Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis
Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an in situ grown nickel–iron l...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 33; pp. 16121 - 16129 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an
in situ
grown nickel–iron layered double hydroxide (NiFe LDH) nanosheet array catalyst with partially amorphous characteristics, rich native Ni
3+
ions and an optimal Ni : Fe ratio can exhibit robust performances on both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). Benefitting from the partially amorphous feature, the catalytically active high-valence species are easy to generate and stabilize, thus further realizing enhanced electrooxidation activity with the aid of an internal 2D charge transfer pathway and native Ni
3+
ions. As expected, the partially amorphous catalyst exhibits a higher OER current of 284.4 mA cm
−2
at an overpotential of 500 mV, which shows 2.2–10.0 times enhancement than the counterparts with various Ni : Fe ratios. In addition, the UOR current density of the partially amorphous catalyst at 1.8 V
vs.
RHE shows 1.6 and 2.4 times increment relative to fully amorphous and highly crystalline catalysts, and 2.7–9.4 fold larger than the catalysts with other Ni : Fe ratios. The optimization strategy of designing the partially amorphous bifunctional catalyst in this work may broaden the way of searching for advanced electrocatalysts for simultaneous waste water treatment and clean energy production. |
---|---|
AbstractList | Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an in situ grown nickel–iron layered double hydroxide (NiFe LDH) nanosheet array catalyst with partially amorphous characteristics, rich native Ni3+ ions and an optimal Ni : Fe ratio can exhibit robust performances on both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). Benefitting from the partially amorphous feature, the catalytically active high-valence species are easy to generate and stabilize, thus further realizing enhanced electrooxidation activity with the aid of an internal 2D charge transfer pathway and native Ni3+ ions. As expected, the partially amorphous catalyst exhibits a higher OER current of 284.4 mA cm−2 at an overpotential of 500 mV, which shows 2.2–10.0 times enhancement than the counterparts with various Ni : Fe ratios. In addition, the UOR current density of the partially amorphous catalyst at 1.8 V vs. RHE shows 1.6 and 2.4 times increment relative to fully amorphous and highly crystalline catalysts, and 2.7–9.4 fold larger than the catalysts with other Ni : Fe ratios. The optimization strategy of designing the partially amorphous bifunctional catalyst in this work may broaden the way of searching for advanced electrocatalysts for simultaneous waste water treatment and clean energy production. Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an in situ grown nickel–iron layered double hydroxide (NiFe LDH) nanosheet array catalyst with partially amorphous characteristics, rich native Ni³⁺ ions and an optimal Ni : Fe ratio can exhibit robust performances on both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). Benefitting from the partially amorphous feature, the catalytically active high-valence species are easy to generate and stabilize, thus further realizing enhanced electrooxidation activity with the aid of an internal 2D charge transfer pathway and native Ni³⁺ ions. As expected, the partially amorphous catalyst exhibits a higher OER current of 284.4 mA cm⁻² at an overpotential of 500 mV, which shows 2.2–10.0 times enhancement than the counterparts with various Ni : Fe ratios. In addition, the UOR current density of the partially amorphous catalyst at 1.8 V vs. RHE shows 1.6 and 2.4 times increment relative to fully amorphous and highly crystalline catalysts, and 2.7–9.4 fold larger than the catalysts with other Ni : Fe ratios. The optimization strategy of designing the partially amorphous bifunctional catalyst in this work may broaden the way of searching for advanced electrocatalysts for simultaneous waste water treatment and clean energy production. Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an in situ grown nickel–iron layered double hydroxide (NiFe LDH) nanosheet array catalyst with partially amorphous characteristics, rich native Ni 3+ ions and an optimal Ni : Fe ratio can exhibit robust performances on both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). Benefitting from the partially amorphous feature, the catalytically active high-valence species are easy to generate and stabilize, thus further realizing enhanced electrooxidation activity with the aid of an internal 2D charge transfer pathway and native Ni 3+ ions. As expected, the partially amorphous catalyst exhibits a higher OER current of 284.4 mA cm −2 at an overpotential of 500 mV, which shows 2.2–10.0 times enhancement than the counterparts with various Ni : Fe ratios. In addition, the UOR current density of the partially amorphous catalyst at 1.8 V vs. RHE shows 1.6 and 2.4 times increment relative to fully amorphous and highly crystalline catalysts, and 2.7–9.4 fold larger than the catalysts with other Ni : Fe ratios. The optimization strategy of designing the partially amorphous bifunctional catalyst in this work may broaden the way of searching for advanced electrocatalysts for simultaneous waste water treatment and clean energy production. |
Author | Liu, Weiwei Xie, Junfeng Tang, Bo Lei, Fengcai Peng, Xu Gao, Li Qu, Haichao Hao, Pin Cui, Guanwei |
Author_xml | – sequence: 1 givenname: Junfeng orcidid: 0000-0002-5775-3084 surname: Xie fullname: Xie, Junfeng organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science – sequence: 2 givenname: Haichao surname: Qu fullname: Qu, Haichao organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science – sequence: 3 givenname: Fengcai surname: Lei fullname: Lei, Fengcai organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science – sequence: 4 givenname: Xu orcidid: 0000-0001-9502-6382 surname: Peng fullname: Peng, Xu organization: Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan – sequence: 5 givenname: Weiwei surname: Liu fullname: Liu, Weiwei organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science – sequence: 6 givenname: Li surname: Gao fullname: Gao, Li organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science – sequence: 7 givenname: Pin surname: Hao fullname: Hao, Pin organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science – sequence: 8 givenname: Guanwei surname: Cui fullname: Cui, Guanwei organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science – sequence: 9 givenname: Bo orcidid: 0000-0002-8712-7025 surname: Tang fullname: Tang, Bo organization: College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science |
BookMark | eNpt0UFrFTEQB_AgFay1Fz9BwIsIT7PJ5u3mWB5WCwU91PMym0x4qXnJc5IF99bv0G_oJzGlolDMZf6HX4ZM5iU7STkhY6878b4TynzYjTcXQgvdXz5jp7KlzdCb7cnfPI4v2Hkpt6KdUYitMaesfgWqAWJcORwyHfd5KTwF-x3jr7v7QDnxCCsSOu7yMkfk-9VR_hkc8gQplz1i5UAEa-E-E6c8L6XyOfgl2Rpygsgxoq2ULVSIawnlFXvuIRY8_1PP2LfLjze7z5vrL5-udhfXG6uMrpvtgINzPSiPXvQzOInC9X4YlOjkqISQurNoHRhsWZlZK9h6rbzvUQ--V2fs7WPfI-UfC5Y6HUKxGCMkbHNOUqpBS2l61eibJ_Q2L9Qe35QwYpS6oabePSpLuRRCPx0pHIDWqRPTww6mfztoWDzBNlR4-JJKEOL_rvwGErWONQ |
CitedBy_id | crossref_primary_10_1007_s11426_020_9770_5 crossref_primary_10_1016_j_apcatb_2019_118020 crossref_primary_10_1021_acsami_2c06210 crossref_primary_10_1016_j_cej_2022_137240 crossref_primary_10_1039_D3QI00461A crossref_primary_10_1002_chem_201803302 crossref_primary_10_1039_D1TA00043H crossref_primary_10_3390_nano11030725 crossref_primary_10_1002_aenm_202102372 crossref_primary_10_1039_D0TA09295A crossref_primary_10_1088_2053_1583_ab1169 crossref_primary_10_1016_j_ijhydene_2024_12_474 crossref_primary_10_1016_j_ijhydene_2021_04_195 crossref_primary_10_1021_acssuschemeng_4c03028 crossref_primary_10_1007_s40843_023_2544_5 crossref_primary_10_1016_j_jcis_2023_03_152 crossref_primary_10_1016_j_chempr_2022_08_018 crossref_primary_10_3390_nano12172970 crossref_primary_10_1007_s40242_021_0447_5 crossref_primary_10_1016_j_apcatb_2019_118154 crossref_primary_10_1016_j_jechem_2019_03_018 crossref_primary_10_1039_C9CC00269C crossref_primary_10_1039_C8TA07552B crossref_primary_10_1016_j_pnsc_2024_04_001 crossref_primary_10_1039_C9CC04409D crossref_primary_10_1016_j_jssc_2020_121644 crossref_primary_10_1016_j_jallcom_2021_159649 crossref_primary_10_1088_1361_6528_ab485d crossref_primary_10_1002_smll_202106841 crossref_primary_10_1039_D2QI00226D crossref_primary_10_1016_j_cej_2020_127540 crossref_primary_10_1002_aenm_202101180 crossref_primary_10_1039_C8NR06756B crossref_primary_10_1039_C9DT04888J crossref_primary_10_1021_acs_langmuir_3c02417 crossref_primary_10_1002_cjoc_202100294 crossref_primary_10_1016_j_cej_2022_134672 crossref_primary_10_1002_advs_202207519 crossref_primary_10_1002_smll_202301130 crossref_primary_10_1002_nano_202100286 crossref_primary_10_1002_EXP_20210050 crossref_primary_10_1016_j_ijhydene_2021_03_237 crossref_primary_10_1039_C9CC07454F crossref_primary_10_1016_j_apsusc_2024_160649 crossref_primary_10_1016_j_ijhydene_2022_11_098 crossref_primary_10_1021_acs_chemrev_3c00459 crossref_primary_10_1039_D1NJ00092F crossref_primary_10_1039_D2CC01480G crossref_primary_10_3390_en17215455 crossref_primary_10_1039_C9QI00190E crossref_primary_10_1016_j_esr_2023_101270 crossref_primary_10_1002_chem_202001055 crossref_primary_10_1021_acsami_0c02124 crossref_primary_10_1039_C9NR05204F crossref_primary_10_1039_D2CC02157A crossref_primary_10_1016_j_jcis_2020_02_069 crossref_primary_10_1002_cjoc_202100285 crossref_primary_10_1016_j_heliyon_2024_e35643 crossref_primary_10_1039_C9TA06887B crossref_primary_10_1016_j_partic_2021_01_002 crossref_primary_10_1039_C9NR09753H crossref_primary_10_1002_cctc_201901088 crossref_primary_10_1016_j_colsurfa_2023_132400 crossref_primary_10_1016_j_jallcom_2022_166145 crossref_primary_10_1016_j_jcis_2024_08_055 crossref_primary_10_1002_aenm_201900954 crossref_primary_10_1021_acssuschemeng_0c01637 crossref_primary_10_1002_adfm_202313309 crossref_primary_10_1016_j_susmat_2021_e00252 crossref_primary_10_1039_C9CC05115E crossref_primary_10_1016_j_electacta_2020_136501 crossref_primary_10_1002_cssc_201900943 crossref_primary_10_1016_j_cej_2021_130139 crossref_primary_10_1002_smll_201906086 crossref_primary_10_1039_C9TA07857F crossref_primary_10_1039_C9TA02891A crossref_primary_10_1039_D1CY00435B crossref_primary_10_1016_j_ijhydene_2022_04_200 crossref_primary_10_1016_j_electacta_2019_134939 crossref_primary_10_1002_ente_202100017 crossref_primary_10_1016_j_jallcom_2021_162845 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1039_D0CC01613F crossref_primary_10_1002_smsc_202200030 crossref_primary_10_1021_acsami_0c14431 crossref_primary_10_1016_j_fuel_2022_123280 crossref_primary_10_1007_s40242_023_3108_z crossref_primary_10_1021_acsaem_1c00262 crossref_primary_10_1021_acs_cgd_8b01594 crossref_primary_10_1002_asia_201900752 crossref_primary_10_1002_smll_202409306 crossref_primary_10_1039_D3TA02007J crossref_primary_10_3390_catal8090350 crossref_primary_10_1021_acsami_0c22148 crossref_primary_10_1021_acsami_2c11238 crossref_primary_10_3390_catal13091289 crossref_primary_10_1039_D3TA02770H crossref_primary_10_1016_j_jpowsour_2019_227375 crossref_primary_10_1016_j_surfcoat_2020_126799 crossref_primary_10_1016_j_egyr_2020_10_007 crossref_primary_10_1016_j_mcat_2023_113415 crossref_primary_10_1039_D4DT01842G crossref_primary_10_1002_adfm_202009779 crossref_primary_10_1039_D2CC02367A crossref_primary_10_1039_D0NR07236B crossref_primary_10_1007_s12274_022_4575_0 crossref_primary_10_1016_j_electacta_2020_135883 crossref_primary_10_1039_C8TA05552A crossref_primary_10_1016_j_electacta_2020_136827 crossref_primary_10_1016_j_ccr_2023_215381 crossref_primary_10_1039_D0DT02459G crossref_primary_10_1002_celc_201901767 crossref_primary_10_1021_acsmaterialslett_9b00124 crossref_primary_10_1039_D3CC02497K crossref_primary_10_1039_D2CC04646F crossref_primary_10_3390_en16031092 crossref_primary_10_1002_aenm_202200409 crossref_primary_10_1016_j_electacta_2019_135395 crossref_primary_10_1007_s10854_020_04158_0 crossref_primary_10_1016_j_cej_2023_147950 crossref_primary_10_1016_j_jechem_2022_01_020 crossref_primary_10_1016_j_rechem_2023_101031 crossref_primary_10_1021_acscatal_9b00994 crossref_primary_10_1021_acsanm_3c05983 crossref_primary_10_1039_C9CY02618E crossref_primary_10_1039_D2TA00120A crossref_primary_10_1021_acs_langmuir_3c03205 crossref_primary_10_1016_j_fuel_2022_123279 crossref_primary_10_1016_S1872_2067_19_63284_5 crossref_primary_10_1039_D0CC01023E crossref_primary_10_1039_D5SE00054H crossref_primary_10_1016_j_mtener_2022_101036 crossref_primary_10_1039_D1DT01649K crossref_primary_10_1039_D4NJ00797B crossref_primary_10_1016_j_ultsonch_2021_105664 crossref_primary_10_1002_adsu_202200310 crossref_primary_10_1002_smll_201906133 crossref_primary_10_34133_2020_3976278 crossref_primary_10_1039_C8DT02097C crossref_primary_10_1016_j_cej_2021_133100 crossref_primary_10_1016_j_arabjc_2023_105266 crossref_primary_10_1016_j_apcatb_2022_122240 crossref_primary_10_1016_j_est_2021_102858 crossref_primary_10_1002_cssc_202201205 crossref_primary_10_1021_acssuschemeng_3c03675 crossref_primary_10_1016_j_cej_2023_146172 crossref_primary_10_1016_j_jallcom_2024_175368 crossref_primary_10_3389_fmats_2019_00154 crossref_primary_10_1016_j_apsusc_2022_156088 crossref_primary_10_1021_acs_energyfuels_4c04519 crossref_primary_10_1002_chem_201803718 crossref_primary_10_3390_su16103982 crossref_primary_10_1002_adsu_202400336 crossref_primary_10_1088_2515_7639_abd596 crossref_primary_10_1016_j_matchemphys_2020_123496 crossref_primary_10_1016_j_gee_2021_11_008 crossref_primary_10_1039_D4CY00907J crossref_primary_10_1016_j_cej_2023_144660 crossref_primary_10_3390_ma17112617 crossref_primary_10_1002_smll_202402720 crossref_primary_10_1007_s10853_021_06391_2 crossref_primary_10_1039_D2RA05145A crossref_primary_10_1021_acsomega_9b03261 crossref_primary_10_1016_j_ijhydene_2024_03_351 crossref_primary_10_1016_j_jallcom_2020_156224 crossref_primary_10_1016_j_jmst_2021_08_086 crossref_primary_10_1002_sus2_131 crossref_primary_10_1039_C8NR09740B crossref_primary_10_1002_adfm_202402776 crossref_primary_10_1016_j_electacta_2023_143055 crossref_primary_10_1002_cssc_201801751 crossref_primary_10_1039_D0TA10712C crossref_primary_10_1002_smll_202003916 crossref_primary_10_1016_j_cej_2024_151234 crossref_primary_10_1039_D3YA00447C crossref_primary_10_1039_D3TA06875G crossref_primary_10_1002_smll_201903410 crossref_primary_10_1016_j_apsusc_2018_10_232 crossref_primary_10_1016_j_jcis_2024_03_009 crossref_primary_10_1016_j_mset_2020_09_005 crossref_primary_10_1039_D0EN01247E crossref_primary_10_1016_j_jcis_2022_09_137 crossref_primary_10_1021_acssuschemeng_3c00398 crossref_primary_10_1007_s12274_022_4727_2 crossref_primary_10_1149_1945_7111_ab8647 crossref_primary_10_1016_j_apsusc_2022_155520 crossref_primary_10_1016_j_ijoes_2024_100509 crossref_primary_10_1016_j_nanoen_2023_109183 crossref_primary_10_1016_S1872_2067_22_64190_1 crossref_primary_10_1002_celc_202100443 crossref_primary_10_1021_acssuschemeng_1c05718 crossref_primary_10_1016_j_colsurfa_2021_126425 crossref_primary_10_1002_smll_202409265 crossref_primary_10_1021_acssuschemeng_9b02297 crossref_primary_10_1016_j_electacta_2022_140877 crossref_primary_10_1021_acsaem_1c00891 crossref_primary_10_1016_j_fuel_2023_129626 crossref_primary_10_1002_smll_202002240 crossref_primary_10_1039_D0CC05272H crossref_primary_10_1002_smll_202103326 crossref_primary_10_1016_j_electacta_2024_143931 crossref_primary_10_1016_j_apcata_2021_118049 crossref_primary_10_1016_j_ccr_2022_214864 crossref_primary_10_1016_j_cej_2024_153187 crossref_primary_10_1016_j_pnsc_2022_12_001 crossref_primary_10_1016_j_jallcom_2021_159945 crossref_primary_10_1016_j_jallcom_2022_167060 crossref_primary_10_1021_acsami_1c01188 crossref_primary_10_1039_D1CC06290E crossref_primary_10_1016_j_jcis_2022_01_151 crossref_primary_10_3390_catal14090570 |
Cites_doi | 10.1007/s12274-014-0591-z 10.1016/j.electacta.2017.09.097 10.1021/acscatal.5b01551 10.1002/advs.201600343 10.1021/nn401402a 10.1021/jp806682q 10.1021/jacs.6b01606 10.1021/acsenergylett.7b00679 10.1039/C4CC01625D 10.1039/C6QI00198J 10.1002/aenm.201500091 10.1039/C4CS00236A 10.1039/C5TA10420C 10.1021/acs.chemrev.7b00689 10.1126/science.1233638 10.1021/ja4027715 10.1002/anie.201404208 10.1021/ja307507a 10.1126/science.276.5317.1395 10.1039/C6NJ04060H 10.1021/ja405351s 10.1021/acsenergylett.7b00206 10.1039/c3cc41945b 10.1126/science.aaf1525 10.1021/acscatal.6b00487 10.1002/adma.201604765 10.1007/s12678-016-0336-8 10.1002/aenm.201701347 10.1039/C4CY00669K 10.1007/s12274-017-1421-x 10.1021/ja408329q 10.1039/C3NR05359H 10.1038/35104599 10.1002/cctc.201500396 10.1016/j.electacta.2014.03.134 10.1039/C7QI00185A 10.1002/adma.201302685 10.1016/j.electacta.2012.07.007 10.1021/acscatal.5b01638 10.1016/j.nantod.2016.10.004 10.1021/acscatal.5b02365 10.1039/b905974a 10.1002/adma.201606570 10.1016/j.electacta.2013.06.137 10.1126/science.aad4998 10.1002/adfm.201400118 10.1002/anie.201508704 10.1021/acscatal.7b03177 10.1039/C7CS00418D 10.1002/chem.201501120 10.1002/anie.201606313 10.1039/C7TA01791J 10.1002/cssc.201701074 10.1021/cs300451q 10.1038/nchem.1634 10.1002/aenm.201600621 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/C8TA05054F |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 16129 |
ExternalDocumentID | 10_1039_C8TA05054F |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-67e7dd4a3fef04bad2e0d4f7730128300251cecda9e00239b53a6f53ff4e57f43 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 06:00:17 EDT 2025 Mon Jun 30 11:59:31 EDT 2025 Tue Jul 01 03:13:53 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-67e7dd4a3fef04bad2e0d4f7730128300251cecda9e00239b53a6f53ff4e57f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5775-3084 0000-0002-8712-7025 0000-0001-9502-6382 |
PQID | 2090825433 |
PQPubID | 2047523 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2237522943 proquest_journals_2090825433 crossref_primary_10_1039_C8TA05054F crossref_citationtrail_10_1039_C8TA05054F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Louie (C8TA05054F-(cit18)/*[position()=1]) 2013; 135 Smith (C8TA05054F-(cit27)/*[position()=1]) 2013; 340 Jin (C8TA05054F-(cit21)/*[position()=1]) 2017; 2 Xie (C8TA05054F-(cit49)/*[position()=1]) 2013; 25 Xie (C8TA05054F-(cit44)/*[position()=1]) 2013; 135 Liu (C8TA05054F-(cit42)/*[position()=1]) 2016; 4 Vedharathinam (C8TA05054F-(cit51)/*[position()=1]) 2013; 108 Yang (C8TA05054F-(cit32)/*[position()=1]) 2016; 11 Dionigi (C8TA05054F-(cit14)/*[position()=1]) 2016; 6 Xie (C8TA05054F-(cit45)/*[position()=1]) 2017; 29 Benck (C8TA05054F-(cit48)/*[position()=1]) 2012; 2 Forslund (C8TA05054F-(cit6)/*[position()=1]) 2016; 6 Xie (C8TA05054F-(cit11)/*[position()=1]) 2015; 7 Diaz-Morales (C8TA05054F-(cit16)/*[position()=1]) 2015; 5 Zhao (C8TA05054F-(cit38)/*[position()=1]) 2014; 24 Jin (C8TA05054F-(cit5)/*[position()=1]) 2018; 118 Zhao (C8TA05054F-(cit39)/*[position()=1]) 2016; 138 Liu (C8TA05054F-(cit56)/*[position()=1]) 2017; 4 Zhang (C8TA05054F-(cit26)/*[position()=1]) 2017; 4 Laursen (C8TA05054F-(cit50)/*[position()=1]) 2013; 49 Hu (C8TA05054F-(cit24)/*[position()=1]) 2017; 29 Boggs (C8TA05054F-(cit10)/*[position()=1]) 2009; 0 Sun (C8TA05054F-(cit31)/*[position()=1]) 2015; 44 Xu (C8TA05054F-(cit47)/*[position()=1]) 2016; 55 Zhu (C8TA05054F-(cit53)/*[position()=1]) 2016; 55 Gong (C8TA05054F-(cit36)/*[position()=1]) 2013; 135 Zhang (C8TA05054F-(cit55)/*[position()=1]) 2017; 254 Seh (C8TA05054F-(cit3)/*[position()=1]) 2017; 355 Fabbri (C8TA05054F-(cit4)/*[position()=1]) 2014; 4 Dou (C8TA05054F-(cit33)/*[position()=1]) 2017; 46 Liang (C8TA05054F-(cit25)/*[position()=1]) 2017; 2 Ding (C8TA05054F-(cit7)/*[position()=1]) 2014; 6 Lu (C8TA05054F-(cit20)/*[position()=1]) 2014; 50 Xie (C8TA05054F-(cit40)/*[position()=1]) 2017; 10 Xie (C8TA05054F-(cit34)/*[position()=1]) 2016; 3 Idota (C8TA05054F-(cit29)/*[position()=1]) 1997; 276 Tong (C8TA05054F-(cit12)/*[position()=1]) 2018; 8 Kuai (C8TA05054F-(cit28)/*[position()=1]) 2014; 53 Batchellor (C8TA05054F-(cit15)/*[position()=1]) 2015; 5 Yan (C8TA05054F-(cit54)/*[position()=1]) 2014; 134 Dresselhaus (C8TA05054F-(cit1)/*[position()=1]) 2001; 414 Liu (C8TA05054F-(cit9)/*[position()=1]) 2017; 5 Xie (C8TA05054F-(cit35)/*[position()=1]) 2017; 10 Dong (C8TA05054F-(cit41)/*[position()=1]) 2017; 8 Mallouk (C8TA05054F-(cit2)/*[position()=1]) 2013; 5 Wang (C8TA05054F-(cit23)/*[position()=1]) 2015; 5 Xu (C8TA05054F-(cit57)/*[position()=1]) 2017; 41 Trotochaud (C8TA05054F-(cit22)/*[position()=1]) 2012; 134 Hoang (C8TA05054F-(cit17)/*[position()=1]) 2016; 6 Ghanem (C8TA05054F-(cit52)/*[position()=1]) 2017; 8 Gong (C8TA05054F-(cit19)/*[position()=1]) 2015; 8 Xie (C8TA05054F-(cit13)/*[position()=1]) 2016; 22 Shang (C8TA05054F-(cit37)/*[position()=1]) 2013; 7 Gu (C8TA05054F-(cit43)/*[position()=1]) 2008; 112 Lu (C8TA05054F-(cit46)/*[position()=1]) 2014; 50 Vedharathinam (C8TA05054F-(cit8)/*[position()=1]) 2012; 81 Zhang (C8TA05054F-(cit30)/*[position()=1]) 2016; 352 |
References_xml | – volume: 8 start-page: 23 year: 2015 ident: C8TA05054F-(cit19)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-014-0591-z – volume: 254 start-page: 44 year: 2017 ident: C8TA05054F-(cit55)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.097 – volume: 5 start-page: 6680 year: 2015 ident: C8TA05054F-(cit15)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01551 – volume: 4 start-page: 1600343 year: 2017 ident: C8TA05054F-(cit26)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201600343 – volume: 7 start-page: 5430 year: 2013 ident: C8TA05054F-(cit37)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn401402a – volume: 112 start-page: 18459 year: 2008 ident: C8TA05054F-(cit43)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp806682q – volume: 138 start-page: 6517 year: 2016 ident: C8TA05054F-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01606 – volume: 2 start-page: 1937 year: 2017 ident: C8TA05054F-(cit21)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00679 – volume: 50 start-page: 6479 year: 2014 ident: C8TA05054F-(cit20)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC01625D – volume: 3 start-page: 1160 year: 2016 ident: C8TA05054F-(cit34)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C6QI00198J – volume: 5 start-page: 1500091 year: 2015 ident: C8TA05054F-(cit23)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500091 – volume: 44 start-page: 623 year: 2015 ident: C8TA05054F-(cit31)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00236A – volume: 4 start-page: 4472 year: 2016 ident: C8TA05054F-(cit42)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10420C – volume: 118 start-page: 6337 year: 2018 ident: C8TA05054F-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00689 – volume: 340 start-page: 60 year: 2013 ident: C8TA05054F-(cit27)/*[position()=1] publication-title: Science doi: 10.1126/science.1233638 – volume: 135 start-page: 8452 year: 2013 ident: C8TA05054F-(cit36)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume: 53 start-page: 7547 year: 2014 ident: C8TA05054F-(cit28)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404208 – volume: 134 start-page: 17253 year: 2012 ident: C8TA05054F-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307507a – volume: 276 start-page: 1395 year: 1997 ident: C8TA05054F-(cit29)/*[position()=1] publication-title: Science doi: 10.1126/science.276.5317.1395 – volume: 41 start-page: 4190 year: 2017 ident: C8TA05054F-(cit57)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C6NJ04060H – volume: 135 start-page: 12329 year: 2013 ident: C8TA05054F-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405351s – volume: 2 start-page: 1035 year: 2017 ident: C8TA05054F-(cit25)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00206 – volume: 49 start-page: 4965 year: 2013 ident: C8TA05054F-(cit50)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc41945b – volume: 352 start-page: 333 year: 2016 ident: C8TA05054F-(cit30)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf1525 – volume: 6 start-page: 5044 year: 2016 ident: C8TA05054F-(cit6)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b00487 – volume: 29 start-page: 1604765 year: 2017 ident: C8TA05054F-(cit45)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604765 – volume: 8 start-page: 16 year: 2017 ident: C8TA05054F-(cit52)/*[position()=1] publication-title: Electrocatalysis doi: 10.1007/s12678-016-0336-8 – volume: 8 start-page: 1701347 year: 2017 ident: C8TA05054F-(cit41)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701347 – volume: 4 start-page: 3800 year: 2014 ident: C8TA05054F-(cit4)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C4CY00669K – volume: 10 start-page: 1178 year: 2017 ident: C8TA05054F-(cit35)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1421-x – volume: 135 start-page: 17881 year: 2013 ident: C8TA05054F-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408329q – volume: 6 start-page: 1369 year: 2014 ident: C8TA05054F-(cit7)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C3NR05359H – volume: 414 start-page: 332 year: 2001 ident: C8TA05054F-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/35104599 – volume: 7 start-page: 2568 year: 2015 ident: C8TA05054F-(cit11)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201500396 – volume: 134 start-page: 266 year: 2014 ident: C8TA05054F-(cit54)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.03.134 – volume: 4 start-page: 1120 year: 2017 ident: C8TA05054F-(cit56)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C7QI00185A – volume: 25 start-page: 5807 year: 2013 ident: C8TA05054F-(cit49)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201302685 – volume: 81 start-page: 292 year: 2012 ident: C8TA05054F-(cit8)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.07.007 – volume: 5 start-page: 5380 year: 2015 ident: C8TA05054F-(cit16)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01638 – volume: 11 start-page: 793 year: 2016 ident: C8TA05054F-(cit32)/*[position()=1] publication-title: Nano Today doi: 10.1016/j.nantod.2016.10.004 – volume: 50 start-page: 6479 year: 2014 ident: C8TA05054F-(cit46)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC01625D – volume: 6 start-page: 1159 year: 2016 ident: C8TA05054F-(cit17)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b02365 – volume: 0 start-page: 4859 year: 2009 ident: C8TA05054F-(cit10)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b905974a – volume: 29 start-page: 1606570 year: 2017 ident: C8TA05054F-(cit24)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606570 – volume: 108 start-page: 660 year: 2013 ident: C8TA05054F-(cit51)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.06.137 – volume: 355 start-page: eaad4998 year: 2017 ident: C8TA05054F-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.aad4998 – volume: 24 start-page: 4698 year: 2014 ident: C8TA05054F-(cit38)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400118 – volume: 55 start-page: 1710 year: 2016 ident: C8TA05054F-(cit47)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201508704 – volume: 8 start-page: 1 year: 2018 ident: C8TA05054F-(cit12)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b03177 – volume: 46 start-page: 7338 year: 2017 ident: C8TA05054F-(cit33)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00418D – volume: 22 start-page: 3588 year: 2016 ident: C8TA05054F-(cit13)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201501120 – volume: 55 start-page: 12465 year: 2016 ident: C8TA05054F-(cit53)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606313 – volume: 5 start-page: 8608 year: 2017 ident: C8TA05054F-(cit9)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01791J – volume: 10 start-page: 4465 year: 2017 ident: C8TA05054F-(cit40)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201701074 – volume: 2 start-page: 1916 year: 2012 ident: C8TA05054F-(cit48)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs300451q – volume: 5 start-page: 362 year: 2013 ident: C8TA05054F-(cit2)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1634 – volume: 6 start-page: 1600621 year: 2016 ident: C8TA05054F-(cit14)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600621 |
SSID | ssj0000800699 |
Score | 2.603722 |
Snippet | Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 16121 |
SubjectTerms | Catalysis Catalysts Charge transfer Clean energy Electrocatalysts Energy conversion Fuel production Hydroxides Intermetallic compounds Ions Iron Iron compounds Nanosheets Nickel Nickel compounds Oxidation Oxygen evolution reactions oxygen production pollution Urea Wastewater Wastewater treatment Water pollution Water treatment |
Title | Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis |
URI | https://www.proquest.com/docview/2090825433 https://www.proquest.com/docview/2237522943 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gIHxK9YKMgILihKSeP8HldVq1IB4rCV9hY5sU1XihKUTSSWE-_AK_EkPAkzduKkZZEKl2jj_Kzi-ewZj2e-IeR1eiSTOPGkm3uFgAVKwl2kv3WLXOI2XiwSH5OTP3yMzi6C81W4ms1-TqKWujY_LL7tzCv5H6lCG8gVs2T_QbL2pdAAv0G-cAQJw_FGMv6Ebbwst1gzCDpMs62uYVyWQwwDwyw2p-RbLMnpiLrDRKnLrWjqr2shnYpX9eYSt6V50_Ct5mZwmjrvNq2Tr1Hn9a7CvlqOdvYgh8lfbFowf813O8VQSO7QWZicoOGK5hg3GYfaaT9kcGGQrvXvr8y2yXlXKdnrVu2d1ZqSY6h_PYYS6YAEEMzngq_Hqd5MYqtu6teYTsK-F3rIcWqa5LTNVL8dZu5oAlDGJtPwEfKiTXQ6nqc7FYbHkG_1OFkusKRfcDqqxSEU4Jq2tDGMeveepdn47C2y78NiBdTD_uJk-e699fWhVR7pUqb20wamXJa-HV9w1Ta6ahpoe2d5j9zthUoXBnX3yUxWD8idCX3lQ9Ja_FGLP2rw9-v7D0Qe7ZFHDfKoRR61yKMGeRRgQQ3y6BR59DryHpGL05Pl8ZnbV_FwC5aGrRvFMhYi4ExJ5QU5F770RKBiVC3IPoeL3EIWgqdSZ1rnIeORCplSgQxjFbDHZK-qK_mEUBXnIlRKgX4uAoU541xwP_F5nMrI9_w5eTP0X1b0FPdYaaXM_hTWnLyy934xxC477zoYxJD1A3-T-V6qHSuMzclLexkGFe618UpCZ2dgdcewtEkD9vRGf_SM3MZBYJx7B2SvbTr5HMzdNn_Ro-k36huyzw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partially+amorphous+nickel%E2%80%93iron+layered+double+hydroxide+nanosheet+arrays+for+robust+bifunctional+electrocatalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xie%2C+Junfeng&rft.au=Qu%2C+Haichao&rft.au=Lei%2C+Fengcai&rft.au=Peng%2C+Xu&rft.date=2018&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=33&rft.spage=16121&rft.epage=16129&rft_id=info:doi/10.1039%2FC8TA05054F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8TA05054F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |