Definition of a new set of parameters for the dynamic thermal characterization of PCM layers in the presence of one or more liquid-solid interfaces

•A set of parameters for a complete thermal characterization of PCM layers are defined.•Various PCM layers with different melting temperatures are considered.•The analysis regard a continental and a mediterranean climate.•Dynamic parameters are related to the latent storage efficiency.•Phase change...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 141; pp. 379 - 396
Main Authors Mazzeo, D., Oliveti, G., Arcuri, N.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.04.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A set of parameters for a complete thermal characterization of PCM layers are defined.•Various PCM layers with different melting temperatures are considered.•The analysis regard a continental and a mediterranean climate.•Dynamic parameters are related to the latent storage efficiency.•Phase change in the 35% of the layer thickness is sufficient to reach high thermal performances. The objective of the research is the definition of a new set of parameters to evaluate the effective dynamic thermal behavior of a layer subject to phase change (PCM) that, for the effect of non-sinusoidal periodic boundary conditions, characterizing the external walls of air-conditioned buildings, give rise to the formation of one or more melting or solidification bi-phase interfaces. Such bi-phase interfaces originate on the boundary surfaces, or are always present and fluctuate within the layer. Defined parameters are to be used for the thermal design of innovative walls containing a PCM layer, targeting the reduction of power peaks entering the environment, in order to reduce the energy requirements and even to improve the indoor thermal comfort. The study has been developed by a finite difference numeric calculation model, which explicitly determines, the number and the position of the bi-phase interfaces that originate in the layer and the temperature and the heat flux fields. The methodology developed allowed us to determine the dynamic characteristics, for each month of the year, of PCM layers with different melting temperatures and thermophysical properties and subject to climatic conditions of two locations, one with a continental climate and the second one with a Mediterranean climate. In particular, it was found that all defined dynamic parameters, irrespective of locality and of PCM type, are related to the latent storage efficiency and, furthermore, some calculation correlations between the dynamic parameters were obtained. Finally, the results show that it was sufficient to reach the phase change in a portion of the layer of about 35% to obtain excellent dynamic thermal performance.
AbstractList The objective of the research is the definition of a new set of parameters to evaluate the effective dynamic thermal behavior of a layer subject to phase change (PCM) that, for the effect of non-sinusoidal periodic boundary conditions, characterizing the external walls of air-conditioned buildings, give rise to the formation of one or more melting or solidification bi-phase interfaces. Such bi-phase interfaces originate on the boundary surfaces, or are always present and fluctuate within the layer. Defined parameters are to be used for the thermal design of innovative walls containing a PCM layer, targeting the reduction of power peaks entering the environment, in order to reduce the energy requirements and even to improve the indoor thermal comfort. The study has been developed by a finite difference numeric calculation model, which explicitly determines, the number and the position of the bi-phase interfaces that originate in the layer and the temperature and the heat flux fields. The methodology developed allowed us to determine the dynamic characteristics, for each month of the year, of PCM layers with different melting temperatures and thermophysical properties and subject to climatic conditions of two locations, one with a continental climate and the second one with a Mediterranean climate. In particular, it was found that all defined dynamic parameters, irrespective of locality and of PCM type, are related to the latent storage efficiency and, furthermore, some calculation correlations between the dynamic parameters were obtained. Finally, the results show that it was sufficient to reach the phase change in a portion of the layer of about 35% to obtain excellent dynamic thermal performance.
•A set of parameters for a complete thermal characterization of PCM layers are defined.•Various PCM layers with different melting temperatures are considered.•The analysis regard a continental and a mediterranean climate.•Dynamic parameters are related to the latent storage efficiency.•Phase change in the 35% of the layer thickness is sufficient to reach high thermal performances. The objective of the research is the definition of a new set of parameters to evaluate the effective dynamic thermal behavior of a layer subject to phase change (PCM) that, for the effect of non-sinusoidal periodic boundary conditions, characterizing the external walls of air-conditioned buildings, give rise to the formation of one or more melting or solidification bi-phase interfaces. Such bi-phase interfaces originate on the boundary surfaces, or are always present and fluctuate within the layer. Defined parameters are to be used for the thermal design of innovative walls containing a PCM layer, targeting the reduction of power peaks entering the environment, in order to reduce the energy requirements and even to improve the indoor thermal comfort. The study has been developed by a finite difference numeric calculation model, which explicitly determines, the number and the position of the bi-phase interfaces that originate in the layer and the temperature and the heat flux fields. The methodology developed allowed us to determine the dynamic characteristics, for each month of the year, of PCM layers with different melting temperatures and thermophysical properties and subject to climatic conditions of two locations, one with a continental climate and the second one with a Mediterranean climate. In particular, it was found that all defined dynamic parameters, irrespective of locality and of PCM type, are related to the latent storage efficiency and, furthermore, some calculation correlations between the dynamic parameters were obtained. Finally, the results show that it was sufficient to reach the phase change in a portion of the layer of about 35% to obtain excellent dynamic thermal performance.
Author Oliveti, G.
Mazzeo, D.
Arcuri, N.
Author_xml – sequence: 1
  givenname: D.
  surname: Mazzeo
  fullname: Mazzeo, D.
  email: domenico.mazzeo@unical.it
– sequence: 2
  givenname: G.
  surname: Oliveti
  fullname: Oliveti, G.
– sequence: 3
  givenname: N.
  surname: Arcuri
  fullname: Arcuri, N.
BookMark eNqFkMuKFDEUhoOMYM_oIwgB19UmdTtVuBBprzCiC12HVHLCnKYq6UnSDu1r-MKmpseNm4EDScj3_Qn_JbvwwSNjL6XYSiH71_st-ulIs93WQsJW1GXgCdvIAeqqlzBcsI1oYKgAhuEZu0xpL4ToO5Ab9uc9OvKUKXgeHNfc4x1PmNfDQUe9YMaYuAuR5xvk9uT1Qmbdx0XP3NwUxhSEfut_Gd93X_msT6tG_t46REzoDa635eu8hC0hIp_p9ki2SmEmW9gS47TB9Jw9dXpO-OJhvWI_P374sftcXX_79GX37royzdjlqsdRy9qMLXR66lrtemdtb6dmaIdJdiCc6VowEoSpQTS2N90o20FMUMgRdHPFXp1zDzHcHjFltQ_H6MuTSo5NLaGVUBeqO1MmhpQiOnWItOh4UlKotX-1Vw_9q7V_JeoyULw3_3mG8n1JOWqaH7Xfnm0sBfwijCoZWju0FNFkZQM9kvAXhJapCg
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_118957
crossref_primary_10_1016_j_applthermaleng_2022_118951
crossref_primary_10_1016_j_scs_2020_102111
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125165
crossref_primary_10_3390_app8122696
crossref_primary_10_1080_13467581_2022_2153062
crossref_primary_10_3390_technologies5040069
crossref_primary_10_1016_j_jobe_2023_107184
crossref_primary_10_3390_en11082017
crossref_primary_10_1016_j_energy_2025_134959
crossref_primary_10_1016_j_apenergy_2022_120471
crossref_primary_10_1016_j_applthermaleng_2022_119364
crossref_primary_10_1016_j_dib_2017_04_005
crossref_primary_10_1615_HeatTransRes_2023047570
crossref_primary_10_1016_j_jobe_2020_102122
crossref_primary_10_1016_j_energy_2017_08_045
crossref_primary_10_1016_j_applthermaleng_2017_07_110
crossref_primary_10_1155_2021_6670930
crossref_primary_10_1007_s10973_020_09320_8
crossref_primary_10_1016_j_solener_2021_02_027
crossref_primary_10_1016_j_energy_2019_07_122
crossref_primary_10_1016_j_applthermaleng_2020_115750
crossref_primary_10_1016_j_applthermaleng_2019_114560
crossref_primary_10_1016_j_egycc_2020_100008
crossref_primary_10_1016_j_energy_2019_05_165
crossref_primary_10_3390_en10050659
crossref_primary_10_3390_buildings9030057
crossref_primary_10_3390_en12010075
crossref_primary_10_1016_j_egyr_2023_09_152
crossref_primary_10_1016_j_jclepro_2022_130561
crossref_primary_10_3390_en12152920
crossref_primary_10_3390_su9122244
Cites_doi 10.1016/j.apenergy.2015.10.031
10.1016/j.applthermaleng.2016.04.039
10.1016/j.ijthermalsci.2014.09.006
10.1016/j.apenergy.2009.01.004
10.1016/j.enbuild.2013.08.006
10.1016/S1359-4311(02)00192-8
10.1016/j.enbuild.2013.06.026
10.1016/j.rser.2010.11.018
10.1016/j.apenergy.2011.01.016
10.1016/j.apenergy.2010.02.001
10.1016/j.buildenv.2012.09.021
10.1016/j.buildenv.2012.12.007
10.1016/j.rser.2016.03.036
10.1016/j.rser.2005.10.002
10.1016/j.enbuild.2012.12.042
10.1016/j.apenergy.2013.08.067
10.1016/j.enbuild.2006.03.030
10.1016/j.enbuild.2015.12.006
10.1016/j.enconman.2015.05.014
10.1016/j.enbuild.2010.03.026
10.1016/j.energy.2007.11.003
10.1016/j.apenergy.2016.10.046
10.1016/j.enconman.2016.04.096
10.1016/j.buildenv.2006.07.023
10.1016/j.apenergy.2015.11.076
10.1016/j.enbuild.2011.06.004
10.1016/j.enbuild.2016.04.009
10.1016/j.enbuild.2016.12.046
10.1016/j.enbuild.2006.11.006
10.1016/j.egypro.2015.11.846
10.1016/j.ijheatmasstransfer.2015.04.109
10.1016/j.rser.2010.08.019
10.1016/j.enconman.2014.12.078
10.1016/j.rser.2016.11.145
10.1016/j.enconman.2013.02.003
10.1016/j.solener.2012.03.009
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Apr 15, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 15, 2017
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2017.02.027
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
EndPage 396
ExternalDocumentID 10_1016_j_enbuild_2017_02_027
S0378778817304899
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
SSH
WUQ
ZMT
ZY4
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c395t-6e9a12c9475ab54af6fdd6db3848b1570fc547c170c2703d6c591480b7f6f97a3
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Wed Aug 13 06:28:03 EDT 2025
Tue Jul 01 01:12:45 EDT 2025
Thu Apr 24 22:59:29 EDT 2025
Fri Feb 23 02:27:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Latent heat
Melting temperature
Phase change material
Dynamic thermal behavior
Dynamic parameters
Stefan problem
Building wall
Energy efficiency
Bi-phase interface
Passive system
Continental climate
Mediterranean climate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-6e9a12c9475ab54af6fdd6db3848b1570fc547c170c2703d6c591480b7f6f97a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1932174172
PQPubID 2045483
PageCount 18
ParticipantIDs proquest_journals_1932174172
crossref_primary_10_1016_j_enbuild_2017_02_027
crossref_citationtrail_10_1016_j_enbuild_2017_02_027
elsevier_sciencedirect_doi_10_1016_j_enbuild_2017_02_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Johra, Heiselberg (bib0060) 2017; 69
Sharifi, Nizam Shaikh, Sakulich (bib0115) 2017; 138
Mazzeo, Oliveti, Arcuri (bib0090) 2016; 102
Oliveti, Arcuri, De Simone, Bruno (bib0215) 2012; 86
Sun, Zhang, Medina, Lee, Liao (bib0135) 2016; 120
Zwanzig, Lian, Brehob (bib0145) 2013; 69
Mazzeo, Oliveti, De Simone, Arcuri (bib0185) 2015; 88
Gasparella, Pernigotto, Baratieri, Baggio (bib0100) 2011; 43
Akeiber, Nejat, Abd. Majid, Wahid, Jomehzadeh, Famileh, Calautit, Hughes, Zaki (bib0005) 2016; 60
Oliveti, Arcuri, Mazzeo, De Simone (bib0080) 2015; 88
Ye, Long, Zhang, Zou (bib0130) 2014; 113
Evola, Marletta (bib0075) 2013; 65
EN ISO 13786, Thermal Performance of Buildings Components e Dynamic Thermal Characteristics e Calculation Methods, 2010.
Saffari, Gracia, Ushak, Cabeza (bib0065) 2016; 112
Tyagi, Buddhi (bib0040) 2007; 11
Mandilaras, Stamatiadou, Katsourinis, Zannis, Founti (bib0155) 2013; 61
EN ISO 6946:1997. Building components and building elements −Thermal resistance and thermal transmittance - Calculation method.
Zalba, Marı́n, Cabeza, Mehling (bib0035) 2003; 23
Li, Zheng, Liu, Wu (bib0165) 2015; 100
Zhang, Zhou, Lin, Zhang, Di (bib0010) 2007; 42
Kuznik, David, Johannes, Roux (bib0015) 2011; 15
Ling, Chen, Qin, Wei, Lin, Li, Zhang, Yu, Li (bib0120) 2016; 122
Lei, Yang, Yang (bib0140) 2016; 162
Mazzeo, Oliveti, Arcuri (bib0085) 2016; 164
Cabeza, Castell, Barreneche, de Gracia, Fernández (bib0030) 2011; 15
Zhou, Yang, Xu (bib0105) 2011; 88
Mazzeo, Oliveti, Arcuri (bib0180) 2015; 82
Soares, Costa, Gaspar, Santos (bib0055) 2013; 59
Guarino, Athienitis, Cellura, Bastien (bib0170) 2017; 185
Solar Energy Laboratory University of Wisconsin-Madison, TRNSYS, Version 17, 2012.
UNI 10349:1994. Heating and cooling of buildings. Climatic data.
Pomianowski, Heiselberg, Zhang (bib0050) 2013; 67
Baetens, Jelle, Gustavsen (bib0045) 2010; 42
Cabeza, Castellón, Nogués, Medrano, Leppers, Zubillaga (bib0160) 2007; 39
UNI TS 11300-1:2008. Energy performance of buildings. Part 1: Evaluation of energy need for space heating and cooling.
Zhou, Yang, Wang, Cheng (bib0110) 2010; 87
Thiele, Sant, Pilon (bib0175) 2015; 93
EN ISO 13790:2008. Energy performance of buildings −calculation of energy use for space heating and cooling.
Medina, King, Zhang (bib0020) 2008; 33
Evola, Marletta, Sicurella (bib0125) 2013; 59
Kontoleon, Bikas (bib0095) 2007; 39
Kuznik, Virgone (bib0150) 2009; 86
Amar, Mohammed (bib0025) 2004; 45
Cabeza (10.1016/j.enbuild.2017.02.027_bib0160) 2007; 39
Johra (10.1016/j.enbuild.2017.02.027_bib0060) 2017; 69
Amar (10.1016/j.enbuild.2017.02.027_bib0025) 2004; 45
Zhou (10.1016/j.enbuild.2017.02.027_bib0105) 2011; 88
Zhang (10.1016/j.enbuild.2017.02.027_bib0010) 2007; 42
Mazzeo (10.1016/j.enbuild.2017.02.027_bib0085) 2016; 164
Zhou (10.1016/j.enbuild.2017.02.027_bib0110) 2010; 87
Baetens (10.1016/j.enbuild.2017.02.027_bib0045) 2010; 42
Ye (10.1016/j.enbuild.2017.02.027_bib0130) 2014; 113
Evola (10.1016/j.enbuild.2017.02.027_bib0075) 2013; 65
Mazzeo (10.1016/j.enbuild.2017.02.027_bib0180) 2015; 82
10.1016/j.enbuild.2017.02.027_bib0210
Mazzeo (10.1016/j.enbuild.2017.02.027_bib0090) 2016; 102
Zwanzig (10.1016/j.enbuild.2017.02.027_bib0145) 2013; 69
Oliveti (10.1016/j.enbuild.2017.02.027_bib0080) 2015; 88
Saffari (10.1016/j.enbuild.2017.02.027_bib0065) 2016; 112
Kuznik (10.1016/j.enbuild.2017.02.027_bib0150) 2009; 86
10.1016/j.enbuild.2017.02.027_bib0195
Kuznik (10.1016/j.enbuild.2017.02.027_bib0015) 2011; 15
Gasparella (10.1016/j.enbuild.2017.02.027_bib0100) 2011; 43
Ling (10.1016/j.enbuild.2017.02.027_bib0120) 2016; 122
Akeiber (10.1016/j.enbuild.2017.02.027_bib0005) 2016; 60
Lei (10.1016/j.enbuild.2017.02.027_bib0140) 2016; 162
Soares (10.1016/j.enbuild.2017.02.027_bib0055) 2013; 59
Mandilaras (10.1016/j.enbuild.2017.02.027_bib0155) 2013; 61
Medina (10.1016/j.enbuild.2017.02.027_bib0020) 2008; 33
Mazzeo (10.1016/j.enbuild.2017.02.027_bib0185) 2015; 88
Oliveti (10.1016/j.enbuild.2017.02.027_bib0215) 2012; 86
Zalba (10.1016/j.enbuild.2017.02.027_bib0035) 2003; 23
Tyagi (10.1016/j.enbuild.2017.02.027_bib0040) 2007; 11
10.1016/j.enbuild.2017.02.027_bib0190
Pomianowski (10.1016/j.enbuild.2017.02.027_bib0050) 2013; 67
10.1016/j.enbuild.2017.02.027_bib0070
Li (10.1016/j.enbuild.2017.02.027_bib0165) 2015; 100
Evola (10.1016/j.enbuild.2017.02.027_bib0125) 2013; 59
Sun (10.1016/j.enbuild.2017.02.027_bib0135) 2016; 120
Sharifi (10.1016/j.enbuild.2017.02.027_bib0115) 2017; 138
Cabeza (10.1016/j.enbuild.2017.02.027_bib0030) 2011; 15
Kontoleon (10.1016/j.enbuild.2017.02.027_bib0095) 2007; 39
Thiele (10.1016/j.enbuild.2017.02.027_bib0175) 2015; 93
10.1016/j.enbuild.2017.02.027_bib0205
10.1016/j.enbuild.2017.02.027_bib0200
Guarino (10.1016/j.enbuild.2017.02.027_bib0170) 2017; 185
References_xml – volume: 42
  start-page: 1361
  year: 2010
  end-page: 1368
  ident: bib0045
  article-title: Phase change materials for building applications: a state-of-the-art review
  publication-title: Energy Build.
– volume: 59
  start-page: 517
  year: 2013
  end-page: 527
  ident: bib0125
  article-title: A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings
  publication-title: Build. Environ.
– volume: 82
  start-page: 472
  year: 2015
  end-page: 479
  ident: bib0180
  article-title: Multiple Bi-phase interfaces in a PCM layer subject to periodic boundary conditions characteristic of building external walls
  publication-title: Energy Procedia
– volume: 122
  start-page: 175
  year: 2016
  end-page: 184
  ident: bib0120
  article-title: Indicators evaluating thermal inertia performance of envelops with phase change material
  publication-title: Energy Build.
– volume: 39
  start-page: 113
  year: 2007
  end-page: 119
  ident: bib0160
  article-title: Use of microencapsulated PCM in concrete walls for energy savings
  publication-title: Energy Build.
– volume: 11
  start-page: 1146
  year: 2007
  end-page: 1166
  ident: bib0040
  article-title: PCM thermal storage in buildings: a state of art
  publication-title: Renew. Sustain. Energy Rev.
– volume: 100
  start-page: 147
  year: 2015
  end-page: 156
  ident: bib0165
  article-title: Numerical analysis on thermal performance of roof contained PCM of a single residential building
  publication-title: Energy Convers. Manage.
– volume: 67
  start-page: 56
  year: 2013
  end-page: 69
  ident: bib0050
  article-title: Review of thermal energy storage technologies based on PCM application in buildings
  publication-title: Energy Build.
– volume: 88
  start-page: 96
  year: 2015
  end-page: 109
  ident: bib0080
  article-title: A new parameter for the dynamic analysis of building walls using the harmonic method
  publication-title: Int. J. Therm. Sci.
– reference: UNI 10349:1994. Heating and cooling of buildings. Climatic data.
– reference: EN ISO 13790:2008. Energy performance of buildings −calculation of energy use for space heating and cooling.
– volume: 69
  start-page: 19
  year: 2017
  end-page: 32
  ident: bib0060
  article-title: Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 120
  start-page: 100
  year: 2016
  end-page: 108
  ident: bib0135
  article-title: Parameter design for a phase change material board installed on the inner surface of building exterior envelopes for cooling in China
  publication-title: Energy Convers. Manage.
– volume: 102
  start-page: 1157
  year: 2016
  end-page: 1174
  ident: bib0090
  article-title: Mapping of the seasonal dynamic properties of building walls in actual periodic conditions and effects produced by solar radiation incident on the outer and inner surfaces of the wall
  publication-title: Appl. Therm. Eng.
– volume: 39
  start-page: 1011
  year: 2007
  end-page: 1018
  ident: bib0095
  article-title: The effect of south wall's outdoor absorption coefficient on time lag, decrement factor and temperature variations
  publication-title: Energy Build.
– reference: EN ISO 6946:1997. Building components and building elements −Thermal resistance and thermal transmittance - Calculation method.
– volume: 15
  start-page: 1675
  year: 2011
  end-page: 1695
  ident: bib0030
  article-title: Materials used as PCM in thermal energy storage in buildings: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 185
  start-page: 95
  year: 2017
  end-page: 106
  ident: bib0170
  article-title: PCM thermal storage design in buildings: experimental studies and applications to solaria in cold climates
  publication-title: Appl. Energy
– reference: EN ISO 13786, Thermal Performance of Buildings Components e Dynamic Thermal Characteristics e Calculation Methods, 2010.
– volume: 33
  start-page: 667
  year: 2008
  end-page: 678
  ident: bib0020
  article-title: On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs)
  publication-title: Energy
– volume: 88
  start-page: 2113
  year: 2011
  end-page: 2121
  ident: bib0105
  article-title: Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves
  publication-title: Appl. Energy
– reference: UNI TS 11300-1:2008. Energy performance of buildings. Part 1: Evaluation of energy need for space heating and cooling.
– volume: 112
  start-page: 159
  year: 2016
  end-page: 172
  ident: bib0065
  article-title: Economic impact of integrating PCM as passive system in buildings using Fanger comfort model
  publication-title: Energy Build.
– volume: 42
  start-page: 2197
  year: 2007
  end-page: 2209
  ident: bib0010
  article-title: Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook
  publication-title: Build. Environ.
– volume: 88
  start-page: 844
  year: 2015
  end-page: 861
  ident: bib0185
  article-title: Analytical model for solidification and melting in a finite PCM in steady periodic regime
  publication-title: Int. J. Heat Mass Transf.
– volume: 60
  start-page: 1470
  year: 2016
  end-page: 1497
  ident: bib0005
  article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes
  publication-title: Renew. Sustain. Energy Rev.
– volume: 65
  start-page: 448
  year: 2013
  end-page: 457
  ident: bib0075
  article-title: A dynamic parameter to describe the thermal response of buildings to radiant heat gains
  publication-title: Energy Build.
– volume: 45
  start-page: 263
  year: 2004
  end-page: 275
  ident: bib0025
  article-title: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials
  publication-title: Energy Convers. Manage.
– volume: 138
  start-page: 455
  year: 2017
  end-page: 467
  ident: bib0115
  article-title: Application of phase change materials in gypsum boards to meet building energy conservation goals
  publication-title: Energy Build.
– volume: 69
  start-page: 27
  year: 2013
  end-page: 40
  ident: bib0145
  article-title: Numerical simulation of phase change material composite wallboard in a multi-layered building envelope
  publication-title: Energy Convers. Manage.
– volume: 162
  start-page: 207
  year: 2016
  end-page: 217
  ident: bib0140
  article-title: Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore
  publication-title: Appl. Energy
– reference: Solar Energy Laboratory University of Wisconsin-Madison, TRNSYS, Version 17, 2012.
– volume: 15
  start-page: 379
  year: 2011
  end-page: 391
  ident: bib0015
  article-title: A review on phase change materials integrated in building walls
  publication-title: Renew. Sustain. Energy Rev.
– volume: 59
  start-page: 82
  year: 2013
  end-page: 103
  ident: bib0055
  article-title: Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency
  publication-title: Energy Build.
– volume: 113
  start-page: 1118
  year: 2014
  end-page: 1126
  ident: bib0130
  article-title: The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index
  publication-title: Appl. Energy
– volume: 61
  start-page: 93
  year: 2013
  end-page: 103
  ident: bib0155
  article-title: Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls
  publication-title: Build. Environ.
– volume: 86
  start-page: 1785
  year: 2012
  end-page: 1795
  ident: bib0215
  article-title: Experimental evaluations of the building shell radiant exchange in clear sky conditions
  publication-title: Sol. Energy
– volume: 164
  start-page: 509
  year: 2016
  end-page: 531
  ident: bib0085
  article-title: Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime
  publication-title: Appl. Energy
– volume: 23
  start-page: 251
  year: 2003
  end-page: 283
  ident: bib0035
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl. Therm. Eng.
– volume: 43
  start-page: 2509
  year: 2011
  end-page: 2517
  ident: bib0100
  article-title: Thermal dynamic transfer properties of the opaque envelope: analytical and numerical tools for the assessment of the response to summer outdoor conditions
  publication-title: Energy Build.
– volume: 87
  start-page: 2666
  year: 2010
  end-page: 2672
  ident: bib0110
  article-title: Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves
  publication-title: Appl. Energy
– volume: 86
  start-page: 2038
  year: 2009
  end-page: 2046
  ident: bib0150
  article-title: Experimental assessment of a phase change material for wall building use
  publication-title: Appl. Energy
– volume: 93
  start-page: 215
  year: 2015
  end-page: 227
  ident: bib0175
  article-title: Diurnal thermal analysis of microencapsulated PCM-concrete composite walls
  publication-title: Energy Convers. Manage.
– volume: 162
  start-page: 207
  issue: January (15)
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.027_bib0140
  article-title: Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.10.031
– volume: 102
  start-page: 1157
  issue: June (5)
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.027_bib0090
  article-title: Mapping of the seasonal dynamic properties of building walls in actual periodic conditions and effects produced by solar radiation incident on the outer and inner surfaces of the wall
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.04.039
– volume: 88
  start-page: 96
  issue: February
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.027_bib0080
  article-title: A new parameter for the dynamic analysis of building walls using the harmonic method
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.09.006
– volume: 86
  start-page: 2038
  issue: 10
  year: 2009
  ident: 10.1016/j.enbuild.2017.02.027_bib0150
  article-title: Experimental assessment of a phase change material for wall building use
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.01.004
– ident: 10.1016/j.enbuild.2017.02.027_bib0205
– volume: 67
  start-page: 56
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.027_bib0050
  article-title: Review of thermal energy storage technologies based on PCM application in buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.08.006
– volume: 23
  start-page: 251
  issue: 3
  year: 2003
  ident: 10.1016/j.enbuild.2017.02.027_bib0035
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00192-8
– volume: 65
  start-page: 448
  issue: October
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.027_bib0075
  article-title: A dynamic parameter to describe the thermal response of buildings to radiant heat gains
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.06.026
– volume: 15
  start-page: 1675
  issue: April (3)
  year: 2011
  ident: 10.1016/j.enbuild.2017.02.027_bib0030
  article-title: Materials used as PCM in thermal energy storage in buildings: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.018
– ident: 10.1016/j.enbuild.2017.02.027_bib0070
– volume: 88
  start-page: 2113
  issue: June (6)
  year: 2011
  ident: 10.1016/j.enbuild.2017.02.027_bib0105
  article-title: Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.01.016
– volume: 87
  start-page: 2666
  issue: August (8)
  year: 2010
  ident: 10.1016/j.enbuild.2017.02.027_bib0110
  article-title: Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.02.001
– volume: 59
  start-page: 517
  issue: January
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.027_bib0125
  article-title: A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.09.021
– volume: 61
  start-page: 93
  issue: March
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.027_bib0155
  article-title: Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.12.007
– ident: 10.1016/j.enbuild.2017.02.027_bib0200
– volume: 60
  start-page: 1470
  issue: July
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.027_bib0005
  article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.03.036
– volume: 11
  start-page: 1146
  issue: August (6)
  year: 2007
  ident: 10.1016/j.enbuild.2017.02.027_bib0040
  article-title: PCM thermal storage in buildings: a state of art
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2005.10.002
– volume: 59
  start-page: 82
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.027_bib0055
  article-title: Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.12.042
– volume: 113
  start-page: 1118
  year: 2014
  ident: 10.1016/j.enbuild.2017.02.027_bib0130
  article-title: The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.067
– volume: 39
  start-page: 113
  issue: February (2)
  year: 2007
  ident: 10.1016/j.enbuild.2017.02.027_bib0160
  article-title: Use of microencapsulated PCM in concrete walls for energy savings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.03.030
– volume: 112
  start-page: 159
  issue: January (15)
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.027_bib0065
  article-title: Economic impact of integrating PCM as passive system in buildings using Fanger comfort model
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.12.006
– ident: 10.1016/j.enbuild.2017.02.027_bib0190
– volume: 100
  start-page: 147
  issue: August
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.027_bib0165
  article-title: Numerical analysis on thermal performance of roof contained PCM of a single residential building
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.05.014
– volume: 42
  start-page: 1361
  issue: 9
  year: 2010
  ident: 10.1016/j.enbuild.2017.02.027_bib0045
  article-title: Phase change materials for building applications: a state-of-the-art review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.03.026
– volume: 33
  start-page: 667
  issue: 4
  year: 2008
  ident: 10.1016/j.enbuild.2017.02.027_bib0020
  article-title: On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs)
  publication-title: Energy
  doi: 10.1016/j.energy.2007.11.003
– ident: 10.1016/j.enbuild.2017.02.027_bib0210
– volume: 185
  start-page: 95
  issue: January (1)
  year: 2017
  ident: 10.1016/j.enbuild.2017.02.027_bib0170
  article-title: PCM thermal storage design in buildings: experimental studies and applications to solaria in cold climates
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.046
– volume: 120
  start-page: 100
  issue: July (15)
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.027_bib0135
  article-title: Parameter design for a phase change material board installed on the inner surface of building exterior envelopes for cooling in China
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.04.096
– volume: 42
  start-page: 2197
  issue: 6
  year: 2007
  ident: 10.1016/j.enbuild.2017.02.027_bib0010
  article-title: Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.07.023
– volume: 164
  start-page: 509
  issue: February (15)
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.027_bib0085
  article-title: Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.11.076
– volume: 43
  start-page: 2509
  issue: September (9)
  year: 2011
  ident: 10.1016/j.enbuild.2017.02.027_bib0100
  article-title: Thermal dynamic transfer properties of the opaque envelope: analytical and numerical tools for the assessment of the response to summer outdoor conditions
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.06.004
– volume: 122
  start-page: 175
  issue: June (15)
  year: 2016
  ident: 10.1016/j.enbuild.2017.02.027_bib0120
  article-title: Indicators evaluating thermal inertia performance of envelops with phase change material
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.04.009
– volume: 138
  start-page: 455
  issue: March (1)
  year: 2017
  ident: 10.1016/j.enbuild.2017.02.027_bib0115
  article-title: Application of phase change materials in gypsum boards to meet building energy conservation goals
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.12.046
– volume: 45
  start-page: 263
  issue: January (2)
  year: 2004
  ident: 10.1016/j.enbuild.2017.02.027_bib0025
  article-title: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials
  publication-title: Energy Convers. Manage.
– volume: 39
  start-page: 1011
  issue: September (9)
  year: 2007
  ident: 10.1016/j.enbuild.2017.02.027_bib0095
  article-title: The effect of south wall's outdoor absorption coefficient on time lag, decrement factor and temperature variations
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.11.006
– volume: 82
  start-page: 472
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.027_bib0180
  article-title: Multiple Bi-phase interfaces in a PCM layer subject to periodic boundary conditions characteristic of building external walls
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.11.846
– volume: 88
  start-page: 844
  issue: September
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.027_bib0185
  article-title: Analytical model for solidification and melting in a finite PCM in steady periodic regime
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.04.109
– volume: 15
  start-page: 379
  issue: 1
  year: 2011
  ident: 10.1016/j.enbuild.2017.02.027_bib0015
  article-title: A review on phase change materials integrated in building walls
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.08.019
– volume: 93
  start-page: 215
  issue: March (15)
  year: 2015
  ident: 10.1016/j.enbuild.2017.02.027_bib0175
  article-title: Diurnal thermal analysis of microencapsulated PCM-concrete composite walls
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.12.078
– volume: 69
  start-page: 19
  year: 2017
  ident: 10.1016/j.enbuild.2017.02.027_bib0060
  article-title: Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.145
– volume: 69
  start-page: 27
  issue: May
  year: 2013
  ident: 10.1016/j.enbuild.2017.02.027_bib0145
  article-title: Numerical simulation of phase change material composite wallboard in a multi-layered building envelope
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.02.003
– ident: 10.1016/j.enbuild.2017.02.027_bib0195
– volume: 86
  start-page: 1785
  year: 2012
  ident: 10.1016/j.enbuild.2017.02.027_bib0215
  article-title: Experimental evaluations of the building shell radiant exchange in clear sky conditions
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.03.009
SSID ssj0006571
Score 2.377716
Snippet •A set of parameters for a complete thermal characterization of PCM layers are defined.•Various PCM layers with different melting temperatures are...
The objective of the research is the definition of a new set of parameters to evaluate the effective dynamic thermal behavior of a layer subject to phase...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 379
SubjectTerms Air conditioners
Air conditioning
Bi-phase interface
Boundary conditions
Building wall
Buildings
Climate
Climatic conditions
Computing time
Continental climate
Dynamic characteristics
Dynamic parameters
Dynamic thermal behavior
Energy efficiency
Energy requirements
External walls
Heat
Heat flux
Heat transfer
Interfaces
Latent heat
Liquid-solid interfaces
Mathematical models
Mediterranean climate
Melting
Melting temperature
Passive system
Phase change
Phase change material
Phase transitions
Solidification
Stefan problem
Temperature
Temperature effects
Thermal comfort
Thermal design
Thermodynamic properties
Thermophysical properties
Title Definition of a new set of parameters for the dynamic thermal characterization of PCM layers in the presence of one or more liquid-solid interfaces
URI https://dx.doi.org/10.1016/j.enbuild.2017.02.027
https://www.proquest.com/docview/1932174172
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6LvuiDeOJNHnztbo-kaR9lVdZjl8UDfAvNUajUuu6ur_4J_7AzaeuFIAiFNG2mLc108g2d-YaQI3CRfaOY8WKluMdCZcEORtaLMwYurtY-TzBReDiKB3fs4p7fd0i_zYXBsMrG9tc23Vnr5kiveZu9SVH0bvwIlA3Z0EFJGbgNmMHOBGp59_UzzCPmzunCwR6O_szi6T10kV6gKJEwNBCOuhOLy_y-Pv2w1G75OVslKw1upMf1o62Rjq3WyfIXNsEN8nZi86JyIVj0KacZBcRMZ3aOHWT4fsTIlxkFlEoB9VFT16LHfTDOJdUf1M11ZiaKjftDWmaIymlROamJS1fSFs8-VdBMKYbq0rJ4fimMB5pcGIocFNMcg702yd3Z6W1_4DU1FzwdpXzuxTbNglCnTPBMcZblce5qTkUJS1TAhZ9rzoQOhK9DMBYm1jwFj8pXAkamIou2yEIFt98mNLWRYtyqJBaa8dAkuUkDY0RqeCYiHu0Q1r5pqRtCcqyLUco28uxBNhMkcYKkH8Imdkj3Q2xSM3L8JZC00yi_qZaEVeMv0f122mXzbc8kQl7w4wD57f7_yntkCXv4Xyrg-2RhPn2xBwBv5urQ6e8hWTzuX1-NsT2_HIzeAS4w_gw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLbocqA9VOUlaKHModewecxkkiPaFi2PXSEBErdR5hEpKIRld_kl_cO1k8lCUSWkSpHymHES2Y7HVuzPAD8wRA6t5jZItRYBj7VDO5i4IC04hrjGhCKjQuHJNB3f8vM7cbcGo74WhtIqve3vbHprrf2VoefmcFZVw-swQWUjNHRUUo5hwwdYJ3QqMYD1k7OL8XRlkFPRxl00PyCCl0Ke4f0xIQxUNWGGRrJF76T-Mv9eot4Y63YFOv0Cn73ryE66t9uENddswadXgILb8PunK6umzcJijyUrGDrNbOGWdEIg3w-U_LJg6KgydPyY7drR0zHa55qZFXpzV5xJZFejCasLcsxZ1bRUs7ZiyTgafWxwN2eUrcvq6um5sgEqc2UZwVDMS8r32oHb0183o3Hg2y4EJsnFMkhdXkSxyZGVhRa8KNOybTuVZDzTkZBhaZDNJpKhidFe2NSIHIOqUEucmcsi2YVBg4_fA5a7RHPhdJZKw0Vss9LmkbUyt6KQiUj2gfecVsZjklNrjFr1yWf3ygtIkYBUGOMm9-F4RTbrQDneI8h6Maq_tEvhwvEe6UEvduU_74UirxdDOXT-vv7_nY9gY3wzuVSXZ9OLb_CRRug3VSQOYLCcP7tD9HaW-rvX5j_hmv8o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Definition+of+a+new+set+of+parameters+for+the+dynamic+thermal+characterization+of+PCM+layers+in+the+presence+of+one+or+more+liquid-solid+interfaces&rft.jtitle=Energy+and+buildings&rft.au=Mazzeo%2C+D&rft.au=Oliveti%2C+G&rft.au=Arcuri%2C+N&rft.date=2017-04-15&rft.pub=Elsevier+BV&rft.issn=0378-7788&rft.eissn=1872-6178&rft.volume=141&rft.spage=379&rft_id=info:doi/10.1016%2Fj.enbuild.2017.02.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon