Definition of a new set of parameters for the dynamic thermal characterization of PCM layers in the presence of one or more liquid-solid interfaces
•A set of parameters for a complete thermal characterization of PCM layers are defined.•Various PCM layers with different melting temperatures are considered.•The analysis regard a continental and a mediterranean climate.•Dynamic parameters are related to the latent storage efficiency.•Phase change...
Saved in:
Published in | Energy and buildings Vol. 141; pp. 379 - 396 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.04.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A set of parameters for a complete thermal characterization of PCM layers are defined.•Various PCM layers with different melting temperatures are considered.•The analysis regard a continental and a mediterranean climate.•Dynamic parameters are related to the latent storage efficiency.•Phase change in the 35% of the layer thickness is sufficient to reach high thermal performances.
The objective of the research is the definition of a new set of parameters to evaluate the effective dynamic thermal behavior of a layer subject to phase change (PCM) that, for the effect of non-sinusoidal periodic boundary conditions, characterizing the external walls of air-conditioned buildings, give rise to the formation of one or more melting or solidification bi-phase interfaces. Such bi-phase interfaces originate on the boundary surfaces, or are always present and fluctuate within the layer. Defined parameters are to be used for the thermal design of innovative walls containing a PCM layer, targeting the reduction of power peaks entering the environment, in order to reduce the energy requirements and even to improve the indoor thermal comfort.
The study has been developed by a finite difference numeric calculation model, which explicitly determines, the number and the position of the bi-phase interfaces that originate in the layer and the temperature and the heat flux fields.
The methodology developed allowed us to determine the dynamic characteristics, for each month of the year, of PCM layers with different melting temperatures and thermophysical properties and subject to climatic conditions of two locations, one with a continental climate and the second one with a Mediterranean climate. In particular, it was found that all defined dynamic parameters, irrespective of locality and of PCM type, are related to the latent storage efficiency and, furthermore, some calculation correlations between the dynamic parameters were obtained.
Finally, the results show that it was sufficient to reach the phase change in a portion of the layer of about 35% to obtain excellent dynamic thermal performance. |
---|---|
AbstractList | The objective of the research is the definition of a new set of parameters to evaluate the effective dynamic thermal behavior of a layer subject to phase change (PCM) that, for the effect of non-sinusoidal periodic boundary conditions, characterizing the external walls of air-conditioned buildings, give rise to the formation of one or more melting or solidification bi-phase interfaces. Such bi-phase interfaces originate on the boundary surfaces, or are always present and fluctuate within the layer. Defined parameters are to be used for the thermal design of innovative walls containing a PCM layer, targeting the reduction of power peaks entering the environment, in order to reduce the energy requirements and even to improve the indoor thermal comfort. The study has been developed by a finite difference numeric calculation model, which explicitly determines, the number and the position of the bi-phase interfaces that originate in the layer and the temperature and the heat flux fields. The methodology developed allowed us to determine the dynamic characteristics, for each month of the year, of PCM layers with different melting temperatures and thermophysical properties and subject to climatic conditions of two locations, one with a continental climate and the second one with a Mediterranean climate. In particular, it was found that all defined dynamic parameters, irrespective of locality and of PCM type, are related to the latent storage efficiency and, furthermore, some calculation correlations between the dynamic parameters were obtained. Finally, the results show that it was sufficient to reach the phase change in a portion of the layer of about 35% to obtain excellent dynamic thermal performance. •A set of parameters for a complete thermal characterization of PCM layers are defined.•Various PCM layers with different melting temperatures are considered.•The analysis regard a continental and a mediterranean climate.•Dynamic parameters are related to the latent storage efficiency.•Phase change in the 35% of the layer thickness is sufficient to reach high thermal performances. The objective of the research is the definition of a new set of parameters to evaluate the effective dynamic thermal behavior of a layer subject to phase change (PCM) that, for the effect of non-sinusoidal periodic boundary conditions, characterizing the external walls of air-conditioned buildings, give rise to the formation of one or more melting or solidification bi-phase interfaces. Such bi-phase interfaces originate on the boundary surfaces, or are always present and fluctuate within the layer. Defined parameters are to be used for the thermal design of innovative walls containing a PCM layer, targeting the reduction of power peaks entering the environment, in order to reduce the energy requirements and even to improve the indoor thermal comfort. The study has been developed by a finite difference numeric calculation model, which explicitly determines, the number and the position of the bi-phase interfaces that originate in the layer and the temperature and the heat flux fields. The methodology developed allowed us to determine the dynamic characteristics, for each month of the year, of PCM layers with different melting temperatures and thermophysical properties and subject to climatic conditions of two locations, one with a continental climate and the second one with a Mediterranean climate. In particular, it was found that all defined dynamic parameters, irrespective of locality and of PCM type, are related to the latent storage efficiency and, furthermore, some calculation correlations between the dynamic parameters were obtained. Finally, the results show that it was sufficient to reach the phase change in a portion of the layer of about 35% to obtain excellent dynamic thermal performance. |
Author | Oliveti, G. Mazzeo, D. Arcuri, N. |
Author_xml | – sequence: 1 givenname: D. surname: Mazzeo fullname: Mazzeo, D. email: domenico.mazzeo@unical.it – sequence: 2 givenname: G. surname: Oliveti fullname: Oliveti, G. – sequence: 3 givenname: N. surname: Arcuri fullname: Arcuri, N. |
BookMark | eNqFkMuKFDEUhoOMYM_oIwgB19UmdTtVuBBprzCiC12HVHLCnKYq6UnSDu1r-MKmpseNm4EDScj3_Qn_JbvwwSNjL6XYSiH71_st-ulIs93WQsJW1GXgCdvIAeqqlzBcsI1oYKgAhuEZu0xpL4ToO5Ab9uc9OvKUKXgeHNfc4x1PmNfDQUe9YMaYuAuR5xvk9uT1Qmbdx0XP3NwUxhSEfut_Gd93X_msT6tG_t46REzoDa635eu8hC0hIp_p9ki2SmEmW9gS47TB9Jw9dXpO-OJhvWI_P374sftcXX_79GX37royzdjlqsdRy9qMLXR66lrtemdtb6dmaIdJdiCc6VowEoSpQTS2N90o20FMUMgRdHPFXp1zDzHcHjFltQ_H6MuTSo5NLaGVUBeqO1MmhpQiOnWItOh4UlKotX-1Vw_9q7V_JeoyULw3_3mG8n1JOWqaH7Xfnm0sBfwijCoZWju0FNFkZQM9kvAXhJapCg |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2022_118957 crossref_primary_10_1016_j_applthermaleng_2022_118951 crossref_primary_10_1016_j_scs_2020_102111 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125165 crossref_primary_10_3390_app8122696 crossref_primary_10_1080_13467581_2022_2153062 crossref_primary_10_3390_technologies5040069 crossref_primary_10_1016_j_jobe_2023_107184 crossref_primary_10_3390_en11082017 crossref_primary_10_1016_j_energy_2025_134959 crossref_primary_10_1016_j_apenergy_2022_120471 crossref_primary_10_1016_j_applthermaleng_2022_119364 crossref_primary_10_1016_j_dib_2017_04_005 crossref_primary_10_1615_HeatTransRes_2023047570 crossref_primary_10_1016_j_jobe_2020_102122 crossref_primary_10_1016_j_energy_2017_08_045 crossref_primary_10_1016_j_applthermaleng_2017_07_110 crossref_primary_10_1155_2021_6670930 crossref_primary_10_1007_s10973_020_09320_8 crossref_primary_10_1016_j_solener_2021_02_027 crossref_primary_10_1016_j_energy_2019_07_122 crossref_primary_10_1016_j_applthermaleng_2020_115750 crossref_primary_10_1016_j_applthermaleng_2019_114560 crossref_primary_10_1016_j_egycc_2020_100008 crossref_primary_10_1016_j_energy_2019_05_165 crossref_primary_10_3390_en10050659 crossref_primary_10_3390_buildings9030057 crossref_primary_10_3390_en12010075 crossref_primary_10_1016_j_egyr_2023_09_152 crossref_primary_10_1016_j_jclepro_2022_130561 crossref_primary_10_3390_en12152920 crossref_primary_10_3390_su9122244 |
Cites_doi | 10.1016/j.apenergy.2015.10.031 10.1016/j.applthermaleng.2016.04.039 10.1016/j.ijthermalsci.2014.09.006 10.1016/j.apenergy.2009.01.004 10.1016/j.enbuild.2013.08.006 10.1016/S1359-4311(02)00192-8 10.1016/j.enbuild.2013.06.026 10.1016/j.rser.2010.11.018 10.1016/j.apenergy.2011.01.016 10.1016/j.apenergy.2010.02.001 10.1016/j.buildenv.2012.09.021 10.1016/j.buildenv.2012.12.007 10.1016/j.rser.2016.03.036 10.1016/j.rser.2005.10.002 10.1016/j.enbuild.2012.12.042 10.1016/j.apenergy.2013.08.067 10.1016/j.enbuild.2006.03.030 10.1016/j.enbuild.2015.12.006 10.1016/j.enconman.2015.05.014 10.1016/j.enbuild.2010.03.026 10.1016/j.energy.2007.11.003 10.1016/j.apenergy.2016.10.046 10.1016/j.enconman.2016.04.096 10.1016/j.buildenv.2006.07.023 10.1016/j.apenergy.2015.11.076 10.1016/j.enbuild.2011.06.004 10.1016/j.enbuild.2016.04.009 10.1016/j.enbuild.2016.12.046 10.1016/j.enbuild.2006.11.006 10.1016/j.egypro.2015.11.846 10.1016/j.ijheatmasstransfer.2015.04.109 10.1016/j.rser.2010.08.019 10.1016/j.enconman.2014.12.078 10.1016/j.rser.2016.11.145 10.1016/j.enconman.2013.02.003 10.1016/j.solener.2012.03.009 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Apr 15, 2017 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Apr 15, 2017 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.enbuild.2017.02.027 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6178 |
EndPage | 396 |
ExternalDocumentID | 10_1016_j_enbuild_2017_02_027 S0378778817304899 |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET SEW SSH WUQ ZMT ZY4 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c395t-6e9a12c9475ab54af6fdd6db3848b1570fc547c170c2703d6c591480b7f6f97a3 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Wed Aug 13 06:28:03 EDT 2025 Tue Jul 01 01:12:45 EDT 2025 Thu Apr 24 22:59:29 EDT 2025 Fri Feb 23 02:27:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Latent heat Melting temperature Phase change material Dynamic thermal behavior Dynamic parameters Stefan problem Building wall Energy efficiency Bi-phase interface Passive system Continental climate Mediterranean climate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-6e9a12c9475ab54af6fdd6db3848b1570fc547c170c2703d6c591480b7f6f97a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1932174172 |
PQPubID | 2045483 |
PageCount | 18 |
ParticipantIDs | proquest_journals_1932174172 crossref_primary_10_1016_j_enbuild_2017_02_027 crossref_citationtrail_10_1016_j_enbuild_2017_02_027 elsevier_sciencedirect_doi_10_1016_j_enbuild_2017_02_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-15 |
PublicationDateYYYYMMDD | 2017-04-15 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Energy and buildings |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Johra, Heiselberg (bib0060) 2017; 69 Sharifi, Nizam Shaikh, Sakulich (bib0115) 2017; 138 Mazzeo, Oliveti, Arcuri (bib0090) 2016; 102 Oliveti, Arcuri, De Simone, Bruno (bib0215) 2012; 86 Sun, Zhang, Medina, Lee, Liao (bib0135) 2016; 120 Zwanzig, Lian, Brehob (bib0145) 2013; 69 Mazzeo, Oliveti, De Simone, Arcuri (bib0185) 2015; 88 Gasparella, Pernigotto, Baratieri, Baggio (bib0100) 2011; 43 Akeiber, Nejat, Abd. Majid, Wahid, Jomehzadeh, Famileh, Calautit, Hughes, Zaki (bib0005) 2016; 60 Oliveti, Arcuri, Mazzeo, De Simone (bib0080) 2015; 88 Ye, Long, Zhang, Zou (bib0130) 2014; 113 Evola, Marletta (bib0075) 2013; 65 EN ISO 13786, Thermal Performance of Buildings Components e Dynamic Thermal Characteristics e Calculation Methods, 2010. Saffari, Gracia, Ushak, Cabeza (bib0065) 2016; 112 Tyagi, Buddhi (bib0040) 2007; 11 Mandilaras, Stamatiadou, Katsourinis, Zannis, Founti (bib0155) 2013; 61 EN ISO 6946:1997. Building components and building elements −Thermal resistance and thermal transmittance - Calculation method. Zalba, Marı́n, Cabeza, Mehling (bib0035) 2003; 23 Li, Zheng, Liu, Wu (bib0165) 2015; 100 Zhang, Zhou, Lin, Zhang, Di (bib0010) 2007; 42 Kuznik, David, Johannes, Roux (bib0015) 2011; 15 Ling, Chen, Qin, Wei, Lin, Li, Zhang, Yu, Li (bib0120) 2016; 122 Lei, Yang, Yang (bib0140) 2016; 162 Mazzeo, Oliveti, Arcuri (bib0085) 2016; 164 Cabeza, Castell, Barreneche, de Gracia, Fernández (bib0030) 2011; 15 Zhou, Yang, Xu (bib0105) 2011; 88 Mazzeo, Oliveti, Arcuri (bib0180) 2015; 82 Soares, Costa, Gaspar, Santos (bib0055) 2013; 59 Guarino, Athienitis, Cellura, Bastien (bib0170) 2017; 185 Solar Energy Laboratory University of Wisconsin-Madison, TRNSYS, Version 17, 2012. UNI 10349:1994. Heating and cooling of buildings. Climatic data. Pomianowski, Heiselberg, Zhang (bib0050) 2013; 67 Baetens, Jelle, Gustavsen (bib0045) 2010; 42 Cabeza, Castellón, Nogués, Medrano, Leppers, Zubillaga (bib0160) 2007; 39 UNI TS 11300-1:2008. Energy performance of buildings. Part 1: Evaluation of energy need for space heating and cooling. Zhou, Yang, Wang, Cheng (bib0110) 2010; 87 Thiele, Sant, Pilon (bib0175) 2015; 93 EN ISO 13790:2008. Energy performance of buildings −calculation of energy use for space heating and cooling. Medina, King, Zhang (bib0020) 2008; 33 Evola, Marletta, Sicurella (bib0125) 2013; 59 Kontoleon, Bikas (bib0095) 2007; 39 Kuznik, Virgone (bib0150) 2009; 86 Amar, Mohammed (bib0025) 2004; 45 Cabeza (10.1016/j.enbuild.2017.02.027_bib0160) 2007; 39 Johra (10.1016/j.enbuild.2017.02.027_bib0060) 2017; 69 Amar (10.1016/j.enbuild.2017.02.027_bib0025) 2004; 45 Zhou (10.1016/j.enbuild.2017.02.027_bib0105) 2011; 88 Zhang (10.1016/j.enbuild.2017.02.027_bib0010) 2007; 42 Mazzeo (10.1016/j.enbuild.2017.02.027_bib0085) 2016; 164 Zhou (10.1016/j.enbuild.2017.02.027_bib0110) 2010; 87 Baetens (10.1016/j.enbuild.2017.02.027_bib0045) 2010; 42 Ye (10.1016/j.enbuild.2017.02.027_bib0130) 2014; 113 Evola (10.1016/j.enbuild.2017.02.027_bib0075) 2013; 65 Mazzeo (10.1016/j.enbuild.2017.02.027_bib0180) 2015; 82 10.1016/j.enbuild.2017.02.027_bib0210 Mazzeo (10.1016/j.enbuild.2017.02.027_bib0090) 2016; 102 Zwanzig (10.1016/j.enbuild.2017.02.027_bib0145) 2013; 69 Oliveti (10.1016/j.enbuild.2017.02.027_bib0080) 2015; 88 Saffari (10.1016/j.enbuild.2017.02.027_bib0065) 2016; 112 Kuznik (10.1016/j.enbuild.2017.02.027_bib0150) 2009; 86 10.1016/j.enbuild.2017.02.027_bib0195 Kuznik (10.1016/j.enbuild.2017.02.027_bib0015) 2011; 15 Gasparella (10.1016/j.enbuild.2017.02.027_bib0100) 2011; 43 Ling (10.1016/j.enbuild.2017.02.027_bib0120) 2016; 122 Akeiber (10.1016/j.enbuild.2017.02.027_bib0005) 2016; 60 Lei (10.1016/j.enbuild.2017.02.027_bib0140) 2016; 162 Soares (10.1016/j.enbuild.2017.02.027_bib0055) 2013; 59 Mandilaras (10.1016/j.enbuild.2017.02.027_bib0155) 2013; 61 Medina (10.1016/j.enbuild.2017.02.027_bib0020) 2008; 33 Mazzeo (10.1016/j.enbuild.2017.02.027_bib0185) 2015; 88 Oliveti (10.1016/j.enbuild.2017.02.027_bib0215) 2012; 86 Zalba (10.1016/j.enbuild.2017.02.027_bib0035) 2003; 23 Tyagi (10.1016/j.enbuild.2017.02.027_bib0040) 2007; 11 10.1016/j.enbuild.2017.02.027_bib0190 Pomianowski (10.1016/j.enbuild.2017.02.027_bib0050) 2013; 67 10.1016/j.enbuild.2017.02.027_bib0070 Li (10.1016/j.enbuild.2017.02.027_bib0165) 2015; 100 Evola (10.1016/j.enbuild.2017.02.027_bib0125) 2013; 59 Sun (10.1016/j.enbuild.2017.02.027_bib0135) 2016; 120 Sharifi (10.1016/j.enbuild.2017.02.027_bib0115) 2017; 138 Cabeza (10.1016/j.enbuild.2017.02.027_bib0030) 2011; 15 Kontoleon (10.1016/j.enbuild.2017.02.027_bib0095) 2007; 39 Thiele (10.1016/j.enbuild.2017.02.027_bib0175) 2015; 93 10.1016/j.enbuild.2017.02.027_bib0205 10.1016/j.enbuild.2017.02.027_bib0200 Guarino (10.1016/j.enbuild.2017.02.027_bib0170) 2017; 185 |
References_xml | – volume: 42 start-page: 1361 year: 2010 end-page: 1368 ident: bib0045 article-title: Phase change materials for building applications: a state-of-the-art review publication-title: Energy Build. – volume: 59 start-page: 517 year: 2013 end-page: 527 ident: bib0125 article-title: A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings publication-title: Build. Environ. – volume: 82 start-page: 472 year: 2015 end-page: 479 ident: bib0180 article-title: Multiple Bi-phase interfaces in a PCM layer subject to periodic boundary conditions characteristic of building external walls publication-title: Energy Procedia – volume: 122 start-page: 175 year: 2016 end-page: 184 ident: bib0120 article-title: Indicators evaluating thermal inertia performance of envelops with phase change material publication-title: Energy Build. – volume: 39 start-page: 113 year: 2007 end-page: 119 ident: bib0160 article-title: Use of microencapsulated PCM in concrete walls for energy savings publication-title: Energy Build. – volume: 11 start-page: 1146 year: 2007 end-page: 1166 ident: bib0040 article-title: PCM thermal storage in buildings: a state of art publication-title: Renew. Sustain. Energy Rev. – volume: 100 start-page: 147 year: 2015 end-page: 156 ident: bib0165 article-title: Numerical analysis on thermal performance of roof contained PCM of a single residential building publication-title: Energy Convers. Manage. – volume: 67 start-page: 56 year: 2013 end-page: 69 ident: bib0050 article-title: Review of thermal energy storage technologies based on PCM application in buildings publication-title: Energy Build. – volume: 88 start-page: 96 year: 2015 end-page: 109 ident: bib0080 article-title: A new parameter for the dynamic analysis of building walls using the harmonic method publication-title: Int. J. Therm. Sci. – reference: UNI 10349:1994. Heating and cooling of buildings. Climatic data. – reference: EN ISO 13790:2008. Energy performance of buildings −calculation of energy use for space heating and cooling. – volume: 69 start-page: 19 year: 2017 end-page: 32 ident: bib0060 article-title: Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: a review publication-title: Renew. Sustain. Energy Rev. – volume: 120 start-page: 100 year: 2016 end-page: 108 ident: bib0135 article-title: Parameter design for a phase change material board installed on the inner surface of building exterior envelopes for cooling in China publication-title: Energy Convers. Manage. – volume: 102 start-page: 1157 year: 2016 end-page: 1174 ident: bib0090 article-title: Mapping of the seasonal dynamic properties of building walls in actual periodic conditions and effects produced by solar radiation incident on the outer and inner surfaces of the wall publication-title: Appl. Therm. Eng. – volume: 39 start-page: 1011 year: 2007 end-page: 1018 ident: bib0095 article-title: The effect of south wall's outdoor absorption coefficient on time lag, decrement factor and temperature variations publication-title: Energy Build. – reference: EN ISO 6946:1997. Building components and building elements −Thermal resistance and thermal transmittance - Calculation method. – volume: 15 start-page: 1675 year: 2011 end-page: 1695 ident: bib0030 article-title: Materials used as PCM in thermal energy storage in buildings: a review publication-title: Renew. Sustain. Energy Rev. – volume: 185 start-page: 95 year: 2017 end-page: 106 ident: bib0170 article-title: PCM thermal storage design in buildings: experimental studies and applications to solaria in cold climates publication-title: Appl. Energy – reference: EN ISO 13786, Thermal Performance of Buildings Components e Dynamic Thermal Characteristics e Calculation Methods, 2010. – volume: 33 start-page: 667 year: 2008 end-page: 678 ident: bib0020 article-title: On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs) publication-title: Energy – volume: 88 start-page: 2113 year: 2011 end-page: 2121 ident: bib0105 article-title: Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves publication-title: Appl. Energy – reference: UNI TS 11300-1:2008. Energy performance of buildings. Part 1: Evaluation of energy need for space heating and cooling. – volume: 112 start-page: 159 year: 2016 end-page: 172 ident: bib0065 article-title: Economic impact of integrating PCM as passive system in buildings using Fanger comfort model publication-title: Energy Build. – volume: 42 start-page: 2197 year: 2007 end-page: 2209 ident: bib0010 article-title: Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook publication-title: Build. Environ. – volume: 88 start-page: 844 year: 2015 end-page: 861 ident: bib0185 article-title: Analytical model for solidification and melting in a finite PCM in steady periodic regime publication-title: Int. J. Heat Mass Transf. – volume: 60 start-page: 1470 year: 2016 end-page: 1497 ident: bib0005 article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes publication-title: Renew. Sustain. Energy Rev. – volume: 65 start-page: 448 year: 2013 end-page: 457 ident: bib0075 article-title: A dynamic parameter to describe the thermal response of buildings to radiant heat gains publication-title: Energy Build. – volume: 45 start-page: 263 year: 2004 end-page: 275 ident: bib0025 article-title: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials publication-title: Energy Convers. Manage. – volume: 138 start-page: 455 year: 2017 end-page: 467 ident: bib0115 article-title: Application of phase change materials in gypsum boards to meet building energy conservation goals publication-title: Energy Build. – volume: 69 start-page: 27 year: 2013 end-page: 40 ident: bib0145 article-title: Numerical simulation of phase change material composite wallboard in a multi-layered building envelope publication-title: Energy Convers. Manage. – volume: 162 start-page: 207 year: 2016 end-page: 217 ident: bib0140 article-title: Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore publication-title: Appl. Energy – reference: Solar Energy Laboratory University of Wisconsin-Madison, TRNSYS, Version 17, 2012. – volume: 15 start-page: 379 year: 2011 end-page: 391 ident: bib0015 article-title: A review on phase change materials integrated in building walls publication-title: Renew. Sustain. Energy Rev. – volume: 59 start-page: 82 year: 2013 end-page: 103 ident: bib0055 article-title: Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency publication-title: Energy Build. – volume: 113 start-page: 1118 year: 2014 end-page: 1126 ident: bib0130 article-title: The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index publication-title: Appl. Energy – volume: 61 start-page: 93 year: 2013 end-page: 103 ident: bib0155 article-title: Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls publication-title: Build. Environ. – volume: 86 start-page: 1785 year: 2012 end-page: 1795 ident: bib0215 article-title: Experimental evaluations of the building shell radiant exchange in clear sky conditions publication-title: Sol. Energy – volume: 164 start-page: 509 year: 2016 end-page: 531 ident: bib0085 article-title: Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime publication-title: Appl. Energy – volume: 23 start-page: 251 year: 2003 end-page: 283 ident: bib0035 article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications publication-title: Appl. Therm. Eng. – volume: 43 start-page: 2509 year: 2011 end-page: 2517 ident: bib0100 article-title: Thermal dynamic transfer properties of the opaque envelope: analytical and numerical tools for the assessment of the response to summer outdoor conditions publication-title: Energy Build. – volume: 87 start-page: 2666 year: 2010 end-page: 2672 ident: bib0110 article-title: Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves publication-title: Appl. Energy – volume: 86 start-page: 2038 year: 2009 end-page: 2046 ident: bib0150 article-title: Experimental assessment of a phase change material for wall building use publication-title: Appl. Energy – volume: 93 start-page: 215 year: 2015 end-page: 227 ident: bib0175 article-title: Diurnal thermal analysis of microencapsulated PCM-concrete composite walls publication-title: Energy Convers. Manage. – volume: 162 start-page: 207 issue: January (15) year: 2016 ident: 10.1016/j.enbuild.2017.02.027_bib0140 article-title: Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.10.031 – volume: 102 start-page: 1157 issue: June (5) year: 2016 ident: 10.1016/j.enbuild.2017.02.027_bib0090 article-title: Mapping of the seasonal dynamic properties of building walls in actual periodic conditions and effects produced by solar radiation incident on the outer and inner surfaces of the wall publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.04.039 – volume: 88 start-page: 96 issue: February year: 2015 ident: 10.1016/j.enbuild.2017.02.027_bib0080 article-title: A new parameter for the dynamic analysis of building walls using the harmonic method publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2014.09.006 – volume: 86 start-page: 2038 issue: 10 year: 2009 ident: 10.1016/j.enbuild.2017.02.027_bib0150 article-title: Experimental assessment of a phase change material for wall building use publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.01.004 – ident: 10.1016/j.enbuild.2017.02.027_bib0205 – volume: 67 start-page: 56 year: 2013 ident: 10.1016/j.enbuild.2017.02.027_bib0050 article-title: Review of thermal energy storage technologies based on PCM application in buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.08.006 – volume: 23 start-page: 251 issue: 3 year: 2003 ident: 10.1016/j.enbuild.2017.02.027_bib0035 article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00192-8 – volume: 65 start-page: 448 issue: October year: 2013 ident: 10.1016/j.enbuild.2017.02.027_bib0075 article-title: A dynamic parameter to describe the thermal response of buildings to radiant heat gains publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.06.026 – volume: 15 start-page: 1675 issue: April (3) year: 2011 ident: 10.1016/j.enbuild.2017.02.027_bib0030 article-title: Materials used as PCM in thermal energy storage in buildings: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.018 – ident: 10.1016/j.enbuild.2017.02.027_bib0070 – volume: 88 start-page: 2113 issue: June (6) year: 2011 ident: 10.1016/j.enbuild.2017.02.027_bib0105 article-title: Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.016 – volume: 87 start-page: 2666 issue: August (8) year: 2010 ident: 10.1016/j.enbuild.2017.02.027_bib0110 article-title: Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.02.001 – volume: 59 start-page: 517 issue: January year: 2013 ident: 10.1016/j.enbuild.2017.02.027_bib0125 article-title: A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.09.021 – volume: 61 start-page: 93 issue: March year: 2013 ident: 10.1016/j.enbuild.2017.02.027_bib0155 article-title: Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.12.007 – ident: 10.1016/j.enbuild.2017.02.027_bib0200 – volume: 60 start-page: 1470 issue: July year: 2016 ident: 10.1016/j.enbuild.2017.02.027_bib0005 article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.03.036 – volume: 11 start-page: 1146 issue: August (6) year: 2007 ident: 10.1016/j.enbuild.2017.02.027_bib0040 article-title: PCM thermal storage in buildings: a state of art publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2005.10.002 – volume: 59 start-page: 82 year: 2013 ident: 10.1016/j.enbuild.2017.02.027_bib0055 article-title: Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.12.042 – volume: 113 start-page: 1118 year: 2014 ident: 10.1016/j.enbuild.2017.02.027_bib0130 article-title: The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.08.067 – volume: 39 start-page: 113 issue: February (2) year: 2007 ident: 10.1016/j.enbuild.2017.02.027_bib0160 article-title: Use of microencapsulated PCM in concrete walls for energy savings publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.03.030 – volume: 112 start-page: 159 issue: January (15) year: 2016 ident: 10.1016/j.enbuild.2017.02.027_bib0065 article-title: Economic impact of integrating PCM as passive system in buildings using Fanger comfort model publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.12.006 – ident: 10.1016/j.enbuild.2017.02.027_bib0190 – volume: 100 start-page: 147 issue: August year: 2015 ident: 10.1016/j.enbuild.2017.02.027_bib0165 article-title: Numerical analysis on thermal performance of roof contained PCM of a single residential building publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.05.014 – volume: 42 start-page: 1361 issue: 9 year: 2010 ident: 10.1016/j.enbuild.2017.02.027_bib0045 article-title: Phase change materials for building applications: a state-of-the-art review publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.03.026 – volume: 33 start-page: 667 issue: 4 year: 2008 ident: 10.1016/j.enbuild.2017.02.027_bib0020 article-title: On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs) publication-title: Energy doi: 10.1016/j.energy.2007.11.003 – ident: 10.1016/j.enbuild.2017.02.027_bib0210 – volume: 185 start-page: 95 issue: January (1) year: 2017 ident: 10.1016/j.enbuild.2017.02.027_bib0170 article-title: PCM thermal storage design in buildings: experimental studies and applications to solaria in cold climates publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.046 – volume: 120 start-page: 100 issue: July (15) year: 2016 ident: 10.1016/j.enbuild.2017.02.027_bib0135 article-title: Parameter design for a phase change material board installed on the inner surface of building exterior envelopes for cooling in China publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.04.096 – volume: 42 start-page: 2197 issue: 6 year: 2007 ident: 10.1016/j.enbuild.2017.02.027_bib0010 article-title: Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.07.023 – volume: 164 start-page: 509 issue: February (15) year: 2016 ident: 10.1016/j.enbuild.2017.02.027_bib0085 article-title: Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.11.076 – volume: 43 start-page: 2509 issue: September (9) year: 2011 ident: 10.1016/j.enbuild.2017.02.027_bib0100 article-title: Thermal dynamic transfer properties of the opaque envelope: analytical and numerical tools for the assessment of the response to summer outdoor conditions publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.06.004 – volume: 122 start-page: 175 issue: June (15) year: 2016 ident: 10.1016/j.enbuild.2017.02.027_bib0120 article-title: Indicators evaluating thermal inertia performance of envelops with phase change material publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.04.009 – volume: 138 start-page: 455 issue: March (1) year: 2017 ident: 10.1016/j.enbuild.2017.02.027_bib0115 article-title: Application of phase change materials in gypsum boards to meet building energy conservation goals publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.12.046 – volume: 45 start-page: 263 issue: January (2) year: 2004 ident: 10.1016/j.enbuild.2017.02.027_bib0025 article-title: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials publication-title: Energy Convers. Manage. – volume: 39 start-page: 1011 issue: September (9) year: 2007 ident: 10.1016/j.enbuild.2017.02.027_bib0095 article-title: The effect of south wall's outdoor absorption coefficient on time lag, decrement factor and temperature variations publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.11.006 – volume: 82 start-page: 472 year: 2015 ident: 10.1016/j.enbuild.2017.02.027_bib0180 article-title: Multiple Bi-phase interfaces in a PCM layer subject to periodic boundary conditions characteristic of building external walls publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.846 – volume: 88 start-page: 844 issue: September year: 2015 ident: 10.1016/j.enbuild.2017.02.027_bib0185 article-title: Analytical model for solidification and melting in a finite PCM in steady periodic regime publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.04.109 – volume: 15 start-page: 379 issue: 1 year: 2011 ident: 10.1016/j.enbuild.2017.02.027_bib0015 article-title: A review on phase change materials integrated in building walls publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.08.019 – volume: 93 start-page: 215 issue: March (15) year: 2015 ident: 10.1016/j.enbuild.2017.02.027_bib0175 article-title: Diurnal thermal analysis of microencapsulated PCM-concrete composite walls publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.12.078 – volume: 69 start-page: 19 year: 2017 ident: 10.1016/j.enbuild.2017.02.027_bib0060 article-title: Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.145 – volume: 69 start-page: 27 issue: May year: 2013 ident: 10.1016/j.enbuild.2017.02.027_bib0145 article-title: Numerical simulation of phase change material composite wallboard in a multi-layered building envelope publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.02.003 – ident: 10.1016/j.enbuild.2017.02.027_bib0195 – volume: 86 start-page: 1785 year: 2012 ident: 10.1016/j.enbuild.2017.02.027_bib0215 article-title: Experimental evaluations of the building shell radiant exchange in clear sky conditions publication-title: Sol. Energy doi: 10.1016/j.solener.2012.03.009 |
SSID | ssj0006571 |
Score | 2.377716 |
Snippet | •A set of parameters for a complete thermal characterization of PCM layers are defined.•Various PCM layers with different melting temperatures are... The objective of the research is the definition of a new set of parameters to evaluate the effective dynamic thermal behavior of a layer subject to phase... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 379 |
SubjectTerms | Air conditioners Air conditioning Bi-phase interface Boundary conditions Building wall Buildings Climate Climatic conditions Computing time Continental climate Dynamic characteristics Dynamic parameters Dynamic thermal behavior Energy efficiency Energy requirements External walls Heat Heat flux Heat transfer Interfaces Latent heat Liquid-solid interfaces Mathematical models Mediterranean climate Melting Melting temperature Passive system Phase change Phase change material Phase transitions Solidification Stefan problem Temperature Temperature effects Thermal comfort Thermal design Thermodynamic properties Thermophysical properties |
Title | Definition of a new set of parameters for the dynamic thermal characterization of PCM layers in the presence of one or more liquid-solid interfaces |
URI | https://dx.doi.org/10.1016/j.enbuild.2017.02.027 https://www.proquest.com/docview/1932174172 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6LvuiDeOJNHnztbo-kaR9lVdZjl8UDfAvNUajUuu6ur_4J_7AzaeuFIAiFNG2mLc108g2d-YaQI3CRfaOY8WKluMdCZcEORtaLMwYurtY-TzBReDiKB3fs4p7fd0i_zYXBsMrG9tc23Vnr5kiveZu9SVH0bvwIlA3Z0EFJGbgNmMHOBGp59_UzzCPmzunCwR6O_szi6T10kV6gKJEwNBCOuhOLy_y-Pv2w1G75OVslKw1upMf1o62Rjq3WyfIXNsEN8nZi86JyIVj0KacZBcRMZ3aOHWT4fsTIlxkFlEoB9VFT16LHfTDOJdUf1M11ZiaKjftDWmaIymlROamJS1fSFs8-VdBMKYbq0rJ4fimMB5pcGIocFNMcg702yd3Z6W1_4DU1FzwdpXzuxTbNglCnTPBMcZblce5qTkUJS1TAhZ9rzoQOhK9DMBYm1jwFj8pXAkamIou2yEIFt98mNLWRYtyqJBaa8dAkuUkDY0RqeCYiHu0Q1r5pqRtCcqyLUco28uxBNhMkcYKkH8Imdkj3Q2xSM3L8JZC00yi_qZaEVeMv0f122mXzbc8kQl7w4wD57f7_yntkCXv4Xyrg-2RhPn2xBwBv5urQ6e8hWTzuX1-NsT2_HIzeAS4w_gw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLbocqA9VOUlaKHModewecxkkiPaFi2PXSEBErdR5hEpKIRld_kl_cO1k8lCUSWkSpHymHES2Y7HVuzPAD8wRA6t5jZItRYBj7VDO5i4IC04hrjGhCKjQuHJNB3f8vM7cbcGo74WhtIqve3vbHprrf2VoefmcFZVw-swQWUjNHRUUo5hwwdYJ3QqMYD1k7OL8XRlkFPRxl00PyCCl0Ke4f0xIQxUNWGGRrJF76T-Mv9eot4Y63YFOv0Cn73ryE66t9uENddswadXgILb8PunK6umzcJijyUrGDrNbOGWdEIg3w-U_LJg6KgydPyY7drR0zHa55qZFXpzV5xJZFejCasLcsxZ1bRUs7ZiyTgafWxwN2eUrcvq6um5sgEqc2UZwVDMS8r32oHb0183o3Hg2y4EJsnFMkhdXkSxyZGVhRa8KNOybTuVZDzTkZBhaZDNJpKhidFe2NSIHIOqUEucmcsi2YVBg4_fA5a7RHPhdJZKw0Vss9LmkbUyt6KQiUj2gfecVsZjklNrjFr1yWf3ygtIkYBUGOMm9-F4RTbrQDneI8h6Maq_tEvhwvEe6UEvduU_74UirxdDOXT-vv7_nY9gY3wzuVSXZ9OLb_CRRug3VSQOYLCcP7tD9HaW-rvX5j_hmv8o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Definition+of+a+new+set+of+parameters+for+the+dynamic+thermal+characterization+of+PCM+layers+in+the+presence+of+one+or+more+liquid-solid+interfaces&rft.jtitle=Energy+and+buildings&rft.au=Mazzeo%2C+D&rft.au=Oliveti%2C+G&rft.au=Arcuri%2C+N&rft.date=2017-04-15&rft.pub=Elsevier+BV&rft.issn=0378-7788&rft.eissn=1872-6178&rft.volume=141&rft.spage=379&rft_id=info:doi/10.1016%2Fj.enbuild.2017.02.027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |