Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells
With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell...
Saved in:
Published in | Environmental pollution (1987) Vol. 280; p. 116974 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0269-7491 1873-6424 1873-6424 |
DOI | 10.1016/j.envpol.2021.116974 |
Cover
Loading…
Abstract | With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.
[Display omitted]
•Nanoplastics are visible in gastric and other tissues of mice after treatment.•Nanoplastics entering GES-1 cells rely on endocytosis and macropinocytosis.•Nanoplastics regulate endocytosis through RhoA/F-actin signaling pathway.•Internalized nanoplastics produce cytotoxicity to GES-1 cells.
The main finding is that PS-NPs can enter mouse tissues and GES-1 cells through endocytosis regulated by the RhoA/F-actin pathways and produce cytotoxicity. |
---|---|
AbstractList | With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health. With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health. With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health. With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health. [Display omitted] •Nanoplastics are visible in gastric and other tissues of mice after treatment.•Nanoplastics entering GES-1 cells rely on endocytosis and macropinocytosis.•Nanoplastics regulate endocytosis through RhoA/F-actin signaling pathway.•Internalized nanoplastics produce cytotoxicity to GES-1 cells. The main finding is that PS-NPs can enter mouse tissues and GES-1 cells through endocytosis regulated by the RhoA/F-actin pathways and produce cytotoxicity. |
ArticleNumber | 116974 |
Author | Wu, Yulong Li, Boqing Tong, Xiaohan Du, Yunqiu Ji, Xiaofei Zhang, Ruiqing Ding, Yunfei Zhang, Ying Li, Jing |
Author_xml | – sequence: 1 givenname: Yunfei surname: Ding fullname: Ding, Yunfei – sequence: 2 givenname: Ruiqing surname: Zhang fullname: Zhang, Ruiqing – sequence: 3 givenname: Boqing surname: Li fullname: Li, Boqing – sequence: 4 givenname: Yunqiu surname: Du fullname: Du, Yunqiu – sequence: 5 givenname: Jing surname: Li fullname: Li, Jing – sequence: 6 givenname: Xiaohan surname: Tong fullname: Tong, Xiaohan – sequence: 7 givenname: Yulong surname: Wu fullname: Wu, Yulong – sequence: 8 givenname: Xiaofei surname: Ji fullname: Ji, Xiaofei – sequence: 9 givenname: Ying surname: Zhang fullname: Zhang, Ying email: zhangying@bzmu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33784569$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKcDb4CQlyyawX9xYhZIqGoLUiUWzN5y7BvhUcYOtlORt-FZeDIypN10Aay8uOc7sr5zgc5CDIDQa0p2lFD57rCDcD_GYccIoztKpWrEM7ShbcMrKZg4QxvCpKoaoeg5usj5QAgRnPMX6JzzphW1VBtU9j7nCbDzuSTfTcXHgGOPl-I5lzlBABxMiONgcvE2Yx_w0VvAJjhcvoFPGEJJ8yUuyYQ8xlQu_9zsXGKJP7z1ZcYl4tvrrxX99dPCMOSX6HlvhgyvHt4t2t9c768-VXdfbj9ffbyrLFd1qWRvbN9x06mOqJ47IVrWE6JE2ylnbFe71rpWSWE5YbzlghPFQPKeS9kLxrfo7Vo7pvh9glz00efTB0yAOGXN6pqquhVM_keUNFIqsQjcojcP0ak7gtNj8keTZv3odAm8XwM2xZwT9HpxYE5iF0V-0JTo04D6oNcB9WlAvQ64wOIJ_Nj_D-zDisGi895D0tl6CBacT2CLdtH_veA3qj64qA |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2022_130617 crossref_primary_10_1016_j_imlet_2025_106976 crossref_primary_10_1038_s41598_023_28712_y crossref_primary_10_1016_j_tox_2024_153792 crossref_primary_10_1016_j_heliyon_2024_e32261 crossref_primary_10_3389_fmicb_2021_768297 crossref_primary_10_1016_j_scitotenv_2022_153331 crossref_primary_10_1016_j_trac_2023_117092 crossref_primary_10_3389_fnut_2023_1186724 crossref_primary_10_1016_j_envint_2023_107968 crossref_primary_10_1007_s12672_024_01281_w crossref_primary_10_1016_j_cbi_2023_110502 crossref_primary_10_1016_j_scitotenv_2022_158111 crossref_primary_10_1016_j_aquatox_2024_107215 crossref_primary_10_1016_j_envpol_2024_123713 crossref_primary_10_1016_j_scitotenv_2023_163144 crossref_primary_10_1039_D1EN00465D crossref_primary_10_1016_j_jconhyd_2024_104365 crossref_primary_10_1016_j_chemosphere_2022_135662 crossref_primary_10_3389_fenvs_2023_1241939 crossref_primary_10_1016_j_watcyc_2024_12_003 crossref_primary_10_1016_j_cotox_2021_09_004 crossref_primary_10_1016_j_scitotenv_2023_169514 crossref_primary_10_1016_j_ecoenv_2023_114569 crossref_primary_10_1016_j_bbagen_2022_130300 crossref_primary_10_3390_biomedicines11020264 crossref_primary_10_3389_fpubh_2023_1103289 crossref_primary_10_61186_JCT_15_2_176 crossref_primary_10_1021_acs_est_3c00990 crossref_primary_10_1002_jbt_23429 crossref_primary_10_1002_smll_202201680 crossref_primary_10_1007_s12011_023_03835_5 crossref_primary_10_1016_j_impact_2025_100549 crossref_primary_10_1016_j_jconrel_2024_11_045 crossref_primary_10_1021_acs_bioconjchem_3c00429 crossref_primary_10_1016_j_ecoenv_2023_115447 crossref_primary_10_1016_j_scitotenv_2023_169228 crossref_primary_10_3390_toxics11050441 crossref_primary_10_1016_j_tiv_2024_105893 crossref_primary_10_1016_j_envpol_2025_126014 crossref_primary_10_1016_j_envpol_2022_119206 crossref_primary_10_1016_j_jhazmat_2025_137714 crossref_primary_10_1016_j_ecoenv_2024_117180 crossref_primary_10_1007_s40516_023_00214_9 crossref_primary_10_1016_j_ecoenv_2022_113586 crossref_primary_10_1016_j_jhazmat_2023_131019 crossref_primary_10_1016_j_scitotenv_2022_158017 crossref_primary_10_1016_j_toxlet_2024_04_004 crossref_primary_10_1021_acs_est_2c03980 crossref_primary_10_1186_s40104_024_01077_6 crossref_primary_10_1016_j_chemosphere_2023_139194 crossref_primary_10_1016_j_envpol_2024_123473 crossref_primary_10_1002_jat_4378 crossref_primary_10_1016_j_ecoenv_2023_115676 crossref_primary_10_1016_j_jes_2024_11_022 crossref_primary_10_1016_j_seppur_2022_122174 crossref_primary_10_1002_jcp_30913 crossref_primary_10_1016_j_jhazmat_2024_136052 crossref_primary_10_1016_j_ecoenv_2022_113905 crossref_primary_10_3389_fnut_2023_1186951 crossref_primary_10_1002_tox_23678 crossref_primary_10_3892_mmr_2025_13463 crossref_primary_10_1021_acsnano_4c02335 crossref_primary_10_3390_toxics12070493 crossref_primary_10_3390_microplastics4010004 crossref_primary_10_1016_j_chemosphere_2022_134566 crossref_primary_10_1016_j_etap_2022_104038 crossref_primary_10_1021_acsnano_3c11734 crossref_primary_10_1016_j_envpol_2023_121668 crossref_primary_10_1016_j_heliyon_2024_e41298 crossref_primary_10_1016_j_ecoenv_2024_116439 crossref_primary_10_1016_j_envint_2024_108736 crossref_primary_10_1186_s12989_024_00590_w crossref_primary_10_1007_s44169_022_00013_x crossref_primary_10_1016_j_jhazmat_2024_134586 crossref_primary_10_1186_s12989_024_00578_6 crossref_primary_10_1016_j_fct_2023_113938 crossref_primary_10_1016_j_trac_2023_117175 crossref_primary_10_1016_j_envint_2023_108172 crossref_primary_10_1007_s00204_024_03847_7 crossref_primary_10_1016_j_scitotenv_2023_168064 crossref_primary_10_1016_j_ecoenv_2025_117757 crossref_primary_10_1016_j_ijbiomac_2023_124951 crossref_primary_10_1016_j_chemosphere_2021_132579 crossref_primary_10_1080_10937404_2024_2330962 crossref_primary_10_1016_j_toxlet_2023_08_011 crossref_primary_10_34133_research_0609 crossref_primary_10_3389_fnmol_2024_1345536 crossref_primary_10_1016_j_scitotenv_2022_158686 crossref_primary_10_1039_D2EM00386D crossref_primary_10_1016_j_ecoenv_2022_114385 crossref_primary_10_1016_j_hazadv_2024_100487 crossref_primary_10_1016_j_impact_2023_100481 crossref_primary_10_1080_17435390_2024_2368004 crossref_primary_10_1039_D2EN00963C crossref_primary_10_1016_j_ecoenv_2023_115403 crossref_primary_10_1016_j_nano_2023_102685 crossref_primary_10_1016_j_cotox_2021_10_001 crossref_primary_10_3389_fcell_2025_1539600 crossref_primary_10_1016_j_jhazmat_2021_127628 crossref_primary_10_3390_nano13010084 crossref_primary_10_1021_acsinfecdis_4c00288 crossref_primary_10_1007_s11270_023_06201_2 crossref_primary_10_1016_j_jhazmat_2021_126092 crossref_primary_10_1016_j_envpol_2022_119924 crossref_primary_10_1016_j_scitotenv_2023_163560 crossref_primary_10_1016_j_envint_2025_109338 crossref_primary_10_1186_s12989_022_00473_y crossref_primary_10_1016_j_ecoenv_2023_114941 crossref_primary_10_1007_s10661_024_13292_9 crossref_primary_10_1021_acs_est_4c03231 crossref_primary_10_1093_toxsci_kfae019 crossref_primary_10_1016_j_jhazmat_2023_131465 crossref_primary_10_3390_ijerph191811593 |
Cites_doi | 10.2217/nnm.13.176 10.1016/j.scitotenv.2020.138180 10.1038/cdd.2013.187 10.1177/002215549704500107 10.1186/2193-1801-2-398 10.3109/17435390.2014.988664 10.1007/s00204-020-02805-3 10.1111/febs.14493 10.1289/ehp.9209 10.1038/s41419-017-0011-x 10.1038/nrm2728 10.1002/mabi.200800123 10.1021/acs.est.6b06155 10.3109/10611869409015904 10.2147/IJN.S197565 10.1021/nn103077k 10.1186/1477-3155-12-5 10.3389/fchem.2015.00048 10.1016/j.envpol.2017.08.032 10.1111/cpr.12319 10.1016/j.biomaterials.2015.05.033 10.1101/pdb.prot4947 10.1039/C4NR05509H 10.1039/C5EM00207A 10.1016/j.envres.2020.110536 10.1021/acs.est.8b05512 10.1021/nn305930e 10.1016/j.envpol.2018.01.024 10.4161/auto.36293 10.1016/j.canlet.2019.04.013 10.1016/j.envpol.2019.03.047 10.1038/nrm2122 10.1016/j.copbio.2016.11.012 10.1021/acs.est.6b04379 10.1016/j.envpol.2017.11.043 10.2147/IJN.S123596 10.1016/j.scitotenv.2019.133794 10.1016/S0037-1963(01)90051-4 10.1016/j.envres.2017.08.043 10.1007/978-1-62703-444-9_28 10.1007/978-1-4939-8935-5_33 10.3762/bjnano.5.174 10.1016/j.scitotenv.2017.12.020 10.1021/nn502754c 10.1098/rsob.170271 10.4161/sgtp.29469 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2021.116974 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 33784569 10_1016_j_envpol_2021_116974 S026974912100556X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- RIG SEN SEW SSH VH1 WUQ XJT XOL NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-6facfb3ab9b09f3d4482f00948b9dacb5d8cd8964c30238343092e63f366f423 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Thu Sep 04 19:54:25 EDT 2025 Fri Sep 05 10:08:41 EDT 2025 Wed Feb 19 02:27:51 EST 2025 Tue Jul 01 03:15:08 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Fri Feb 23 02:45:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Endocytosis Proliferation Autophagy Nanoplastics Apoptosis |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-6facfb3ab9b09f3d4482f00948b9dacb5d8cd8964c30238343092e63f366f423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33784569 |
PQID | 2507669404 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551958426 proquest_miscellaneous_2507669404 pubmed_primary_33784569 crossref_citationtrail_10_1016_j_envpol_2021_116974 crossref_primary_10_1016_j_envpol_2021_116974 elsevier_sciencedirect_doi_10_1016_j_envpol_2021_116974 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wilkinson, Hooda, Barker, Barton, Swinden (bib40) 2017; 231 Lu, Zhang, Deng, Jiang, Zhao, Geng, Ding, Ren (bib22) 2016; 50 Lin, Huang, Wu, Zhou, Jin, Wei, Zhang, Zheng, Zhang, Xu, Hu, Wang, Li, Gu, Wen (bib21) 2014; 10 Yousif, Haddad (bib44) 2013; 2 Domenech, Hernández, Rubio, Marcos, Cortés (bib10) 2020; 94 Song, Hong, Jang, Han, Jung, Shim (bib32) 2017; 51 Wang, Yu, Lu, Yang, Li, Zhou, Sun (bib38) 2017; 12 Zhou, Yin, Chang, Sun, Lin, Dai (bib47) 2017; 50 Smith, Simpson, Kim, Carter, Feldheim (bib29) 2013; 27 Guilhermino, Vieira, Ribeiro, Tavares, Cardoso, Alves, Almeida (bib14) 2018; 622–623 Xu, Halimu, Zhang, Song, Fu, Li, Li, Zhang (bib42) 2019; 694 Zhu, Xue, Zhang, Jia, Tong, Han, Li, Xiang, Mao, Tang (bib48) 2017; 8 Gewert, Plassmann, MacLeod (bib12) 2015; 17 Kuhn, Vanhecke, Michen, Blank, Gehr, Petri-Fink, Rothen-Rutishauser (bib19) 2014; 5 Son, Sokolowski, Zhou (bib30) 2013; 1018 Chiu, Xia, Lee, Chen, Tsai, Wang (bib4) 2015; 7 Hillery, Jani, Florence (bib17) 1994; 2 Croisé, Estay-Ahumada, Gasman, Ory (bib6) 2014; 5 Stenmark (bib33) 2009; 10 Deng, Zhang, Lemos, Ren (bib9) 2017; 7 Schirinzi, Pérez-Pomeda, Sanchís, Rossini, Farré, Barceló (bib26) 2017; 159 Darzynkiewicz, Bedner, Smolewski (bib7) 2001; 38 Tizro, Choi, Khanlou (bib35) 2019; 1897 Yang, Bao, Chai, Wang, Sun, Fu, Liu, Liu, Meng, Liu (bib43) 2019; 14 Walczak, Kramer, Hendriksen, Helsdingen, van der Zande, Rietjens, Bouwmeester (bib36) 2015; 9 Wu, Lin, Liu, Huang, Zhao, Jin, Wang, Wen, Gu (bib41) 2015; 62 Zhang, Qiao, Guo, Liu, Yang, Liu, Jin, Fu, Wang, Li (bib46) 2019; 455 Hofmann, Tenzer, Bannwarth, Messerschmidt, Glaser, Schild, Landfester, Mailänder (bib16) 2014; 8 Sendra, Staffieri, Yeste, Moreno-Garrido, Gatica, Corsi, Blasco (bib27) 2019; 249 Shang, Nienhaus, Nienhaus (bib28) 2014; 12 Gigault, Halle, Baudrimont, Pascal, Gauffre, Phi, El Hadri, Grassl, Reynaud (bib13) 2018; 235 Miao, Tipakornsaowapak, Zheng, Mu, Lewellyn (bib23) 2018; 285 Dausend, Musyanovych, Dass, Walther, Schrezenmeier, Landfester, Mailänder (bib8) 2008; 8 Contado (bib5) 2015; 3 Song, Zhou, Liu, Ge, Li (bib31) 2019; 18 Eleftheriadou, Pyrgiotakis, Demokritou (bib11) 2017; 44 He, Li, Chen, Miao, Li, He, Xu, Li, Wei (bib15) 2020; 723 Suzuki, Fujikura, Higashiyama, Takata (bib34) 1997; 45 Wang, Salvati, Boya (bib39) 2018; 8 Busch, Bredeck, Kämpfer, Schins (bib2) 2021; 193 Prata (bib25) 2018; 234 Wang, Du, Song, Chen (bib37) 2013; 8 Zhao, Sun, Zhang, Trewyn, Slowing, Lin (bib45) 2011; 5 Ao, Zou, Wu (bib1) 2014; 21 Lehner, Weder, Petri-Fink, Rothen-Rutishauser (bib20) 2019; 53 Kashiwada (bib18) 2006; 114 Parton, Simons (bib24) 2007; 8 Chazotte (bib3) 2010; 2010 Dausend (10.1016/j.envpol.2021.116974_bib8) 2008; 8 Wang (10.1016/j.envpol.2021.116974_bib38) 2017; 12 Wilkinson (10.1016/j.envpol.2021.116974_bib40) 2017; 231 Gigault (10.1016/j.envpol.2021.116974_bib13) 2018; 235 Shang (10.1016/j.envpol.2021.116974_bib28) 2014; 12 Song (10.1016/j.envpol.2021.116974_bib32) 2017; 51 Walczak (10.1016/j.envpol.2021.116974_bib36) 2015; 9 Xu (10.1016/j.envpol.2021.116974_bib42) 2019; 694 Lu (10.1016/j.envpol.2021.116974_bib22) 2016; 50 Wu (10.1016/j.envpol.2021.116974_bib41) 2015; 62 Chiu (10.1016/j.envpol.2021.116974_bib4) 2015; 7 Ao (10.1016/j.envpol.2021.116974_bib1) 2014; 21 Eleftheriadou (10.1016/j.envpol.2021.116974_bib11) 2017; 44 Smith (10.1016/j.envpol.2021.116974_bib29) 2013; 27 Zhu (10.1016/j.envpol.2021.116974_bib48) 2017; 8 Lin (10.1016/j.envpol.2021.116974_bib21) 2014; 10 Yang (10.1016/j.envpol.2021.116974_bib43) 2019; 14 Busch (10.1016/j.envpol.2021.116974_bib2) 2021; 193 Prata (10.1016/j.envpol.2021.116974_bib25) 2018; 234 Parton (10.1016/j.envpol.2021.116974_bib24) 2007; 8 Son (10.1016/j.envpol.2021.116974_bib30) 2013; 1018 Wang (10.1016/j.envpol.2021.116974_bib39) 2018; 8 Gewert (10.1016/j.envpol.2021.116974_bib12) 2015; 17 Kashiwada (10.1016/j.envpol.2021.116974_bib18) 2006; 114 He (10.1016/j.envpol.2021.116974_bib15) 2020; 723 Kuhn (10.1016/j.envpol.2021.116974_bib19) 2014; 5 Stenmark (10.1016/j.envpol.2021.116974_bib33) 2009; 10 Darzynkiewicz (10.1016/j.envpol.2021.116974_bib7) 2001; 38 Wang (10.1016/j.envpol.2021.116974_bib37) 2013; 8 Croisé (10.1016/j.envpol.2021.116974_bib6) 2014; 5 Hillery (10.1016/j.envpol.2021.116974_bib17) 1994; 2 Contado (10.1016/j.envpol.2021.116974_bib5) 2015; 3 Song (10.1016/j.envpol.2021.116974_bib31) 2019; 18 Zhou (10.1016/j.envpol.2021.116974_bib47) 2017; 50 Zhao (10.1016/j.envpol.2021.116974_bib45) 2011; 5 Deng (10.1016/j.envpol.2021.116974_bib9) 2017; 7 Lehner (10.1016/j.envpol.2021.116974_bib20) 2019; 53 Suzuki (10.1016/j.envpol.2021.116974_bib34) 1997; 45 Chazotte (10.1016/j.envpol.2021.116974_bib3) 2010; 2010 Guilhermino (10.1016/j.envpol.2021.116974_bib14) 2018; 622–623 Domenech (10.1016/j.envpol.2021.116974_bib10) 2020; 94 Tizro (10.1016/j.envpol.2021.116974_bib35) 2019; 1897 Sendra (10.1016/j.envpol.2021.116974_bib27) 2019; 249 Schirinzi (10.1016/j.envpol.2021.116974_bib26) 2017; 159 Zhang (10.1016/j.envpol.2021.116974_bib46) 2019; 455 Hofmann (10.1016/j.envpol.2021.116974_bib16) 2014; 8 Yousif (10.1016/j.envpol.2021.116974_bib44) 2013; 2 Miao (10.1016/j.envpol.2021.116974_bib23) 2018; 285 |
References_xml | – volume: 8 start-page: 10077 year: 2014 end-page: 10088 ident: bib16 article-title: Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking publication-title: ACS Nano – volume: 62 start-page: 47 year: 2015 end-page: 57 ident: bib41 article-title: Is the autophagy a friend or foe in the silver nanoparticles associated radiotherapy for glioma? publication-title: Biomaterials – volume: 193 start-page: 110536 year: 2021 ident: bib2 article-title: Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine publication-title: Environ. Res. – volume: 5 start-page: 1625 year: 2014 end-page: 1636 ident: bib19 article-title: Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages publication-title: Beilstein J. Nanotechnol. – volume: 8 start-page: 185 year: 2007 end-page: 194 ident: bib24 article-title: The multiple faces of caveolae publication-title: Nat. Rev. Mol. Cell Biol. – volume: 8 start-page: 170271 year: 2018 ident: bib39 article-title: Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles publication-title: Open. Biol. – volume: 694 start-page: 133794 year: 2019 ident: bib42 article-title: Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell publication-title: Sci. Total Environ. – volume: 44 start-page: 87 year: 2017 end-page: 93 ident: bib11 article-title: Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality publication-title: Curr. Opin. Biotechnol. – volume: 159 start-page: 579 year: 2017 end-page: 587 ident: bib26 article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells publication-title: Environ. Res. – volume: 622–623 start-page: 1131 year: 2018 end-page: 1142 ident: bib14 article-title: Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea publication-title: Sci. Total Environ. – volume: 114 start-page: 1697 year: 2006 end-page: 1702 ident: bib18 article-title: Distribution of nanoparticles in the see-through medaka (Oryzias latipes) publication-title: Environ. Health Perspect. – volume: 9 start-page: 886 year: 2015 end-page: 894 ident: bib36 article-title: In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model publication-title: Nanotoxicology – volume: 2 start-page: 151 year: 1994 end-page: 156 ident: bib17 article-title: Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles publication-title: J. Drug Target. – volume: 12 start-page: 5 year: 2014 ident: bib28 article-title: Engineered nanoparticles interacting with cells: size matters publication-title: J. Nanobiotechnol. – volume: 94 start-page: 2997 year: 2020 end-page: 3012 ident: bib10 article-title: Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier publication-title: Arch. Toxicol. – volume: 50 start-page: 12523 year: 2016 end-page: 12524 ident: bib22 article-title: Uptake and accumulation of polystyrene microplastics in zebrafish ( publication-title: Environ. Sci. Technol. – volume: 5 start-page: 1366 year: 2011 end-page: 1375 ident: bib45 article-title: Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects publication-title: ACS Nano – volume: 5 year: 2014 ident: bib6 article-title: Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking publication-title: Small GTPases – volume: 7 start-page: 736 year: 2015 end-page: 746 ident: bib4 article-title: Cationic polystyrene nanopheres induce autophagic cell death through the induction of endoplasmic reticulum stress publication-title: Nanoscale – volume: 249 start-page: 610 year: 2019 end-page: 619 ident: bib27 article-title: Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom publication-title: Environ. Pollut. – volume: 10 start-page: 513 year: 2009 end-page: 525 ident: bib33 article-title: Rab GTPases as coordinators of vesicle traffic publication-title: Nat. Rev. Mol. Cell Biol. – volume: 10 start-page: 2006 year: 2014 end-page: 2020 ident: bib21 article-title: Inhibition of autophagy enhances the anticancer activity of silver nanoparticles publication-title: Autophagy – volume: 17 start-page: 1513 year: 2015 end-page: 1521 ident: bib12 article-title: Pathways for degradation of plastic polymers floating in the marine environment publication-title: Environ. Sci. Process. Impacts. – volume: 1897 start-page: 417 year: 2019 end-page: 424 ident: bib35 article-title: Sample preparation for transmission electron microscopy publication-title: Methods Mol. Biol. – volume: 234 start-page: 115 year: 2018 end-page: 126 ident: bib25 article-title: Airborne microplastics: consequences to human health? publication-title: Environ. Pollut. – volume: 1018 start-page: 301 year: 2013 end-page: 311 ident: bib30 publication-title: Cryosectioning. Methods Mol. Biol. – volume: 21 start-page: 348 year: 2014 end-page: 358 ident: bib1 article-title: Regulation of autophagy by the Rab GTPase network publication-title: Cell Death Differ. – volume: 8 start-page: 1135 year: 2008 end-page: 1143 ident: bib8 article-title: Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells publication-title: Macromol. Biosci. – volume: 8 start-page: 3207 year: 2017 ident: bib48 article-title: VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway publication-title: Cell Death Dis. – volume: 723 year: 2020 ident: bib15 article-title: Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells publication-title: Sci. Total Environ. – volume: 14 start-page: 5175 year: 2019 end-page: 5186 ident: bib43 article-title: Toxicity, biodistribution and oxidative damage caused by zirconia nanoparticles after intravenous injection publication-title: Int. J. Nanomed. – volume: 38 start-page: 179 year: 2001 end-page: 193 ident: bib7 article-title: Flow cytometry in analysis of cell cycle and apoptosis publication-title: Semin. Hematol. – volume: 2010 year: 2010 ident: bib3 article-title: Labeling cytoskeletal F-actin with rhodamine phalloidin or fluorescein phalloidin for imaging publication-title: Cold Spring Harb. Protoc. – volume: 231 start-page: 954 year: 2017 end-page: 970 ident: bib40 article-title: Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field publication-title: Environ. Pollut. – volume: 455 start-page: 1 year: 2019 end-page: 13 ident: bib46 article-title: CD100-plexin-B1 induces epithelial-mesenchymal transition of head and neck squamous cell carcinoma and promotes metastasis publication-title: Canc. Lett. – volume: 18 start-page: 1551 year: 2019 end-page: 1562 ident: bib31 article-title: Probiotic effect on Helicobacter pylori attachment and inhibition of inflammation in human gastric epithelial cells publication-title: Exp. Ther. Med. – volume: 7 year: 2017 ident: bib9 article-title: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure publication-title: Sci. Rep. – volume: 12 start-page: 809 year: 2017 end-page: 825 ident: bib38 article-title: Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes publication-title: Int. J. Nanomed. – volume: 3 start-page: 48 year: 2015 ident: bib5 article-title: Nanomaterials in consumer products: a challenging analytical problem publication-title: Front. Chem. – volume: 53 start-page: 1748 year: 2019 end-page: 1765 ident: bib20 article-title: Emergence of nanoplastic in the environment and possible impact on human health publication-title: Environ. Sci. Technol. – volume: 51 start-page: 4368 year: 2017 end-page: 4376 ident: bib32 article-title: Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type publication-title: Environ. Sci. Technol. – volume: 50 year: 2017 ident: bib47 article-title: Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells publication-title: Cell Prolif – volume: 8 start-page: 2007 year: 2013 end-page: 2025 ident: bib37 article-title: Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food publication-title: Nanomedicine – volume: 285 start-page: 2762 year: 2018 end-page: 2784 ident: bib23 article-title: Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis publication-title: FEBS J. – volume: 235 start-page: 1030 year: 2018 end-page: 1034 ident: bib13 article-title: Current opinion: what is a nanoplastic? publication-title: Environ. Pollut. – volume: 27 start-page: 3991 year: 2013 end-page: 3996 ident: bib29 article-title: Gastrointestinal bioavailability of 2.0 nm diameter gold nanoparticles publication-title: ACS Nano – volume: 45 start-page: 49 year: 1997 end-page: 53 ident: bib34 article-title: DNA staining for fluorescence and laser confocal microscopy publication-title: J. Histochem. Cytochem. – volume: 2 start-page: 398 year: 2013 ident: bib44 article-title: Photodegradation and photostabilization of polymers, especially polystyrene: review publication-title: SpringerPlus – volume: 8 start-page: 2007 year: 2013 ident: 10.1016/j.envpol.2021.116974_bib37 article-title: Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food publication-title: Nanomedicine doi: 10.2217/nnm.13.176 – volume: 723 year: 2020 ident: 10.1016/j.envpol.2021.116974_bib15 article-title: Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138180 – volume: 18 start-page: 1551 issue: 3 year: 2019 ident: 10.1016/j.envpol.2021.116974_bib31 article-title: Probiotic effect on Helicobacter pylori attachment and inhibition of inflammation in human gastric epithelial cells publication-title: Exp. Ther. Med. – volume: 21 start-page: 348 year: 2014 ident: 10.1016/j.envpol.2021.116974_bib1 article-title: Regulation of autophagy by the Rab GTPase network publication-title: Cell Death Differ. doi: 10.1038/cdd.2013.187 – volume: 45 start-page: 49 year: 1997 ident: 10.1016/j.envpol.2021.116974_bib34 article-title: DNA staining for fluorescence and laser confocal microscopy publication-title: J. Histochem. Cytochem. doi: 10.1177/002215549704500107 – volume: 2 start-page: 398 year: 2013 ident: 10.1016/j.envpol.2021.116974_bib44 article-title: Photodegradation and photostabilization of polymers, especially polystyrene: review publication-title: SpringerPlus doi: 10.1186/2193-1801-2-398 – volume: 9 start-page: 886 issue: 7 year: 2015 ident: 10.1016/j.envpol.2021.116974_bib36 article-title: In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model publication-title: Nanotoxicology doi: 10.3109/17435390.2014.988664 – volume: 94 start-page: 2997 issue: 9 year: 2020 ident: 10.1016/j.envpol.2021.116974_bib10 article-title: Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier publication-title: Arch. Toxicol. doi: 10.1007/s00204-020-02805-3 – volume: 285 start-page: 2762 year: 2018 ident: 10.1016/j.envpol.2021.116974_bib23 article-title: Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis publication-title: FEBS J. doi: 10.1111/febs.14493 – volume: 114 start-page: 1697 year: 2006 ident: 10.1016/j.envpol.2021.116974_bib18 article-title: Distribution of nanoparticles in the see-through medaka (Oryzias latipes) publication-title: Environ. Health Perspect. doi: 10.1289/ehp.9209 – volume: 8 start-page: 3207 year: 2017 ident: 10.1016/j.envpol.2021.116974_bib48 article-title: Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0011-x – volume: 10 start-page: 513 year: 2009 ident: 10.1016/j.envpol.2021.116974_bib33 article-title: Rab GTPases as coordinators of vesicle traffic publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2728 – volume: 8 start-page: 1135 issue: 12 year: 2008 ident: 10.1016/j.envpol.2021.116974_bib8 article-title: Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells publication-title: Macromol. Biosci. doi: 10.1002/mabi.200800123 – volume: 51 start-page: 4368 year: 2017 ident: 10.1016/j.envpol.2021.116974_bib32 article-title: Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06155 – volume: 2 start-page: 151 issue: 2 year: 1994 ident: 10.1016/j.envpol.2021.116974_bib17 article-title: Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles publication-title: J. Drug Target. doi: 10.3109/10611869409015904 – volume: 14 start-page: 5175 year: 2019 ident: 10.1016/j.envpol.2021.116974_bib43 article-title: Toxicity, biodistribution and oxidative damage caused by zirconia nanoparticles after intravenous injection publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S197565 – volume: 5 start-page: 1366 year: 2011 ident: 10.1016/j.envpol.2021.116974_bib45 article-title: Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects publication-title: ACS Nano doi: 10.1021/nn103077k – volume: 12 start-page: 5 year: 2014 ident: 10.1016/j.envpol.2021.116974_bib28 article-title: Engineered nanoparticles interacting with cells: size matters publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-12-5 – volume: 3 start-page: 48 year: 2015 ident: 10.1016/j.envpol.2021.116974_bib5 article-title: Nanomaterials in consumer products: a challenging analytical problem publication-title: Front. Chem. doi: 10.3389/fchem.2015.00048 – volume: 231 start-page: 954 year: 2017 ident: 10.1016/j.envpol.2021.116974_bib40 article-title: Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.08.032 – volume: 50 year: 2017 ident: 10.1016/j.envpol.2021.116974_bib47 article-title: Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells publication-title: Cell Prolif doi: 10.1111/cpr.12319 – volume: 62 start-page: 47 year: 2015 ident: 10.1016/j.envpol.2021.116974_bib41 article-title: Is the autophagy a friend or foe in the silver nanoparticles associated radiotherapy for glioma? publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.05.033 – volume: 2010 issue: 5 year: 2010 ident: 10.1016/j.envpol.2021.116974_bib3 article-title: Labeling cytoskeletal F-actin with rhodamine phalloidin or fluorescein phalloidin for imaging publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot4947 – volume: 7 start-page: 736 year: 2015 ident: 10.1016/j.envpol.2021.116974_bib4 article-title: Cationic polystyrene nanopheres induce autophagic cell death through the induction of endoplasmic reticulum stress publication-title: Nanoscale doi: 10.1039/C4NR05509H – volume: 17 start-page: 1513 year: 2015 ident: 10.1016/j.envpol.2021.116974_bib12 article-title: Pathways for degradation of plastic polymers floating in the marine environment publication-title: Environ. Sci. Process. Impacts. doi: 10.1039/C5EM00207A – volume: 193 start-page: 110536 year: 2021 ident: 10.1016/j.envpol.2021.116974_bib2 article-title: Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110536 – volume: 53 start-page: 1748 issue: 4 year: 2019 ident: 10.1016/j.envpol.2021.116974_bib20 article-title: Emergence of nanoplastic in the environment and possible impact on human health publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05512 – volume: 27 start-page: 3991 year: 2013 ident: 10.1016/j.envpol.2021.116974_bib29 article-title: Gastrointestinal bioavailability of 2.0 nm diameter gold nanoparticles publication-title: ACS Nano doi: 10.1021/nn305930e – volume: 235 start-page: 1030 year: 2018 ident: 10.1016/j.envpol.2021.116974_bib13 article-title: Current opinion: what is a nanoplastic? publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.01.024 – volume: 10 start-page: 2006 year: 2014 ident: 10.1016/j.envpol.2021.116974_bib21 article-title: Inhibition of autophagy enhances the anticancer activity of silver nanoparticles publication-title: Autophagy doi: 10.4161/auto.36293 – volume: 455 start-page: 1 year: 2019 ident: 10.1016/j.envpol.2021.116974_bib46 article-title: CD100-plexin-B1 induces epithelial-mesenchymal transition of head and neck squamous cell carcinoma and promotes metastasis publication-title: Canc. Lett. doi: 10.1016/j.canlet.2019.04.013 – volume: 249 start-page: 610 year: 2019 ident: 10.1016/j.envpol.2021.116974_bib27 article-title: Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum? publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.03.047 – volume: 8 start-page: 185 year: 2007 ident: 10.1016/j.envpol.2021.116974_bib24 article-title: The multiple faces of caveolae publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2122 – volume: 44 start-page: 87 year: 2017 ident: 10.1016/j.envpol.2021.116974_bib11 article-title: Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.11.012 – volume: 50 start-page: 12523 year: 2016 ident: 10.1016/j.envpol.2021.116974_bib22 article-title: Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04379 – volume: 234 start-page: 115 year: 2018 ident: 10.1016/j.envpol.2021.116974_bib25 article-title: Airborne microplastics: consequences to human health? publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.11.043 – volume: 12 start-page: 809 year: 2017 ident: 10.1016/j.envpol.2021.116974_bib38 article-title: Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S123596 – volume: 694 start-page: 133794 year: 2019 ident: 10.1016/j.envpol.2021.116974_bib42 article-title: Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133794 – volume: 38 start-page: 179 year: 2001 ident: 10.1016/j.envpol.2021.116974_bib7 article-title: Flow cytometry in analysis of cell cycle and apoptosis publication-title: Semin. Hematol. doi: 10.1016/S0037-1963(01)90051-4 – volume: 7 year: 2017 ident: 10.1016/j.envpol.2021.116974_bib9 article-title: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure publication-title: Sci. Rep. – volume: 159 start-page: 579 year: 2017 ident: 10.1016/j.envpol.2021.116974_bib26 article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells publication-title: Environ. Res. doi: 10.1016/j.envres.2017.08.043 – volume: 1018 start-page: 301 year: 2013 ident: 10.1016/j.envpol.2021.116974_bib30 publication-title: Cryosectioning. Methods Mol. Biol. doi: 10.1007/978-1-62703-444-9_28 – volume: 1897 start-page: 417 year: 2019 ident: 10.1016/j.envpol.2021.116974_bib35 article-title: Sample preparation for transmission electron microscopy publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-8935-5_33 – volume: 5 start-page: 1625 year: 2014 ident: 10.1016/j.envpol.2021.116974_bib19 article-title: Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.5.174 – volume: 622–623 start-page: 1131 year: 2018 ident: 10.1016/j.envpol.2021.116974_bib14 article-title: Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.020 – volume: 8 start-page: 10077 year: 2014 ident: 10.1016/j.envpol.2021.116974_bib16 article-title: Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking publication-title: ACS Nano doi: 10.1021/nn502754c – volume: 8 start-page: 170271 year: 2018 ident: 10.1016/j.envpol.2021.116974_bib39 article-title: Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles publication-title: Open. Biol. doi: 10.1098/rsob.170271 – volume: 5 year: 2014 ident: 10.1016/j.envpol.2021.116974_bib6 article-title: Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking publication-title: Small GTPases doi: 10.4161/sgtp.29469 |
SSID | ssj0004333 |
Score | 2.630645 |
Snippet | With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116974 |
SubjectTerms | actin Apoptosis autophagosomes Autophagy cell proliferation chlorpromazine cytotoxicity Endocytosis fluorescence human health humans intestines liver lysosomes Nanoplastics nystatin pollution polymerization polystyrenes Proliferation tissue distribution |
Title | Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells |
URI | https://dx.doi.org/10.1016/j.envpol.2021.116974 https://www.ncbi.nlm.nih.gov/pubmed/33784569 https://www.proquest.com/docview/2507669404 https://www.proquest.com/docview/2551958426 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V5QIHBFsKy09lJMSpZtPYiePjqtqygOili7S3yLEdaVFxVmxadS88C8_CkzHjJC0cSiWOScaR5bHH39gz3wC8SdNaKZ3VvLBScpkZtIMmsRyxuLLoYzvlKHf482k-_yI_LrPlDhwPuTAUVtnb_s6mR2vdv5n0ozlZr1aTM_QeEAxrYsAiRpglZbBLRfz5737chHlI0ZWTR2FO0kP6XIzx8uFy3dAFRHqEtoN-d9v2dBv8jNvQySN42ONHNu26-Bh2fBjB3jSg7_xty96yGNEZj8pH8OAPssER7M9uctrwD_2i3uxBu4iDzxxx6Pblr1hTM-zzdkOH1MGzYEKzRqBNpM5sFRgVsWcmOBYvGlgsT3LI2oEp_TB-s9u2aZurlUWkz9qGvZ-d8aNfP-muYPMEFiezxfGc98UYOKosa3leG1tXwlS6SnQtHLp1aU1xiUWlnbFVRmWQCp1LS2WICiFFolOfi1rkeY2YbR92QxP8M2DKOZclBn0Zi_Mjk5U2lfMG5ZWviiwfgxhUUNqeqJzqZZyXQ0Ta17JTXEmKKzvFjYFft1p3RB13yKtBu-VfE67EveSOlq-HyVDiWqRBM8E3F5sS4aTKcy2Tf8pEfh8ERmN42s2k6_4KoQoEtPr5f_ftBdynpy6e-CXstt8v_CtETW11EJfFAdybfvg0P_0NlVcZfA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6V9gA9INhSWH6NhDg12jRO4vi4qrZsabuXLtLeLMdOpK3AWXVTxL4Nz8KTMeM4LRxKJa7xjyzPePxNPPMNwIckqYWQWR0VJk2jNNNoB3VsIsTiwqCPbYWl3OHzWT79kn5eZIstOOpzYSisMtj-zqZ7ax2-jMJujlbL5egCvQcEw5IYsIgRZvEAdoidCpV9Z3xyOp3dpkfyrqI89o9oQJ9B58O8Kvd91dAbRHKI5oNmvOuGuguB-pvo-Ak8DhCSjbtVPoWtyg1gb-zQff62YR-ZD-r0f8sHsPsH3-AA9ie3aW04QzjX6z1o537_mSUa3VABizU1wzVv1vSf2lXMadesEGsTrzNbOkZ17Jl2lvm3BuYrlBywtidLP_BtZtM2bfNjaRDss7ZhnyYX0eGvn_RcsH4G8-PJ_GgahXoMEUota6O81qYuuS5lGcuaW_TskppCE4tSWm3KjCohFTJPDVUiKnjKY5lUOa95ntcI2_Zh2zWuegFMWGuzWKM7Y1BFsrSUurSVxv6iKossHwLvRaBM4CqnkhlfVR-Udqk6wSkSnOoEN4ToZtSq4-q4p7_opav-0jmF18k9I9_3yqDwONKmaVc112uFiFLkuUzjf_bxFD-IjYbwvNOkm_VyLgrEtPLlf6_tHTyczs_P1NnJ7PQVPKKWLrz4NWy3V9fVGwRRbfk2HJLfIuAcLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tissue+distribution+of+polystyrene+nanoplastics+in+mice+and+their+entry%2C+transport%2C+and+cytotoxicity+to+GES-1+cells&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Ding%2C+Yunfei&rft.au=Zhang%2C+Ruiqing&rft.au=Li%2C+Boqing&rft.au=Du%2C+Yunqiu&rft.date=2021-07-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=280&rft.spage=116974&rft_id=info:doi/10.1016%2Fj.envpol.2021.116974&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |