Enhancement of Component Images of Multispectral Data by Denoising with Reference
Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images—component images having relatively high quality and that are sim...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 6; p. 611 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images—component images having relatively high quality and that are similar to the image subject to pre-filtering. Here, we study the following problems: how to select component images that can be used as references (e.g., for the Sentinel multispectral remote sensing data) and how to perform the actual denoising. We demonstrate that component images of the same resolution as well as component images of a better resolution can be used as references. To provide high efficiency of denoising, reference images have to be transformed using linear or nonlinear transformations. This paper proposes a practical approach to doing this. Examples of denoising tests and real-life images demonstrate high efficiency of the proposed approach. |
---|---|
AbstractList | Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images—component images having relatively high quality and that are similar to the image subject to pre-filtering. Here, we study the following problems: how to select component images that can be used as references (e.g., for the Sentinel multispectral remote sensing data) and how to perform the actual denoising. We demonstrate that component images of the same resolution as well as component images of a better resolution can be used as references. To provide high efficiency of denoising, reference images have to be transformed using linear or nonlinear transformations. This paper proposes a practical approach to doing this. Examples of denoising tests and real-life images demonstrate high efficiency of the proposed approach Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images—component images having relatively high quality and that are similar to the image subject to pre-filtering. Here, we study the following problems: how to select component images that can be used as references (e.g., for the Sentinel multispectral remote sensing data) and how to perform the actual denoising. We demonstrate that component images of the same resolution as well as component images of a better resolution can be used as references. To provide high efficiency of denoising, reference images have to be transformed using linear or nonlinear transformations. This paper proposes a practical approach to doing this. Examples of denoising tests and real-life images demonstrate high efficiency of the proposed approach. |
Author | Abramov, Sergey Egiazarian, Karen Lukin, Vladimir Chehdi, Kacem Vozel, Benoit Uss, Mikhail |
Author_xml | – sequence: 1 givenname: Sergey orcidid: 0000-0002-8295-9439 surname: Abramov fullname: Abramov, Sergey – sequence: 2 givenname: Mikhail surname: Uss fullname: Uss, Mikhail – sequence: 3 givenname: Vladimir surname: Lukin fullname: Lukin, Vladimir – sequence: 4 givenname: Benoit orcidid: 0000-0002-1920-2847 surname: Vozel fullname: Vozel, Benoit – sequence: 5 givenname: Kacem surname: Chehdi fullname: Chehdi, Kacem – sequence: 6 givenname: Karen surname: Egiazarian fullname: Egiazarian, Karen |
BackLink | https://univ-rennes.hal.science/hal-02135627$$DView record in HAL |
BookMark | eNptkV1LXDEQhkNRqFVv-gsOeNXC1nyej0tZtS6sSItehzk5k90sZ5M1ySr--2a7pbViCCR5efLAzHwiBz54JOQzo9-E6Oh5TIzRmtaMfSBHnDZ8InnHD17dP5LTlFa0LCFYR-UR-XHll-ANrtHnKthqGtabYi2P2RoWmHbZ7XbMLm3Q5AhjdQkZqv6lukQfXHJ-UT27vKx-osWIxXRCDi2MCU__nMfk4frqfnozmd99n00v5hMjOpUnjcLeWMaFsS3re9PWw6AkbaS1FqSwjPXcQtszUI2oO4NNj0oNZTcdtMqKYzLbe4cAK72Jbg3xRQdw-ncQ4kJDzM6MqK3lptgoDlxIhrSXrJMWhtbIFkQti-vL3rWE8T_VzcVc7zLKmVA1b55YYc_27CaGxy2mrFdhG30pVXNBJWW8Vm2hvu4pE0NKEe1fLaN6Ny39b1oFpm9g4zJkF3zpuBvf-_ILDoKXww |
CitedBy_id | crossref_primary_10_1080_13682199_2024_2449273 crossref_primary_10_1007_s11220_024_00504_2 |
Cites_doi | 10.1109/5.54807 10.1109/IGARSS.2008.4779059 10.1109/IGARSS.2006.104 10.1109/JSEN.2009.2037800 10.1186/1687-6180-2011-41 10.1117/12.2240865 10.1016/j.eswa.2013.05.061 10.1007/978-3-319-25903-1_53 10.1615/TelecomRadEng.v76.i19.40 10.1109/VCIP.2014.7051609 10.1109/TIP.2007.901238 10.1109/ICIP.2007.4378954 10.1201/9781420009781 10.1109/TGRS.2012.2187063 10.1109/LGRS.2011.2168598 10.3390/rs8010070 10.1615/TelecomRadEng.v67.i15.50 10.1109/TGRS.2010.2075937 10.1142/S0218001418600054 10.1615/TelecomRadEng.v75.i13.30 10.1109/TGRS.2003.821885 10.1109/TIP.2017.2713946 10.1093/ietcom/e90-b.2.429 10.1117/1.JEI.21.4.043020 10.1364/AO.50.003829 10.1615/TelecomRadEng.v77.i9.30 10.1109/JSTSP.2010.2104312 10.1109/TGRS.2012.2209656 10.1117/12.2193976 10.3390/rs10010116 10.1109/TIP.2005.863698 10.1016/j.jvcir.2005.08.007 10.1109/TGRS.2013.2259245 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 1XC VOOES DOA |
DOI | 10.3390/rs11060611 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_ff2cb2f0ed2341e0b4194fad8c48a364 oai_HAL_hal_02135627v1 10_3390_rs11060611 |
GeographicLocations | France United States--US |
GeographicLocations_xml | – name: United States--US – name: France |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC 2XV C1A IAO IPNFZ ITC RIG VOOES PUEGO |
ID | FETCH-LOGICAL-c395t-75ebcf123cf81bbc86dd54074fffa43f11b2fa8b1a57369ce7be55d55d79a85f3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:23:16 EDT 2025 Fri May 09 12:48:29 EDT 2025 Fri Jul 25 12:08:35 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Tue Jul 01 04:14:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | multispectral imaging vectorial (three-dimensional) filtering remote sensing BM3D-filtering DCT-filtering filtering with reference |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-75ebcf123cf81bbc86dd54074fffa43f11b2fa8b1a57369ce7be55d55d79a85f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8295-9439 0000-0002-1920-2847 |
OpenAccessLink | https://doaj.org/article/ff2cb2f0ed2341e0b4194fad8c48a364 |
PQID | 2304012658 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ff2cb2f0ed2341e0b4194fad8c48a364 hal_primary_oai_HAL_hal_02135627v1 proquest_journals_2304012658 crossref_primary_10_3390_rs11060611 crossref_citationtrail_10_3390_rs11060611 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Deledalle (ref_14) 2017; 26 Wang (ref_27) 2010; 10 ref_13 ref_35 ref_12 Rubel (ref_34) 2018; 32 ref_33 ref_10 Dabov (ref_32) 2007; 16 ref_18 Lukin (ref_30) 2017; 76 Liu (ref_26) 2012; 50 Ponomaryov (ref_9) 2007; 90 ref_37 Pogrebnyak (ref_38) 2012; 21 Ponomarenko (ref_15) 2008; 67 Lukac (ref_16) 2006; 17 Lukin (ref_8) 2013; 40 Uss (ref_6) 2011; 5 Astola (ref_11) 1990; 78 ref_23 Yuan (ref_25) 2014; 52 ref_21 Lukin (ref_24) 2016; 75 ref_20 Solbo (ref_39) 2004; 42 Fevralev (ref_19) 2011; 2011 ref_40 ref_1 ref_3 Liu (ref_22) 2012; 9 ref_29 Zhong (ref_4) 2013; 51 Pizurica (ref_17) 2006; 15 Abramov (ref_31) 2018; 77 Meola (ref_36) 2011; 50 ref_5 Mielke (ref_2) 2014; 13 ref_7 Chen (ref_28) 2011; 49 |
References_xml | – volume: 78 start-page: 678 year: 1990 ident: ref_11 article-title: Vector median filters publication-title: Proc. IEEE doi: 10.1109/5.54807 – ident: ref_12 doi: 10.1109/IGARSS.2008.4779059 – ident: ref_5 – ident: ref_23 doi: 10.1109/IGARSS.2006.104 – volume: 10 start-page: 469 year: 2010 ident: ref_27 article-title: Anisotropic Diffusion for Hyperspectral Imagery Enhancement publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2009.2037800 – volume: 2011 start-page: 41 year: 2011 ident: ref_19 article-title: Efficiency analysis of color image filtering publication-title: EURASIP J. Adv. Signal. Process. doi: 10.1186/1687-6180-2011-41 – ident: ref_20 doi: 10.1117/12.2240865 – volume: 40 start-page: 6400 year: 2013 ident: ref_8 article-title: Analysis of classification accuracy for pre-filtered multichannel remote sensing data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.05.061 – ident: ref_37 doi: 10.1007/978-3-319-25903-1_53 – volume: 76 start-page: 1719 year: 2017 ident: ref_30 article-title: Denoising of Multichannel Images with References publication-title: Telecommun. Radio Eng. doi: 10.1615/TelecomRadEng.v76.i19.40 – ident: ref_13 doi: 10.1109/VCIP.2014.7051609 – volume: 16 start-page: 2080 year: 2007 ident: ref_32 article-title: Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – ident: ref_40 – ident: ref_29 doi: 10.1109/ICIP.2007.4378954 – ident: ref_10 doi: 10.1201/9781420009781 – volume: 50 start-page: 3717 year: 2012 ident: ref_26 article-title: Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2187063 – ident: ref_1 – ident: ref_18 – volume: 9 start-page: 358 year: 2012 ident: ref_22 article-title: Remote-Sensing Image Denoising Using Partial Differential Equations and Auxiliary Images as Priors publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2168598 – ident: ref_3 doi: 10.3390/rs8010070 – volume: 67 start-page: 1369 year: 2008 ident: ref_15 article-title: 3D DCT Based Filtering of Color and Multichannel Images publication-title: Telecommun. Radio Eng. doi: 10.1615/TelecomRadEng.v67.i15.50 – ident: ref_21 – volume: 49 start-page: 973 year: 2011 ident: ref_28 article-title: Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2075937 – volume: 32 start-page: 1860005 year: 2018 ident: ref_34 article-title: Is Texture Denoising Efficiency Predictable? publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001418600054 – volume: 75 start-page: 1167 year: 2016 ident: ref_24 article-title: DCT-based denoising in multichannel imaging with reference publication-title: Telecommun. Radio Eng. doi: 10.1615/TelecomRadEng.v75.i13.30 – ident: ref_33 – volume: 42 start-page: 711 year: 2004 ident: ref_39 article-title: Homomorphic wavelet-based statistical despeckling of SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.821885 – volume: 26 start-page: 4389 year: 2017 ident: ref_14 article-title: MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction? publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2713946 – volume: 90 start-page: 429 year: 2007 ident: ref_9 article-title: Adaptive vector directional filters to process multichannel images publication-title: IEICE Trans. Commun. doi: 10.1093/ietcom/e90-b.2.429 – volume: 21 start-page: 16 year: 2012 ident: ref_38 article-title: Wiener discrete cosine transform-based image filtering publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.21.4.043020 – volume: 50 start-page: 3829 year: 2011 ident: ref_36 article-title: Modeling and estimation of signal-dependent noise in hyperspectral imagery publication-title: Appl. Opt. doi: 10.1364/AO.50.003829 – volume: 77 start-page: 769 year: 2018 ident: ref_31 article-title: Denoising of multichannel images with nonlinear transformation of reference image publication-title: Telecommun. Radio Eng. doi: 10.1615/TelecomRadEng.v77.i9.30 – volume: 5 start-page: 469 year: 2011 ident: ref_6 article-title: Local signal-dependent noise variance estimation from hyperspectral textural images publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2010.2104312 – volume: 13 start-page: 93 year: 2014 ident: ref_2 article-title: Potential Applications of the Sentinel-2 Multispectral Sensor and the ENMAP hyperspectral Sensor in Mineral Exploration publication-title: EARSEL Eproceedings – volume: 51 start-page: 2269 year: 2013 ident: ref_4 article-title: Multiple-Spectral-Band CRFs for Denoising Junk Bands of Hyperspectral Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2209656 – ident: ref_35 doi: 10.1117/12.2193976 – ident: ref_7 doi: 10.3390/rs10010116 – volume: 15 start-page: 654 year: 2006 ident: ref_17 article-title: Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.863698 – volume: 17 start-page: 1 year: 2006 ident: ref_16 article-title: Vector sigma filters for noise detection and removal in color images publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2005.08.007 – volume: 52 start-page: 2314 year: 2014 ident: ref_25 article-title: Hyperspectral Image Denoising With a Spatial–Spectral View Fusion Strategy publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2259245 |
SSID | ssj0000331904 |
Score | 2.2372282 |
Snippet | Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied... |
SourceID | doaj hal proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 611 |
SubjectTerms | BM3D-filtering Collaboration DCT-filtering Engineering Sciences filtering with reference Image enhancement Image filters Image quality multispectral imaging Noise Noise reduction Parameter estimation Principal components analysis Remote sensing Sensors Signal and Image processing Signal processing vectorial (three-dimensional) filtering |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI54HOCCeIrxUgVcOFS0S9LHCTE2NBAgQCBxq_IyQ4IWtoHEv8fusiEQQuqlaZq2tmN_dhObsX0hQMlcQsgBfRORUQ5Im7oQ0BcD5LnOOe13vrxKuvfi_EE--IDbwC-rHOvEWlHbylCM_JCCl6hM0WAevb6FVDWK_q76EhrTbBZVcIbO12yrc3V9O4myRBxFLBKjvKQc_fvD_gANHqL2OP5hieqE_WhferQc8pdWrk3N6SJb8BgxOB4xdYlNuXKZzfly5b3PFXbTKXvELYrsBRUENKmrkk7OXlA_DKit3llb76Ps41htNVSB_gzarqyeKDwQUAA2mKSZXWX3p527k27oayOEhudyGKbSaQNodgwg8NQmS6ylXHoCAJTgEMe6CSrTsZIpT3LjUu2ktHikucok8DU2U-KbrbMg1YlGGJVoCalI8C4QkRKxswhlrOWmwQ7GdCqMTxxO9SueC3QgiKbFN00bbG_S93WULuPPXi0i96QHpbiuG6r-Y-FnTAHQNPgNkbNNtLQu0iLOUbBsZkSmeCIabBeZ9WOM7vFFQW2IWzjiuvQDn7Q15mXhJ-eg-Baljf8vb7J5xEf5aMnZFpsZ9t_dNmKQod7xgvYFGHPbwA priority: 102 providerName: ProQuest |
Title | Enhancement of Component Images of Multispectral Data by Denoising with Reference |
URI | https://www.proquest.com/docview/2304012658 https://univ-rennes.hal.science/hal-02135627 https://doaj.org/article/ff2cb2f0ed2341e0b4194fad8c48a364 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF6a9NBcSvoibl0j2l56ELG8u3oc7dqOW5LQVyA3sa_BgVYutlvIv883kuzGJZBLQSC0rKRlZnfmm2H3GyHeKUVGF5piSYhNVM4ckD4LMSEWI-jcFpLPO5-dp7ML9elSX94q9cV7whp64EZwx0QDZwfUD34Agxv6ViHsJuNzp3Ij05oJFD7vVjBV22CJqdVXDR-pRFx_vFzB0QGtJ8mOB6qJ-uFX5rwN8h9rXLuY6aF43GLDaNiM6Yl4EKqn4lFbpnx-_Ux8mVRz1hJn9KIFRbyYFxU_fPwJu7DitvpEbX1-colvjc3aRPY6GodqccVpgYgTr9GWXva5uJhOvn-YxW1NhNjJQq_jTAfrCO7GEQCndXnqPXPoKSIySlKSQFgmt4nRmUwLFzIbtPa4ssLkmuQLsV9hZEciymxqAZ9SqylTKd4i1TcQsQeE8V66jni_kVPpWsJwrlvxo0TgwDIt_8q0I95u-_5qaDLu7DVicW97MLV13QCFl63Cy_sU3hFvoKydb8yGpyW3Aa9I4LnsD_7U3eiybBflquT8N_wxMNfL_zGQV-IA6KloNqR1xf56-Tu8BkJZ257Yy6cnPfFwOD47_Yb7aHL--WuvnqI36ljnxw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXVF5ioYDF48AhahLbeRwQKmyXXbqthNRKvRk_WSRIyu621f4pfiMzeWxVhLhVyiW24yTjycw3E88MwGshgpalDBEPaJuIgnJAutxHAW2xgGtuSk7xzodH2fhEfD6Vpxvwu4-FoW2VvUxsBLWrLfnId8l5icIUFeb7s18RVY2iv6t9CY2WLQ786hJNtsW7yRDX902ajvaPP46jrqpAZHkpl1EuvbEBBbYNCNmMLTLnKAudCCFowUOSmDTowiRa5jwrrc-Nl9LhkZe6kIHjvLfgtuC8pC-qGH1a-3RijgwdizYLKvbHu_MFqle0EZLkmt5rygOgNpvR5su_dECj2EbbcLdDpGyvZaF7sOGr-7DVFUefrR7Al_1qRrxBfkRWB0YipK7oZPITpdGC2po43iZqc45zDfVSM7NiQ1_V38kZwcjdy9ZJbR_CyY3Q7BFsVvhkj4HlJjMI2jIjQy4yvCqIWIvEOwROznE7gLc9nZTt0pRTtYwfCs0Voqm6oukAXq3HnrXJOf456gORez2CEmo3DfX8m-q-TxVCavEdYu9S1Os-NiIpkY1dYUWheSYG8BIX69oc472pojZESRxRZH6Bd9rp11J1omChrhj3yf-7X8DW-PhwqqaTo4OncAeRWdludtuBzeX83D9D9LM0zxuWY_D1pnn8D7LrGRk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcILWDxOHCwYnt3_Tgg1JJECS1RQVTqzXgfQ5DAbpPQKn-NX8eMH6mKELdKvni9u7ZnP8_LszMAr6TEQmUKfYFkm8iUc0DaxPlIthjSmutM8H7nj7N4ciw_nKiTLfjd7YXhsMqOJ9aM2laGfeQDdl4SMyWBOcA2LOJoOH53euZzBSn-09qV02ggcuDWF2S-Ld9Oh7TWr6NoPPryfuK3FQZ8IzK18hPltEFi3gZJfdMmja3ljHQSEQspMAx1hEWqw0IlIs6MS7RTytKRZEWqUNC8N2A7oSFBD7b3R7OjzxsPTyAI3oFscqIKkQWDxZKELVkMYXhFCtbFAki2zTkU8y-JUIu58V240-qn3l4DqHuw5cr7cKstlT5fP4BPo3LOSGGvolehxwylKvlk-pN405Lb6l299R7OBc01LFaFp9fe0JXVd3ZNeOz89TYpbh_C8bVQ7RH0Snqyx-AlOtakwsVaYSJjGoUyKGToLKlR1grThzcdnXLTJi3n2hk_cjJemKb5JU378HLT97RJ1fHPXvtM7k0PTq9dN1SLb3n7teaIkaF3CJyNSMq7QMswI1Db1Mi0ELHswwtarCtzTPYOc24jnUmQTpmc0512u7XMW8awzC9h_OT_l5_DTcJ3fjidHezAbVLTsibybRd6q8Uv95RUoZV-1mLOg6_XDfM_Ohweqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+Component+Images+of+Multispectral+Data+by+Denoising+with+Reference&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Abramov%2C+Sergey&rft.au=Uss%2C+Mikhail&rft.au=Lukin%2C+Vladimir&rft.au=Vozel%2C+Benoit&rft.date=2019-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=6&rft.spage=611&rft_id=info:doi/10.3390%2Frs11060611&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11060611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |