Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis

Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an in situ grown nickel–iron l...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 33; pp. 16121 - 16129
Main Authors Xie, Junfeng, Qu, Haichao, Lei, Fengcai, Peng, Xu, Liu, Weiwei, Gao, Li, Hao, Pin, Cui, Guanwei, Tang, Bo
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an in situ grown nickel–iron layered double hydroxide (NiFe LDH) nanosheet array catalyst with partially amorphous characteristics, rich native Ni 3+ ions and an optimal Ni : Fe ratio can exhibit robust performances on both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). Benefitting from the partially amorphous feature, the catalytically active high-valence species are easy to generate and stabilize, thus further realizing enhanced electrooxidation activity with the aid of an internal 2D charge transfer pathway and native Ni 3+ ions. As expected, the partially amorphous catalyst exhibits a higher OER current of 284.4 mA cm −2 at an overpotential of 500 mV, which shows 2.2–10.0 times enhancement than the counterparts with various Ni : Fe ratios. In addition, the UOR current density of the partially amorphous catalyst at 1.8 V vs. RHE shows 1.6 and 2.4 times increment relative to fully amorphous and highly crystalline catalysts, and 2.7–9.4 fold larger than the catalysts with other Ni : Fe ratios. The optimization strategy of designing the partially amorphous bifunctional catalyst in this work may broaden the way of searching for advanced electrocatalysts for simultaneous waste water treatment and clean energy production.
AbstractList Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an in situ grown nickel–iron layered double hydroxide (NiFe LDH) nanosheet array catalyst with partially amorphous characteristics, rich native Ni3+ ions and an optimal Ni : Fe ratio can exhibit robust performances on both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). Benefitting from the partially amorphous feature, the catalytically active high-valence species are easy to generate and stabilize, thus further realizing enhanced electrooxidation activity with the aid of an internal 2D charge transfer pathway and native Ni3+ ions. As expected, the partially amorphous catalyst exhibits a higher OER current of 284.4 mA cm−2 at an overpotential of 500 mV, which shows 2.2–10.0 times enhancement than the counterparts with various Ni : Fe ratios. In addition, the UOR current density of the partially amorphous catalyst at 1.8 V vs. RHE shows 1.6 and 2.4 times increment relative to fully amorphous and highly crystalline catalysts, and 2.7–9.4 fold larger than the catalysts with other Ni : Fe ratios. The optimization strategy of designing the partially amorphous bifunctional catalyst in this work may broaden the way of searching for advanced electrocatalysts for simultaneous waste water treatment and clean energy production.
Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an in situ grown nickel–iron layered double hydroxide (NiFe LDH) nanosheet array catalyst with partially amorphous characteristics, rich native Ni³⁺ ions and an optimal Ni : Fe ratio can exhibit robust performances on both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). Benefitting from the partially amorphous feature, the catalytically active high-valence species are easy to generate and stabilize, thus further realizing enhanced electrooxidation activity with the aid of an internal 2D charge transfer pathway and native Ni³⁺ ions. As expected, the partially amorphous catalyst exhibits a higher OER current of 284.4 mA cm⁻² at an overpotential of 500 mV, which shows 2.2–10.0 times enhancement than the counterparts with various Ni : Fe ratios. In addition, the UOR current density of the partially amorphous catalyst at 1.8 V vs. RHE shows 1.6 and 2.4 times increment relative to fully amorphous and highly crystalline catalysts, and 2.7–9.4 fold larger than the catalysts with other Ni : Fe ratios. The optimization strategy of designing the partially amorphous bifunctional catalyst in this work may broaden the way of searching for advanced electrocatalysts for simultaneous waste water treatment and clean energy production.
Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an in situ grown nickel–iron layered double hydroxide (NiFe LDH) nanosheet array catalyst with partially amorphous characteristics, rich native Ni 3+ ions and an optimal Ni : Fe ratio can exhibit robust performances on both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). Benefitting from the partially amorphous feature, the catalytically active high-valence species are easy to generate and stabilize, thus further realizing enhanced electrooxidation activity with the aid of an internal 2D charge transfer pathway and native Ni 3+ ions. As expected, the partially amorphous catalyst exhibits a higher OER current of 284.4 mA cm −2 at an overpotential of 500 mV, which shows 2.2–10.0 times enhancement than the counterparts with various Ni : Fe ratios. In addition, the UOR current density of the partially amorphous catalyst at 1.8 V vs. RHE shows 1.6 and 2.4 times increment relative to fully amorphous and highly crystalline catalysts, and 2.7–9.4 fold larger than the catalysts with other Ni : Fe ratios. The optimization strategy of designing the partially amorphous bifunctional catalyst in this work may broaden the way of searching for advanced electrocatalysts for simultaneous waste water treatment and clean energy production.
Author Liu, Weiwei
Xie, Junfeng
Tang, Bo
Lei, Fengcai
Peng, Xu
Gao, Li
Qu, Haichao
Hao, Pin
Cui, Guanwei
Author_xml – sequence: 1
  givenname: Junfeng
  orcidid: 0000-0002-5775-3084
  surname: Xie
  fullname: Xie, Junfeng
  organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science
– sequence: 2
  givenname: Haichao
  surname: Qu
  fullname: Qu, Haichao
  organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science
– sequence: 3
  givenname: Fengcai
  surname: Lei
  fullname: Lei, Fengcai
  organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science
– sequence: 4
  givenname: Xu
  orcidid: 0000-0001-9502-6382
  surname: Peng
  fullname: Peng, Xu
  organization: Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan
– sequence: 5
  givenname: Weiwei
  surname: Liu
  fullname: Liu, Weiwei
  organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science
– sequence: 6
  givenname: Li
  surname: Gao
  fullname: Gao, Li
  organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science
– sequence: 7
  givenname: Pin
  surname: Hao
  fullname: Hao, Pin
  organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science
– sequence: 8
  givenname: Guanwei
  surname: Cui
  fullname: Cui, Guanwei
  organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science
– sequence: 9
  givenname: Bo
  orcidid: 0000-0002-8712-7025
  surname: Tang
  fullname: Tang, Bo
  organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science
BookMark eNpt0UFrFTEQB_AgFay1Fz9BwIsIT7PJ5u3mWB5WCwU91PMym0x4qXnJc5IF99bv0G_oJzGlolDMZf6HX4ZM5iU7STkhY6878b4TynzYjTcXQgvdXz5jp7KlzdCb7cnfPI4v2Hkpt6KdUYitMaesfgWqAWJcORwyHfd5KTwF-x3jr7v7QDnxCCsSOu7yMkfk-9VR_hkc8gQplz1i5UAEa-E-E6c8L6XyOfgl2Rpygsgxoq2ULVSIawnlFXvuIRY8_1PP2LfLjze7z5vrL5-udhfXG6uMrpvtgINzPSiPXvQzOInC9X4YlOjkqISQurNoHRhsWZlZK9h6rbzvUQ--V2fs7WPfI-UfC5Y6HUKxGCMkbHNOUqpBS2l61eibJ_Q2L9Qe35QwYpS6oabePSpLuRRCPx0pHIDWqRPTww6mfztoWDzBNlR4-JJKEOL_rvwGErWONQ
CitedBy_id crossref_primary_10_1007_s11426_020_9770_5
crossref_primary_10_1016_j_apcatb_2019_118020
crossref_primary_10_1021_acsami_2c06210
crossref_primary_10_1016_j_cej_2022_137240
crossref_primary_10_1039_D3QI00461A
crossref_primary_10_1002_chem_201803302
crossref_primary_10_1039_D1TA00043H
crossref_primary_10_3390_nano11030725
crossref_primary_10_1002_aenm_202102372
crossref_primary_10_1039_D0TA09295A
crossref_primary_10_1088_2053_1583_ab1169
crossref_primary_10_1016_j_ijhydene_2024_12_474
crossref_primary_10_1016_j_ijhydene_2021_04_195
crossref_primary_10_1021_acssuschemeng_4c03028
crossref_primary_10_1007_s40843_023_2544_5
crossref_primary_10_1016_j_jcis_2023_03_152
crossref_primary_10_1016_j_chempr_2022_08_018
crossref_primary_10_3390_nano12172970
crossref_primary_10_1007_s40242_021_0447_5
crossref_primary_10_1016_j_apcatb_2019_118154
crossref_primary_10_1016_j_jechem_2019_03_018
crossref_primary_10_1039_C9CC00269C
crossref_primary_10_1039_C8TA07552B
crossref_primary_10_1016_j_pnsc_2024_04_001
crossref_primary_10_1039_C9CC04409D
crossref_primary_10_1016_j_jssc_2020_121644
crossref_primary_10_1016_j_jallcom_2021_159649
crossref_primary_10_1088_1361_6528_ab485d
crossref_primary_10_1002_smll_202106841
crossref_primary_10_1039_D2QI00226D
crossref_primary_10_1016_j_cej_2020_127540
crossref_primary_10_1002_aenm_202101180
crossref_primary_10_1039_C8NR06756B
crossref_primary_10_1039_C9DT04888J
crossref_primary_10_1021_acs_langmuir_3c02417
crossref_primary_10_1002_cjoc_202100294
crossref_primary_10_1016_j_cej_2022_134672
crossref_primary_10_1002_advs_202207519
crossref_primary_10_1002_smll_202301130
crossref_primary_10_1002_nano_202100286
crossref_primary_10_1002_EXP_20210050
crossref_primary_10_1016_j_ijhydene_2021_03_237
crossref_primary_10_1039_C9CC07454F
crossref_primary_10_1016_j_apsusc_2024_160649
crossref_primary_10_1016_j_ijhydene_2022_11_098
crossref_primary_10_1021_acs_chemrev_3c00459
crossref_primary_10_1039_D1NJ00092F
crossref_primary_10_1039_D2CC01480G
crossref_primary_10_3390_en17215455
crossref_primary_10_1039_C9QI00190E
crossref_primary_10_1016_j_esr_2023_101270
crossref_primary_10_1002_chem_202001055
crossref_primary_10_1021_acsami_0c02124
crossref_primary_10_1039_C9NR05204F
crossref_primary_10_1039_D2CC02157A
crossref_primary_10_1016_j_jcis_2020_02_069
crossref_primary_10_1002_cjoc_202100285
crossref_primary_10_1016_j_heliyon_2024_e35643
crossref_primary_10_1039_C9TA06887B
crossref_primary_10_1016_j_partic_2021_01_002
crossref_primary_10_1039_C9NR09753H
crossref_primary_10_1002_cctc_201901088
crossref_primary_10_1016_j_colsurfa_2023_132400
crossref_primary_10_1016_j_jallcom_2022_166145
crossref_primary_10_1016_j_jcis_2024_08_055
crossref_primary_10_1002_aenm_201900954
crossref_primary_10_1021_acssuschemeng_0c01637
crossref_primary_10_1002_adfm_202313309
crossref_primary_10_1016_j_susmat_2021_e00252
crossref_primary_10_1039_C9CC05115E
crossref_primary_10_1016_j_electacta_2020_136501
crossref_primary_10_1002_cssc_201900943
crossref_primary_10_1016_j_cej_2021_130139
crossref_primary_10_1002_smll_201906086
crossref_primary_10_1039_C9TA07857F
crossref_primary_10_1039_C9TA02891A
crossref_primary_10_1039_D1CY00435B
crossref_primary_10_1016_j_ijhydene_2022_04_200
crossref_primary_10_1016_j_electacta_2019_134939
crossref_primary_10_1002_ente_202100017
crossref_primary_10_1016_j_jallcom_2021_162845
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1039_D0CC01613F
crossref_primary_10_1002_smsc_202200030
crossref_primary_10_1021_acsami_0c14431
crossref_primary_10_1016_j_fuel_2022_123280
crossref_primary_10_1007_s40242_023_3108_z
crossref_primary_10_1021_acsaem_1c00262
crossref_primary_10_1021_acs_cgd_8b01594
crossref_primary_10_1002_asia_201900752
crossref_primary_10_1002_smll_202409306
crossref_primary_10_1039_D3TA02007J
crossref_primary_10_3390_catal8090350
crossref_primary_10_1021_acsami_0c22148
crossref_primary_10_1021_acsami_2c11238
crossref_primary_10_3390_catal13091289
crossref_primary_10_1039_D3TA02770H
crossref_primary_10_1016_j_jpowsour_2019_227375
crossref_primary_10_1016_j_surfcoat_2020_126799
crossref_primary_10_1016_j_egyr_2020_10_007
crossref_primary_10_1016_j_mcat_2023_113415
crossref_primary_10_1039_D4DT01842G
crossref_primary_10_1002_adfm_202009779
crossref_primary_10_1039_D2CC02367A
crossref_primary_10_1039_D0NR07236B
crossref_primary_10_1007_s12274_022_4575_0
crossref_primary_10_1016_j_electacta_2020_135883
crossref_primary_10_1039_C8TA05552A
crossref_primary_10_1016_j_electacta_2020_136827
crossref_primary_10_1016_j_ccr_2023_215381
crossref_primary_10_1039_D0DT02459G
crossref_primary_10_1002_celc_201901767
crossref_primary_10_1021_acsmaterialslett_9b00124
crossref_primary_10_1039_D3CC02497K
crossref_primary_10_1039_D2CC04646F
crossref_primary_10_3390_en16031092
crossref_primary_10_1002_aenm_202200409
crossref_primary_10_1016_j_electacta_2019_135395
crossref_primary_10_1007_s10854_020_04158_0
crossref_primary_10_1016_j_cej_2023_147950
crossref_primary_10_1016_j_jechem_2022_01_020
crossref_primary_10_1016_j_rechem_2023_101031
crossref_primary_10_1021_acscatal_9b00994
crossref_primary_10_1021_acsanm_3c05983
crossref_primary_10_1039_C9CY02618E
crossref_primary_10_1039_D2TA00120A
crossref_primary_10_1021_acs_langmuir_3c03205
crossref_primary_10_1016_j_fuel_2022_123279
crossref_primary_10_1016_S1872_2067_19_63284_5
crossref_primary_10_1039_D0CC01023E
crossref_primary_10_1039_D5SE00054H
crossref_primary_10_1016_j_mtener_2022_101036
crossref_primary_10_1039_D1DT01649K
crossref_primary_10_1039_D4NJ00797B
crossref_primary_10_1016_j_ultsonch_2021_105664
crossref_primary_10_1002_adsu_202200310
crossref_primary_10_1002_smll_201906133
crossref_primary_10_34133_2020_3976278
crossref_primary_10_1039_C8DT02097C
crossref_primary_10_1016_j_cej_2021_133100
crossref_primary_10_1016_j_arabjc_2023_105266
crossref_primary_10_1016_j_apcatb_2022_122240
crossref_primary_10_1016_j_est_2021_102858
crossref_primary_10_1002_cssc_202201205
crossref_primary_10_1021_acssuschemeng_3c03675
crossref_primary_10_1016_j_cej_2023_146172
crossref_primary_10_1016_j_jallcom_2024_175368
crossref_primary_10_3389_fmats_2019_00154
crossref_primary_10_1016_j_apsusc_2022_156088
crossref_primary_10_1021_acs_energyfuels_4c04519
crossref_primary_10_1002_chem_201803718
crossref_primary_10_3390_su16103982
crossref_primary_10_1002_adsu_202400336
crossref_primary_10_1088_2515_7639_abd596
crossref_primary_10_1016_j_matchemphys_2020_123496
crossref_primary_10_1016_j_gee_2021_11_008
crossref_primary_10_1039_D4CY00907J
crossref_primary_10_1016_j_cej_2023_144660
crossref_primary_10_3390_ma17112617
crossref_primary_10_1002_smll_202402720
crossref_primary_10_1007_s10853_021_06391_2
crossref_primary_10_1039_D2RA05145A
crossref_primary_10_1021_acsomega_9b03261
crossref_primary_10_1016_j_ijhydene_2024_03_351
crossref_primary_10_1016_j_jallcom_2020_156224
crossref_primary_10_1016_j_jmst_2021_08_086
crossref_primary_10_1002_sus2_131
crossref_primary_10_1039_C8NR09740B
crossref_primary_10_1002_adfm_202402776
crossref_primary_10_1016_j_electacta_2023_143055
crossref_primary_10_1002_cssc_201801751
crossref_primary_10_1039_D0TA10712C
crossref_primary_10_1002_smll_202003916
crossref_primary_10_1016_j_cej_2024_151234
crossref_primary_10_1039_D3YA00447C
crossref_primary_10_1039_D3TA06875G
crossref_primary_10_1002_smll_201903410
crossref_primary_10_1016_j_apsusc_2018_10_232
crossref_primary_10_1016_j_jcis_2024_03_009
crossref_primary_10_1016_j_mset_2020_09_005
crossref_primary_10_1039_D0EN01247E
crossref_primary_10_1016_j_jcis_2022_09_137
crossref_primary_10_1021_acssuschemeng_3c00398
crossref_primary_10_1007_s12274_022_4727_2
crossref_primary_10_1149_1945_7111_ab8647
crossref_primary_10_1016_j_apsusc_2022_155520
crossref_primary_10_1016_j_ijoes_2024_100509
crossref_primary_10_1016_j_nanoen_2023_109183
crossref_primary_10_1016_S1872_2067_22_64190_1
crossref_primary_10_1002_celc_202100443
crossref_primary_10_1021_acssuschemeng_1c05718
crossref_primary_10_1016_j_colsurfa_2021_126425
crossref_primary_10_1002_smll_202409265
crossref_primary_10_1021_acssuschemeng_9b02297
crossref_primary_10_1016_j_electacta_2022_140877
crossref_primary_10_1021_acsaem_1c00891
crossref_primary_10_1016_j_fuel_2023_129626
crossref_primary_10_1002_smll_202002240
crossref_primary_10_1039_D0CC05272H
crossref_primary_10_1002_smll_202103326
crossref_primary_10_1016_j_electacta_2024_143931
crossref_primary_10_1016_j_apcata_2021_118049
crossref_primary_10_1016_j_ccr_2022_214864
crossref_primary_10_1016_j_cej_2024_153187
crossref_primary_10_1016_j_pnsc_2022_12_001
crossref_primary_10_1016_j_jallcom_2021_159945
crossref_primary_10_1016_j_jallcom_2022_167060
crossref_primary_10_1021_acsami_1c01188
crossref_primary_10_1039_D1CC06290E
crossref_primary_10_1016_j_jcis_2022_01_151
crossref_primary_10_3390_catal14090570
Cites_doi 10.1007/s12274-014-0591-z
10.1016/j.electacta.2017.09.097
10.1021/acscatal.5b01551
10.1002/advs.201600343
10.1021/nn401402a
10.1021/jp806682q
10.1021/jacs.6b01606
10.1021/acsenergylett.7b00679
10.1039/C4CC01625D
10.1039/C6QI00198J
10.1002/aenm.201500091
10.1039/C4CS00236A
10.1039/C5TA10420C
10.1021/acs.chemrev.7b00689
10.1126/science.1233638
10.1021/ja4027715
10.1002/anie.201404208
10.1021/ja307507a
10.1126/science.276.5317.1395
10.1039/C6NJ04060H
10.1021/ja405351s
10.1021/acsenergylett.7b00206
10.1039/c3cc41945b
10.1126/science.aaf1525
10.1021/acscatal.6b00487
10.1002/adma.201604765
10.1007/s12678-016-0336-8
10.1002/aenm.201701347
10.1039/C4CY00669K
10.1007/s12274-017-1421-x
10.1021/ja408329q
10.1039/C3NR05359H
10.1038/35104599
10.1002/cctc.201500396
10.1016/j.electacta.2014.03.134
10.1039/C7QI00185A
10.1002/adma.201302685
10.1016/j.electacta.2012.07.007
10.1021/acscatal.5b01638
10.1016/j.nantod.2016.10.004
10.1021/acscatal.5b02365
10.1039/b905974a
10.1002/adma.201606570
10.1016/j.electacta.2013.06.137
10.1126/science.aad4998
10.1002/adfm.201400118
10.1002/anie.201508704
10.1021/acscatal.7b03177
10.1039/C7CS00418D
10.1002/chem.201501120
10.1002/anie.201606313
10.1039/C7TA01791J
10.1002/cssc.201701074
10.1021/cs300451q
10.1038/nchem.1634
10.1002/aenm.201600621
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/C8TA05054F
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 16129
ExternalDocumentID 10_1039_C8TA05054F
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c395t-67e7dd4a3fef04bad2e0d4f7730128300251cecda9e00239b53a6f53ff4e57f43
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 06:00:17 EDT 2025
Mon Jun 30 11:59:31 EDT 2025
Tue Jul 01 03:13:53 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-67e7dd4a3fef04bad2e0d4f7730128300251cecda9e00239b53a6f53ff4e57f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5775-3084
0000-0002-8712-7025
0000-0001-9502-6382
PQID 2090825433
PQPubID 2047523
PageCount 9
ParticipantIDs proquest_miscellaneous_2237522943
proquest_journals_2090825433
crossref_primary_10_1039_C8TA05054F
crossref_citationtrail_10_1039_C8TA05054F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Louie (C8TA05054F-(cit18)/*[position()=1]) 2013; 135
Smith (C8TA05054F-(cit27)/*[position()=1]) 2013; 340
Jin (C8TA05054F-(cit21)/*[position()=1]) 2017; 2
Xie (C8TA05054F-(cit49)/*[position()=1]) 2013; 25
Xie (C8TA05054F-(cit44)/*[position()=1]) 2013; 135
Liu (C8TA05054F-(cit42)/*[position()=1]) 2016; 4
Vedharathinam (C8TA05054F-(cit51)/*[position()=1]) 2013; 108
Yang (C8TA05054F-(cit32)/*[position()=1]) 2016; 11
Dionigi (C8TA05054F-(cit14)/*[position()=1]) 2016; 6
Xie (C8TA05054F-(cit45)/*[position()=1]) 2017; 29
Benck (C8TA05054F-(cit48)/*[position()=1]) 2012; 2
Forslund (C8TA05054F-(cit6)/*[position()=1]) 2016; 6
Xie (C8TA05054F-(cit11)/*[position()=1]) 2015; 7
Diaz-Morales (C8TA05054F-(cit16)/*[position()=1]) 2015; 5
Zhao (C8TA05054F-(cit38)/*[position()=1]) 2014; 24
Jin (C8TA05054F-(cit5)/*[position()=1]) 2018; 118
Zhao (C8TA05054F-(cit39)/*[position()=1]) 2016; 138
Liu (C8TA05054F-(cit56)/*[position()=1]) 2017; 4
Zhang (C8TA05054F-(cit26)/*[position()=1]) 2017; 4
Laursen (C8TA05054F-(cit50)/*[position()=1]) 2013; 49
Hu (C8TA05054F-(cit24)/*[position()=1]) 2017; 29
Boggs (C8TA05054F-(cit10)/*[position()=1]) 2009; 0
Sun (C8TA05054F-(cit31)/*[position()=1]) 2015; 44
Xu (C8TA05054F-(cit47)/*[position()=1]) 2016; 55
Zhu (C8TA05054F-(cit53)/*[position()=1]) 2016; 55
Gong (C8TA05054F-(cit36)/*[position()=1]) 2013; 135
Zhang (C8TA05054F-(cit55)/*[position()=1]) 2017; 254
Seh (C8TA05054F-(cit3)/*[position()=1]) 2017; 355
Fabbri (C8TA05054F-(cit4)/*[position()=1]) 2014; 4
Dou (C8TA05054F-(cit33)/*[position()=1]) 2017; 46
Liang (C8TA05054F-(cit25)/*[position()=1]) 2017; 2
Ding (C8TA05054F-(cit7)/*[position()=1]) 2014; 6
Lu (C8TA05054F-(cit20)/*[position()=1]) 2014; 50
Xie (C8TA05054F-(cit40)/*[position()=1]) 2017; 10
Xie (C8TA05054F-(cit34)/*[position()=1]) 2016; 3
Idota (C8TA05054F-(cit29)/*[position()=1]) 1997; 276
Tong (C8TA05054F-(cit12)/*[position()=1]) 2018; 8
Kuai (C8TA05054F-(cit28)/*[position()=1]) 2014; 53
Batchellor (C8TA05054F-(cit15)/*[position()=1]) 2015; 5
Yan (C8TA05054F-(cit54)/*[position()=1]) 2014; 134
Dresselhaus (C8TA05054F-(cit1)/*[position()=1]) 2001; 414
Liu (C8TA05054F-(cit9)/*[position()=1]) 2017; 5
Xie (C8TA05054F-(cit35)/*[position()=1]) 2017; 10
Dong (C8TA05054F-(cit41)/*[position()=1]) 2017; 8
Mallouk (C8TA05054F-(cit2)/*[position()=1]) 2013; 5
Wang (C8TA05054F-(cit23)/*[position()=1]) 2015; 5
Xu (C8TA05054F-(cit57)/*[position()=1]) 2017; 41
Trotochaud (C8TA05054F-(cit22)/*[position()=1]) 2012; 134
Hoang (C8TA05054F-(cit17)/*[position()=1]) 2016; 6
Ghanem (C8TA05054F-(cit52)/*[position()=1]) 2017; 8
Gong (C8TA05054F-(cit19)/*[position()=1]) 2015; 8
Xie (C8TA05054F-(cit13)/*[position()=1]) 2016; 22
Shang (C8TA05054F-(cit37)/*[position()=1]) 2013; 7
Gu (C8TA05054F-(cit43)/*[position()=1]) 2008; 112
Lu (C8TA05054F-(cit46)/*[position()=1]) 2014; 50
Vedharathinam (C8TA05054F-(cit8)/*[position()=1]) 2012; 81
Zhang (C8TA05054F-(cit30)/*[position()=1]) 2016; 352
References_xml – volume: 8
  start-page: 23
  year: 2015
  ident: C8TA05054F-(cit19)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0591-z
– volume: 254
  start-page: 44
  year: 2017
  ident: C8TA05054F-(cit55)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.09.097
– volume: 5
  start-page: 6680
  year: 2015
  ident: C8TA05054F-(cit15)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01551
– volume: 4
  start-page: 1600343
  year: 2017
  ident: C8TA05054F-(cit26)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600343
– volume: 7
  start-page: 5430
  year: 2013
  ident: C8TA05054F-(cit37)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn401402a
– volume: 112
  start-page: 18459
  year: 2008
  ident: C8TA05054F-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806682q
– volume: 138
  start-page: 6517
  year: 2016
  ident: C8TA05054F-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01606
– volume: 2
  start-page: 1937
  year: 2017
  ident: C8TA05054F-(cit21)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00679
– volume: 50
  start-page: 6479
  year: 2014
  ident: C8TA05054F-(cit20)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01625D
– volume: 3
  start-page: 1160
  year: 2016
  ident: C8TA05054F-(cit34)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C6QI00198J
– volume: 5
  start-page: 1500091
  year: 2015
  ident: C8TA05054F-(cit23)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500091
– volume: 44
  start-page: 623
  year: 2015
  ident: C8TA05054F-(cit31)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00236A
– volume: 4
  start-page: 4472
  year: 2016
  ident: C8TA05054F-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10420C
– volume: 118
  start-page: 6337
  year: 2018
  ident: C8TA05054F-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00689
– volume: 340
  start-page: 60
  year: 2013
  ident: C8TA05054F-(cit27)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1233638
– volume: 135
  start-page: 8452
  year: 2013
  ident: C8TA05054F-(cit36)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4027715
– volume: 53
  start-page: 7547
  year: 2014
  ident: C8TA05054F-(cit28)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201404208
– volume: 134
  start-page: 17253
  year: 2012
  ident: C8TA05054F-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307507a
– volume: 276
  start-page: 1395
  year: 1997
  ident: C8TA05054F-(cit29)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.276.5317.1395
– volume: 41
  start-page: 4190
  year: 2017
  ident: C8TA05054F-(cit57)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ04060H
– volume: 135
  start-page: 12329
  year: 2013
  ident: C8TA05054F-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405351s
– volume: 2
  start-page: 1035
  year: 2017
  ident: C8TA05054F-(cit25)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00206
– volume: 49
  start-page: 4965
  year: 2013
  ident: C8TA05054F-(cit50)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc41945b
– volume: 352
  start-page: 333
  year: 2016
  ident: C8TA05054F-(cit30)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 6
  start-page: 5044
  year: 2016
  ident: C8TA05054F-(cit6)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00487
– volume: 29
  start-page: 1604765
  year: 2017
  ident: C8TA05054F-(cit45)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604765
– volume: 8
  start-page: 16
  year: 2017
  ident: C8TA05054F-(cit52)/*[position()=1]
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-016-0336-8
– volume: 8
  start-page: 1701347
  year: 2017
  ident: C8TA05054F-(cit41)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701347
– volume: 4
  start-page: 3800
  year: 2014
  ident: C8TA05054F-(cit4)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C4CY00669K
– volume: 10
  start-page: 1178
  year: 2017
  ident: C8TA05054F-(cit35)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1421-x
– volume: 135
  start-page: 17881
  year: 2013
  ident: C8TA05054F-(cit44)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408329q
– volume: 6
  start-page: 1369
  year: 2014
  ident: C8TA05054F-(cit7)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C3NR05359H
– volume: 414
  start-page: 332
  year: 2001
  ident: C8TA05054F-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35104599
– volume: 7
  start-page: 2568
  year: 2015
  ident: C8TA05054F-(cit11)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500396
– volume: 134
  start-page: 266
  year: 2014
  ident: C8TA05054F-(cit54)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.03.134
– volume: 4
  start-page: 1120
  year: 2017
  ident: C8TA05054F-(cit56)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C7QI00185A
– volume: 25
  start-page: 5807
  year: 2013
  ident: C8TA05054F-(cit49)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302685
– volume: 81
  start-page: 292
  year: 2012
  ident: C8TA05054F-(cit8)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.07.007
– volume: 5
  start-page: 5380
  year: 2015
  ident: C8TA05054F-(cit16)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01638
– volume: 11
  start-page: 793
  year: 2016
  ident: C8TA05054F-(cit32)/*[position()=1]
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.10.004
– volume: 50
  start-page: 6479
  year: 2014
  ident: C8TA05054F-(cit46)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01625D
– volume: 6
  start-page: 1159
  year: 2016
  ident: C8TA05054F-(cit17)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02365
– volume: 0
  start-page: 4859
  year: 2009
  ident: C8TA05054F-(cit10)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b905974a
– volume: 29
  start-page: 1606570
  year: 2017
  ident: C8TA05054F-(cit24)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606570
– volume: 108
  start-page: 660
  year: 2013
  ident: C8TA05054F-(cit51)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.06.137
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: C8TA05054F-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 24
  start-page: 4698
  year: 2014
  ident: C8TA05054F-(cit38)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400118
– volume: 55
  start-page: 1710
  year: 2016
  ident: C8TA05054F-(cit47)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201508704
– volume: 8
  start-page: 1
  year: 2018
  ident: C8TA05054F-(cit12)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03177
– volume: 46
  start-page: 7338
  year: 2017
  ident: C8TA05054F-(cit33)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00418D
– volume: 22
  start-page: 3588
  year: 2016
  ident: C8TA05054F-(cit13)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201501120
– volume: 55
  start-page: 12465
  year: 2016
  ident: C8TA05054F-(cit53)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606313
– volume: 5
  start-page: 8608
  year: 2017
  ident: C8TA05054F-(cit9)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01791J
– volume: 10
  start-page: 4465
  year: 2017
  ident: C8TA05054F-(cit40)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701074
– volume: 2
  start-page: 1916
  year: 2012
  ident: C8TA05054F-(cit48)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs300451q
– volume: 5
  start-page: 362
  year: 2013
  ident: C8TA05054F-(cit2)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1634
– volume: 6
  start-page: 1600621
  year: 2016
  ident: C8TA05054F-(cit14)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600621
SSID ssj0000800699
Score 2.603722
Snippet Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 16121
SubjectTerms Catalysis
Catalysts
Charge transfer
Clean energy
Electrocatalysts
Energy conversion
Fuel production
Hydroxides
Intermetallic compounds
Ions
Iron
Iron compounds
Nanosheets
Nickel
Nickel compounds
Oxidation
Oxygen evolution reactions
oxygen production
pollution
Urea
Wastewater
Wastewater treatment
Water pollution
Water treatment
Title Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis
URI https://www.proquest.com/docview/2090825433
https://www.proquest.com/docview/2237522943
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gIHxK9YKMgILihKSeP8HldVq1IB4rCV9hY5sU1XihKUTSSWE-_AK_EkPAkzduKkZZEKl2jj_Kzi-ewZj2e-IeR1eiSTOPGkm3uFgAVKwl2kv3WLXOI2XiwSH5OTP3yMzi6C81W4ms1-TqKWujY_LL7tzCv5H6lCG8gVs2T_QbL2pdAAv0G-cAQJw_FGMv6Ebbwst1gzCDpMs62uYVyWQwwDwyw2p-RbLMnpiLrDRKnLrWjqr2shnYpX9eYSt6V50_Ct5mZwmjrvNq2Tr1Hn9a7CvlqOdvYgh8lfbFowf813O8VQSO7QWZicoOGK5hg3GYfaaT9kcGGQrvXvr8y2yXlXKdnrVu2d1ZqSY6h_PYYS6YAEEMzngq_Hqd5MYqtu6teYTsK-F3rIcWqa5LTNVL8dZu5oAlDGJtPwEfKiTXQ6nqc7FYbHkG_1OFkusKRfcDqqxSEU4Jq2tDGMeveepdn47C2y78NiBdTD_uJk-e699fWhVR7pUqb20wamXJa-HV9w1Ta6ahpoe2d5j9zthUoXBnX3yUxWD8idCX3lQ9Ja_FGLP2rw9-v7D0Qe7ZFHDfKoRR61yKMGeRRgQQ3y6BR59DryHpGL05Pl8ZnbV_FwC5aGrRvFMhYi4ExJ5QU5F770RKBiVC3IPoeL3EIWgqdSZ1rnIeORCplSgQxjFbDHZK-qK_mEUBXnIlRKgX4uAoU541xwP_F5nMrI9_w5eTP0X1b0FPdYaaXM_hTWnLyy934xxC477zoYxJD1A3-T-V6qHSuMzclLexkGFe618UpCZ2dgdcewtEkD9vRGf_SM3MZBYJx7B2SvbTr5HMzdNn_Ro-k36huyzw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partially+amorphous+nickel%E2%80%93iron+layered+double+hydroxide+nanosheet+arrays+for+robust+bifunctional+electrocatalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xie%2C+Junfeng&rft.au=Qu%2C+Haichao&rft.au=Lei%2C+Fengcai&rft.au=Peng%2C+Xu&rft.date=2018&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=33&rft.spage=16121&rft.epage=16129&rft_id=info:doi/10.1039%2FC8TA05054F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8TA05054F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon