Simulation of the effects of negative thermal gradients on separation performance of gas chromatography

•Model to simulate ideal basic separation (IBS) including deviations from IBS.•Adding negative gradients to IBS reduces the separation.•Negative gradients partly compensate for broad sample injection and for gas decompression. The effect of a gradient of solute velocity on the chromatographic separa...

Full description

Saved in:
Bibliographic Details
Published inJournal of Chromatography A Vol. 1640; p. 461943
Main Authors Leppert, Jan, Blumberg, Leonid M., Wüst, Matthias, Boeker, Peter
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Model to simulate ideal basic separation (IBS) including deviations from IBS.•Adding negative gradients to IBS reduces the separation.•Negative gradients partly compensate for broad sample injection and for gas decompression. The effect of a gradient of solute velocity on the chromatographic separation of closely spaced solutes is investigated by usage of a simulation. The concept of the ideal basic separation (IBS), introduced by Blumberg, is used to determine the theoretical limit of a separation without any natural or artificial gradients of features of the chromatographic medium. The IBS is the best achievable separation and can therefore be used as a baseline to which other separations can be compared to. An addition of a negative velocity gradient cannot improve the separation of closely spaced solutes. The velocity gradient is realized by adding a temperature gradient to a GC separation. The simulation confirms this theoretical limit for a range of differently strong retained solutes. In a second part controlled deviations from IBS are used to show, that a velocity gradient can be beneficial in realistic, non-IBS. The addition of a negative velocity gradient can improve e.g. the separation of broad injected solute zones or counteract a positive gradient of the mobile phase velocity caused by gas decompression along the GC column. However, the improved separation cannot exceed that of a corresponding ideal basic separation. The resolution of broadly injected solutes can be increased by up to 45% of the corresponding IBS resolution by adding a negative velocity gradient. A positive velocity gradient due to gas decompression reduces the separation by up to 6%. The added negative velocity gradient, realized by a linear temperature gradient, can compensate this resolution loss by up to 2%.
AbstractList The effect of a gradient of solute velocity on the chromatographic separation of closely spaced solutes is investigated by usage of a simulation. The concept of the ideal basic separation (IBS), introduced by Blumberg, is used to determine the theoretical limit of a separation without any natural or artificial gradients of features of the chromatographic medium. The IBS is the best achievable separation and can therefore be used as a baseline to which other separations can be compared to. An addition of a negative velocity gradient cannot improve the separation of closely spaced solutes. The velocity gradient is realized by adding a temperature gradient to a GC separation. The simulation confirms this theoretical limit for a range of differently strong retained solutes.In a second part controlled deviations from IBS are used to show, that a velocity gradient can be beneficial in realistic, non-IBS. The addition of a negative velocity gradient can improve e.g. the separation of broad injected solute zones or counteract a positive gradient of the mobile phase velocity caused by gas decompression along the GC column. However, the improved separation cannot exceed that of a corresponding ideal basic separation. The resolution of broadly injected solutes can be increased by up to 45% of the corresponding IBS resolution by adding a negative velocity gradient. A positive velocity gradient due to gas decompression reduces the separation by up to 6%. The added negative velocity gradient, realized by a linear temperature gradient, can compensate this resolution loss by up to 2%.
•Model to simulate ideal basic separation (IBS) including deviations from IBS.•Adding negative gradients to IBS reduces the separation.•Negative gradients partly compensate for broad sample injection and for gas decompression. The effect of a gradient of solute velocity on the chromatographic separation of closely spaced solutes is investigated by usage of a simulation. The concept of the ideal basic separation (IBS), introduced by Blumberg, is used to determine the theoretical limit of a separation without any natural or artificial gradients of features of the chromatographic medium. The IBS is the best achievable separation and can therefore be used as a baseline to which other separations can be compared to. An addition of a negative velocity gradient cannot improve the separation of closely spaced solutes. The velocity gradient is realized by adding a temperature gradient to a GC separation. The simulation confirms this theoretical limit for a range of differently strong retained solutes. In a second part controlled deviations from IBS are used to show, that a velocity gradient can be beneficial in realistic, non-IBS. The addition of a negative velocity gradient can improve e.g. the separation of broad injected solute zones or counteract a positive gradient of the mobile phase velocity caused by gas decompression along the GC column. However, the improved separation cannot exceed that of a corresponding ideal basic separation. The resolution of broadly injected solutes can be increased by up to 45% of the corresponding IBS resolution by adding a negative velocity gradient. A positive velocity gradient due to gas decompression reduces the separation by up to 6%. The added negative velocity gradient, realized by a linear temperature gradient, can compensate this resolution loss by up to 2%.
ArticleNumber 461943
Author Leppert, Jan
Wüst, Matthias
Blumberg, Leonid M.
Boeker, Peter
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0001-8857-8103
  surname: Leppert
  fullname: Leppert, Jan
  email: jleppert@uni-bonn.de
  organization: Institute of Nutritional and Food Sciences, University of Bonn, Friedrich-Hirzebruch-Allee 5, D-53115 Bonn, Germany
– sequence: 2
  givenname: Leonid M.
  surname: Blumberg
  fullname: Blumberg, Leonid M.
  organization: Advachrom, P.O. Box 1243, Wilmington, DE 19801, USA
– sequence: 3
  givenname: Matthias
  surname: Wüst
  fullname: Wüst, Matthias
  organization: Institute of Nutritional and Food Sciences, University of Bonn, Friedrich-Hirzebruch-Allee 5, D-53115 Bonn, Germany
– sequence: 4
  givenname: Peter
  surname: Boeker
  fullname: Boeker, Peter
  organization: Institute of Nutritional and Food Sciences, University of Bonn, Friedrich-Hirzebruch-Allee 5, D-53115 Bonn, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33556678$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPxCAUhYnROA_9B8Z06aYjFAodFyZm4isxcaGuCaWXGSZtqdAx8d9LrbpwoRsI3PPd3HvODO23rgWETgheEEz4-XahN941apHhjCwYJ0tG99CUFIKmVIhiH01xrKRLLugEzULYYkwEFtkhmlCa55yLYorWT7bZ1aq3rk2cSfoNJGAM6D4MzxbWsfQGw79vVJ2svaostEO1TQJ0yo9oB964qGg1DNxahWScrncR6TbvR-jAqDrA8dc9Ry8318-ru_Th8fZ-dfWQarrM-5SDNlVOjaAcWF6WxMRdcVYRYQpRFUAYA06NYhoyzooSm0LzcolFoU3cH-gcnY19O-9edxB62digoa5VC24XZJYLRjnD8Zyj0y_prmygkp23jfLv8tucKGCjQHsXggfzIyFYDhnIrRy3lEMGcswgYhe_MG37T5t6r2z9H3w5whBNerPgZdDRcA2V9TEVWTn7d4MPkZ2l5g
CitedBy_id crossref_primary_10_1016_j_chroma_2023_464374
crossref_primary_10_1016_j_chroma_2023_463967
crossref_primary_10_1021_acs_analchem_1c02210
crossref_primary_10_1093_jaoacint_qsae080
crossref_primary_10_1016_j_chroma_2023_464008
crossref_primary_10_1016_j_chroma_2024_464997
crossref_primary_10_1016_j_chroma_2022_463594
crossref_primary_10_1016_j_chroma_2024_464665
crossref_primary_10_1016_j_chroma_2021_462179
Cites_doi 10.1021/ac60163a043
10.1137/141000671
10.1016/j.chroma.2014.03.025
10.1042/bj0380224
10.1093/chromsci/33.10.541
10.1016/j.chroma.2014.10.090
10.1016/S0021-9673(98)00894-2
10.1016/j.chroma.2018.06.007
10.1021/acs.analchem.5b02227
10.1021/ac60195a032
10.1016/0021-9673(93)83204-6
10.1021/ac00044a028
10.5334/jors.151
10.1007/BF02274589
10.1137/0913084
10.1016/j.chroma.2014.11.011
10.1016/j.chroma.2020.460985
10.1016/j.chroma.2017.02.047
10.1021/ac000378f
10.1016/j.chroma.2019.460737
10.1016/S0021-9673(01)00659-8
10.1002/jhrc.1240151205
10.1016/j.chroma.2013.06.008
10.1042/bj0500679
10.1039/an9527700897
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
DOI 10.1016/j.chroma.2021.461943
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3778
ExternalDocumentID 33556678
10_1016_j_chroma_2021_461943
S0021967321000674
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
YK3
ZMT
~02
~G-
~KM
.GJ
29K
AAHBH
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
OHT
RIG
SCB
SEW
SSH
UQL
VH1
WUQ
ZGI
ZKB
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
ID FETCH-LOGICAL-c395t-6ecfd53f736e45bb1f10102d17f87d8e144e63fa4ce2648b0f8c6b9078cf943e3
IEDL.DBID .~1
ISSN 0021-9673
IngestDate Thu Jul 10 18:46:11 EDT 2025
Thu Jan 02 22:56:39 EST 2025
Tue Jul 01 02:38:54 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Fri Feb 23 02:44:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gas chromatography
Simulation
Velocity gradient
Thermal gradient
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-6ecfd53f736e45bb1f10102d17f87d8e144e63fa4ce2648b0f8c6b9078cf943e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8857-8103
PMID 33556678
PQID 2574364074
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2574364074
pubmed_primary_33556678
crossref_primary_10_1016_j_chroma_2021_461943
crossref_citationtrail_10_1016_j_chroma_2021_461943
elsevier_sciencedirect_doi_10_1016_j_chroma_2021_461943
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of Chromatography A
PublicationTitleAlternate J Chromatogr A
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Blumberg, Klee (bib0017) 2001; 918
Grob (bib0035) 2001
Gritti, Guiochon (bib0014) 2014; 1342
Cramers, Leclercq (bib0003) 1999; 842
Owren, Zennaro (bib0026) 1992; 13
Blumberg (bib0007) 1994; 39
Blumberg, Jain, Phillips (bib0009) 1997
Boeker, Leppert (bib0012) 2015; 87
Consden, Gordon, Martin (bib0019) 1944; 38
Blumberg (bib0015) 2014; 1373
Giddings (bib0022) 1991
Griffiths, James, Phillips (bib0002) 1952; 77
Jeong, Rutan (bib0016) 2018; 1564
Revels, Lubin, Papamarkou (bib0033)
Giddings (bib0021) 1965
Leppert, Müller, Chopra, Blumberg, Boeker (bib0025) 2020; 1620
Zhukhovitskii, Zolotareva, Sokolov, Turkel’taub (bib0001) 1951
Contreras, Wang, Rockwood, Tolley, Lee (bib0010) 2013; 1302
Rackauckas, Nie (bib0032) 2017; 5
Rubey (bib0005) 1992
James, Martin (bib0030) 1952; 50
Hairer, Nørsett, Wanner (bib0024) 2009
Blumberg (bib0006) 1992
Blumberg (bib0027) 1993; 637
Blumberg (bib0029) 2017; 1419
Ohline, DeFord (bib0004) 1963
Keulemans (bib0020) 1959
Giddings, Seager, Stucki, Stewart (bib0023) 1960; 32
Bezanson, Edelman, Karpinski, Shah (bib0031) 2017; 59
Blumberg, Klee (bib0034) 2000; 72
Phillips, Jain (bib0008) 1995; 33
Blumberg (bib0018) 2010
Tolley, Tolley, Wang, Lee (bib0011) 2014; 1374
Li, Zhu, Zhou, She, Li, Kurabayashi, Fan (bib0013) 2020; 1614
Blumberg (bib0028) 2012
Owren (10.1016/j.chroma.2021.461943_bib0026) 1992; 13
Blumberg (10.1016/j.chroma.2021.461943_bib0006) 1992
Tolley (10.1016/j.chroma.2021.461943_bib0011) 2014; 1374
Blumberg (10.1016/j.chroma.2021.461943_bib0029) 2017; 1419
Contreras (10.1016/j.chroma.2021.461943_bib0010) 2013; 1302
Li (10.1016/j.chroma.2021.461943_bib0013) 2020; 1614
Blumberg (10.1016/j.chroma.2021.461943_bib0007) 1994; 39
Gritti (10.1016/j.chroma.2021.461943_bib0014) 2014; 1342
Giddings (10.1016/j.chroma.2021.461943_bib0021) 1965
Hairer (10.1016/j.chroma.2021.461943_bib0024) 2009
Revels (10.1016/j.chroma.2021.461943_bib0033)
Rubey (10.1016/j.chroma.2021.461943_bib0005) 1992
Cramers (10.1016/j.chroma.2021.461943_bib0003) 1999; 842
Blumberg (10.1016/j.chroma.2021.461943_bib0018) 2010
Boeker (10.1016/j.chroma.2021.461943_bib0012) 2015; 87
Keulemans (10.1016/j.chroma.2021.461943_bib0020) 1959
Leppert (10.1016/j.chroma.2021.461943_bib0025) 2020; 1620
James (10.1016/j.chroma.2021.461943_bib0030) 1952; 50
Phillips (10.1016/j.chroma.2021.461943_bib0008) 1995; 33
Blumberg (10.1016/j.chroma.2021.461943_bib0028) 2012
Jeong (10.1016/j.chroma.2021.461943_bib0016) 2018; 1564
Giddings (10.1016/j.chroma.2021.461943_bib0023) 1960; 32
Grob (10.1016/j.chroma.2021.461943_bib0035) 2001
Blumberg (10.1016/j.chroma.2021.461943_bib0015) 2014; 1373
Bezanson (10.1016/j.chroma.2021.461943_bib0031) 2017; 59
Blumberg (10.1016/j.chroma.2021.461943_bib0009) 1997
Ohline (10.1016/j.chroma.2021.461943_bib0004) 1963
Giddings (10.1016/j.chroma.2021.461943_bib0022) 1991
Griffiths (10.1016/j.chroma.2021.461943_bib0002) 1952; 77
Blumberg (10.1016/j.chroma.2021.461943_bib0034) 2000; 72
Consden (10.1016/j.chroma.2021.461943_bib0019) 1944; 38
Blumberg (10.1016/j.chroma.2021.461943_bib0027) 1993; 637
Zhukhovitskii (10.1016/j.chroma.2021.461943_bib0001) 1951
Blumberg (10.1016/j.chroma.2021.461943_bib0017) 2001; 918
Rackauckas (10.1016/j.chroma.2021.461943_bib0032) 2017; 5
References_xml – start-page: 2459
  year: 1992
  end-page: 2460
  ident: bib0006
  publication-title: Analytical Chemistry
– volume: 1374
  start-page: 189
  year: 2014
  end-page: 198
  ident: bib0011
  publication-title: Journal of Chromatography A
– ident: bib0033
– volume: 13
  start-page: 1488
  year: 1992
  end-page: 1501
  ident: bib0026
  publication-title: SIAM Journal on Scientific and Statistical Computing
– year: 1991
  ident: bib0022
  article-title: Unified separation science
– volume: 1302
  start-page: 143
  year: 2013
  end-page: 151
  ident: bib0010
  publication-title: Journal of Chromatography A
– volume: 72
  start-page: 4080
  year: 2000
  end-page: 4089
  ident: bib0034
  publication-title: Analytical Chemistry
– volume: 39
  start-page: 719
  year: 1994
  end-page: 728
  ident: bib0007
  publication-title: Chromatographia
– volume: 1419
  start-page: 159
  year: 2017
  end-page: 170
  ident: bib0029
  publication-title: Journal of Chromatography A
– year: 2009
  ident: bib0024
  article-title: Solving ordinary differential equations I: nonstiff problems
  publication-title: number 8 in Springer series in computational mathematics
– volume: 32
  start-page: 867
  year: 1960
  end-page: 870
  ident: bib0023
  publication-title: Analytical Chemistry
– volume: 637
  start-page: 119
  year: 1993
  end-page: 128
  ident: bib0027
  publication-title: Journal of Chromatographhy
– volume: 5
  year: 2017
  ident: bib0032
  publication-title: The Journal of Open Research Software
– start-page: 451
  year: 1997
  end-page: 456
  ident: bib0009
  publication-title: Journal of Chromatographic Science
– volume: 77
  start-page: 897
  year: 1952
  end-page: 904
  ident: bib0002
  publication-title: The Analyst
– year: 1959
  ident: bib0020
  article-title: Gas Chromatography
– volume: 87
  start-page: 9033
  year: 2015
  end-page: 9041
  ident: bib0012
  publication-title: Analytical Chemistry
– start-page: 19
  year: 2012
  end-page: 78
  ident: bib0028
  article-title: Theory of gas chromatography
  publication-title: Gas Chromatography
– volume: 1373
  start-page: 216
  year: 2014
  end-page: 219
  ident: bib0015
  publication-title: Journal of Chromatography A
– year: 2010
  ident: bib0018
  article-title: Temperature-Programmed Gas Chromatography
– start-page: 227
  year: 1963
  end-page: 234
  ident: bib0004
  publication-title: Analytical Chemistry
– volume: 1620
  start-page: 460985
  year: 2020
  ident: bib0025
  publication-title: Journal of Chromatography A
– volume: 1342
  start-page: 24
  year: 2014
  end-page: 29
  ident: bib0014
  publication-title: Journal of Chromatography A
– volume: 38
  start-page: 224
  year: 1944
  end-page: 232
  ident: bib0019
  publication-title: The Biochemical Journal
– start-page: 795
  year: 1992
  end-page: 799
  ident: bib0005
  publication-title: Journal of High Resolution Chromatography
– volume: 33
  start-page: 541
  year: 1995
  end-page: 550
  ident: bib0008
  publication-title: Journal of Chromatographic Science
– year: 2001
  ident: bib0035
  article-title: Split and splitless injection for quantitative gas chromatography: concepts, processes, practical guidelines, sources of error
– volume: 842
  start-page: 3
  year: 1999
  end-page: 13
  ident: bib0003
  publication-title: Journal of Chromatography A
– volume: 918
  start-page: 113
  year: 2001
  end-page: 120
  ident: bib0017
  publication-title: Journal of Chromatography A
– volume: 59
  start-page: 65
  year: 2017
  end-page: 98
  ident: bib0031
  publication-title: SIAM Review
– start-page: 435
  year: 1951
  end-page: 438
  ident: bib0001
  publication-title: Doklady Akademii Nauk S.S.S.R.
– year: 1965
  ident: bib0021
  article-title: Dynamics of Chromatography: Part. I: Principles and Theory
– volume: 1614
  start-page: 460737
  year: 2020
  ident: bib0013
  publication-title: Journal of Chromatography A
– volume: 50
  start-page: 679
  year: 1952
  end-page: 690
  ident: bib0030
  publication-title: The Biochemical Journal
– volume: 1564
  start-page: 128
  year: 2018
  end-page: 136
  ident: bib0016
  publication-title: Journal of Chromatography A
– volume: 32
  start-page: 867
  year: 1960
  ident: 10.1016/j.chroma.2021.461943_bib0023
  publication-title: Analytical Chemistry
  doi: 10.1021/ac60163a043
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.chroma.2021.461943_bib0031
  publication-title: SIAM Review
  doi: 10.1137/141000671
– year: 1965
  ident: 10.1016/j.chroma.2021.461943_bib0021
– volume: 1342
  start-page: 24
  year: 2014
  ident: 10.1016/j.chroma.2021.461943_bib0014
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2014.03.025
– volume: 38
  start-page: 224
  issue: 3
  year: 1944
  ident: 10.1016/j.chroma.2021.461943_bib0019
  publication-title: The Biochemical Journal
  doi: 10.1042/bj0380224
– volume: 33
  start-page: 541
  year: 1995
  ident: 10.1016/j.chroma.2021.461943_bib0008
  publication-title: Journal of Chromatographic Science
  doi: 10.1093/chromsci/33.10.541
– volume: 1374
  start-page: 189
  year: 2014
  ident: 10.1016/j.chroma.2021.461943_bib0011
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2014.10.090
– start-page: 435
  issue: 77
  year: 1951
  ident: 10.1016/j.chroma.2021.461943_bib0001
  publication-title: Doklady Akademii Nauk S.S.S.R.
– volume: 842
  start-page: 3
  issue: 1-2
  year: 1999
  ident: 10.1016/j.chroma.2021.461943_bib0003
  publication-title: Journal of Chromatography A
  doi: 10.1016/S0021-9673(98)00894-2
– year: 2001
  ident: 10.1016/j.chroma.2021.461943_bib0035
– volume: 1564
  start-page: 128
  year: 2018
  ident: 10.1016/j.chroma.2021.461943_bib0016
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2018.06.007
– volume: 87
  start-page: 9033
  issue: 17
  year: 2015
  ident: 10.1016/j.chroma.2021.461943_bib0012
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.5b02227
– start-page: 227
  issue: 35
  year: 1963
  ident: 10.1016/j.chroma.2021.461943_bib0004
  publication-title: Analytical Chemistry
  doi: 10.1021/ac60195a032
– volume: 637
  start-page: 119
  year: 1993
  ident: 10.1016/j.chroma.2021.461943_bib0027
  publication-title: Journal of Chromatographhy
  doi: 10.1016/0021-9673(93)83204-6
– start-page: 2459
  issue: 64
  year: 1992
  ident: 10.1016/j.chroma.2021.461943_bib0006
  publication-title: Analytical Chemistry
  doi: 10.1021/ac00044a028
– volume: 5
  issue: 1
  year: 2017
  ident: 10.1016/j.chroma.2021.461943_bib0032
  publication-title: The Journal of Open Research Software
  doi: 10.5334/jors.151
– year: 2009
  ident: 10.1016/j.chroma.2021.461943_bib0024
  article-title: Solving ordinary differential equations I: nonstiff problems
– start-page: 19
  year: 2012
  ident: 10.1016/j.chroma.2021.461943_bib0028
  article-title: Theory of gas chromatography
– volume: 39
  start-page: 719
  issue: 11-12
  year: 1994
  ident: 10.1016/j.chroma.2021.461943_bib0007
  publication-title: Chromatographia
  doi: 10.1007/BF02274589
– volume: 13
  start-page: 1488
  issue: 6
  year: 1992
  ident: 10.1016/j.chroma.2021.461943_bib0026
  publication-title: SIAM Journal on Scientific and Statistical Computing
  doi: 10.1137/0913084
– volume: 1373
  start-page: 216
  year: 2014
  ident: 10.1016/j.chroma.2021.461943_bib0015
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2014.11.011
– year: 1959
  ident: 10.1016/j.chroma.2021.461943_bib0020
– year: 1991
  ident: 10.1016/j.chroma.2021.461943_bib0022
– ident: 10.1016/j.chroma.2021.461943_bib0033
– volume: 1620
  start-page: 460985
  year: 2020
  ident: 10.1016/j.chroma.2021.461943_bib0025
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2020.460985
– volume: 1419
  start-page: 159
  year: 2017
  ident: 10.1016/j.chroma.2021.461943_bib0029
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2017.02.047
– volume: 72
  start-page: 4080
  issue: 17
  year: 2000
  ident: 10.1016/j.chroma.2021.461943_bib0034
  publication-title: Analytical Chemistry
  doi: 10.1021/ac000378f
– volume: 1614
  start-page: 460737
  year: 2020
  ident: 10.1016/j.chroma.2021.461943_bib0013
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2019.460737
– year: 2010
  ident: 10.1016/j.chroma.2021.461943_bib0018
– start-page: 451
  issue: 35
  year: 1997
  ident: 10.1016/j.chroma.2021.461943_bib0009
  publication-title: Journal of Chromatographic Science
– volume: 918
  start-page: 113
  issue: 1
  year: 2001
  ident: 10.1016/j.chroma.2021.461943_bib0017
  publication-title: Journal of Chromatography A
  doi: 10.1016/S0021-9673(01)00659-8
– start-page: 795
  issue: 15
  year: 1992
  ident: 10.1016/j.chroma.2021.461943_bib0005
  publication-title: Journal of High Resolution Chromatography
  doi: 10.1002/jhrc.1240151205
– volume: 1302
  start-page: 143
  year: 2013
  ident: 10.1016/j.chroma.2021.461943_bib0010
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2013.06.008
– volume: 50
  start-page: 679
  issue: 5
  year: 1952
  ident: 10.1016/j.chroma.2021.461943_bib0030
  publication-title: The Biochemical Journal
  doi: 10.1042/bj0500679
– volume: 77
  start-page: 897
  year: 1952
  ident: 10.1016/j.chroma.2021.461943_bib0002
  publication-title: The Analyst
  doi: 10.1039/an9527700897
SSID ssj0017072
ssj0029838
Score 2.4012158
Snippet •Model to simulate ideal basic separation (IBS) including deviations from IBS.•Adding negative gradients to IBS reduces the separation.•Negative gradients...
The effect of a gradient of solute velocity on the chromatographic separation of closely spaced solutes is investigated by usage of a simulation. The concept...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 461943
SubjectTerms Chromatography, Gas - methods
Computer Simulation
Gas chromatography
gases
separation
Simulation
simulation models
solutes
Temperature
temperature profiles
Thermal gradient
Velocity gradient
Title Simulation of the effects of negative thermal gradients on separation performance of gas chromatography
URI https://dx.doi.org/10.1016/j.chroma.2021.461943
https://www.ncbi.nlm.nih.gov/pubmed/33556678
https://www.proquest.com/docview/2574364074
Volume 1640
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYQexgvE2OwFQYK0l4Dde3EzmNVURUqqmkDwZsVO-euE0urtrzy23cXO0U8ICSekjg5xb5zzmflu-8Y-2ErKLQti7SUIFJZOZ4WQkLquqB81-vCSUoUvp7ko1t5dZ_db7FBmwtDsMro-4NPb7x1bDmP2jxfzGaU44tfW64oCYV8LnGCSqlolp89bWAeXHXVhk-qV2gRXDPhElC0zaVrAF_uz3LeUBH1-Jmkzb14ba16LRZt1qThLvsUg8mkH_r7mW1Bvcc-Dtoabl_Y9PfsX6zPlcx9gsFeEgEcdFnDtKH9pnb0zw_JdNkAwOhunawg0ILj6eI5u4DkpuUqCcNYR8LrfXY7vLgZjNJYWiF1osjWaQ7OV5nwSuQgM2u550QuV3Hltao04DYLcuFL6YAgcBat5nKLG2ntPCoGxAHbruc1fGMJQGl9pX1ZcCtFzrXDqMRph6bWPWurDhOtEo2LvONU_uLBtACzvyb02ZDqTVB9h6UbqUXg3XjjedXax7yYPwaXhjckT1tzGrQO_S8pa5g_rgx6MxwQ7nhlh30Ndt70RWCcluNCf_ju9x6xHboiPBvPvrPt9fIRjjHAWduTZgafsA_9y_FoQsfxr7sxtk5-Xv8HgBz97A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x9oG9THyNFcbIJF4zmtpJnEdUDbUD-jKQeLNi51w6dWnVlv-fu9jpxANC2lsS5xT7zrkP-e53ABemwkKZsohLiSKWlU3iQkiMbR9z13eqsJILhe8m2ehB_npMH3dg2NbCcFpl0P1epzfaOjy5DNy8XM5mXONLf1uWcxEK61z5AbqMTpV2oHs1vhlNtocJeT_fQkoNCiW8dubUBKJuy-manC_7tFo0aESD5Ifk-F68Za7eckcbs3S9B5-CPxld-Snvww7WB7A7bNu4HcL09-xvaNEVLVxE_l4Ucjj4tsZpg_zNz0lFz6PpqskB49E6WqNHBqfL5b8CA6abluvIL2MTMK-P4OH65_1wFIfuCrEVRbqJM7SuSoXLRYYyNSZxCePLVUnuVF4ppEgLM-FKaZGz4AwJzmaGYmllHTEGxWfo1Isav0CEWBpXKVcWiZEiS5Qlx8QqS9JWA2OqHoiWidoG6HHugDHXbY7ZH-3nrJn12rO-B_GWaumhN955P2_lo19tIU3W4R3K7604NUmHj0zKGhfPa00KjRZEQa_swbGX83Yugly1jGz9yX9_9xx2R_d3t_p2PLk5hY88wultSfoVOpvVM56Rv7Mx38J-fgFJwf3u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+the+effects+of+negative+thermal+gradients+on+separation+performance+of+gas+chromatography&rft.jtitle=Journal+of+chromatography&rft.au=Leppert%2C+Jan&rft.au=Blumberg%2C+Leonid+M&rft.au=W%C3%BCst%2C+Matthias&rft.au=Boeker%2C+Peter&rft.date=2021-03-15&rft.issn=0021-9673&rft.volume=1640+p.461943-&rft_id=info:doi/10.1016%2Fj.chroma.2021.461943&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon