Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells

With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 280; p. 116974
Main Authors Ding, Yunfei, Zhang, Ruiqing, Li, Boqing, Du, Yunqiu, Li, Jing, Tong, Xiaohan, Wu, Yulong, Ji, Xiaofei, Zhang, Ying
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text
ISSN0269-7491
1873-6424
1873-6424
DOI10.1016/j.envpol.2021.116974

Cover

Loading…
Abstract With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health. [Display omitted] •Nanoplastics are visible in gastric and other tissues of mice after treatment.•Nanoplastics entering GES-1 cells rely on endocytosis and macropinocytosis.•Nanoplastics regulate endocytosis through RhoA/F-actin signaling pathway.•Internalized nanoplastics produce cytotoxicity to GES-1 cells. The main finding is that PS-NPs can enter mouse tissues and GES-1 cells through endocytosis regulated by the RhoA/F-actin pathways and produce cytotoxicity.
AbstractList With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.
With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.
With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.
With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health. [Display omitted] •Nanoplastics are visible in gastric and other tissues of mice after treatment.•Nanoplastics entering GES-1 cells rely on endocytosis and macropinocytosis.•Nanoplastics regulate endocytosis through RhoA/F-actin signaling pathway.•Internalized nanoplastics produce cytotoxicity to GES-1 cells. The main finding is that PS-NPs can enter mouse tissues and GES-1 cells through endocytosis regulated by the RhoA/F-actin pathways and produce cytotoxicity.
ArticleNumber 116974
Author Wu, Yulong
Li, Boqing
Tong, Xiaohan
Du, Yunqiu
Ji, Xiaofei
Zhang, Ruiqing
Ding, Yunfei
Zhang, Ying
Li, Jing
Author_xml – sequence: 1
  givenname: Yunfei
  surname: Ding
  fullname: Ding, Yunfei
– sequence: 2
  givenname: Ruiqing
  surname: Zhang
  fullname: Zhang, Ruiqing
– sequence: 3
  givenname: Boqing
  surname: Li
  fullname: Li, Boqing
– sequence: 4
  givenname: Yunqiu
  surname: Du
  fullname: Du, Yunqiu
– sequence: 5
  givenname: Jing
  surname: Li
  fullname: Li, Jing
– sequence: 6
  givenname: Xiaohan
  surname: Tong
  fullname: Tong, Xiaohan
– sequence: 7
  givenname: Yulong
  surname: Wu
  fullname: Wu, Yulong
– sequence: 8
  givenname: Xiaofei
  surname: Ji
  fullname: Ji, Xiaofei
– sequence: 9
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  email: zhangying@bzmu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33784569$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKcDb4CQlyyawX9xYhZIqGoLUiUWzN5y7BvhUcYOtlORt-FZeDIypN10Aay8uOc7sr5zgc5CDIDQa0p2lFD57rCDcD_GYccIoztKpWrEM7ShbcMrKZg4QxvCpKoaoeg5usj5QAgRnPMX6JzzphW1VBtU9j7nCbDzuSTfTcXHgGOPl-I5lzlBABxMiONgcvE2Yx_w0VvAJjhcvoFPGEJJ8yUuyYQ8xlQu_9zsXGKJP7z1ZcYl4tvrrxX99dPCMOSX6HlvhgyvHt4t2t9c768-VXdfbj9ffbyrLFd1qWRvbN9x06mOqJ47IVrWE6JE2ylnbFe71rpWSWE5YbzlghPFQPKeS9kLxrfo7Vo7pvh9glz00efTB0yAOGXN6pqquhVM_keUNFIqsQjcojcP0ak7gtNj8keTZv3odAm8XwM2xZwT9HpxYE5iF0V-0JTo04D6oNcB9WlAvQ64wOIJ_Nj_D-zDisGi895D0tl6CBacT2CLdtH_veA3qj64qA
CitedBy_id crossref_primary_10_1016_j_jhazmat_2022_130617
crossref_primary_10_1016_j_imlet_2025_106976
crossref_primary_10_1038_s41598_023_28712_y
crossref_primary_10_1016_j_tox_2024_153792
crossref_primary_10_1016_j_heliyon_2024_e32261
crossref_primary_10_3389_fmicb_2021_768297
crossref_primary_10_1016_j_scitotenv_2022_153331
crossref_primary_10_1016_j_trac_2023_117092
crossref_primary_10_3389_fnut_2023_1186724
crossref_primary_10_1016_j_envint_2023_107968
crossref_primary_10_1007_s12672_024_01281_w
crossref_primary_10_1016_j_cbi_2023_110502
crossref_primary_10_1016_j_scitotenv_2022_158111
crossref_primary_10_1016_j_aquatox_2024_107215
crossref_primary_10_1016_j_envpol_2024_123713
crossref_primary_10_1016_j_scitotenv_2023_163144
crossref_primary_10_1039_D1EN00465D
crossref_primary_10_1016_j_jconhyd_2024_104365
crossref_primary_10_1016_j_chemosphere_2022_135662
crossref_primary_10_3389_fenvs_2023_1241939
crossref_primary_10_1016_j_watcyc_2024_12_003
crossref_primary_10_1016_j_cotox_2021_09_004
crossref_primary_10_1016_j_scitotenv_2023_169514
crossref_primary_10_1016_j_ecoenv_2023_114569
crossref_primary_10_1016_j_bbagen_2022_130300
crossref_primary_10_3390_biomedicines11020264
crossref_primary_10_3389_fpubh_2023_1103289
crossref_primary_10_61186_JCT_15_2_176
crossref_primary_10_1021_acs_est_3c00990
crossref_primary_10_1002_jbt_23429
crossref_primary_10_1002_smll_202201680
crossref_primary_10_1007_s12011_023_03835_5
crossref_primary_10_1016_j_impact_2025_100549
crossref_primary_10_1016_j_jconrel_2024_11_045
crossref_primary_10_1021_acs_bioconjchem_3c00429
crossref_primary_10_1016_j_ecoenv_2023_115447
crossref_primary_10_1016_j_scitotenv_2023_169228
crossref_primary_10_3390_toxics11050441
crossref_primary_10_1016_j_tiv_2024_105893
crossref_primary_10_1016_j_envpol_2025_126014
crossref_primary_10_1016_j_envpol_2022_119206
crossref_primary_10_1016_j_jhazmat_2025_137714
crossref_primary_10_1016_j_ecoenv_2024_117180
crossref_primary_10_1007_s40516_023_00214_9
crossref_primary_10_1016_j_ecoenv_2022_113586
crossref_primary_10_1016_j_jhazmat_2023_131019
crossref_primary_10_1016_j_scitotenv_2022_158017
crossref_primary_10_1016_j_toxlet_2024_04_004
crossref_primary_10_1021_acs_est_2c03980
crossref_primary_10_1186_s40104_024_01077_6
crossref_primary_10_1016_j_chemosphere_2023_139194
crossref_primary_10_1016_j_envpol_2024_123473
crossref_primary_10_1002_jat_4378
crossref_primary_10_1016_j_ecoenv_2023_115676
crossref_primary_10_1016_j_jes_2024_11_022
crossref_primary_10_1016_j_seppur_2022_122174
crossref_primary_10_1002_jcp_30913
crossref_primary_10_1016_j_jhazmat_2024_136052
crossref_primary_10_1016_j_ecoenv_2022_113905
crossref_primary_10_3389_fnut_2023_1186951
crossref_primary_10_1002_tox_23678
crossref_primary_10_3892_mmr_2025_13463
crossref_primary_10_1021_acsnano_4c02335
crossref_primary_10_3390_toxics12070493
crossref_primary_10_3390_microplastics4010004
crossref_primary_10_1016_j_chemosphere_2022_134566
crossref_primary_10_1016_j_etap_2022_104038
crossref_primary_10_1021_acsnano_3c11734
crossref_primary_10_1016_j_envpol_2023_121668
crossref_primary_10_1016_j_heliyon_2024_e41298
crossref_primary_10_1016_j_ecoenv_2024_116439
crossref_primary_10_1016_j_envint_2024_108736
crossref_primary_10_1186_s12989_024_00590_w
crossref_primary_10_1007_s44169_022_00013_x
crossref_primary_10_1016_j_jhazmat_2024_134586
crossref_primary_10_1186_s12989_024_00578_6
crossref_primary_10_1016_j_fct_2023_113938
crossref_primary_10_1016_j_trac_2023_117175
crossref_primary_10_1016_j_envint_2023_108172
crossref_primary_10_1007_s00204_024_03847_7
crossref_primary_10_1016_j_scitotenv_2023_168064
crossref_primary_10_1016_j_ecoenv_2025_117757
crossref_primary_10_1016_j_ijbiomac_2023_124951
crossref_primary_10_1016_j_chemosphere_2021_132579
crossref_primary_10_1080_10937404_2024_2330962
crossref_primary_10_1016_j_toxlet_2023_08_011
crossref_primary_10_34133_research_0609
crossref_primary_10_3389_fnmol_2024_1345536
crossref_primary_10_1016_j_scitotenv_2022_158686
crossref_primary_10_1039_D2EM00386D
crossref_primary_10_1016_j_ecoenv_2022_114385
crossref_primary_10_1016_j_hazadv_2024_100487
crossref_primary_10_1016_j_impact_2023_100481
crossref_primary_10_1080_17435390_2024_2368004
crossref_primary_10_1039_D2EN00963C
crossref_primary_10_1016_j_ecoenv_2023_115403
crossref_primary_10_1016_j_nano_2023_102685
crossref_primary_10_1016_j_cotox_2021_10_001
crossref_primary_10_3389_fcell_2025_1539600
crossref_primary_10_1016_j_jhazmat_2021_127628
crossref_primary_10_3390_nano13010084
crossref_primary_10_1021_acsinfecdis_4c00288
crossref_primary_10_1007_s11270_023_06201_2
crossref_primary_10_1016_j_jhazmat_2021_126092
crossref_primary_10_1016_j_envpol_2022_119924
crossref_primary_10_1016_j_scitotenv_2023_163560
crossref_primary_10_1016_j_envint_2025_109338
crossref_primary_10_1186_s12989_022_00473_y
crossref_primary_10_1016_j_ecoenv_2023_114941
crossref_primary_10_1007_s10661_024_13292_9
crossref_primary_10_1021_acs_est_4c03231
crossref_primary_10_1093_toxsci_kfae019
crossref_primary_10_1016_j_jhazmat_2023_131465
crossref_primary_10_3390_ijerph191811593
Cites_doi 10.2217/nnm.13.176
10.1016/j.scitotenv.2020.138180
10.1038/cdd.2013.187
10.1177/002215549704500107
10.1186/2193-1801-2-398
10.3109/17435390.2014.988664
10.1007/s00204-020-02805-3
10.1111/febs.14493
10.1289/ehp.9209
10.1038/s41419-017-0011-x
10.1038/nrm2728
10.1002/mabi.200800123
10.1021/acs.est.6b06155
10.3109/10611869409015904
10.2147/IJN.S197565
10.1021/nn103077k
10.1186/1477-3155-12-5
10.3389/fchem.2015.00048
10.1016/j.envpol.2017.08.032
10.1111/cpr.12319
10.1016/j.biomaterials.2015.05.033
10.1101/pdb.prot4947
10.1039/C4NR05509H
10.1039/C5EM00207A
10.1016/j.envres.2020.110536
10.1021/acs.est.8b05512
10.1021/nn305930e
10.1016/j.envpol.2018.01.024
10.4161/auto.36293
10.1016/j.canlet.2019.04.013
10.1016/j.envpol.2019.03.047
10.1038/nrm2122
10.1016/j.copbio.2016.11.012
10.1021/acs.est.6b04379
10.1016/j.envpol.2017.11.043
10.2147/IJN.S123596
10.1016/j.scitotenv.2019.133794
10.1016/S0037-1963(01)90051-4
10.1016/j.envres.2017.08.043
10.1007/978-1-62703-444-9_28
10.1007/978-1-4939-8935-5_33
10.3762/bjnano.5.174
10.1016/j.scitotenv.2017.12.020
10.1021/nn502754c
10.1098/rsob.170271
10.4161/sgtp.29469
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2021.116974
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 33784569
10_1016_j_envpol_2021_116974
S026974912100556X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XJT
XOL
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c395t-6facfb3ab9b09f3d4482f00948b9dacb5d8cd8964c30238343092e63f366f423
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Thu Sep 04 19:54:25 EDT 2025
Fri Sep 05 10:08:41 EDT 2025
Wed Feb 19 02:27:51 EST 2025
Tue Jul 01 03:15:08 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Fri Feb 23 02:45:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Endocytosis
Proliferation
Autophagy
Nanoplastics
Apoptosis
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-6facfb3ab9b09f3d4482f00948b9dacb5d8cd8964c30238343092e63f366f423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33784569
PQID 2507669404
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551958426
proquest_miscellaneous_2507669404
pubmed_primary_33784569
crossref_citationtrail_10_1016_j_envpol_2021_116974
crossref_primary_10_1016_j_envpol_2021_116974
elsevier_sciencedirect_doi_10_1016_j_envpol_2021_116974
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wilkinson, Hooda, Barker, Barton, Swinden (bib40) 2017; 231
Lu, Zhang, Deng, Jiang, Zhao, Geng, Ding, Ren (bib22) 2016; 50
Lin, Huang, Wu, Zhou, Jin, Wei, Zhang, Zheng, Zhang, Xu, Hu, Wang, Li, Gu, Wen (bib21) 2014; 10
Yousif, Haddad (bib44) 2013; 2
Domenech, Hernández, Rubio, Marcos, Cortés (bib10) 2020; 94
Song, Hong, Jang, Han, Jung, Shim (bib32) 2017; 51
Wang, Yu, Lu, Yang, Li, Zhou, Sun (bib38) 2017; 12
Zhou, Yin, Chang, Sun, Lin, Dai (bib47) 2017; 50
Smith, Simpson, Kim, Carter, Feldheim (bib29) 2013; 27
Guilhermino, Vieira, Ribeiro, Tavares, Cardoso, Alves, Almeida (bib14) 2018; 622–623
Xu, Halimu, Zhang, Song, Fu, Li, Li, Zhang (bib42) 2019; 694
Zhu, Xue, Zhang, Jia, Tong, Han, Li, Xiang, Mao, Tang (bib48) 2017; 8
Gewert, Plassmann, MacLeod (bib12) 2015; 17
Kuhn, Vanhecke, Michen, Blank, Gehr, Petri-Fink, Rothen-Rutishauser (bib19) 2014; 5
Son, Sokolowski, Zhou (bib30) 2013; 1018
Chiu, Xia, Lee, Chen, Tsai, Wang (bib4) 2015; 7
Hillery, Jani, Florence (bib17) 1994; 2
Croisé, Estay-Ahumada, Gasman, Ory (bib6) 2014; 5
Stenmark (bib33) 2009; 10
Deng, Zhang, Lemos, Ren (bib9) 2017; 7
Schirinzi, Pérez-Pomeda, Sanchís, Rossini, Farré, Barceló (bib26) 2017; 159
Darzynkiewicz, Bedner, Smolewski (bib7) 2001; 38
Tizro, Choi, Khanlou (bib35) 2019; 1897
Yang, Bao, Chai, Wang, Sun, Fu, Liu, Liu, Meng, Liu (bib43) 2019; 14
Walczak, Kramer, Hendriksen, Helsdingen, van der Zande, Rietjens, Bouwmeester (bib36) 2015; 9
Wu, Lin, Liu, Huang, Zhao, Jin, Wang, Wen, Gu (bib41) 2015; 62
Zhang, Qiao, Guo, Liu, Yang, Liu, Jin, Fu, Wang, Li (bib46) 2019; 455
Hofmann, Tenzer, Bannwarth, Messerschmidt, Glaser, Schild, Landfester, Mailänder (bib16) 2014; 8
Sendra, Staffieri, Yeste, Moreno-Garrido, Gatica, Corsi, Blasco (bib27) 2019; 249
Shang, Nienhaus, Nienhaus (bib28) 2014; 12
Gigault, Halle, Baudrimont, Pascal, Gauffre, Phi, El Hadri, Grassl, Reynaud (bib13) 2018; 235
Miao, Tipakornsaowapak, Zheng, Mu, Lewellyn (bib23) 2018; 285
Dausend, Musyanovych, Dass, Walther, Schrezenmeier, Landfester, Mailänder (bib8) 2008; 8
Contado (bib5) 2015; 3
Song, Zhou, Liu, Ge, Li (bib31) 2019; 18
Eleftheriadou, Pyrgiotakis, Demokritou (bib11) 2017; 44
He, Li, Chen, Miao, Li, He, Xu, Li, Wei (bib15) 2020; 723
Suzuki, Fujikura, Higashiyama, Takata (bib34) 1997; 45
Wang, Salvati, Boya (bib39) 2018; 8
Busch, Bredeck, Kämpfer, Schins (bib2) 2021; 193
Prata (bib25) 2018; 234
Wang, Du, Song, Chen (bib37) 2013; 8
Zhao, Sun, Zhang, Trewyn, Slowing, Lin (bib45) 2011; 5
Ao, Zou, Wu (bib1) 2014; 21
Lehner, Weder, Petri-Fink, Rothen-Rutishauser (bib20) 2019; 53
Kashiwada (bib18) 2006; 114
Parton, Simons (bib24) 2007; 8
Chazotte (bib3) 2010; 2010
Dausend (10.1016/j.envpol.2021.116974_bib8) 2008; 8
Wang (10.1016/j.envpol.2021.116974_bib38) 2017; 12
Wilkinson (10.1016/j.envpol.2021.116974_bib40) 2017; 231
Gigault (10.1016/j.envpol.2021.116974_bib13) 2018; 235
Shang (10.1016/j.envpol.2021.116974_bib28) 2014; 12
Song (10.1016/j.envpol.2021.116974_bib32) 2017; 51
Walczak (10.1016/j.envpol.2021.116974_bib36) 2015; 9
Xu (10.1016/j.envpol.2021.116974_bib42) 2019; 694
Lu (10.1016/j.envpol.2021.116974_bib22) 2016; 50
Wu (10.1016/j.envpol.2021.116974_bib41) 2015; 62
Chiu (10.1016/j.envpol.2021.116974_bib4) 2015; 7
Ao (10.1016/j.envpol.2021.116974_bib1) 2014; 21
Eleftheriadou (10.1016/j.envpol.2021.116974_bib11) 2017; 44
Smith (10.1016/j.envpol.2021.116974_bib29) 2013; 27
Zhu (10.1016/j.envpol.2021.116974_bib48) 2017; 8
Lin (10.1016/j.envpol.2021.116974_bib21) 2014; 10
Yang (10.1016/j.envpol.2021.116974_bib43) 2019; 14
Busch (10.1016/j.envpol.2021.116974_bib2) 2021; 193
Prata (10.1016/j.envpol.2021.116974_bib25) 2018; 234
Parton (10.1016/j.envpol.2021.116974_bib24) 2007; 8
Son (10.1016/j.envpol.2021.116974_bib30) 2013; 1018
Wang (10.1016/j.envpol.2021.116974_bib39) 2018; 8
Gewert (10.1016/j.envpol.2021.116974_bib12) 2015; 17
Kashiwada (10.1016/j.envpol.2021.116974_bib18) 2006; 114
He (10.1016/j.envpol.2021.116974_bib15) 2020; 723
Kuhn (10.1016/j.envpol.2021.116974_bib19) 2014; 5
Stenmark (10.1016/j.envpol.2021.116974_bib33) 2009; 10
Darzynkiewicz (10.1016/j.envpol.2021.116974_bib7) 2001; 38
Wang (10.1016/j.envpol.2021.116974_bib37) 2013; 8
Croisé (10.1016/j.envpol.2021.116974_bib6) 2014; 5
Hillery (10.1016/j.envpol.2021.116974_bib17) 1994; 2
Contado (10.1016/j.envpol.2021.116974_bib5) 2015; 3
Song (10.1016/j.envpol.2021.116974_bib31) 2019; 18
Zhou (10.1016/j.envpol.2021.116974_bib47) 2017; 50
Zhao (10.1016/j.envpol.2021.116974_bib45) 2011; 5
Deng (10.1016/j.envpol.2021.116974_bib9) 2017; 7
Lehner (10.1016/j.envpol.2021.116974_bib20) 2019; 53
Suzuki (10.1016/j.envpol.2021.116974_bib34) 1997; 45
Chazotte (10.1016/j.envpol.2021.116974_bib3) 2010; 2010
Guilhermino (10.1016/j.envpol.2021.116974_bib14) 2018; 622–623
Domenech (10.1016/j.envpol.2021.116974_bib10) 2020; 94
Tizro (10.1016/j.envpol.2021.116974_bib35) 2019; 1897
Sendra (10.1016/j.envpol.2021.116974_bib27) 2019; 249
Schirinzi (10.1016/j.envpol.2021.116974_bib26) 2017; 159
Zhang (10.1016/j.envpol.2021.116974_bib46) 2019; 455
Hofmann (10.1016/j.envpol.2021.116974_bib16) 2014; 8
Yousif (10.1016/j.envpol.2021.116974_bib44) 2013; 2
Miao (10.1016/j.envpol.2021.116974_bib23) 2018; 285
References_xml – volume: 8
  start-page: 10077
  year: 2014
  end-page: 10088
  ident: bib16
  article-title: Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking
  publication-title: ACS Nano
– volume: 62
  start-page: 47
  year: 2015
  end-page: 57
  ident: bib41
  article-title: Is the autophagy a friend or foe in the silver nanoparticles associated radiotherapy for glioma?
  publication-title: Biomaterials
– volume: 193
  start-page: 110536
  year: 2021
  ident: bib2
  article-title: Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine
  publication-title: Environ. Res.
– volume: 5
  start-page: 1625
  year: 2014
  end-page: 1636
  ident: bib19
  article-title: Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages
  publication-title: Beilstein J. Nanotechnol.
– volume: 8
  start-page: 185
  year: 2007
  end-page: 194
  ident: bib24
  article-title: The multiple faces of caveolae
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 8
  start-page: 170271
  year: 2018
  ident: bib39
  article-title: Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles
  publication-title: Open. Biol.
– volume: 694
  start-page: 133794
  year: 2019
  ident: bib42
  article-title: Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell
  publication-title: Sci. Total Environ.
– volume: 44
  start-page: 87
  year: 2017
  end-page: 93
  ident: bib11
  article-title: Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality
  publication-title: Curr. Opin. Biotechnol.
– volume: 159
  start-page: 579
  year: 2017
  end-page: 587
  ident: bib26
  article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells
  publication-title: Environ. Res.
– volume: 622–623
  start-page: 1131
  year: 2018
  end-page: 1142
  ident: bib14
  article-title: Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea
  publication-title: Sci. Total Environ.
– volume: 114
  start-page: 1697
  year: 2006
  end-page: 1702
  ident: bib18
  article-title: Distribution of nanoparticles in the see-through medaka (Oryzias latipes)
  publication-title: Environ. Health Perspect.
– volume: 9
  start-page: 886
  year: 2015
  end-page: 894
  ident: bib36
  article-title: In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model
  publication-title: Nanotoxicology
– volume: 2
  start-page: 151
  year: 1994
  end-page: 156
  ident: bib17
  article-title: Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles
  publication-title: J. Drug Target.
– volume: 12
  start-page: 5
  year: 2014
  ident: bib28
  article-title: Engineered nanoparticles interacting with cells: size matters
  publication-title: J. Nanobiotechnol.
– volume: 94
  start-page: 2997
  year: 2020
  end-page: 3012
  ident: bib10
  article-title: Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier
  publication-title: Arch. Toxicol.
– volume: 50
  start-page: 12523
  year: 2016
  end-page: 12524
  ident: bib22
  article-title: Uptake and accumulation of polystyrene microplastics in zebrafish (
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 1366
  year: 2011
  end-page: 1375
  ident: bib45
  article-title: Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects
  publication-title: ACS Nano
– volume: 5
  year: 2014
  ident: bib6
  article-title: Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking
  publication-title: Small GTPases
– volume: 7
  start-page: 736
  year: 2015
  end-page: 746
  ident: bib4
  article-title: Cationic polystyrene nanopheres induce autophagic cell death through the induction of endoplasmic reticulum stress
  publication-title: Nanoscale
– volume: 249
  start-page: 610
  year: 2019
  end-page: 619
  ident: bib27
  article-title: Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom
  publication-title: Environ. Pollut.
– volume: 10
  start-page: 513
  year: 2009
  end-page: 525
  ident: bib33
  article-title: Rab GTPases as coordinators of vesicle traffic
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 10
  start-page: 2006
  year: 2014
  end-page: 2020
  ident: bib21
  article-title: Inhibition of autophagy enhances the anticancer activity of silver nanoparticles
  publication-title: Autophagy
– volume: 17
  start-page: 1513
  year: 2015
  end-page: 1521
  ident: bib12
  article-title: Pathways for degradation of plastic polymers floating in the marine environment
  publication-title: Environ. Sci. Process. Impacts.
– volume: 1897
  start-page: 417
  year: 2019
  end-page: 424
  ident: bib35
  article-title: Sample preparation for transmission electron microscopy
  publication-title: Methods Mol. Biol.
– volume: 234
  start-page: 115
  year: 2018
  end-page: 126
  ident: bib25
  article-title: Airborne microplastics: consequences to human health?
  publication-title: Environ. Pollut.
– volume: 1018
  start-page: 301
  year: 2013
  end-page: 311
  ident: bib30
  publication-title: Cryosectioning. Methods Mol. Biol.
– volume: 21
  start-page: 348
  year: 2014
  end-page: 358
  ident: bib1
  article-title: Regulation of autophagy by the Rab GTPase network
  publication-title: Cell Death Differ.
– volume: 8
  start-page: 1135
  year: 2008
  end-page: 1143
  ident: bib8
  article-title: Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells
  publication-title: Macromol. Biosci.
– volume: 8
  start-page: 3207
  year: 2017
  ident: bib48
  article-title: VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway
  publication-title: Cell Death Dis.
– volume: 723
  year: 2020
  ident: bib15
  article-title: Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells
  publication-title: Sci. Total Environ.
– volume: 14
  start-page: 5175
  year: 2019
  end-page: 5186
  ident: bib43
  article-title: Toxicity, biodistribution and oxidative damage caused by zirconia nanoparticles after intravenous injection
  publication-title: Int. J. Nanomed.
– volume: 38
  start-page: 179
  year: 2001
  end-page: 193
  ident: bib7
  article-title: Flow cytometry in analysis of cell cycle and apoptosis
  publication-title: Semin. Hematol.
– volume: 2010
  year: 2010
  ident: bib3
  article-title: Labeling cytoskeletal F-actin with rhodamine phalloidin or fluorescein phalloidin for imaging
  publication-title: Cold Spring Harb. Protoc.
– volume: 231
  start-page: 954
  year: 2017
  end-page: 970
  ident: bib40
  article-title: Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field
  publication-title: Environ. Pollut.
– volume: 455
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib46
  article-title: CD100-plexin-B1 induces epithelial-mesenchymal transition of head and neck squamous cell carcinoma and promotes metastasis
  publication-title: Canc. Lett.
– volume: 18
  start-page: 1551
  year: 2019
  end-page: 1562
  ident: bib31
  article-title: Probiotic effect on Helicobacter pylori attachment and inhibition of inflammation in human gastric epithelial cells
  publication-title: Exp. Ther. Med.
– volume: 7
  year: 2017
  ident: bib9
  article-title: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure
  publication-title: Sci. Rep.
– volume: 12
  start-page: 809
  year: 2017
  end-page: 825
  ident: bib38
  article-title: Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes
  publication-title: Int. J. Nanomed.
– volume: 3
  start-page: 48
  year: 2015
  ident: bib5
  article-title: Nanomaterials in consumer products: a challenging analytical problem
  publication-title: Front. Chem.
– volume: 53
  start-page: 1748
  year: 2019
  end-page: 1765
  ident: bib20
  article-title: Emergence of nanoplastic in the environment and possible impact on human health
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 4368
  year: 2017
  end-page: 4376
  ident: bib32
  article-title: Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type
  publication-title: Environ. Sci. Technol.
– volume: 50
  year: 2017
  ident: bib47
  article-title: Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells
  publication-title: Cell Prolif
– volume: 8
  start-page: 2007
  year: 2013
  end-page: 2025
  ident: bib37
  article-title: Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food
  publication-title: Nanomedicine
– volume: 285
  start-page: 2762
  year: 2018
  end-page: 2784
  ident: bib23
  article-title: Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis
  publication-title: FEBS J.
– volume: 235
  start-page: 1030
  year: 2018
  end-page: 1034
  ident: bib13
  article-title: Current opinion: what is a nanoplastic?
  publication-title: Environ. Pollut.
– volume: 27
  start-page: 3991
  year: 2013
  end-page: 3996
  ident: bib29
  article-title: Gastrointestinal bioavailability of 2.0 nm diameter gold nanoparticles
  publication-title: ACS Nano
– volume: 45
  start-page: 49
  year: 1997
  end-page: 53
  ident: bib34
  article-title: DNA staining for fluorescence and laser confocal microscopy
  publication-title: J. Histochem. Cytochem.
– volume: 2
  start-page: 398
  year: 2013
  ident: bib44
  article-title: Photodegradation and photostabilization of polymers, especially polystyrene: review
  publication-title: SpringerPlus
– volume: 8
  start-page: 2007
  year: 2013
  ident: 10.1016/j.envpol.2021.116974_bib37
  article-title: Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food
  publication-title: Nanomedicine
  doi: 10.2217/nnm.13.176
– volume: 723
  year: 2020
  ident: 10.1016/j.envpol.2021.116974_bib15
  article-title: Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138180
– volume: 18
  start-page: 1551
  issue: 3
  year: 2019
  ident: 10.1016/j.envpol.2021.116974_bib31
  article-title: Probiotic effect on Helicobacter pylori attachment and inhibition of inflammation in human gastric epithelial cells
  publication-title: Exp. Ther. Med.
– volume: 21
  start-page: 348
  year: 2014
  ident: 10.1016/j.envpol.2021.116974_bib1
  article-title: Regulation of autophagy by the Rab GTPase network
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2013.187
– volume: 45
  start-page: 49
  year: 1997
  ident: 10.1016/j.envpol.2021.116974_bib34
  article-title: DNA staining for fluorescence and laser confocal microscopy
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/002215549704500107
– volume: 2
  start-page: 398
  year: 2013
  ident: 10.1016/j.envpol.2021.116974_bib44
  article-title: Photodegradation and photostabilization of polymers, especially polystyrene: review
  publication-title: SpringerPlus
  doi: 10.1186/2193-1801-2-398
– volume: 9
  start-page: 886
  issue: 7
  year: 2015
  ident: 10.1016/j.envpol.2021.116974_bib36
  article-title: In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2014.988664
– volume: 94
  start-page: 2997
  issue: 9
  year: 2020
  ident: 10.1016/j.envpol.2021.116974_bib10
  article-title: Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-020-02805-3
– volume: 285
  start-page: 2762
  year: 2018
  ident: 10.1016/j.envpol.2021.116974_bib23
  article-title: Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis
  publication-title: FEBS J.
  doi: 10.1111/febs.14493
– volume: 114
  start-page: 1697
  year: 2006
  ident: 10.1016/j.envpol.2021.116974_bib18
  article-title: Distribution of nanoparticles in the see-through medaka (Oryzias latipes)
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.9209
– volume: 8
  start-page: 3207
  year: 2017
  ident: 10.1016/j.envpol.2021.116974_bib48
  article-title: Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-017-0011-x
– volume: 10
  start-page: 513
  year: 2009
  ident: 10.1016/j.envpol.2021.116974_bib33
  article-title: Rab GTPases as coordinators of vesicle traffic
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2728
– volume: 8
  start-page: 1135
  issue: 12
  year: 2008
  ident: 10.1016/j.envpol.2021.116974_bib8
  article-title: Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200800123
– volume: 51
  start-page: 4368
  year: 2017
  ident: 10.1016/j.envpol.2021.116974_bib32
  article-title: Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b06155
– volume: 2
  start-page: 151
  issue: 2
  year: 1994
  ident: 10.1016/j.envpol.2021.116974_bib17
  article-title: Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles
  publication-title: J. Drug Target.
  doi: 10.3109/10611869409015904
– volume: 14
  start-page: 5175
  year: 2019
  ident: 10.1016/j.envpol.2021.116974_bib43
  article-title: Toxicity, biodistribution and oxidative damage caused by zirconia nanoparticles after intravenous injection
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S197565
– volume: 5
  start-page: 1366
  year: 2011
  ident: 10.1016/j.envpol.2021.116974_bib45
  article-title: Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects
  publication-title: ACS Nano
  doi: 10.1021/nn103077k
– volume: 12
  start-page: 5
  year: 2014
  ident: 10.1016/j.envpol.2021.116974_bib28
  article-title: Engineered nanoparticles interacting with cells: size matters
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-12-5
– volume: 3
  start-page: 48
  year: 2015
  ident: 10.1016/j.envpol.2021.116974_bib5
  article-title: Nanomaterials in consumer products: a challenging analytical problem
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2015.00048
– volume: 231
  start-page: 954
  year: 2017
  ident: 10.1016/j.envpol.2021.116974_bib40
  article-title: Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.08.032
– volume: 50
  year: 2017
  ident: 10.1016/j.envpol.2021.116974_bib47
  article-title: Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells
  publication-title: Cell Prolif
  doi: 10.1111/cpr.12319
– volume: 62
  start-page: 47
  year: 2015
  ident: 10.1016/j.envpol.2021.116974_bib41
  article-title: Is the autophagy a friend or foe in the silver nanoparticles associated radiotherapy for glioma?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.05.033
– volume: 2010
  issue: 5
  year: 2010
  ident: 10.1016/j.envpol.2021.116974_bib3
  article-title: Labeling cytoskeletal F-actin with rhodamine phalloidin or fluorescein phalloidin for imaging
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.prot4947
– volume: 7
  start-page: 736
  year: 2015
  ident: 10.1016/j.envpol.2021.116974_bib4
  article-title: Cationic polystyrene nanopheres induce autophagic cell death through the induction of endoplasmic reticulum stress
  publication-title: Nanoscale
  doi: 10.1039/C4NR05509H
– volume: 17
  start-page: 1513
  year: 2015
  ident: 10.1016/j.envpol.2021.116974_bib12
  article-title: Pathways for degradation of plastic polymers floating in the marine environment
  publication-title: Environ. Sci. Process. Impacts.
  doi: 10.1039/C5EM00207A
– volume: 193
  start-page: 110536
  year: 2021
  ident: 10.1016/j.envpol.2021.116974_bib2
  article-title: Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.110536
– volume: 53
  start-page: 1748
  issue: 4
  year: 2019
  ident: 10.1016/j.envpol.2021.116974_bib20
  article-title: Emergence of nanoplastic in the environment and possible impact on human health
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05512
– volume: 27
  start-page: 3991
  year: 2013
  ident: 10.1016/j.envpol.2021.116974_bib29
  article-title: Gastrointestinal bioavailability of 2.0 nm diameter gold nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn305930e
– volume: 235
  start-page: 1030
  year: 2018
  ident: 10.1016/j.envpol.2021.116974_bib13
  article-title: Current opinion: what is a nanoplastic?
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.01.024
– volume: 10
  start-page: 2006
  year: 2014
  ident: 10.1016/j.envpol.2021.116974_bib21
  article-title: Inhibition of autophagy enhances the anticancer activity of silver nanoparticles
  publication-title: Autophagy
  doi: 10.4161/auto.36293
– volume: 455
  start-page: 1
  year: 2019
  ident: 10.1016/j.envpol.2021.116974_bib46
  article-title: CD100-plexin-B1 induces epithelial-mesenchymal transition of head and neck squamous cell carcinoma and promotes metastasis
  publication-title: Canc. Lett.
  doi: 10.1016/j.canlet.2019.04.013
– volume: 249
  start-page: 610
  year: 2019
  ident: 10.1016/j.envpol.2021.116974_bib27
  article-title: Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.03.047
– volume: 8
  start-page: 185
  year: 2007
  ident: 10.1016/j.envpol.2021.116974_bib24
  article-title: The multiple faces of caveolae
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2122
– volume: 44
  start-page: 87
  year: 2017
  ident: 10.1016/j.envpol.2021.116974_bib11
  article-title: Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2016.11.012
– volume: 50
  start-page: 12523
  year: 2016
  ident: 10.1016/j.envpol.2021.116974_bib22
  article-title: Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04379
– volume: 234
  start-page: 115
  year: 2018
  ident: 10.1016/j.envpol.2021.116974_bib25
  article-title: Airborne microplastics: consequences to human health?
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.11.043
– volume: 12
  start-page: 809
  year: 2017
  ident: 10.1016/j.envpol.2021.116974_bib38
  article-title: Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S123596
– volume: 694
  start-page: 133794
  year: 2019
  ident: 10.1016/j.envpol.2021.116974_bib42
  article-title: Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.133794
– volume: 38
  start-page: 179
  year: 2001
  ident: 10.1016/j.envpol.2021.116974_bib7
  article-title: Flow cytometry in analysis of cell cycle and apoptosis
  publication-title: Semin. Hematol.
  doi: 10.1016/S0037-1963(01)90051-4
– volume: 7
  year: 2017
  ident: 10.1016/j.envpol.2021.116974_bib9
  article-title: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure
  publication-title: Sci. Rep.
– volume: 159
  start-page: 579
  year: 2017
  ident: 10.1016/j.envpol.2021.116974_bib26
  article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.08.043
– volume: 1018
  start-page: 301
  year: 2013
  ident: 10.1016/j.envpol.2021.116974_bib30
  publication-title: Cryosectioning. Methods Mol. Biol.
  doi: 10.1007/978-1-62703-444-9_28
– volume: 1897
  start-page: 417
  year: 2019
  ident: 10.1016/j.envpol.2021.116974_bib35
  article-title: Sample preparation for transmission electron microscopy
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8935-5_33
– volume: 5
  start-page: 1625
  year: 2014
  ident: 10.1016/j.envpol.2021.116974_bib19
  article-title: Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.5.174
– volume: 622–623
  start-page: 1131
  year: 2018
  ident: 10.1016/j.envpol.2021.116974_bib14
  article-title: Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.020
– volume: 8
  start-page: 10077
  year: 2014
  ident: 10.1016/j.envpol.2021.116974_bib16
  article-title: Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking
  publication-title: ACS Nano
  doi: 10.1021/nn502754c
– volume: 8
  start-page: 170271
  year: 2018
  ident: 10.1016/j.envpol.2021.116974_bib39
  article-title: Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles
  publication-title: Open. Biol.
  doi: 10.1098/rsob.170271
– volume: 5
  year: 2014
  ident: 10.1016/j.envpol.2021.116974_bib6
  article-title: Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking
  publication-title: Small GTPases
  doi: 10.4161/sgtp.29469
SSID ssj0004333
Score 2.630645
Snippet With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116974
SubjectTerms actin
Apoptosis
autophagosomes
Autophagy
cell proliferation
chlorpromazine
cytotoxicity
Endocytosis
fluorescence
human health
humans
intestines
liver
lysosomes
Nanoplastics
nystatin
pollution
polymerization
polystyrenes
Proliferation
tissue distribution
Title Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells
URI https://dx.doi.org/10.1016/j.envpol.2021.116974
https://www.ncbi.nlm.nih.gov/pubmed/33784569
https://www.proquest.com/docview/2507669404
https://www.proquest.com/docview/2551958426
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V5QIHBFsKy09lJMSpZtPYiePjqtqygOili7S3yLEdaVFxVmxadS88C8_CkzHjJC0cSiWOScaR5bHH39gz3wC8SdNaKZ3VvLBScpkZtIMmsRyxuLLoYzvlKHf482k-_yI_LrPlDhwPuTAUVtnb_s6mR2vdv5n0ozlZr1aTM_QeEAxrYsAiRpglZbBLRfz5737chHlI0ZWTR2FO0kP6XIzx8uFy3dAFRHqEtoN-d9v2dBv8jNvQySN42ONHNu26-Bh2fBjB3jSg7_xty96yGNEZj8pH8OAPssER7M9uctrwD_2i3uxBu4iDzxxx6Pblr1hTM-zzdkOH1MGzYEKzRqBNpM5sFRgVsWcmOBYvGlgsT3LI2oEp_TB-s9u2aZurlUWkz9qGvZ-d8aNfP-muYPMEFiezxfGc98UYOKosa3leG1tXwlS6SnQtHLp1aU1xiUWlnbFVRmWQCp1LS2WICiFFolOfi1rkeY2YbR92QxP8M2DKOZclBn0Zi_Mjk5U2lfMG5ZWviiwfgxhUUNqeqJzqZZyXQ0Ta17JTXEmKKzvFjYFft1p3RB13yKtBu-VfE67EveSOlq-HyVDiWqRBM8E3F5sS4aTKcy2Tf8pEfh8ERmN42s2k6_4KoQoEtPr5f_ftBdynpy6e-CXstt8v_CtETW11EJfFAdybfvg0P_0NlVcZfA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6V9gA9INhSWH6NhDg12jRO4vi4qrZsabuXLtLeLMdOpK3AWXVTxL4Nz8KTMeM4LRxKJa7xjyzPePxNPPMNwIckqYWQWR0VJk2jNNNoB3VsIsTiwqCPbYWl3OHzWT79kn5eZIstOOpzYSisMtj-zqZ7ax2-jMJujlbL5egCvQcEw5IYsIgRZvEAdoidCpV9Z3xyOp3dpkfyrqI89o9oQJ9B58O8Kvd91dAbRHKI5oNmvOuGuguB-pvo-Ak8DhCSjbtVPoWtyg1gb-zQff62YR-ZD-r0f8sHsPsH3-AA9ie3aW04QzjX6z1o537_mSUa3VABizU1wzVv1vSf2lXMadesEGsTrzNbOkZ17Jl2lvm3BuYrlBywtidLP_BtZtM2bfNjaRDss7ZhnyYX0eGvn_RcsH4G8-PJ_GgahXoMEUota6O81qYuuS5lGcuaW_TskppCE4tSWm3KjCohFTJPDVUiKnjKY5lUOa95ntcI2_Zh2zWuegFMWGuzWKM7Y1BFsrSUurSVxv6iKossHwLvRaBM4CqnkhlfVR-Udqk6wSkSnOoEN4ToZtSq4-q4p7_opav-0jmF18k9I9_3yqDwONKmaVc112uFiFLkuUzjf_bxFD-IjYbwvNOkm_VyLgrEtPLlf6_tHTyczs_P1NnJ7PQVPKKWLrz4NWy3V9fVGwRRbfk2HJLfIuAcLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tissue+distribution+of+polystyrene+nanoplastics+in+mice+and+their+entry%2C+transport%2C+and+cytotoxicity+to+GES-1+cells&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Ding%2C+Yunfei&rft.au=Zhang%2C+Ruiqing&rft.au=Li%2C+Boqing&rft.au=Du%2C+Yunqiu&rft.date=2021-07-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=280&rft.spage=116974&rft_id=info:doi/10.1016%2Fj.envpol.2021.116974&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon