Enhancement of Component Images of Multispectral Data by Denoising with Reference

Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images—component images having relatively high quality and that are sim...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 6; p. 611
Main Authors Abramov, Sergey, Uss, Mikhail, Lukin, Vladimir, Vozel, Benoit, Chehdi, Kacem, Egiazarian, Karen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images—component images having relatively high quality and that are similar to the image subject to pre-filtering. Here, we study the following problems: how to select component images that can be used as references (e.g., for the Sentinel multispectral remote sensing data) and how to perform the actual denoising. We demonstrate that component images of the same resolution as well as component images of a better resolution can be used as references. To provide high efficiency of denoising, reference images have to be transformed using linear or nonlinear transformations. This paper proposes a practical approach to doing this. Examples of denoising tests and real-life images demonstrate high efficiency of the proposed approach.
AbstractList Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images—component images having relatively high quality and that are similar to the image subject to pre-filtering. Here, we study the following problems: how to select component images that can be used as references (e.g., for the Sentinel multispectral remote sensing data) and how to perform the actual denoising. We demonstrate that component images of the same resolution as well as component images of a better resolution can be used as references. To provide high efficiency of denoising, reference images have to be transformed using linear or nonlinear transformations. This paper proposes a practical approach to doing this. Examples of denoising tests and real-life images demonstrate high efficiency of the proposed approach
Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied to enhance these component images. To do this, one can use reference images—component images having relatively high quality and that are similar to the image subject to pre-filtering. Here, we study the following problems: how to select component images that can be used as references (e.g., for the Sentinel multispectral remote sensing data) and how to perform the actual denoising. We demonstrate that component images of the same resolution as well as component images of a better resolution can be used as references. To provide high efficiency of denoising, reference images have to be transformed using linear or nonlinear transformations. This paper proposes a practical approach to doing this. Examples of denoising tests and real-life images demonstrate high efficiency of the proposed approach.
Author Abramov, Sergey
Egiazarian, Karen
Lukin, Vladimir
Chehdi, Kacem
Vozel, Benoit
Uss, Mikhail
Author_xml – sequence: 1
  givenname: Sergey
  orcidid: 0000-0002-8295-9439
  surname: Abramov
  fullname: Abramov, Sergey
– sequence: 2
  givenname: Mikhail
  surname: Uss
  fullname: Uss, Mikhail
– sequence: 3
  givenname: Vladimir
  surname: Lukin
  fullname: Lukin, Vladimir
– sequence: 4
  givenname: Benoit
  orcidid: 0000-0002-1920-2847
  surname: Vozel
  fullname: Vozel, Benoit
– sequence: 5
  givenname: Kacem
  surname: Chehdi
  fullname: Chehdi, Kacem
– sequence: 6
  givenname: Karen
  surname: Egiazarian
  fullname: Egiazarian, Karen
BackLink https://univ-rennes.hal.science/hal-02135627$$DView record in HAL
BookMark eNptkV1LXDEQhkNRqFVv-gsOeNXC1nyej0tZtS6sSItehzk5k90sZ5M1ySr--2a7pbViCCR5efLAzHwiBz54JOQzo9-E6Oh5TIzRmtaMfSBHnDZ8InnHD17dP5LTlFa0LCFYR-UR-XHll-ANrtHnKthqGtabYi2P2RoWmHbZ7XbMLm3Q5AhjdQkZqv6lukQfXHJ-UT27vKx-osWIxXRCDi2MCU__nMfk4frqfnozmd99n00v5hMjOpUnjcLeWMaFsS3re9PWw6AkbaS1FqSwjPXcQtszUI2oO4NNj0oNZTcdtMqKYzLbe4cAK72Jbg3xRQdw-ncQ4kJDzM6MqK3lptgoDlxIhrSXrJMWhtbIFkQti-vL3rWE8T_VzcVc7zLKmVA1b55YYc_27CaGxy2mrFdhG30pVXNBJWW8Vm2hvu4pE0NKEe1fLaN6Ny39b1oFpm9g4zJkF3zpuBvf-_ILDoKXww
CitedBy_id crossref_primary_10_1080_13682199_2024_2449273
crossref_primary_10_1007_s11220_024_00504_2
Cites_doi 10.1109/5.54807
10.1109/IGARSS.2008.4779059
10.1109/IGARSS.2006.104
10.1109/JSEN.2009.2037800
10.1186/1687-6180-2011-41
10.1117/12.2240865
10.1016/j.eswa.2013.05.061
10.1007/978-3-319-25903-1_53
10.1615/TelecomRadEng.v76.i19.40
10.1109/VCIP.2014.7051609
10.1109/TIP.2007.901238
10.1109/ICIP.2007.4378954
10.1201/9781420009781
10.1109/TGRS.2012.2187063
10.1109/LGRS.2011.2168598
10.3390/rs8010070
10.1615/TelecomRadEng.v67.i15.50
10.1109/TGRS.2010.2075937
10.1142/S0218001418600054
10.1615/TelecomRadEng.v75.i13.30
10.1109/TGRS.2003.821885
10.1109/TIP.2017.2713946
10.1093/ietcom/e90-b.2.429
10.1117/1.JEI.21.4.043020
10.1364/AO.50.003829
10.1615/TelecomRadEng.v77.i9.30
10.1109/JSTSP.2010.2104312
10.1109/TGRS.2012.2209656
10.1117/12.2193976
10.3390/rs10010116
10.1109/TIP.2005.863698
10.1016/j.jvcir.2005.08.007
10.1109/TGRS.2013.2259245
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOA
DOI 10.3390/rs11060611
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ff2cb2f0ed2341e0b4194fad8c48a364
oai_HAL_hal_02135627v1
10_3390_rs11060611
GeographicLocations France
United States--US
GeographicLocations_xml – name: United States--US
– name: France
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
2XV
C1A
IAO
IPNFZ
ITC
RIG
VOOES
PUEGO
ID FETCH-LOGICAL-c395t-75ebcf123cf81bbc86dd54074fffa43f11b2fa8b1a57369ce7be55d55d79a85f3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:23:16 EDT 2025
Fri May 09 12:48:29 EDT 2025
Fri Jul 25 12:08:35 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Tue Jul 01 04:14:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords multispectral imaging
vectorial (three-dimensional) filtering
remote sensing
BM3D-filtering
DCT-filtering
filtering with reference
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-75ebcf123cf81bbc86dd54074fffa43f11b2fa8b1a57369ce7be55d55d79a85f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8295-9439
0000-0002-1920-2847
OpenAccessLink https://doaj.org/article/ff2cb2f0ed2341e0b4194fad8c48a364
PQID 2304012658
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ff2cb2f0ed2341e0b4194fad8c48a364
hal_primary_oai_HAL_hal_02135627v1
proquest_journals_2304012658
crossref_primary_10_3390_rs11060611
crossref_citationtrail_10_3390_rs11060611
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Deledalle (ref_14) 2017; 26
Wang (ref_27) 2010; 10
ref_13
ref_35
ref_12
Rubel (ref_34) 2018; 32
ref_33
ref_10
Dabov (ref_32) 2007; 16
ref_18
Lukin (ref_30) 2017; 76
Liu (ref_26) 2012; 50
Ponomaryov (ref_9) 2007; 90
ref_37
Pogrebnyak (ref_38) 2012; 21
Ponomarenko (ref_15) 2008; 67
Lukac (ref_16) 2006; 17
Lukin (ref_8) 2013; 40
Uss (ref_6) 2011; 5
Astola (ref_11) 1990; 78
ref_23
Yuan (ref_25) 2014; 52
ref_21
Lukin (ref_24) 2016; 75
ref_20
Solbo (ref_39) 2004; 42
Fevralev (ref_19) 2011; 2011
ref_40
ref_1
ref_3
Liu (ref_22) 2012; 9
ref_29
Zhong (ref_4) 2013; 51
Pizurica (ref_17) 2006; 15
Abramov (ref_31) 2018; 77
Meola (ref_36) 2011; 50
ref_5
Mielke (ref_2) 2014; 13
ref_7
Chen (ref_28) 2011; 49
References_xml – volume: 78
  start-page: 678
  year: 1990
  ident: ref_11
  article-title: Vector median filters
  publication-title: Proc. IEEE
  doi: 10.1109/5.54807
– ident: ref_12
  doi: 10.1109/IGARSS.2008.4779059
– ident: ref_5
– ident: ref_23
  doi: 10.1109/IGARSS.2006.104
– volume: 10
  start-page: 469
  year: 2010
  ident: ref_27
  article-title: Anisotropic Diffusion for Hyperspectral Imagery Enhancement
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2009.2037800
– volume: 2011
  start-page: 41
  year: 2011
  ident: ref_19
  article-title: Efficiency analysis of color image filtering
  publication-title: EURASIP J. Adv. Signal. Process.
  doi: 10.1186/1687-6180-2011-41
– ident: ref_20
  doi: 10.1117/12.2240865
– volume: 40
  start-page: 6400
  year: 2013
  ident: ref_8
  article-title: Analysis of classification accuracy for pre-filtered multichannel remote sensing data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.05.061
– ident: ref_37
  doi: 10.1007/978-3-319-25903-1_53
– volume: 76
  start-page: 1719
  year: 2017
  ident: ref_30
  article-title: Denoising of Multichannel Images with References
  publication-title: Telecommun. Radio Eng.
  doi: 10.1615/TelecomRadEng.v76.i19.40
– ident: ref_13
  doi: 10.1109/VCIP.2014.7051609
– volume: 16
  start-page: 2080
  year: 2007
  ident: ref_32
  article-title: Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– ident: ref_40
– ident: ref_29
  doi: 10.1109/ICIP.2007.4378954
– ident: ref_10
  doi: 10.1201/9781420009781
– volume: 50
  start-page: 3717
  year: 2012
  ident: ref_26
  article-title: Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2187063
– ident: ref_1
– ident: ref_18
– volume: 9
  start-page: 358
  year: 2012
  ident: ref_22
  article-title: Remote-Sensing Image Denoising Using Partial Differential Equations and Auxiliary Images as Priors
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2168598
– ident: ref_3
  doi: 10.3390/rs8010070
– volume: 67
  start-page: 1369
  year: 2008
  ident: ref_15
  article-title: 3D DCT Based Filtering of Color and Multichannel Images
  publication-title: Telecommun. Radio Eng.
  doi: 10.1615/TelecomRadEng.v67.i15.50
– ident: ref_21
– volume: 49
  start-page: 973
  year: 2011
  ident: ref_28
  article-title: Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2075937
– volume: 32
  start-page: 1860005
  year: 2018
  ident: ref_34
  article-title: Is Texture Denoising Efficiency Predictable?
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001418600054
– volume: 75
  start-page: 1167
  year: 2016
  ident: ref_24
  article-title: DCT-based denoising in multichannel imaging with reference
  publication-title: Telecommun. Radio Eng.
  doi: 10.1615/TelecomRadEng.v75.i13.30
– ident: ref_33
– volume: 42
  start-page: 711
  year: 2004
  ident: ref_39
  article-title: Homomorphic wavelet-based statistical despeckling of SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.821885
– volume: 26
  start-page: 4389
  year: 2017
  ident: ref_14
  article-title: MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2713946
– volume: 90
  start-page: 429
  year: 2007
  ident: ref_9
  article-title: Adaptive vector directional filters to process multichannel images
  publication-title: IEICE Trans. Commun.
  doi: 10.1093/ietcom/e90-b.2.429
– volume: 21
  start-page: 16
  year: 2012
  ident: ref_38
  article-title: Wiener discrete cosine transform-based image filtering
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.21.4.043020
– volume: 50
  start-page: 3829
  year: 2011
  ident: ref_36
  article-title: Modeling and estimation of signal-dependent noise in hyperspectral imagery
  publication-title: Appl. Opt.
  doi: 10.1364/AO.50.003829
– volume: 77
  start-page: 769
  year: 2018
  ident: ref_31
  article-title: Denoising of multichannel images with nonlinear transformation of reference image
  publication-title: Telecommun. Radio Eng.
  doi: 10.1615/TelecomRadEng.v77.i9.30
– volume: 5
  start-page: 469
  year: 2011
  ident: ref_6
  article-title: Local signal-dependent noise variance estimation from hyperspectral textural images
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2010.2104312
– volume: 13
  start-page: 93
  year: 2014
  ident: ref_2
  article-title: Potential Applications of the Sentinel-2 Multispectral Sensor and the ENMAP hyperspectral Sensor in Mineral Exploration
  publication-title: EARSEL Eproceedings
– volume: 51
  start-page: 2269
  year: 2013
  ident: ref_4
  article-title: Multiple-Spectral-Band CRFs for Denoising Junk Bands of Hyperspectral Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2209656
– ident: ref_35
  doi: 10.1117/12.2193976
– ident: ref_7
  doi: 10.3390/rs10010116
– volume: 15
  start-page: 654
  year: 2006
  ident: ref_17
  article-title: Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.863698
– volume: 17
  start-page: 1
  year: 2006
  ident: ref_16
  article-title: Vector sigma filters for noise detection and removal in color images
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2005.08.007
– volume: 52
  start-page: 2314
  year: 2014
  ident: ref_25
  article-title: Hyperspectral Image Denoising With a Spatial–Spectral View Fusion Strategy
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2259245
SSID ssj0000331904
Score 2.2372282
Snippet Multispectral remote sensing data may contain component images that are heavily corrupted by noise and the pre-filtering (denoising) procedure is often applied...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 611
SubjectTerms BM3D-filtering
Collaboration
DCT-filtering
Engineering Sciences
filtering with reference
Image enhancement
Image filters
Image quality
multispectral imaging
Noise
Noise reduction
Parameter estimation
Principal components analysis
Remote sensing
Sensors
Signal and Image processing
Signal processing
vectorial (three-dimensional) filtering
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI54HOCCeIrxUgVcOFS0S9LHCTE2NBAgQCBxq_IyQ4IWtoHEv8fusiEQQuqlaZq2tmN_dhObsX0hQMlcQsgBfRORUQ5Im7oQ0BcD5LnOOe13vrxKuvfi_EE--IDbwC-rHOvEWlHbylCM_JCCl6hM0WAevb6FVDWK_q76EhrTbBZVcIbO12yrc3V9O4myRBxFLBKjvKQc_fvD_gANHqL2OP5hieqE_WhferQc8pdWrk3N6SJb8BgxOB4xdYlNuXKZzfly5b3PFXbTKXvELYrsBRUENKmrkk7OXlA_DKit3llb76Ps41htNVSB_gzarqyeKDwQUAA2mKSZXWX3p527k27oayOEhudyGKbSaQNodgwg8NQmS6ylXHoCAJTgEMe6CSrTsZIpT3LjUu2ktHikucok8DU2U-KbrbMg1YlGGJVoCalI8C4QkRKxswhlrOWmwQ7GdCqMTxxO9SueC3QgiKbFN00bbG_S93WULuPPXi0i96QHpbiuG6r-Y-FnTAHQNPgNkbNNtLQu0iLOUbBsZkSmeCIabBeZ9WOM7vFFQW2IWzjiuvQDn7Q15mXhJ-eg-Baljf8vb7J5xEf5aMnZFpsZ9t_dNmKQod7xgvYFGHPbwA
  priority: 102
  providerName: ProQuest
Title Enhancement of Component Images of Multispectral Data by Denoising with Reference
URI https://www.proquest.com/docview/2304012658
https://univ-rennes.hal.science/hal-02135627
https://doaj.org/article/ff2cb2f0ed2341e0b4194fad8c48a364
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF6a9NBcSvoibl0j2l56ELG8u3oc7dqOW5LQVyA3sa_BgVYutlvIv883kuzGJZBLQSC0rKRlZnfmm2H3GyHeKUVGF5piSYhNVM4ckD4LMSEWI-jcFpLPO5-dp7ML9elSX94q9cV7whp64EZwx0QDZwfUD34Agxv6ViHsJuNzp3Ij05oJFD7vVjBV22CJqdVXDR-pRFx_vFzB0QGtJ8mOB6qJ-uFX5rwN8h9rXLuY6aF43GLDaNiM6Yl4EKqn4lFbpnx-_Ux8mVRz1hJn9KIFRbyYFxU_fPwJu7DitvpEbX1-colvjc3aRPY6GodqccVpgYgTr9GWXva5uJhOvn-YxW1NhNjJQq_jTAfrCO7GEQCndXnqPXPoKSIySlKSQFgmt4nRmUwLFzIbtPa4ssLkmuQLsV9hZEciymxqAZ9SqylTKd4i1TcQsQeE8V66jni_kVPpWsJwrlvxo0TgwDIt_8q0I95u-_5qaDLu7DVicW97MLV13QCFl63Cy_sU3hFvoKydb8yGpyW3Aa9I4LnsD_7U3eiybBflquT8N_wxMNfL_zGQV-IA6KloNqR1xf56-Tu8BkJZ257Yy6cnPfFwOD47_Yb7aHL--WuvnqI36ljnxw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXVF5ioYDF48AhahLbeRwQKmyXXbqthNRKvRk_WSRIyu621f4pfiMzeWxVhLhVyiW24yTjycw3E88MwGshgpalDBEPaJuIgnJAutxHAW2xgGtuSk7xzodH2fhEfD6Vpxvwu4-FoW2VvUxsBLWrLfnId8l5icIUFeb7s18RVY2iv6t9CY2WLQ786hJNtsW7yRDX902ajvaPP46jrqpAZHkpl1EuvbEBBbYNCNmMLTLnKAudCCFowUOSmDTowiRa5jwrrc-Nl9LhkZe6kIHjvLfgtuC8pC-qGH1a-3RijgwdizYLKvbHu_MFqle0EZLkmt5rygOgNpvR5su_dECj2EbbcLdDpGyvZaF7sOGr-7DVFUefrR7Al_1qRrxBfkRWB0YipK7oZPITpdGC2po43iZqc45zDfVSM7NiQ1_V38kZwcjdy9ZJbR_CyY3Q7BFsVvhkj4HlJjMI2jIjQy4yvCqIWIvEOwROznE7gLc9nZTt0pRTtYwfCs0Voqm6oukAXq3HnrXJOf456gORez2CEmo3DfX8m-q-TxVCavEdYu9S1Os-NiIpkY1dYUWheSYG8BIX69oc472pojZESRxRZH6Bd9rp11J1omChrhj3yf-7X8DW-PhwqqaTo4OncAeRWdludtuBzeX83D9D9LM0zxuWY_D1pnn8D7LrGRk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcILWDxOHCwYnt3_Tgg1JJECS1RQVTqzXgfQ5DAbpPQKn-NX8eMH6mKELdKvni9u7ZnP8_LszMAr6TEQmUKfYFkm8iUc0DaxPlIthjSmutM8H7nj7N4ciw_nKiTLfjd7YXhsMqOJ9aM2laGfeQDdl4SMyWBOcA2LOJoOH53euZzBSn-09qV02ggcuDWF2S-Ld9Oh7TWr6NoPPryfuK3FQZ8IzK18hPltEFi3gZJfdMmja3ljHQSEQspMAx1hEWqw0IlIs6MS7RTytKRZEWqUNC8N2A7oSFBD7b3R7OjzxsPTyAI3oFscqIKkQWDxZKELVkMYXhFCtbFAki2zTkU8y-JUIu58V240-qn3l4DqHuw5cr7cKstlT5fP4BPo3LOSGGvolehxwylKvlk-pN405Lb6l299R7OBc01LFaFp9fe0JXVd3ZNeOz89TYpbh_C8bVQ7RH0Snqyx-AlOtakwsVaYSJjGoUyKGToLKlR1grThzcdnXLTJi3n2hk_cjJemKb5JU378HLT97RJ1fHPXvtM7k0PTq9dN1SLb3n7teaIkaF3CJyNSMq7QMswI1Db1Mi0ELHswwtarCtzTPYOc24jnUmQTpmc0512u7XMW8awzC9h_OT_l5_DTcJ3fjidHezAbVLTsibybRd6q8Uv95RUoZV-1mLOg6_XDfM_Ohweqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+Component+Images+of+Multispectral+Data+by+Denoising+with+Reference&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Abramov%2C+Sergey&rft.au=Uss%2C+Mikhail&rft.au=Lukin%2C+Vladimir&rft.au=Vozel%2C+Benoit&rft.date=2019-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=6&rft.spage=611&rft_id=info:doi/10.3390%2Frs11060611&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11060611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon