUfsx-bkEtz3w4epuaLh9ynOMWcmph-_9rNU075nOex-eaPEU5-fI1eBnca_Zt_8xp9vf30cHO3Odx_3t_sDhtgRkwbJQ0GT0Ez7sBhFgRo0EF5olsjgQQvMRUSu6BUYIChDo7bFpTwhrnArtF-1e2yG-xjiWdXftrsov0L5NJbV6bFkm2x7joKHZWY8C5IzY1n1HWt4OCU0VXr_ap1dKf_pO52B7tgmCtDDGNPpHLfrdzHkpf3THbIc0k1qqWGYiGF4bKytiurd9VATCFPpeYE1_lzhNpWiBXfKY2lIIryevBhPYCSx7H48OyDYLuUapdS7Voq-wMleJat
ContentType Journal Article
Copyright COPYRIGHT 2024 Pensoft Publishers
2024. This work is licensed under https://creativecommons.org/licenses/by-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2024 Pensoft Publishers
– notice: 2024. This work is licensed under https://creativecommons.org/licenses/by-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
DOA
DOI 10.3897/jucs.102428
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0948-6968
EndPage 84
ExternalDocumentID oai_doaj_org_article_b08dd2cd26014df6849e32adb54ca798
oai_HAL_hal_04791933v1
A780651724
10_3897_jucs_102428
GroupedDBID 29L
2WC
5GY
AAYXX
ACGFO
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
EJD
FRP
OVT
RNS
SJN
29J
AAKPC
AENEX
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
IAO
ICD
ISE
ITC
IVC
K7-
OK1
P2P
PHGZM
PHGZT
PIMPY
PMFND
TR2
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
ID FETCH-LOGICAL-c395t-7690ce2c834aca03f5c8c8f7e18b96c1fe602560af77f3c0c77f40bbc75e93af3
IEDL.DBID DOA
ISSN 0948-695X
IngestDate Wed Aug 27 01:20:04 EDT 2025
Fri May 09 12:22:55 EDT 2025
Mon Jun 30 06:44:07 EDT 2025
Tue Jun 10 21:14:36 EDT 2025
Tue Jul 01 03:13:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nd/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-7690ce2c834aca03f5c8c8f7e18b96c1fe602560af77f3c0c77f40bbc75e93af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1439-8289
0000-0003-1011-8312
0000-0002-3743-9215
0000-0001-5316-3936
0000-0001-9514-3773
0000-0002-9265-1673
OpenAccessLink https://doaj.org/article/b08dd2cd26014df6849e32adb54ca798
PQID 2920565946
PQPubID 6474026
PageCount 36
ParticipantIDs doaj_primary_oai_doaj_org_article_b08dd2cd26014df6849e32adb54ca798
hal_primary_oai_HAL_hal_04791933v1
proquest_journals_2920565946
gale_infotracacademiconefile_A780651724
crossref_primary_10_3897_jucs_102428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle J.UCS (Annual print and CD-ROM archive ed.)
PublicationYear 2024
Publisher Pensoft Publishers
Graz University of Technology, Institut für Informationssysteme und Computer Medien
Graz University of Technology
Publisher_xml – name: Pensoft Publishers
– name: Graz University of Technology, Institut für Informationssysteme und Computer Medien
– name: Graz University of Technology
SSID ssj0026698
ssj0028598
Score 2.3496857
Snippet The deployment of autonomous vehicles has the potential to significantly lessen the variety of current harmful externalities, (such as accidents, traffic...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 49
SubjectTerms Algorithms
Analysis
Automatic
Autonomous Vehicle
Autonomous vehicles
Deep Learning
Driverless cars
Engineering Sciences
Image filters
Literature reviews
Machine learning
Navigation systems
Object Recognit
Object recognition
Traffic congestion
Two dimensional analysis
Vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-EClIdYaJGFKnGKmsSOHye0rbpaEBRUtWhvVvxqi0RSNll-PzOJs0APnCI5kR2P7Xl6viHkKAQlLQ-Y9qt5xnmlMlsWPnOFVXnlQYZHjOh-PhfLK_5xVa2Sw61L1yonnjgwat869JEfY1UlUD40F-_vfmZYNQqjq6mExg7ZAxaswPjaOzk7_3qxNbmE0NugAkK1DYxZc5UJXa3GdD2Q2PL4-8Z1iGLAsSr7XwJqwPHfcuudG7wseY9nD4Jo8YQ8ShoknY9Lvk8ehOYpeTxVZ6DpsD4jyw8_gFfQxS3Gw0FA0csJrrWjoKnSLxZdMPRiukHUNvS2ofNNj2kO7aaj38LNcGfuOblanF2eLrNUNyFzTFd9JsHidaF0ivHa1TmLlVNORRkKZbVwRQxi0HTqKGVkLnfw4Lm1TlZBszqyF2S3aZvwktDomPUi5gLUFK5i0CEUXHLtrLM1dD0jRxOxzN0Ij2HArECaGqSpGWk6IydIyO0niGk9NLTra5OOiLG58r50HkHOuI8wpA6srL2tuKulhk7e4TIYPHn9GmaWEgjgTxHDyswlBolBIeMz8hZW6p_RlvNPBtsQUR90VvarmJGDaSFNOred-bPLXv3_9WvysISpjc6YA7LbrzfhENST3r5Je_A346vikg
  priority: 102
  providerName: ProQuest
Title Image Filtering Techniques for Object Recognition in Autonomous Vehicles
URI https://www.proquest.com/docview/2920565946
https://hal.science/hal-04791933
https://doaj.org/article/b08dd2cd26014df6849e32adb54ca798
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7RcuFC-RUpZWWhSpyiJrET28ct6rJFUFDVot6seGKrRSKtutk-D8_SJ-tMfqrChQunSFaUON_EnhnPzDcAuyEY7VXgsl-rUqVKk_oib1LMvcnKhnR45Iju16Nqeao-n5VnD1p9cU7YQA88ALfnM9M0BTZMfaWaWBllgyzqxpcKa237Ml_SeZMzNbpaprRmqMYjhaz3fq5xxSQFipuuP9A_PU3__Wa8cc65kH9tyb2eWTyDp6OBKObDxJ7Do9C-gK2p-YIY1-JLODz8RVuBWFxwuJv0jziZ2FhXggxR8c3zCYs4nhKELltx0d7-nq87LmMgf1_8COd9TtwrOF0cnHxcpmNfhBSlLbtUk0eLoUAjVY11JmOJBk3UITfeVpjHUPWWTB21jhIzpIvKvEddBivrKF_DZnvZhjcgIkrfVDEjWCtlYrAh5Eorix59TY9OYHdCy10N9BeO3AYG1TGobgA1gX1G8v4W5qzuB0iSbpSk-5ckE_jAcnC8srpr-rKxQIBmyhxVbq45CEwGl0rgPYnqj7ct518cjzFjPtmk8iZPYGeSpBvX5cpxby4yYa2qtv_HlN_Ck4IAGI5kdmCzu16Hd2SkdH4GG2bxaQaP9w-Ovh_P-r_zDkAM6QM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacoBLeYuFAhYq4hQ1iZ3YPlRoeSxZui0S2qK9mdix-5CalE22iD_Fb2Qmj-Vx4NZTJCey4_F45huPZ4aQXeekMNxh2K_iAeeJDEwcFYGNjAyTAnS4R4_u4VGaHfOPi2SxQX4OsTB4rXKQia2gLiqLZ-R7WFUJwIfi6evLbwFWjULv6lBCo2OLA_fjO5hs9f70HazvyzievJ-_zYK-qkBgmUqaQIA9aF1sJeO5zUPmEyut9MJF0qjURt6lLQ7IvRCe2dDCg4fGWJE4xXLPoN9NcoMzpnBHycmHtYGXpmrtwsDEcK0aUFwGqUoWXXAg4AOxd76yNeZM4FgD_g912FYNWOuGzVO8mvmPhmjV3uQO2e7xKh13DHaXbLjyHrk91IKgvWi4T7LpBUgmOjlD7zuoQzofksPWFHAx_WTwwId-Hu4rVSU9K-l41WBQRbWq6Rd32t7Qe0COr4WeD8lWWZXuEaHeMlOkPkwBFHHpnXIu4oIra6zJoesR2R2IpS-7ZBwajBikqUaa6o6mI_IGCbn-BDNotw3V8kT3G1KbUBZFbAtMqcYLD0Mqx-K8MAm3uVDQyStcBo37vFnCzPpwBfhTzJilxwJd0gD_-Ii8gJX6a7RsPNPYhvn7ASGzq2hEdoaF1L2UqPVvnn78_9fPyc1sfjjTs-nRwRNyK4ZpdsdAO2SrWa7cUwBGjXnWciMlX6-b_X8BbLQfJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Filtering+Techniques+for+Object+Recognition+in%C2%A0Autonomous+Vehicles&rft.jtitle=J.UCS+%28Annual+print+and+CD-ROM+archive+ed.%29&rft.au=Hien%2C+Ngo+Le+Huy&rft.au=Kor%2C+Ah-Lian&rft.au=Ang%2C+Mei+Choo&rft.au=Rondeau%2C+Eric&rft.date=2024-01-01&rft.pub=Pensoft+Publishers&rft.issn=0948-695X&rft.issue=1&rft.spage=49&rft_id=info:doi/10.3897%2Fjucs.102428&rft.externalDocID=A780651724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-695X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-695X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-695X&client=summon